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Abstract High-grade serous ovarian carcinoma (HGSOC) is the most genomically complex 
cancer, characterized by ubiquitous TP53 mutation, profound chromosomal instability, and heteroge-
neity. The mutational processes driving chromosomal instability in HGSOC can be distinguished by 
specific copy number signatures. To develop clinically relevant models of these mutational processes 
we derived 15 continuous HGSOC patient-derived organoids (PDOs) and characterized them using 
bulk transcriptomic, bulk genomic, single-cell genomic, and drug sensitivity assays. We show that 
HGSOC PDOs comprise communities of different clonal populations and represent models of 
different causes of chromosomal instability including homologous recombination deficiency, chro-
mothripsis, tandem-duplicator phenotype, and whole genome duplication. We also show that these 
PDOs can be used as exploratory tools to study transcriptional effects of copy number alterations 
as well as compound-sensitivity tests. In summary, HGSOC PDO cultures provide validated genomic 
models for studies of specific mutational processes and precision therapeutics.

Editor's evaluation
This fundamental work substantially advances our understanding of patient-derived organoids as a 
useful model to evaluate chromosome instability and identify novel therapeutic strategies to combat 
HGSOC. The study is comprehensive, and the evidence supporting the conclusions is compelling, 
which would further benefit the related research about the mechanisms of genomic instability in 
HGSOC.

Introduction
HGSOC is a heterogeneous, chromosomally unstable cancer with predominant somatic copy number 
alterations (SCNAs) and other structural variants including large-scale chromosomal rearrangements 
(Li et al., 2020; Drews et al., 2022). Oncogenic mutations are rare and recurrent somatic substi-
tutions involve less than 10 driver genes (Ahmed et  al., 2010; Cancer Genome Atlas Research 
Network, 2011; Gerstung et  al., 2020; Aaltonen et  al., 2020). Loss of p53 function and TP53 
mutation have been defined as the earliest driver events permitting the development of diverse 
chromosomal instability (CIN) phenotypes that are apparent in pre-invasive lesions in the fallopian 
tubal epithelium (Ahmed et al., 2010; Labidi-Galy et al., 2017). Mutational signatures are genomic 
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patterns that are the imprint of mutagenic processes accumulated over the lifetime of a cancer cell 
(Petljak et al., 2019). Genome-wide patterns of single nucleotide (SNV) (Alexandrov et al., 2013) 
and structural variants (SV) (Davies et al., 2017) showed that these mutational spectra could iden-
tify specific mutational processes with the majority of cancers having multiple signatures. We have 
previously shown that shallow whole genome sequencing (sWGS) methods can stratify HGSOC based 
on the distributions of six copy number features that encode patterns of different causes of CIN 
(Macintyre et al., 2018; Cheng et al., 2022). These copy number signatures are able to recapitulate 
the major defining elements of HGSOC genomes, including defective homologous recombination 
(Cancer Genome Atlas Research Network, 2011), CCNE1 amplification (Etemadmoghadam et al., 
2009), amplification-associated fold-back inversions (Wang et  al., 2017) and are associated with 
distinct tumor-immune microenvironments (Jiménez-Sánchez et al., 2019). These methods have also 
been applied to molecular stratification of testicular germ cell tumors and multiple myeloma (Loveday 
et al., 2020; Maclachlan et al., 2021). This work provides the first generalized classifier for HGSOC 
that focuses on the mechanistic basis of CIN (Drews et al., 2022; Macintyre et al., 2018).

CIN drives clinically relevant genetic and cellular phenotypes including extrachromosomal DNA 
and micronuclei (Turner et  al., 2017; Zhang et  al., 2015), activation of innate immune signalling 
(Bakhoum and Cantley, 2018), metastasis (Bakhoum et al., 2018; Turajlic et al., 2018), and ther-
apeutic resistance (Ippolito et  al., 2021; Lukow et al., 2021). CIN has complex causes including 
mitotic chromosome mis-segregation (Thompson et al., 2010), homologous recombination defects 
(Li and Heyer, 2008), telomere crisis (Maciejowski et al., 2015; Maciejowski et al., 2020), breakage-
fusion-bridge cycles (Gisselsson et al., 2000), DNA replication stress (Burrell et al., 2013; Bester 
et al., 2011; Tamura et al., 2020), as well as others. Improving outcomes in HGSOC will depend on 
having well-characterized and validated pre-clinical in vitro models that accurately represent the CIN 
patterns observed in patients. However, currently available 2D models have multiple shortcomings 
such as changes in cell morphology, loss of diverse genotype and polarity, as well as other limita-
tions. Patient-derived organoids (PDOs) offer improved pre-clinical cancer models and generally are 
molecularly representative of the donor, have good clinical annotation, and can represent tumoral 
intra-heterogeneity (Vlachogiannis et al., 2018; Li et al., 2018; Lee et al., 2018; Kopper et al., 
2019). PDOs can be cultured for short periods (Nelson et al., 2020; Hill et al., 2018) but continuous 
HGSOC PDOs have only been generated for 27 models (Kopper et al., 2019; Hoffmann et al., 2020; 
Maenhoudt et  al., 2020) and these models lack detailed genomic characterization to determine 
whether they adequately represent the genomic landscape of HGSOC.

