Title

The functional form of value normalization in human reinforcement learning

Authors:

Sophie Bavard*1,2,3 Stefano Palminteri*1,2

1 Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Santé et Recherche Médicale, Paris, France
2 Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France
3 Department of Psychology, University of Hamburg, Hamburg, Germany

* corresponding authors
sophie.bavard@gmail.com
stefano.palminteri@ens.fr

Abstract (147 words)

Reinforcement learning research in humans and other species indicates that rewards are represented in a context-dependent manner. More specifically, reward representations seem to be normalized as a function of the value of the alternative options. The dominant view postulates that value context-dependence is achieved via a divisive normalization rule, inspired by perceptual decision-making research. However, behavioral and neural evidence points to another plausible mechanism: range normalization. Critically, previous experimental designs were ill-suited to disentangle the divisive and the range normalization accounts, which generate similar behavioral predictions in many circumstances. To address this question, we designed a new learning task where we manipulated, across learning contexts, the number of options and the value ranges. Behavioral and computational analyses falsify the divisive normalization account and rather provide support for the range normalization rule. Together, these results shed new light on the computational mechanisms underlying context-dependence in learning and decision-making.

Significance statement (115/120 words)

In the present study, the computational bases of context-dependence in reinforcement learning are being investigated by challenging a prominent theory: divisive normalization (a supposedly “canonical neural computation”). Behavioral analyses and computational results all provide clear and systematic evidence against divisive normalization, in favor of an alternative account: range normalization. Notably, in depth analysis also revealed that range normalization alone is not satisfactory and it has to be augmented with weighting mechanisms, thus illustrating an important potential role for attentional processes in valuation. The current findings constitute a step towards understanding the computational mechanisms that shape subjective values during learning, and may have a strong impact in neuroscience, economics, and the field of decision-making research in general.
MAIN TEXT

Introduction

The process of attributing economic values to behavioral options is highly context-dependent: the representation of an option’s utility does not solely depend on its objective value, but is strongly influenced by its surrounding (i.e., other options simultaneously or recently presented). This is true in an extremely wide range of experimental paradigms, ranging from decision among lotteries to reinforcement learning problems. This is also true for a wide variety of species, including mammals, birds and insects. The pervasiveness of this effect across tasks and species suggests that context-dependence may reflect the way neuron-based decision systems address a fundamental computational trade-off between behavioral performance and neural constraints.

Indeed, it has been showed that context-dependence often takes the form of a normalization process where option values are rescaled as a function of the other available options, which has the beneficial consequence of adapting the response to the distribution of the outcomes. The idea that neural codes and internal representations are structured to carry as much as information per action is the cornerstone of the efficient coding hypothesis, demonstrated both at the behavioral and neural levels, in perceptual decision-making.

Probably due to its popularity in perception neuroscience, the dominant view regarding the computational implementation of value normalization in economic decisions postulates that it follows a divisive rule, according to which the subjective value of an option is rescaled as a function of the sum of the value of all available options. In addition, to be validated in the perceptual domain, the divisive normalization rule also presents the appeal of being reminiscent of Herrnstein’s matching law for behavioral allocation.

Even though, to date, most of the empirical studies proposing divisive normalization as a valid model of economic value encoding proposed that option values are vehiculated by explicit features of the stimulus (such as food snacks or lotteries; so-called described options), few recent studies have extended the framework to account for subjective valuation in the reinforcement learning (or experience-based) context. Adjusting the divisive normalization model to a reinforcement learning scenario is easily achieved by assuming that the normalization step occurs at the outcome stage, i.e., when the participant is presented with the obtained (and forgone) outcomes.

While predominant in the current neuro-economic debate about value encoding and adaptive coding, the divisive normalization account of value normalization, is not consensual. Indeed, range normalization represents a possible alternative account of value normalization and is made plausible by both behavioral and neural observations. According to the range normalization rule, option values are rescaled as a function of the maximum and the minimum values presented in a context, irrespective of the number of options (or choice set size). Answering this question bears important consequences for neuroscience, because understanding the scaling between objective and subjective outcomes is paramount to investigate the neural codes of economic values and to understand the neural mechanisms of decision-making. Yet, the experimental paradigms used so far were ill-suited to distinguish between two accounts of value normalization in the context of reinforcement learning. To address this issue, we designed a new reinforcement learning protocol where, by simultaneously manipulating outcome ranges and choice set sizes, we made the divisive and the range normalization predictions qualitatively diverge in many respects. We opted for a reinforcement learning paradigm because it has a greater potential for translational and cross-species research. In a total of eight experiments (N=500 in total) we deployed several variations of this new behavioral protocol where we controlled for several factors. The behavioral, model fitting and simulation results convergently rejected divisive normalization as a satisfactory explanation of the results in favor of the range normalization account. Results also suggested that the range normalization account should be further improved by a non-linear weighting process. To check the robustness of our results across different elicitation methods and representational systems, we also...
assessed option values using explicit ratings. Values inferred from explicit, declarative, ratings were remarkably consistent with those inferred from more traditional, choice-based, methods.
Results

Computational hypotheses and ex ante model simulations

The goal of this study was to characterize the functional form of outcome (or reward) normalization in human reinforcement learning. More specifically, we aimed at arbitrating between two equally plausible hypotheses: range normalization and divisive normalization. Both hypotheses assume that after reception of a given objective reward R, the learner forms an internal, subjective, representation of it, R_{NORM}, which is influenced by other contextually relevant rewards. Crucially, the two models differ in how R_{NORM} is calculated. According to the range normalization hypothesis, the subjective normalized reward R_{NORM} is defined as the position of the objective reward R within its contextual range:

$$R_{\text{NORM}} = \frac{R - R_{\text{MIN}}}{R_{\text{MAX}} - R_{\text{MIN}}}$$

where R_{MAX} and R_{MIN} are the endpoints of the contextually relevant distribution and together form the range ($R_{\text{MAX}} - R_{\text{MIN}}$). On the other side, the divisive-normalization hypothesis, in its simplest form, postulates that the subjective normalized reward R_{NORM} is calculated by dividing the objective reward by the sum of all the other contextually relevant rewards:

$$R_{\text{NORM}} = \frac{R}{\sum_{k=1}^{n} R_k}$$

where n is the number of contextually relevant stimuli. These hypotheses concerning value normalization are then easily plugged into the reinforcement learning framework, simply by assuming that the value of an option is updated by minimizing a prediction error, calculated on the basis of the subjective reward. Although these normalization functions are mathematically distinct, they make identical (or very similar) behavioral predictions in many of the experimental protocols designed to investigate context-dependent reinforcement learning so far. It should be noted here that, although divisive normalization has been more frequently applied to the prospective evaluation of described outcomes (e.g., lotteries; snack-food items), rather than retrospective evaluation of obtained outcomes (e.g., bandits), it has both historical and recent antecedents in the context of reinforcement learning. For the present study, we design reinforcement learning tasks designed to adjudicate these computational hypotheses. The key idea behind our behavioral protocol is to orthogonally manipulate, across different learning contexts, the amplitude of the range of the possible outcomes and the number of options (often referred to as choice size set; Figure 1A; see also Figure 2-suppl., 2A for an alternative version). The first factor (the amplitude of the range of the possible outcomes) is key to differentiate an unbiased model (where $R_{\text{NORM}} = R$) from both our normalization models. The second factor (number of options) is key to differentiate the range normalization from divisive normalization. The reason for this can easily be inferred from Equations 1-2, because adding more outcomes has a significant impact on the subjective reward R_{NORM} only following the divisive-normalization rule. To quantitatively substantiate these predictions, we ran model simulations using three models. We compared a standard model with unbiased subjective values (UNBIASED), and two normalization models using either the divisive or the range normalization rules (referred to as DIVISIVE and RANGE, respectively). First, we simulated a learning phase, where each learning context in our factorial design was presented 45 times. After each trial the simulated agent was informed about the outcomes that were drawn from normal distributions (Figure 1B). To avoid sampling issues and ambiguity

1 As clearly put by the main advocate of the divisive normalization rule for value-based decision-making: "[…] a system would be highly sensitive to the number of options under consideration. As the number of elements in the denominator grows, so does the aggregate value of the denominator, shifting the overall firing rates lower and lower" (Paul Glimcher, TICS, 2022; page 14)
concerning the definition of the relevant normalization variables, the simulated agents were provided information about the outcomes of all options (‘complete’ feedback22,40). After the learning phase, the simulated agents went through a transfer phase, where they made decisions among all possible binary combinations of the options (without additional feedback being provided). Similarly constructed experiments, coupling a learning to a transfer phase, have been proven key to demonstrate contextual effects in previous studies3,4,8,33,38,41. When analyzing model simulations, we focused on choice patterns in the transfer phase (of note, accuracy during the learning phase is weakly diagnostic because all models predict above chance accuracy, whose level depends on choice stochasticity). Figure 1C plots the average simulated choice rate in the transfer phase. For a given option, the transfer phase choice rate was calculated by dividing the number of times an option is chosen by the number of times the option is presented. In the transfer phase, the 10 cues from the learning phase were presented in all possible binary combinations (45, not including pairs formed by the same cue). Each pair of cues was presented four times, leading to a total of 180 trials. Since a given comparison counts for the calculation of the transfer phase choice rate of both involved options, this implies that this variable will not sum to one. Nonetheless, the relative ranking between transfer choice rate can be taken as a behavioral proxy of subjective values.

Crucially, even if the transfer phase involves only binary choices, it can still tease apart the normalization rules affecting outcome valuation during the learning phase. This is because transfer choices are made based on the memory of values acquired during the learning phase, where we purposely manipulated the number of options and their ranges of values, in order to create learning contexts that allow to confidently discriminate between the two normalization accounts, in the reinforcement learning context.

Unsurprisingly, within each learning context, in all models the choice rates are higher for high value options compared to lower value options. However, model simulations show that the models produce choice patterns that differ in many key aspects. Let’s start considering the UNBIASED model as a benchmark (Figure 1C, left). Since it encodes outcomes in an unbiased manner, it predicts higher choice rates for the high value option in the ‘wide’ contexts (WB\textsubscript{86} and WT\textsubscript{86}) compared to high value options in the ‘narrow’ contexts (NB\textsubscript{50} and NT\textsubscript{50}). On the other side, the UNBIASED model predicts that choice rate in the transfer phase is not affected by whether or not the option belonged to a binary or a trinary learning context. Moving to the DIVISIVE model, we note that the difference between the choice rates of high value options of the ‘wide’ contexts (WB\textsubscript{86} and WT\textsubscript{86}) compared to the high value options in the ‘narrow’ contexts (NB\textsubscript{50} and NT\textsubscript{50}) is now much smaller, due to the normalization process (Figure 1C; middle). However, the DIVISIVE model also predicts that the choice rate is strongly affected by whether or not the option belonged to a binary or a trinary learning context. For instance, WB\textsubscript{86} and NB\textsubscript{50} present a much higher choice rate compared to WT\textsubscript{86} and NT\textsubscript{50}, respectively, despite their objective expected value being the same. This is an easily identifiable and direct consequence of the denominator of the divisive formulation rule increasing as a function of the number of options (Equation 2). Concerning the RANGE model (Figure 1C; right), it predicts choice rates being similar across all high value options, regardless of their objective values (because of the normalization) and whether or not the option belonged to a trinary or binary context (because of the range normalization rule; Equation 1). Finally, the choice rates of the low value (14) options also discriminate the DIVISIVE model, where it is strongly modulated by the task factors, from the other two models, where all low value options present the same choice rate. To conclude, model simulations confirm that our design, involving a factorial learning phase and a transfer phase, is well suited to disentangle our three a priori models because they predict qualitatively differentiable patterns of choices (see also Figure 2-suppl. 2C for similar conclusions based on an alternative task design)37,42.