Current pre-clinical models may significantly underrepresent common mutational processes 
observed in patients. Approximately 50% of HGSOC patients have impaired homologous recombina-
tion (HR) DNA repair, including approximately 15% of cases that have a loss of function and epigen-
etic events in BRCA1 and BRCA2 (Cancer Genome Atlas Research Network, 2011). Consequently, 
homologous-recombination deficiency (HRD) is the major genomic classifier in the clinic and strati-
fies patients for outcome after treatment with PARP inhibitors (Gelmon et al., 2011; Swisher et al., 
2017). Despite the relatively high prevalence of HRD and BRCA1/2 mutations in the clinic, there are 
only very few relevant models. This suggests that cell lines and PDOs that carry BRCA1 and BRCA2 
deleterious mutations are selected against. In addition, there is an urgent unmet clinical need for ther-
apies for patients with HGSOC that are homologous recombination proficient (HRP). Several distinc-
tive patterns of structural variation have been described in HRP tumors including chromothripsis, 
tandem duplication (TD), whole-genome duplication (WGD), and CCNE1 amplification (Aaltonen 
et al., 2020). Apart from the description of CCNE1 amplification, it is unknown if the HGSOC organ-
oids described to date display any of these genomic features and most cell line publications only refer 
to BRCA1 and BRCA2 mutations. These shortcomings highlight the lack of a systematic approach to 
characterize CIN and copy number signatures in PDO models.

To address these challenges, we developed HGSOC PDOs and characterized their genomes, 
transcriptomes, drug sensitivity, and intra-tumoral heterogeneity. Using copy number signatures, we 
show that our models comprehensively recapitulate clinically relevant genomic features across the 
whole spectrum of CIN observed in HGSOC patients. PDOs showed strong copy number-driven gene 
expression and transcriptional heterogeneity. Drug sensitivity was reproducible compared to parental 
tissues and the ability of these models to grow in vivo. Single-cell DNA sequencing showed copy 
number features at a subclonal level and distinct clonal populations. The PDO models we present 
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thus shed light on the ongoing chromosomal instability of HGSOC and can have clinical relevance for 
guiding treatment decisions.

Results
HGSOC organoid culture derivation
To establish HGSOC organoids we used cells obtained from patient-derived ascites (n=43), solid 
tumors (n=10), and patient-derived xenografts (n=15) (Figure 1a). Most ascites cultures were derived 
from patients with recurrent HGSOC and clinical summaries are provided in Figure 1—figure supple-
ment 2 and Supplementary file 1. We tested the effect of two published (Kopper et  al., 2019; 
Kessler et al., 2015) media compositions on 15 independent cultures and found similar PDO viability 
(Figure 1—figure supplement 1a). We, therefore, performed subsequent derivations using the less 
complex fallopian tube media (Kessler et al., 2015). The efficiency of establishing PDOs was depen-
dent on the type of tissue sample used for derivation (p<0.0001, log-rank test; n=86; Figure 1—figure 
supplement 1b) and the highest success rate for short-term cultures (passage number between 1 and 
4) was obtained using ascites and dissociated xenograft tissues (65%). We defined continuous PDO 
cultures as those that could be serially passaged >5 times followed by cryopreservation and successful 
re-culture; all data in this paper was generated between passages 5–15. Using these criteria, PDOs 
were established for 15/18 organoid lines (PDO16, PDO17, and PDO18 were finite culture models). 
Four PDOs were able to grow as continuous 2D cell lines in conventional tissue culture media (CIOV7 
from PDO1; CIOV5 from PDO2; CIOV4 from PDO3; and CIOV6 from PDO7).

PDOs were screened for mutations enriched in HGSOC using an in-house tagged amplicon 
sequencing panel (Figure 1—figure supplement 3 and Supplementary file 2) and were highly compa-
rable to mutational profiles and p53 immunostaining from the original patient sample (Figure 1—
figure supplement 4). All PDOs had a TP53 mutation allele fraction between 80–95% essentially 
excluding co-culture of non-cancer cells. Pathogenic somatic BRCA1 or BRCA2 mutations were 
present in PDO4, PDO7, PDO8, and PDO9. Germline DNA sequencing for 11 of the PDO donors 
(Supplementary file 3) showed BRCA1/2 germline mutations with unknown clinical significance or 
benign variants in patients OV04-297 (PDO13), OV04-409 (PDO14), and OV04-627 (PDO5 and PDO6).

To assess the feasibility of the PDOs for in vivo modeling, we implanted eight PDO models into 
immunodeficient mice using intraperitoneal injection to simulate peritoneal metastasis. All eight PDOs 
efficiently established PDX models and 7/8 resulted in solid implants on peritoneal surfaces and/or 
liver infiltration (Figure 1—figure supplement 5).

Genomic characterization of patient-derived organoids
We characterized the genomic landscape of the PDOs using sWGS and derived copy number signa-
tures to characterize the diversity of causes of CIN (Figure 1b and Figure 1—figure supplement 6). 
We used our published framework for copy number signature extraction (Macintyre et al., 2018) 
based on non-negative matrix factorization (NMF) of feature-summarized copy number data to find 
the mutational processes behind the observed copy number profiles. We used the seven previously 
identified copy number signatures in ovarian cancer that represent different putative causes of CIN: 
s1: mitotic errors, s2: replication stress causing tandem duplication, s3 and s7: homologous recom-
bination deficiency, s4: whole-genome duplication, s5: unknown etiology leading to chromothripsis, 
and s6: replication stress leading to focal amplification. The finite lines PDO16, PDO17, and PDO18 
are included here for comparison only.

PDO1 and PDO11 showed high levels of signature s1 and are thus appropriate models of mitotic 
errors. PDO4 exhibited high activity of a signature of replication stress-induced tandem duplica-
tion (s2) but did not have a canonical CDK12 mutation suggesting this may represent an alternative 
model of tandem duplication (see also below) (Menghi et al., 2016; Willis et al., 2017). Thirteen of 
the organoids showed evidence of s3 and can be considered as having HRD. Of these, pathogenic 
somatic BRCA1 and BRCA2 mutations were present in PDO4, PDO7, PDO8, and PDO9 (Figure 1—
figure supplement 3 and Supplementary file 2); a novel non-synonymous secondary mutation was 
observed in BRCA1 (c.1367T>C) in PDO8 which was cultured after progression on PARP inhibitor 
therapy (paired with PDO7); BRCA1/2 mutations were not detected in the remaining PDOs with s3 
(PDO2, PDO3, PDO10, PDO12, PDO15) suggesting these may be models of other mechanisms of 

https://doi.org/10.7554/eLife.83867


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Genetics and Genomics

Vias, Morrill Gavarró et al. eLife 2023;12:e83867. DOI: https://​doi.​org/​10.​7554/​eLife.​83867 � 4 of 20

a

0.0

0.3

0.6

0.9

1.2

PD
O

4
PD

O
14

PD
O

15
PD

O
10

PD
O

9
PD

O
6

PD
O

3
PD

O
5

PD
O

13
PD

O
17

PD
O

12
PD

O
2

PD
O

8
PD

O
16

PD
O

7
PD

O
18

PD
O

11
PD

O
1

C
op

y
nu

m
be

r
si

gn
at

ur
e

ac
tiv

ity

b

c
297

(PDO13)
333

(PDO15)
348

(PDO17)
366

(PDO7)
366

(PDO8)
409

(PDO14)
413

(PDO11)
466

(PDO9)
467

(PDO12)
47

(PDO18)
571

(PDO4)
627

(PDO5)
627

(PDO6)
75

(PDO2)
788

(PDO10)
839

(PDO16)
920

(PDO1)

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

as
cite

s

org
an

oid
s

0.00
0.25
0.50
0.75
1.00

C
op

y
nu

m
be

rs
ig

na
tu

re
ac

tiv
ity

d

PDO16PDO12 PDO13

PDO7

PDO8 PDO3 PDO9

PDO5

PDO6 PDO2 PDO17 PDO15

PDO10

PDO4 PDO14

PDO11

PDO18 PDO1−0.5

0.0

0.5

1.0

Public tumour datasets (TCGA, PCAWG and BriTROC) and organoidsC
op

y
nu

m
be

rs
ig

na
tu

re
ac

tiv
ity

s1 s2 s3 s4 s5 s6 s7

HGSOC

patient

Ascites fluid

Solid tumour

n=10

n=15

n=43

Organoid
culture

Figure 1. Chromosomal instability features of patient-derived organoids (PDOs). (a) Schematic of the sample collection workflow used in this study. (b) 
Stacked bar plots show copy number signature activities ranked by signature s1 (PDO16, PDO17, and PDO18 were not continuous models). Brackets 
indicate PDOs derived from the same individual. (c) Stacked bar plots show copy number signature activities for organoids and the matched ascites 
sample from which they were derived. (d) Unsupervised hierarchical clustering of copy number signature for PDO and 692 high-grade serous ovarian 
carcinoma (HGSOC) cases using Aitchison’s distance with complete linkage function. Stacked barplots in the lower panel show copy number signature 
activities.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Organoid survival analysis.

Figure supplement 2. Clinical data.

Figure 1 continued on next page
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HRD. PDO1 and PDO11 showed low signature s3 activity making them suitable models for HRP 
ovarian cancer. Ten of the PDOs showed s4 activity making them suitable to study the effects of WGD. 
Signature s5, with unknown etiology that results in chromothripsis, had generally low activity in all 
PDOs consistent with previous observations suggesting that canonical chromothripsis is a rare event 
in HGSOC (Cortés-Ciriano et al., 2020; Zack et al., 2013; Patch et al., 2015). s6, a signature of 
replication stress resulting in focal amplification, was high in PDO3, PDO5, PDO6, PDO9, and PDO14, 
indicating these are good models to study both the cause and consequence of focal amplification 
events. Finally, a number of organoids showed s7 making them good models to study the effects of 
HRD following WGD.

Organoids represent the spectrum of human high-grade serous ovarian 
cancers
We next compared copy number signatures from donor patient tissues and matched PDO (Figure 1c) 
and found that they were highly consistent except for PDO12 (OV04-467). We tested for the differen-
tial abundance of the signatures between donor samples and matching PDO using previous described 
statistical modeling (Cheng et al., 2022). For the patients who contributed two samples, a single 
sample was selected at random. The results indicated no differential abundance (Wald test on log-
ratios of signatures, p-value=0.99 using a model with no correlations between signatures given that 
the total number of observations is low). For PDO12, the parental CDK12 mutation present in the 
ascites specimen was not recovered after culture, suggesting selection for a subclonal population with 
distinct copy number signatures (Supplementary file 2).

Both PDO culture and derivation of PDX models may negatively select against specific molecular 
subtypes of HGSOC—which may explain the low number of BRCA1/2 models. To test whether the 
PDOs were representative of the wider population of HGSOC cases, we compared PDO copy number 
features to those of publicly available patient cohorts (n=692 samples from the TCGA, PCAWG, and 
BriTROC-1 studies) (Figure 1d). The number of copy number segments (Figure 1—figure supple-
ment 7a) did not significantly differ between PDOs (169 ± 77) and HGSOC tissues from TCGA, 
PCAWG, and BriTROC-1 (200 ± 134) (p=0.22, negative binomial likelihood ratio test). Ploidy was 
found to be bimodal in both groups, with centers at average ploidies 2 and 3.5 (Figure 1—figure 
supplement 7b). There were also no significant differences in other copy number features (Figure 1—
figure supplement 7c).

We next clustered copy number activity profiles (Figure 1d) from TCGA, PCAWG, and BriTROC 
(n=692) and compared these with the PDO profiles. Unsupervised hierarchical clustering of the clinical 
samples showed two main groups with the major group characterized by high activities for s4 and low 
activities for s3 suggesting frequent WGD and consistent with previous observations (Aaltonen et al., 
2020; Cheng et al., 2022). The smaller group was predominantly composed of s1 mitotic errors and 
s3 HRD and may represent near diploid tumors. PDOs were well distributed across the two groups 
but there were three small subclusters that were underrepresented: those presenting a lack of s2 and 
s4, a lack of s2 and s3, and a lack of s3 together with high s4. PDOs derived from the same patient 
(PDO3 and PDO9, PDO5 and PDO6, and PDO7 and PDO8) were clustered together. Taken together, 
these data indicate that PDOs represents the copy number mutational landscape observed in HGSOC 
patients.