Behavioral results

The above-described behavioral protocol was administered to N=50 participants recruited online, who played for real monetary incentives as previously described33. We first tested whether the correct choice rate (i.e., the probability of choosing the option with the highest expected value) was overall above chance...
level during the learning phase, to ensure that the participants engaged in the task. Indeed, correct response rate was significantly higher than chance level (0.5 and 0.33 in the binary and trinary learning contexts, respectively) in all conditions (least significant: t(49)=18.93, p<.0001, d=2.68; on average: t(49)=24.01, p<.0001, d=3.96; Figure 2A). We further checked whether the task factors affected performance in the learning phase and found a significant effect of the decision problem (the correct choice rate being higher in the binary compared to the trinary contexts: F(1,49)=9.26, p=.0038, η² =0.16), but no effect of range amplitude (wide versus narrow; F(1,49)=0.52, p=.48, η² =0.01) nor interaction (F(1,49)=2.23, p=.14, η² =0.04).

We next turned to the results of the transfer phase. Following the analytical strategy used in previous studies, we first checked that the correct choice rate in the transfer was significantly higher than chance (t(49)=9.10, p<.0001, d=1.29), thus providing positive evidence of value retrieval and generalization.\(^4,33,41\) We analyzed the choice rate per symbol, which is the average frequency with which a given symbol is chosen in the transfer phase, and can therefore be taken as a measure of the subjective preference for a given option.\(^4,38\) We focus on key comparisons that crucially discriminate between competing models of normalization. First, and contrary to what was predicted by the DIVISIVE model, the choice rate for the high value options of the trinary contexts (NT50 and WT50) was not lower compared to that of the binary ones (NB50 and WB50). Indeed, if anything, their choice rate was higher (NT50 vs. NB50: t(49)=1.66, p=.10, d=0.29; WT50 vs. WB50: t(49)=2.80, p=.0072, d=0.53). Similarly, the choice rate of the low value options was not affected by the by their belonging to a binary or trinary context in the direction predicted by the DIVISIVE model. Concerning other features of the transfer phase performance, some comparisons were consistent with the UNBIASED model and not with the RANGE model, such as the fact that high value options in the narrow contexts (NB50 and NT50) displayed a lower choice rate compared to the high value options of the wide contexts (WB50 and WT50; t(49)=4.19, p=.00011, d=0.72), even if the size of the difference appeared to be much smaller to that expected from ex ante model simulations (Figure 1C, right). Other features were clearly more consistent with the RANGE model. For instance, the fact that the mid value option in the wide trinary context WT50 displayed a significantly lower choice rate compared to the high value options in the narrow contexts (NT50 and NB50) was not predicted by the UNBIASED model. One feature was not explained by any of the models, such as the higher choice rate for the high value options in the trinary contexts (NT50 and WT50) compared to the binary contexts (NB50 and WB50; t(49)=3.53, p=.00090, d=0.50\(^2\)). Of note, the direction of the effect for this comparison is in stronger contrast with the DIVISIVE (which predicts a difference in the opposite direction) rather than the RANGE and UNBIASED models (which predict no difference).

Finally, the mid value options (NT32 and WT32) displayed a choice rate very close to that of the corresponding low value options (NT14 and WT14); this feature is clearly in contrast with both the DIVISIVE and UNBIASED models (which predict their choice rate closer to that of the corresponding high value options: NT50 and WT50), but not perfectly captured either by the RANGE model (which predicts their choice rate exactly in between those of high and low value options). To rule out that this effect was not due to a lack of attention for the low and mid value options, we designed two additional experiments where we added forced choice trials to focus the participants’ attention on all possible options (Table 1)\(^15\).

In one experiment (N=50), forced choice trials were followed by partial feedback (Figure 2B), in another experiment (N=50) forced choice trials were followed by partial feedback (Figure 2C). Focusing participants’ attention to all possible outcomes by forcing their choice did not significantly affect the behavioral performance neither in the learning phase (F(2,147)=2.75, p=.067, η² =0.04, Levene’s test F(2,147)=2.43, p=.092) nor in the transfer phase (F(2,147)=0.64, p=.53, η² =0.00, Levene’s test

\(^2\) Please note that, while the statistical test is significant in Experiment 1a, it stays so when taking into account all experiments (t(149)=4.11, p<.0001, d=0.34).
F(2,147)=0.64, p=.53). This suggests that the choice rates of the mid options reflect their underlying valuation (rather than lack of information). Given the absence of detectable differences across experiments, in the model-based analyses that follow, we pooled the three experiments together. To sum up, behavioral results, specifically in the transfer phase, are in contrast with the predictions of the DIVISIVE model and are rather consistent with the range normalization process proposed by the RANGE model. Behavioral results in three experiments (N=50 each) featuring a slightly different design, where we added a mid value option (NT68) between NT50 and NT87 converge to the same broad conclusion: the behavioral pattern in the transfer phase is largely incompatible with that predicted by outcome divisive normalization during the learning phase (Figure 2-supp. 2). In the following section, we substantiate these claims by formal model comparison and ex post model simulations analysis.

Model comparison and ex post model simulations

Behavioral analyses of transfer phase choices suggest that learning and valuation are more consistent with the predictions of the RANGE model, compared to those of the UNBIASED or the DIVISIVE model. To quantitatively substantiate this claim, we formally compared the quality of fit of the three models using and out-of-sample log-likelihood. Specifically, we first optimized the models’ free parameters (learning rates and choice inverse temperature) in order to maximize the log-likelihood of observing the learning phase choices, given the model and the parameters. We then used these parameters to generate the log-likelihood of observing the choices in the transfer phase, which were not included in the original model fitting. The RANGE model displayed a much higher mean and median out-of-sample log-likelihood (which indicated better fit) compared to both the DIVISIVE and the UNBIASED models (oosLL_RAN vs oosLL_DIV: t(149)=10.10, p<.0001, d=0.41; oosLL_RAN vs oosLL_UNB: t(149)=8.34, p<.0001, d=0.82; Table 2). Subsequently, we simulated transfer choice phase using the best fitting, i.e., empirical, parameter values (Figure 3). The results of this ex post simulations confirmed what was inferred from the ex-ante simulations and indicated that RANGE model predicted results much closer to the observed ones, in respect of many key comparisons. All these results were replicated in three additional experiments feature slightly different design, where the DIVISIVE model displayed a higher mean log-likelihood compared to the UNBIASED model, indicating no robust improvement of the quality of fit (see Table 2). Despite the superiority of the RANGE model in terms of both predictive (out-of-sample log-likelihood) and generative (simulation) performance compared to UNBIASED and DIVISIVE one, it still failed to perfectly capture transfer phase preference, specifically concerning the mid value options. In the subsequent section we propose how the RANGE model could be further improved to obviate this issue.