Effect of CNAs at the gene expression level
To understand how PDO absolute copy number alterations (CNAs) could alter the gene expres-
sion of corresponding genes, we first tested whether PDOs displayed known HGSOC-associated 
amplifications (Figure  2a) and which genes were highly amplified when averaged over all PDOs 

Figure supplement 3. Mutation analysis of patient-derived organoid (PDO) and patient samples.

Figure supplement 4. Tissue and patient-derived organoids (PDOs) morphological structures and p53 status.

Figure supplement 5. Orthotopic implantation of patient-derived organoid (PDO).

Figure supplement 6. Patient-derived organoids' (PDOs) genome-wide absolute copy number alteration analysis.

Figure supplement 7. Copy number features of PDO and samples from public data sets.

Figure 1 continued
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(Figure 2b), including the well-characterized copy number drivers MYC and CCNE1. We performed 
RNA-Seq on the PDOs and compared their transcriptome to the TCGA primary tissue cohort and 
found highly similar cell-autonomous transcriptional profiles. As expected, we observed significant 
under-expression of genes relating to the tumor microenvironment (Figure 3a) which is not repre-
sented in the organoid cultures. Principal component analysis on the scaled and centered DESeq2 
counts showed that PDOs derived from the same patient PDO5 and PDO6 - the transcriptome 
of which is nearly identical - cluster together, but that PDO7 and PDO8, which are distinguished 
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Figure 2. Absolute gene copy number in patient-derived organoids (PDOs). (a) Absolute gene copy number for a set of important high-grade serous 
ovarian cancer genes. (b) Absolute gene copy number for the most amplified genes when averaged across all patient-derived organoids.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Whole genome correlation between absolute gene copy number and expression.

https://doi.org/10.7554/eLife.83867
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by a secondary BRCA1 mutation following progression after PARP therapy, differ from each other 
(Figure 3b). As PDOs are characterized by high TP53 allele fractions in line with those seen in patient 
tumors, strongly indicating that they mostly consist of tumor cells, we assessed the correlation 
between gene copy number changes and their expression using two metrics. The first metric shows 
whether, on average, PDOs with lower copy number values in genes have a lower gene expression, in 
order to capture nonlinear relationships between copy number and gene expression. We computed 
the average gene expression values for the three PDOs of the lowest copy number and calculated 
the fraction of remaining PDOs with higher gene expression values than this average (Figure 3c). The 
second metric used was the R2 of the correlation between DESeq2 count values and absolute copy 
number in each gene across PDOs. For both metrics, higher values indicate stronger evidence for 
copy number-driven gene expression (Figure 3d). The most highly variable areas in the genome are 
located within chromosomes 8, 10, 11, 12, 17, and 1 (Figure 2—figure supplement 1a), where we 
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Figure 3. Transcriptomic analysis of high-grade serous ovarian carcinoma (HGSOC) organoids. (a) Scatterplots show correlation for the average counts, 
in transcripts per million (TPM) for each gene in the TCGA and the patient-derived organoid cohorts. Consensus TME genes represent non-tumor genes 
expressed in the tumor microenvironment (Jiménez-Sánchez et al., 2019). The dashed line corresponds to the identity line. (b) Principal component 
analysis based on DESeq2 counts for 11 organoids. (c) Scatterplot and contour plot of the Pearson correlation coefficient for copy number and gene 
expression, and average absolute copy number for each gene. MYC and ZWINT are shown as highly correlated genes. (d) Scatterplot of two metrics 
for assessing the agreement between copy number and gene expression. For each gene, we computed the average expression of the three organoids 
with the lowest copy number value. The metric is the fraction of remaining organoids that have higher gene expression value than this average, and 
takes values between 0/8 and 8/8, with higher values indicating greater agreement between copy number and gene expression across organoids. This is 
shown in the x-axis. On the y-axis we display the R2 value for the correlation between copy number state and gene expression. We have labeled genes 
of interest. The blue curve indicates the median R2 values in each group of the metric along the x-axis, and boxplots indicate the interquartile range. 
(e) DNA damage response KEGG pathway analysis from RNA-Seq on 11 PDOs. PDO10, and PDO15 show high enrichment scores for homologous 
recombination compared to other PDOs. Mismatch and base excision repair pathways also show high scores in these models. PDO8, which has the 
lowest HR score, contains a loss of function mutation in BRCA1.
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found the most highly correlated genes. MYC showed a good correlation between copy number and 
gene expression and was also the gene with the highest absolute copy number in our PDO cohort, 
followed by ZWINT (Figure 2b).

As defects in DNA damage response pathways are clinically important for treatment, we tested 
for enrichment scores across the PDOs. PDO10 and PDO15 have a high enrichment score for homol-
ogous recombination deficiency (Figure 3e), present nearly identical signature activities, and are the 
two PDOs with the highest s7 activity (Figure 1b).