Improving the RANGE model

Although model comparison and model simulation both unambiguously favored the RANGE model over the UNBIASED and DIVISIVE models, the RANGE model is not perfect at predicting participants’ choices in the transfer phase (Figure 3C). As mentioned previously, the mid value options in trinary contexts (NT32 and WT50) displayed a choice rate closer to that of the corresponding low value options (NT14 and WT14): a feature which was not captured by the RANGE model, which predicts their choice rate to be exactly halfway of those of low (NT14 and WT14) and high (NT50 and WT87) value options. In addition, the choice rate of low value options of all contexts (NB14, NT14, WB14 and WT14) was underestimated by the RANGE model. These observations are prima facie compatible with the idea that outcomes are not processed linearly. To formally test this hypothesis with the goal of improving the RANGE model, we augmented it with a free parameter ω which applies a non-linear transformation to the normalized outcome. More specifically, in this modified RANGE model (RANGE$^{\omega}$), the normalized outcome is power-transformed by the ω parameter ($0 < \omega < +\infty$), as follows:
\[R_{\text{NORM}} = \left(\frac{R - R_{\text{MIN}}}{R_{\text{MAX}} - R_{\text{MIN}}} \right)^{\omega} \] (3)

Crucially, for \(\omega = 1 \), the RANGE\(\omega \) model reduces to the RANGE model; for \(\omega < 1 \), the RANGE\(\omega \) model induces a concave deformation of the normalized outcome; for \(\omega > 1 \), the RANGE\(\omega \) model induces a convex deformation of the normalized outcome. Quantitative model comparison favored the RANGE\(\omega \) model over all other models, including the RANGE model (Table 2) (ooSLLL\textsubscript{RAN} vs ooSLLL\textsubscript{RAN(\(\omega \))} : \(t(149)=6.98, p<.0001, d=0.57 \); Table 2). The inspection of model simulations confirmed that the RANGE\(\omega \) model closely captures participants’ behavior in the transfer phase. More specifically, the mid value options (NT\textsubscript{32} and WT\textsubscript{32}) and the low value options (NB\textsubscript{14}, NT\textsubscript{14}, WB\textsubscript{14} and WT\textsubscript{14}) were better estimated in all contexts (Figure 4A; this was also true for Experiment 2; see Supplementary Materials). On average, the power parameter \(\omega \) was greater than 1 (mean±std: 2.97±1.36, \(t(149)=17.81, p<.0001, d=1.45 \)), suggesting that participants value the mid outcome less than the midpoint between lowest and highest outcomes (i.e., closer to the low value option, Figure 4B).

Investigating the attentional mechanisms underlying weighted normalization

However, our design, as implemented so far, does not allow to tease apart two possible mechanisms underlying subjective weighting of outcome captured by power transformation. One possibility (implicit in the formulation we used) is that participants “perceive” mid outcomes as being closer to the low one, because the high outcome “stands out” due to its value. Another possibility is that participants give a higher subjective weighting to chosen outcomes, because of the very fact that they were chosen and obtained. The current design and results do not allow to tease apart these interpretations, because during the learning phase the mid value options were chosen as much as the low value options (7.2% and 6.8%, \(t(149)=0.97, p=.33, d=0.04 \)) and therefore mid outcomes were almost systematically unchosen outcomes.

To address this issue, we ran two additional experiments (Experiment 3a and 3b), featuring, as before, wide and narrow learning contexts (Figure 5A). The key manipulation in this new experiment consisted in interleaving trinary choices with binary choices, where the high value option was presented, but not available to the participant (Figure 5B). We reasoned that by doing so, we would be able to increase the number of times the mid value options were chosen. The manipulation was successful in doing so: in the learning contexts featuring binary choices, the mid value options were chosen on 48% of the trials (Experiment 3a) and 67% (Experiment 3b); significantly more than the corresponding high value option in the same learning context (Experiment 3a, wide: \(t(99)=6.03, p<.0001, d=0.95 \); narrow \(t(99)=5.43, p<.0001, d=0.80 \); Experiment 3b, wide: \(t(99)=33.27, p<.0001, d=4.47 \); narrow \(t(99)=34.06, p<.0001, d=4.33 \); Figure 5-supp. 1).

We then turned to the analysis of the transfer choices and found that the manipulation was also effective in manipulating the mid option value, so that in the contexts featuring binary choices (i.e., impossibility of choosing the high value options), the mid options were valued more compared to the full trinary contexts (i.e., when they were almost never chosen) (Experiment 3a, wide: \(t(99)=22.80, p<.0001, d=3.46 \); narrow: \(t(99)=20.10, d=3.06, p<.0001 \); Experiment 3b, wide: \(t(99)=21.96, p<.0001, d=3.88 \); narrow \(t(99)=20.46, p<.0001, d=3.76 \); Figure 5C). Interestingly, the results were virtually identical in the experiment with 50% and that with 25% trinary trials, despite the choosiness of the high value options being very different in the two experiments and the signatures of range adaptation (narrow vs. wide) were replicated (and we therefore pooled the experiment in the main figure).

The behavioral results thus suggest that mid outcomes, although range normalized, can be valued correctly in between the lowest and the highest outcome, if we force choices toward the mid value option. These results are therefore consistent with the hypothesis that outcome weighting is contingent with
option choosiness and a bias in outcome evaluation per se. To objectify this conclusion, we compared the
RANGE previously described, with a more complex one (RANGE') where two different power ω
parameters apply to the obtained (chosen: ω_c) and forgone (unchosen: ω_u) outcomes. This augmented
model displayed better higher quality of fit in both experiments (as proxied by the out-of-sample log-
likelihood of the transfer phase; $\text{ooSL}_{\text{RAN}(\omega)}$ vs $\text{ooSL}_{\text{RAN}(\omega^+)}$: $t(199)=-7.73$, $p<.0001$, $d=-0.30$). This
quantitative result was backed up by model simulations analysis showing that only the RANGE' was able
to capture the change in valuation in the mid value options (Figure 5C). Finally, we compared the
weighting parameters and found ω_c significantly lower then ω_u ($t(199)=-17.28$, $p<.0001$, $d=-1.92$; Figure
5D). To conclude, these additional experiments further clarify the cognitive mechanisms (and specifically
the role of attention) underlying outcome encoding.

Explicit assessment of option values

In addition to the transfer phase, participants performed another elicitation assessment, where they were
asked to explicitly rate the average value of each option using a slider ranging from 0 to 100. This explicit
elicitation phase allowed us to have a complementary estimation of participants’ subjective valuations of
each option, to compare them with the choice-based transfer phase. The subjective values elicited
through explicit ratings were consistent with those elicited though binary choices in many key aspects
(Figure 6A). Indeed, against what was predicted by the DIVISIVE principle, option subjective values did
not depend on the number of options in each context, but rather on their ordinal value within the context
(minimum, mid, maximum). This pattern is even clearer when looking at the difference between reported
subjective values and the objective values of each option (Figure 6B). Crucially, the subjective value of
the options with an objective value of 50 (NB50, NT50, and WT50) is completely determined by its position in
the range of its context, and not by the total sum of the options in this context. Finally, to compare
elicitation methods, we simulated transfer phase choices based on the explicit elicitation ratings. More
specifically, for each participant and comparison, we generated choices using an argmax selection rule on
the subjective values they explicitly reported for each option (see Equation 10). We found the pattern
simulated using explicit ratings to closely match the actual choice rates of the transfer phase (simulated
data vs. behavioral data per option: Spearman’s $\rho(8)=0.99$, $p<.0001$, Figure 6C), suggesting that both
elicitation methods tap into the same valuation system. Similar results and conclusions could be drawn
from Experiment 2 (Spearman’s $\rho(8)=0.99$, $p<.0001$, Figure 2-supp. 2) and Experiment 3, where we
confirmed that the explicit ratings of a given option were highly dependent on its position within the range
(see Figure 6D-E). Furthermore, we also confirmed that the pattern simulated using explicit ratings closely
matched the actual choice rates of Experiment 3 transfer phase (simulated data vs. behavioral data per
option: Spearman’s $\rho(10)=1.00$, $p<.0001$, Figure 6C).
In the present paper we sought to challenge the current dominant view of how value-related signals are encoded for economic decision-making. More precisely we designed behavioral paradigms perfectly tailored to discriminate between unbiased (or “absolute”) representations, from context-dependent or normalized representations following different, antagonist, views. To do so, we deployed a series of six behavioral reinforcement learning experiments consisting in an initial learning phase (where participants learned to associate options to rewards) and a transfer – or generalization - phase allowing us to infer the subjective learned value of each option\(^47\).

By systematically manipulating outcome ranges, we were able to confirm that behavioral data was inconsistent with the idea that humans learn and represent values in an unbiased manner. Indeed, subjective values were similar for options presented in the decision contexts with narrow or wide decision ranges, despite their objective values being very different. This result was quantitatively backed-up by both model simulations and out-of-sample likelihood analyses that suggested the unbiased model being worst on average than any other normalization model. Thus, our findings significantly add up to the now overwhelming body of evidence indicating that value representations are highly context-dependent even in the reinforcement learning scenario, both in human\(^3\-5,25,33,38,41\) and non-human animals\(^6\-10,48,49\).

On the other side, by contrasting binary to trinary options decision problems, we were able to provide robust evidence of the idea that value context-dependence follows the functional form of divisive normalization, also in the context of value-based decision-making\(^14,18,26,39\). Our demonstration relied on the straightforward and well accepted idea that virtually any instantiation of the divisive normalization model would predict a strong\(^3\) choice (description-based task) or outcome (reinforcement-based task) set size effect: all things being equal, the subjective value of an option or an outcome in a trinary decision context should be lower compared that of a similar value belonging to a binary context. We find no evidence for such an effect. In fact, if anything, the subjective values of options belonging to trinary decision contexts were numerically higher compared to that of the binary decision contexts. Beyond the quantitative analysis of behavioral performance, model fitting and simulations analysis also revealed that the divisive normalization model dramatically failed to correctly reproduce the behavioral pattern\(^37\). Crucially, this was also true for fully parametrized versions of the divisive normalization model\(^19\) (Figure 3-sup. 1).

The behavioral results were rather consistent with an alternative rule, range normalization, according to which subjective value signals are normalized as a function of the maximum and minimum values (regardless of the number of options). This normalization rule is reminiscent of the range principle proposed by Parducci to explain perceptual (and later also affective) judgements\(^50\). As opposite to divisive normalization, range normalization predicts that contextually high and low value options are assigned the same subjective value, regardless of their absolute value and the number of options in a given choice set. This behavior hallmark of divisive normalization was falsified in all experiments. Of note, although even though the quality of the fit of the range normalization model was significantly better compared that of the divisive normalization model, in terms of both predictive accuracy (out-of-sample likelihood) and behavioral signatures, it manifestly failed to properly capture the subjective values attributed to the mid-value options in trinary choice contexts. This pattern was not affected by introducing forced choice trials to focus attention of the participant to mid-option outcomes (for at least five trials)\(^43\). To further improve the range normalization model fit, we endowed it with a non-linear weighting of normalized subjective values. Non-linear weighting parameters, although they do not provide mechanistic accounts, are often introduced in models of decision-making to satisfactorily account for utility and probability distortions\(^22,51\). Introducing this weighting parameter improved the model fit, qualitatively and quantitatively in a substantial manner. Importantly, introducing the same parameter to the divisive model did not improve its performance significantly (Figure 3-sup. 1). The weighted range normalization model improved the fit assuming that