PDO drug screening
We compared drug sensitivity between five PDOs and their parental uncultured patient-ascites. Using 
12 anti-cancer compounds dispensed in an 8-point half-log dilution series, we found a moderate to 
a high correlation between the drug area under the curve (AUC) of PDO and their corresponding 
patient-derived ascites (Figure 4a). We then tested all the PDOs using the standard of care chemo-
therapy (oxaliplatin, paclitaxel, gemcitabine, and doxorubicin) (Figure 4b) as we observed no effect 
with the targeted therapies at the concentrations used in this study. Based on the median AUC 
we divided PDOs into two groups of samples passing RNA-Seq quality control: sensitive (PDO1, 
PDO2, PDO3, PDO11, PDO12) and resistant (PDO5, PDO6, PDO7, PDO8, PDO10) (Figure 4—figure 
supplement 1) and performed differential gene expression and pathway analysis (Figure 4c) to infer 
mechanisms of resistance. Sensitive PDOs showed increases in MYC targets and interferon alpha and 
gamma responses while resistant PDOs had an increase in hypoxia, KRAS signaling, and epithelial-
mesenchymal transition (EMT) pathways. We compared both groups for ploidy and number of copy 
number segments and we did not observe any significant differences (the average number of segments 
is 167 for sensitive and 183 resistant PDOs, and the average ploidies are 2.8 for sensitive and 2.46 for 
resistant PDOs; p-value=0.7441 and p-value=0.2374, respectively; Welch Two Sample t-test).
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Figure 4. Patient-derived organoids are clinically relevant models. (a) Correlation of drug response between uncultured patient cells and the patient-
derived organoids (PDOs) derived from them using 12 compounds (PDO14: cor. 0.49, p-value 0.1; PDO11: cor. 0.82, p-value 0.001; PDO3: cor. 0.995, 
p-value 2.3e-11; PDO10: cor. 0.81, p-value 0.001; PDO12: cor.0.32, p-value 0.31). (b) Organoid drug responses to standard-of-care chemotherapies. The 
observed dose-response relationships were not always compatible with the Hill dose-response model assuming a sigmoidal decrease so that five-
parameter logistic model fits were preferred, explaining area under the curve (AUC) estimates greater than one. Sensitive PDOs are labeled with a blue 
dot and resistant PDOs with a red one. (c) Significant pathways based on adjusted p-value (padj) after performing Gene Set Enrichment Analysis (GSEA) 
with rank based on significance level between the two PDO groups sensitive and resistant.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Patient-derived organoids (PDOs) can be classified into two groups according to their drug sensitivity.

https://doi.org/10.7554/eLife.83867
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Organoid intratumoral heterogeneity
In order to assess genomic heterogeneity within PDOs, we performed single-cell whole genome 
sequencing on three of the models, selected arbitrarily to represent both fast-growing (PDO2, 
n=76 cells, and PDO3, n=145 cells) and slow-growing models (PDO6, n=355 cells) (Figure 5). We 
did not observe any normal copy number profiles indicating the presence of non-cancer cells. Copy 
number changes at single-cell resolution revealed widespread clonal loss of heterozygosity (LOH) in 
large regions spanning up to entire chromosomes that were PDO specific (e.g. chromosome 13 in 
PDO6). Subclonal LOH, although less common, was also present in all three organoids. Amplification 
events were more common than losses; for example, chromosomes 2, 3, and 20 are clonally ampli-
fied in PDO2 and PDO3 whereas chromosomes 6 and 11 showed large, amplified regions shared 
between PDO3 and PDO6. All three PDOs present non-focal amplifications in chromosomes 1, 5, 12, 
and 20 as well as deletions in chromosome 13. This analysis also provided strong evidence for clonal 
amplification of candidate driver copy number aberrations: CCNE1 in PDO2 and PDO3, an early chro-
mothriptic event at MYC in PDO3 (Figure 5—figure supplement 1), and AKT2 in PDO2 and PDO6. 
PDO6 showed early clonal loss of RB1.

We also identified regions of clonal heterogeneity in all three PDOs (Figure 5 and Figure 5—figure 
supplement 2). We quantified the heterogeneity observed in each PDO by comparing the observed 
copy number variance to the expected copy number variance (Methods), and found that, globally, 
PDO3 showed the highest subclonal heterogeneity, with 48% of the genome presenting subclonal 
heterogeneity, followed by PDO6 (29%) and PDO2 (26%) (Figure 5—figure supplement 3).

Discussion
Our analysis of copy number features and mutational signatures shows that HGSOC PDOs recapitulate 
the broad mutational landscape of patient samples. The organoid models contained a mixture of signa-
tures indicating the influence of multiple mutational processes. Although their copy number signatures 
are well spread across the range seen in patient samples, certain copy number combinations are under-
represented (high s4 and s7, high s3 and s5, and high s6). Critically, we show that PDOs are also vital 
models to study heterogeneity at the single-cell level and we found that, although all models tested 
showed genomic heterogeneity, the level of complexity varies. This suggests that different mutational 
processes may have different abilities to drive evolutionary change and PDOs now provide tools for 
lineage tracing experiments to test this. Further analysis of clonal populations with PDO also has the 
potential to define the active mutational processes by sequential single-cell cloning as recently described 
(Petljak et al., 2019). Lastly, these models also provide important insights into the genomic etiology of 
HGSOC, including evidence for chromothripsis as an early initiation event in HGSOC by targeting MYC 
and indicating that tandem duplication can occur in the absence of either BRCA1 or CDK12 mutation.

The development of high-quality pre-clinical tumor models is of high importance for therapeutic 
discovery in HGSOC. Existing cell-based and PDX models have not been characterized in detail and 
their relationship to the diversity of CIN seen in patient tissue samples is unknown. Derivation of 
continuous cell lines has proven difficult for HGSOC, and although new cell lines are being developed 
(Thu et al., 2017; Létourneau et al., 2012; Fleury et al., 2015) success rates are comparatively low 
and the number of available models has not significantly increased over the past 10 years. With the 
wider use of organoid culture, ovarian cancer models have been developed both as short and long-
term cultures (Kopper et al., 2019; Nelson et al., 2020; Hill et al., 2018; Hoffmann et al., 2020; 
Maenhoudt et al., 2020) but with variable information about success rates and survival in culture. 
We demonstrated that short-term HGSOC organoid derivation from human ascites samples and PDX 
tissues can be achieved with good efficiency. However, as indicated by our time-to-event analyses, 
further improvements in media and culture conditions are needed to improve success rates, particu-
larly from solid tissue samples.