\(^3\) We specify « strong », because a minimal non-null choice set size effect is also predicted by simply assuming choices deriving from a softmax decision rule.
the mid and low value options are subjectively perceived as much closer than they are in reality. We believe that this may derive from attentional mechanisms that bias evidence accumulation as a function of outcomes and option expected values5,52,53. To further probe this hypothesis, we designed and ran an additional experiment (Experiment 3) where we manipulate the possibility of choosing the high value option in trinary learning contexts. This manipulation successfully managed to "correct" the subjective valuation of mid-value options (while leaving unaffected the valuation of the other options). The behavior in this experiment was successfully captured by further tweaking the weighted range normalization model by assuming that different weighting parameters applies to chosen and unchosen outcomes. By finding concave and convex weighting functions for chosen and unchosen outcomes, respectively, the model managed to explain why forcing the participant to choose the mid value option increases its subjective valuation. We believe that these results further reinforce the hypothesis that outcome valuation interacts with attentional deployment. In fact, it is reasonable to assume that the obtained outcome is attended more than the forgone ones (after all it is the more behaviorally relevant outcome) and that increased attention devoted to the obtained outcomes “boosts” its value52. This effect can also be conceptually linked to a form of choice-confirmation bias, where the mid value outcome is perceived as better than it actually is43.

In addition to assessing subjective values using choices as standardly done in behavioral economics and non-human animal-based neuroscience, we also assessed subjective option values using explicit ratings23. Despite the fact that wealth of evidence in decision-making research suggests that subjective values are highly dependent on whether they are inferred from choices or ratings (also referred to the revealed versus state preferences dichotomy34) post-learning explicit ratings delivered results remarkably consistent with choice-revealed preferences. Indeed, transfer phase choices could almost perfectly be reproduced from explicit ratings, which were, in turn, more consistent with range, rather than divisive normalization process. In addition to provide a welcome test of robustness of our results, the similarity between choice-based and rating-based subjective values, also demonstrates the context-dependent valuation span across procedural as well as declarative representational systems55,56.

Beyond the specific question of its functional form, one could ask why option values would be learned and represented in a relative or normalized manner? In other terms, what is the functional reason for context-dependent representations? One partial answer to this question can be tracked to studies showing that context-dependent preferences are ecologically rational (in other words, they convey a statistical or strategical advantage over unbiased representations32,33). On a similar vein, it could be proposed that unbiased value representations are computationally more costly, making relative or context-dependent encoding an efficient solution. Consistent with this idea, a recent study indicates that human participants are capable to adaptatively modulate their value representations from relative to absolute, as they learn that the latter scheme is more advantageous25. Another study confirmed that value representations are somehow flexible by showing that shifting the attentional focus from subject emotions to perceive outcome shift the balance from relative to unbiased value encoding41. However, neither of these studies manage to report situations in which the representational code was fully context-independent.

Taking into account that relative value encoding has been shown in a plethora of species and situations6–10,48,49,11, it seems also reasonable to suppose that these findings stem from some deep preserved principles of how (value-based) information is encoded and represented in the brain. Accordingly, normalization naturally emerges as a solution to maximize the gain function between underlying stimuli (whose range may vary greatly) and neural response58. Crucially, and consistently with our results, while there is ample evidence that the divisive normalization rule provides a good account of information encoding in the perceptual system59, several primate neurophysiological studies indicate the value-related signals in dopaminergic neurons60 and the orbitofrontal cortex12,13; hubs of the brain valuation system61,62. Similar findings have been replicated in human fMRI29,34,63. On the other side, neural evidence of divisive normalization in value-based decision-making is scant in the brain valuation system (but see 6), although it remains possible that activity in the perceptual and attentional systems (such as the parietal cortex) displays signs of divisive normalization16,17.
Multiple elements of our results concordantly show that divisive normalization does not provide a good account of subjective value representation in human reinforcement learning. More precisely, we were concerned about whether at the outcome stages, the subjective values of rewards were normalized according to a divisive (or range) normalization rule\(^{25,26}\). It is nonetheless still possible that this rule provides a good description of human behavior in other value-based decision-making domains. In fact, most of the previous studies claiming evidence for divisive normalization used other tasks involving items whose values are described (such as snacks or lotteries food) and have not to be extracted from experience\(^{17,19,27,64}\). In addition, our study only addressed value normalization only the outcome magnitude space and we did not address whether the same rule would apply to other outcome attributes, such as probability\(^{24}\).

However, it is worth noting that evidence concerning previous reports of divisive normalization in humans have been recently challenged and alternative accounts, such as range normalization, have not been systematically tested in these datasets\(^{30,65}\), although see\(^ {19}\) for an exception. It is worth mentioning that range normalization principle has been recently successfully adapted to account for decision-making under risk\(^ {28}\). We therefore believe that our and other recent findings strongly call for radically rethinking the putative role of divisive normalization in value-based decision-making comparing with alternative models of normalization and using highly diagnostic experimental designs, as the one used here.

On the other side, by using a reinforcement learning framework, our design has the advantage that it can be readily translated into animal research to further extend and characterize the neural mechanisms underlying these findings. Further research will also determine whether range normalization rule also applies to primary (positive and negative) rewards, even if previous evidence (in human and animals) suggest that context-dependent principles apply to food and electric shocks\(^ {6–10,48,49,67}\).

Despite the fact that an even a “naïve” range normalization presents several computational advantages compared to divisive normalization (such as the fact of being easily translatable to partial feedback and punishment avoidance tasks\(^ {4,33}\), we also showed that its fit was far from perfect and there was still room for improvement. For instance, the weighted range normalization rule, although descriptively accurate, is silent concerning its cognitive origin mechanism. Future research, for example featuring eye-tracking, will be necessary to shed light on these aspects. Future research will also be needed to assess the extent to which the same rule applies to vast decision spaces involving more than three options. Finally, further experiments will be needed to generalize the current models to partial feedback situations where the contextual variables have to be inferred and stored in memory.