Although SCNAs have been shown to affect gene expression levels for the most abundantly 
expressed human genes indicating global gene dosage sensitivity (Fehrmann et al., 2015), it has also 
been described that this correlation does not always translate proportionally due to transcriptional 
adaptive mechanisms (Bhattacharya et  al., 2020). In our study we compared PDO gene expression 
to TCGA patient samples and corroborated that gene transcript levels are highly correlated, providing 
ideal models to study tumor cell-intrinsic associations. We have previously found that the correlation 
between SCNA and gene expression is higher for cancer driver genes that are frequently amplified and 

https://doi.org/10.7554/eLife.83867
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Figure 5. Genomic heterogeneity in three high-grade serous carcinoma patient-derived organoids (PDOs). (a–c) Single-cell DNA (scDNA) copy number 
where cells have been clustered using hierarchical clustering on Euclidean distance. Each row within the scDNA plots represents a cell across the 
different chromosomes in the x-axis and the copy number state (20 kb bins) is indicated in colors. Loss of heterozygosity and amplification events are 
common in all three patient-derived organoids. (d-f) Bulk absolute copy number profiles.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Chromothripsis in chromosome 8 of PDO3.

Figure supplement 2. Major clades of cells in three organoids determined by copy number alterations from single-cell DNA-Seq.

Figure supplement 3. 95% confidence intervals of the centered copy number, along the genome, across single-cells from organoids.

https://doi.org/10.7554/eLife.83867
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identified co-dependencies between amplification of MYC and genes from the PI3K pathway which have 
therapeutic potential (Martins et al., 2022). We corroborated, using novel ways of correlating absolute 
SCNA with transcriptomics, that in our organoid models, the correlation was highest for MYC, PIK3CA, 
and AKT2 reinforcing their putative role as potential targetable cancer drivers.

Genetic alterations in HGSOC are extraordinarily diverse therefore the development of a truly person-
alized treatment requires genomically annotated individual patient avatars for therapeutics. In this study, 
we showed the potential of HGSOC PDOs as a new preclinical cancer model representing individual 
patients. Consistent with studies in ovarian cancer and other tissue types (Lee et al., 2018; Gao et al., 
2014; Broutier et al., 2017; Francies et al., 2016) our results confirm the feasibility of using PDOs for 
testing drug sensitivity in HGSOC. Future studies should account for doubling-time confounding errors 
using different metrics such as Growth Rate (GR) metrics (Hafner et al., 2016).

This study has shown that HGSOC PDOs faithfully represent the high variability in copy number 
genotypes observed in HGSOC patients and together with their associated clinical, phenotypic, and 
genomic characterizations will provide an important resource for pre-clinical and translational studies 
investigating genomic biomarkers for treatment stratification and further our understanding of tumor 
heterogeneity and clonality.

Methods
Ethical approval and clinical data collection
Clinical data and tissue samples for the patients were collected on the prospective cohort study 
Cambridge Translational Cancer Research Ovarian Study 04 (CTCR-OV04), with IRAS project ID 4853, 
and which was approved by the Institutional Ethics Committee (REC reference number 08 /H0306/61). 
Clinical decisions were made by a clinical multidisciplinary team (MDT) and researchers were not 
directly involved. Patients provided written, informed consent for participation in this study and for 
the use of their donated tissue for the laboratory studies carried out in this work and its publication. 
Clinical data for all the patients is provided in Supplementary Information.

Sample collection and processing
Samples were obtained from surgical resection, therapeutic drainage, or surgical washings. Solid 
tumors were assessed by a pathologist and only tumor samples with ≥50% cellularity were attempted 
to grow. A small portion of each sample was kept at −80 °C until used for genomic profiling.

Organoid derivation
Tumor samples were washed in PBS, minced into 2 mm pieces using scalpels, and incubated with 
gentamicin (50  μg/ml), Bovine Serum Albumin Fraction V (1.5%), insulin (5  μg/mL), collagenase A 
(1 mg/mL) and hyaluronidase (100 U/ml) for 1–2 hr at 37 °C. Following incubation, the mixture was 
filtered and the cell suspension was spun down and washed with PBS. Ascites fluid was centrifuged at 
450 g for 5 min. Cells were then washed with PBS and centrifuged at 400 g for 5 min.

The isolated cells were resuspended in 7.5 mg/ml basement membrane matrix (Cultrex BME RGF type 
2 (BME-2), Amsbio) supplemented with complete media and plated as 20 μl droplets in a six-well plate. 
After allowing the BME-2 to polymerize, complete media was added and the cells were left at 37 °C. 
We used published culture conditions for normal fallopian tube growth (Kessler et al., 2015) as follows: 
AdDMEM/F12 medium supplemented with HEPES (1×, Invitrogen), Glutamax (1×, Invitrogen), penicillin/
streptomycin (1×, Invitrogen), B27 (1×, Invitrogen), N2 (1×, Invitrogen), Wnt3a-conditioned medium 
(25% v/v), RSPO1-conditioned medium (25% v/v), recombinant Noggin protein (100 ng/ml, Peprotech), 
epidermal growth factor (EGF, 10 ng/ml, Peprotech), fibroblast growth factor 10 (FGF10, 100 ng/ml, 
Peprotech), nicotinamide (1 mM, Sigma), SB431542 (0.5 μM, Cambridge Biosciences), and Y27632 (9 μM, 
Abmole).

Organoid culture
Organoid culture medium was refreshed every 2 days. To passage the organoids, the domes were 
scraped and collected in a falcon tube, TrypLE (Invitrogen) was added and incubated at 37 °C for 
approximately 10 min. The suspension was centrifuged at 800 g for 2 min and the cell pellet was 
resuspended in 7.5 mg/ml BME-2 supplemented with complete media and plated as 20 μl droplets 
in a six-well plate. After allowing the BME-2 to polymerize, complete media was added, and cells 

https://doi.org/10.7554/eLife.83867
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were incubated at 37  °C. The commonest cause of culture failure was growth arrest or fibroblast 
overgrowth. We considered an organoid line to be continuously established when it had been serially 
passaged >5 times followed by cryopreservation and successful re-culture. By these criteria, 15/18 
PDO lines were continuous.

Immunohistochemistry
Haematoxylin and Eosin (H&E) slides were stained according to the Harris H&E staining protocol and 
using a Leica ST5020 multi-stainer instrument. Paraffin-embedded sections of 3 μm were stained using 
Leica Bond Max fully automated IHC system. Briefly, slides were retrieved using sodium citrate for 
30 min and p53 antibody (D07, 1:1000, Dako) was applied for 30 min. Bond Polymer Refine Detec-
tion System (Leica Microsystems) was used to visualize the brown precipitate from the chromogenic 
substrate, 3,3’-Diaminobenzidine tetrahydrochloride (DAB).

Nucleic acid isolation
DNA and RNA were extracted at the same time from the same cells. Extraction was performed using 
the DNeasy Blood & Tissue Kit (QIAGEN) according to manufacturer instructions.

Bulk shallow whole-genome sequencing and absolute copy number 
signature analysis
Whole genome libraries were prepared using the TruSeq Nano Kit according to manufacturer instruc-
tions. Each library was quantified using the KAPA Library Quantification kit (kappa Biosystems) and 
10 nM of each library was combined in a pool of 21 samples and sequenced on the Illumina HiSeq 4000 
machine using single-end 150 bp reads. Reads were aligned against the human genome assembly 
GRCh37 using the BWA-MEM algorithm (v0.7.12). Duplicates were marked using the Picard Tool 
(v1.47) and copy number was assessed using the Bioconductor package QDNAseq (v1.6.1) (Scheinin 
et al., 2014). Shallow whole-genome samples have an approximate coverage of 0.25–0.3, assuming 
that the sample is diploid.

Copy number signatures for the organoid cultures were calculated as previously described 
(Macintyre et al., 2018).

Comparison of organoid copy number signatures to those of TCGA, 
BriTROC-1, and PCAWG
Signature activities of organoids were compared to those previously described in three HGSOC cohorts: 
TCGA and BriTROC-1 (Macintyre et al., 2018) (sWGS-based signatures) and PCAWG (Aaltonen et al., 
2020) (WGS-based signatures). Copy number signature activities were transformed using the centered 
log-ratio transformation with an imputation value of 10–2 to consider that they are compositional data 
that sample-wise add up to one. Organoid and primary tissue samples were clustered using hierarchical 
clustering with complete linkage on this transformed space. We performed additional analyses to confirm 
that our conclusions – namely, that the signature activities of organoids are representative of the activi-
ties of primary tissue, and in determining which activities are underrepresented in the organoids – were 
robust to the imputation value. Using imputation values between 0.001 and 0.1 we show that the dendro-
gram in Figure 1d is similar to the dendrograms generated using both higher and lower imputation 
values, and that the underrepresented clades are robust to changes in the imputation values. A more 
detailed report of the differences in dendrograms as we vary the imputation values can be found in the 
GitHub repository (see below).

Comparison of copy number signatures between ascites and organoids
Signature exposures between ascites and organoids are compared using the same method as in a 
previous CN paper (Cheng et al., 2022), in which the model is detailed. Briefly, the model used is a 
multivariate model on isometric log-ratio (ILR)-transformed exposures that accounts for data compo-
sitionality, by modeling these transformed quantities as a non-correlated multivariate normal distribu-
tion, and testing for a difference in the mean of the two groups.

Single-cell sWGS
Organoids were dissociated into single cells using TrypLE, washed twice with PBS, and counted. 
Single-cell solution was filtered using a 70 μm Flowmi filter to remove any duplets or triplets. With 

https://doi.org/10.7554/eLife.83867


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Genetics and Genomics

Vias, Morrill Gavarró et al. eLife 2023;12:e83867. DOI: https://​doi.​org/​10.​7554/​eLife.​83867 � 13 of 20

the aim of getting around 300 cells for library preparation, 4000 single cells were loaded onto the 
chip. Single-cell 10 x CNV libraries were prepared according to the manufacturer’s protocol (10 X 
Genomics) and multiplexed in equal molarity to achieve 2.4 million reads per cell. Single-cell 10 X CNV 
constructed libraries were sequenced on the Illumina Novaseq6000 S4 platform using PE- 150 modes. 
The Cell Ranger pipeline was used for quality control, trimming, and alignment.

Metric for copy number subclonal heterogeneity in single-cell
The metric for copy number subclonal heterogeneity is defined as follows. Independently, for each of 
the three organoids, we fitted a linear model of the standard deviation of the absolute copy number 
across organoids predicted by its mean, using bins of 500 kb. Copy number data were handled using 
the R package GenomicRanges (Lawrence et al., 2013). The marked positive correlation indicated 
that the data were heteroscedastic. For each bin, we computed its expected variance from the model, 

‍E(σ2)‍, and compared it to the observed variance ‍S2‍  with a Chi-Squared test with alternative hypoth-
esis ‍E(σ2) < S2

‍. A statistically significant result indicates that we see a greater variance than expected 
in the copy number values of this bin, and that, therefore, there is subclonal heterogeneity.