Despite the fact that including the (attentional) weighting parameter improved the quality of fit (both in terms of out-of-sample log-likelihood and model simulations) of range normalization process, we acknowledge that some features of the data were still not perfectly accounted. For instance, even if the effect was small in size, from averaging across several experiments it appeared that choice rate for the high value options in the trinary contexts were higher compared to those in the binary ones. Although this feature provides strong evidence against the divisive normalization framework (which predicts the opposite effect), it is also not coherent with the range normalization process. It could be hypothesized that other cognitive and valuation mechanisms concur to generate this effect, such as instance-based or comparison-based decision valuation processes where the options in the trinary contexts would benefit from an additional (positive) comparison\(^ {66,69}\).

To conclude, while our results cast serious doubt about the relevance of divisive normalization principle in value-based decision-making\(^ {39}\), they also establish once again that context-dependence represents one of the most pervasive feature of human cognition and provide further insights into its algorithmic instantiation.
Materials and methods

Participants

Across three experiments, we recruited 500 participants (227 females, 243 males, 30 N/A, aged 26.44±8.31 years old) via the Prolific platform (www.prolific.co). The research was carried out following the principles and guidelines for experiments including human participants provided in the declaration of Helsinki (1964, revised in 2013). The INSERM Ethical Review Committee / IRB00003888 approved and participants were provided written informed consent prior to their inclusion. The results presented in the main text are those of Experiment 1 (N=150) and Experiment 3 (N =200). The results of an alternative design (Experiment 2) are presented in Figure 2-supp. 2 and Figure 6-supp. 1. To sustain motivation throughout the experiment, participants were given a bonus depending on the number of points won in the experiment (average money won in pounds: 5.05±0.50, average performance against chance during the learning phase and transfer phase: M=0.74±0.087, t(149)=34.04, p<0.0001, d=2.78). The data of one participant for the explicit phase was not included due to technical issues. A pilot online-based experiment was originally performed (N=40, the results are also presented in Figure 2-supp. 1).

Behavioral tasks

Participants performed an online version of a probabilistic instrumental learning task, instantiated as a multi-armed bandit task. After checking the consent form, participants received written instructions explaining how the task worked and that their final payoff would be affected by their choices in the task. During the instructions the possible outcomes in points (from 0 to 100 points) were explicitly showed as well as their conversion rate (1 point = 0.02 pence). The instructions were concluded with a short 3-item quiz to make sure participants' understanding of the task was sufficient. The instructions were then followed by a short training session of 12 trials aiming at familiarizing the participants with the response modalities. If participants' performance during the training session did not reach 60% of correct answers (i.e., choices towards the option with the highest expected value), they had to repeat the training session. Participants could also voluntarily repeat the training session up to two times and then started the actual experiment.

In our main task, options were materialized by abstract stimuli (cues) taken from randomly generated identicons, colored such that the subjective hue and saturation were very similar according to the HSLUV color scheme (www.hsluv.org). On each trial, two or three cues were presented on different positions (left/middle/right) on the screen. The position of a given cue was randomized, such that a given cue was presented an equal number of times on the left, the middle, and the right. Participants were required to select between the cues by clicking on one cue. The choice window was self-paced. A brief delay after the choice was recorded (500ms); the outcome was displayed for 1000ms. There was no fixation screen between trials.

Experimental design, version a. The full task consisted in three phases: one learning phase and two elicitation phases. During the learning phase, cues appeared in fixed pairs/triplets. Each pair/triplet was presented 45 times, leading to a total of 180 trials. Within each pair/triplet, the cues were associated to a deterministic outcome drawn from a normal distribution with variable means $\mu \in [0, 100]$ and fixed variance $\sigma = 4$ (Table 1). At the end of the trial, the cues disappeared and were replaced by the outcome. Once they had completed the learning phase, participants were displayed with the total points earned and their monetary equivalent.

After the learning phase, participants performed two elicitation phases: a transfer phase and an explicit rating phase. The order of the elicitation phases was counterbalanced across participants. In the transfer phase, the 10 cues from the learning phase were presented in all possible binary combinations (45, not including pairs formed by the same cue). Each pair of cues was presented four times, leading to a total of 180 trials. Participants were explained that they would be presented with pairs of cues taken from the learning phase, and that all pairs would not have been necessarily displayed together before. On each
trial, they had to indicate which of the cues was the one with the highest value. In the explicit rating phase, each cue from the learning phase was presented alone. Participants were asked what was the average value of the cue and had to move a cursor ranging from 0 to 100. Each cue was presented four times, leading to a total of 40 trials. In both elicitation phases, the outcome was not provided in order not to modify the subjective option values learned during the learning phase, but participants were informed that their choices would count for the final payoff.

Experimental design, versions b and c. In the learning phase, we added forced-choice trials to the 180 free-choice trials\(^{43}\). In these forced trials, only one option was selectable and the other cue(s) were shaded. We added 5 forced-choice trials per option, leading to a total of 230 trials in the learning phase. In version b, even in the forced choice trial, the participants could only see the outcomes of all options. In version c, participants could only see the outcome of the chosen option. The elicitation phases (transfer and explicit rating) remained unchanged.

Experiment 3. In the learning phase, cues appeared in fixed triplets only. Each triplet was presented 45 times, leading to a total of 180 trials. We used a 2x2 design manipulating the range spread (as in Experiment 1a) and the option availability: in half of the contexts, for some proportion of trials (Experiment 3a: 50%, Experiment 3b: 75%), the most favorable option was unavailable (**Figure 5A**). It was displayed on the screen with a shaded mask, and was not clickable. At the end of each trial, all cues disappeared and were replaced by the outcome (shaded outcome for the non-clickable option). In the transfer phase, the 12 cues from the learning phase were presented in all possible binary combinations (66, not including pairs formed by the same cue). Each pair of cues was presented two times, leading to a total of 132 trials. In the explicit phase, each cue was presented two times, leading to a total of 24 trials.