Clade analysis of single-cell copy number data
Single-cell clades for each organoid were identified by performing hierarchical clustering using 
complete linkage on Euclidean distance of copy number values on 500 kb-binned genomes. Only 
clades with more than three cells were kept in the analysis. PDO2 had four major clades, two of which 
encompassed most cells (clade A: 42 cells, clade B: 30 cells), PDO3 had seven major clades, three of 
which with more than two cells (clade A: 40 cells, clade B: 52 cells, clade C: 48 cells). PDO6 had six 
clades, three of which contained more than one cell (clade A: 158 cells, clade B: 145 cells, clade C: 
49 cells). The copy number profile comparison of the two clades of PDO2, and of the two pairwise 
comparisons of clades of PDO3 and PDO4, were carried out using the 20 kb-binned copy number 
profile. Bins of distinct copy numbers between cells in different clades were detected using a Holm–
Bonferroni-adjusted t-test on the absolute copy number value.

Tagged-amplicon sequencing
Coding sequences of TP53, PTEN, NF1, BRCA1, BRCA2, MLH1, MSH2, MSH6, PMS2, RAD51C, 
RAD51B, RAD51D, and hot spots for EGFR, KRAS, BRAF, PIK3CA were sequenced using tagged ampl-
icon sequencing on the Fluidigm Access Array 48.48 platform as previously described (Forshew et al., 
2012). Libraries were sequenced on the MiSeq platform using paired-end 125 bp reads. Variant calling 
from sequencing data was performed using an in-house analysis pipeline and IGV software (Thorvalds-
dóttir et al., 2013).

RNA-Seq
RNA quality control was performed using Tapestation according to manufacturer instructions and 
samples were processed using Illumina’s TruSeq stranded mRNA kit with 12 PCR cycles according to 
manufacturer’s instructions. Quality control of libraries was performed using Tapestation and Clario-
star before normalizing and pooling. Samples were sequenced using two lanes of SE50 on a HiSeq 
4000 instrument. The analysis was performed using an in-house DESeq2 (Love et al., 2014) pipeline.

TCGA gene expression values were downloaded as HTSeq count files of Genome Build GRCh38 
for 240 ovarian samples of either progressive disease, or complete remission or response. The counts 
were normalized using the DESeq2 method, based on gene-specific geometric means. The subset of 
genes relating to the tumor microenvironment was taken from the ConsensusTME list (https://github.​
com/cansysbio/ConsensusTME, Cast, 2023). The normalized expression of all genes was used to 
create the PCA.

Effect of CNAs at the gene expression level
We computed the average gene expression values for the three PDOs of the lowest copy number. 
Three organoids, out of eleven, with the lowest expression were selected in order not to include solely 
outliers, as well as leaving out a high enough number of organoid samples (eight) in which we can 
observe the variability in their copy number and gene expression. We explored using the two, and 
four, PDOs and the lowest copy number, which yielded similar results - there is a very high correlation 

https://doi.org/10.7554/eLife.83867
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between these averaged GE values when using the lowest three organoids, and when using the 
lowest two, or four.

Pathway enrichment analysis
Using our transcriptomic data, we computed enrichment scores for KEGG pathways of interest using 
ssGSEA, implemented in the R package GSVA (Hänzelmann et al., 2013), and using gene sets from 
the package GSVAdata (Hänzelmann et al., 2013). To determine which pathways were overrepre-
sented in the differential expression analysis between sensitive and resistant samples we used the 
R package fgsea (Korotkevich et al., 2021) and selected the top ten pathways according to their 
adjusted p-value (Benjamini-Hochberg correction), using the Hallmark gene sets from MSigDBv5p2.

Drug sensitivity
An eight-point half-log dilution series of each compound was dispensed into 384 well plates using an 
Echo 550 acoustic liquid handler instrument (Labcyte) and kept at –20 °C until used. Prior to use plates 
were spun down and 50 µl of organoid suspension is added per well using a Multidrop Combi Reagent 
Dispenser (Thermo-Fisher). Following 5 days of drug incubation cell viability was assayed using 30 µl 
of CellTiter-Glo (Promega). Screens were performed in technical triplicate.

Drug response measures were standardized by dividing the original values by the median drug 
response observed in the control group of each drug and sample and then modeled as a function of 
the dose (on the log scale) by means of a 4th-degree polynomial robust regression, fitted by means 
of the function lmrob of the R package robustbase (Maechler et al., 2023). Drug response measures 
that obtained robust weights smaller than 0.4 (out of a range which spreads from 0 for outliers to 1 
for non-outliers) were considered as outliers. After excluding outliers, we modeled the standardized 
drug response measures as a function of the dose (on the log scale) by means of the five-parameter 
log-logistic model (drm function of the drc R package [Ritz et al., 2015] with fct argument set to 
LL2.5). Area under the curve estimates was finally obtained by integrating the expected standardized 
drug response given the dose on the dose range of interest (on the log scale). Note that the use of 
M-splines instead of a log-logistic model led to similar AUC estimates.

Compounds used in this study included standard-of-care chemotherapeutics paclitaxel (Sigma), 
oxaliplatin (Selleck), doxorubicin (Selleck), and gemcitabine (Selleck); and targeted compounds 
provided by AstraZeneca: AZD0156, AZD2014, AZD6738, AZD2281, AZD1775, AZD8835, AZD5363, 
and AZD8185. Maximum drug concentration in the assay was 30 μM apart from paclitaxel (0.3 μM) 
and oxaliplatin (300 μM).

In vivo growth
Animal procedures were conducted in accordance with the ethical regulations and guidelines of AWERB, 
NACWO, and UK Home Office (Animals Scientific Procedures Act 1986). It was approved by the CRUK CI 
Animal Welfare and Ethics Review Board (Home Office Project Licence number: PP7478310). 1.5 × 105 
organoids were resuspended in 150 μl of PBS and injected intraperitoneally into NOD-scid IL2Rγ(null) 
(NSG) mice. Tumor growth was monitored by palpation and weighing the mice weekly.

Code availability
All the analysis code is at https://github.com/lm687/Organoids_Compositional_Analysis (copy 
archived at Morrill, 2023).
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