Behavioral analyses

For all experiments, we were interested in three different variables reflecting participants' learning: (1) correct choice rate in the learning phase, i.e., choices directed towards the option with the highest objective value; (2) choice rate in the transfer phase, i.e., the number of times an option is chosen, divided by the number of times the option is presented; (3) subjective valuation in the explicit phase, i.e., average reported value per option. Statistical effects were assessed using multiple-way repeated measures analyses of variance (ANOVAs) with range amplitude (narrow or wide) and number of presented options (binary or trinary decision problem, **Figure 1**) as within-participant factor, and experiment version (a,b,c) as between-participant factors. Post-hoc tests were performed using one-sample and two-sample t tests for respectively within- and between-experiment comparisons. To assess overall performance, additional one-sample t tests were performed against chance level (0.5 – two options contexts – and 0.33 – three options contexts). We report the t statistic, p-value, and Cohen’s d to estimate effect size (two-sample t-test only). Given the large sample size (n = 500), central limit theorem allows us to assume normal distribution of our overall performance data and to apply properties of normal distribution in our statistical analyses, as well as sphericity hypotheses. Concerning ANOVA analyses, we report Levene’s test for homogeneity of variance, the uncorrected statistical, as well as Huynh-Feldt correction for repeated measures ANOVA when applicable\(^{70}\), F statistic, p-value, partial eta-squared \(\eta_p^2\), and generalized eta-squared \(\eta^2\) (when Huynh-Feldt correction is applied) to estimate effect size. All statistical analyses were performed using MATLAB (www.mathworks.com) and R (www.r-project.org).

Computational models

The goal of our models is to estimate the subjective value of each option, and to choose the option which maximizes the expected reward (in our case, with the highest expected value). At each trial \(t\), in each context \(s\), the expected value \(Q\) of each option \(i\) is updated with a delta rule:

\[
Q_t(s,i) = Q_{t-1}(s,i) + \alpha \cdot \delta_t
\]

\[(4)\]
where α_x is the learning rate and δ_t is a prediction error term. For all our models, at each trial, the chosen and unchosen options are updated with two distinct learning rates for chosen (α_c) and unchosen (α_u) options, and separate, outcome-specific, prediction error terms δ_t, calculated as the difference between the subjective outcome $u(R_i)$ and the expected one:

$$\delta_t = u(R_i) - Q_{t-1}(s, i)$$

(5)

We modeled participants’ choice behavior using a softmax decision rule representing the probability for a participant to choose one option a over the other options - one alternative in binary contexts ($n = 2$), two in trinary contexts ($n = 3$) in each context s:

$$P_t(s, a) = \frac{e^{Q_t(s, a) + \beta}}{\sum_{k=1}^{n} e^{Q_t(s, k) + \beta}}$$

(6)

where n is the number of outcomes presented in a given trial ($n = 2$; $n = 3$), $\beta > 0$ is the inverse temperature parameter. High temperatures ($\beta \to 0$) cause the action to be all (nearly) equiprobable. Low temperatures ($\beta \to +\infty$) cause a greater difference in selection probability for actions that differ in their value estimates7.

We compared four alternative computational models: the unbiased (UNBIASED) model, which encodes outcomes on an absolute scale independently of the choice context in which they are presented; the range normalization (RANGE) model, where the reward is normalized as a function of the range of the outcomes, the divisive normalization (DIVISIVE) model, where the reward is normalized as a function of the sum of all the outcomes), and the non-linear range normalization (RANGE$^\omega$) model, where the normalized outcome is power-transformed with an additional free parameter.

Unbiased model. At trial $t = 0$, for all contexts $Q_{t=0} = 50$. For each option i, the subjective values $u(R_i)$ are encoded as the participants see the outcomes, i.e., their objective value in points.

$$u(R_i) = R_i, \quad R_i \in [0, 100]$$

(7)

Range normalization model. At trial $t = 0$, for all contexts $Q_{t=0} = 0.5$. The subjective values $u(R_i)$ are encoded depending on the value of the other options, specifically the maximum and the minimum available rewards.

$$u(R_i) = \frac{R_i - \min(R)}{\max(R) - \min(R)}$$

(8)

where $\max(R)$ and $\min(R)$ are, respectively, the maximum and minimum outcome presented in a given trial. In version c, where only the reward of the chosen option is displayed, the outcomes of unchosen options are replaced with the last seen outcomes for these options5.

Divisive-normalization model. At trial $t = 0$, for all options $Q_{t=0} = 0.5$. The outcomes are encoded depending on the value of all the other options, specifically the sum of all available rewards.

$$u(R_i) = \frac{R_i}{\sum_{k=1}^{n} R_k}$$

(9)
where n is the number of outcomes presented in a given trial ($n = 2; n = 3$). In version c, where only the reward of the chosen option is displayed, the outcomes of unchosen options are replaced with the last seen outcomes for these options.

Non-linear range normalization model. At trial $t = 0$, for all contexts $Q_{t=0} = 0.5$. The subjective values $u(R)$ are encoded depending on the value of the other options, specifically the maximum and the minimum available rewards. This normalized outcome is then set to the power of ω, with $0 < \omega < +\infty$:

$$u(R_i) = \left(\frac{R_i - \min(R)}{\max(R) - \min(R)} \right)^\omega$$

(10)

where $\max(R)$ and $\min(R)$ are, respectively, the maximum and minimum outcome presented in a given trial. In version c, where only the reward of the chosen option is displayed, the outcomes of unchosen options are replaced with the last seen outcomes for these options.

Conditional, non-linear range normalization model. Finally, in Experiment 3a and Experiment 3b only, we tested a more complex version of the model, which allowed for different weighting parameters for obtained (ω_c) and forgone (ω_u) outcomes. The weighting parameters were allowed same range as before.

Ex-ante simulations

The model predictions displayed in *Figure 1C* were obtained by simulating choices of artificial agents. The simulated choices were equivalent to those later performed by the participants, i.e., 180 trials (45 per learning contexts) in the learning phase (where the deterministic outcomes were drawn from a normal distribution with variable means $\mu \in [0, 100]$ and fixed variance $\sigma = 4$), and 180 trials (4 per comparison) in the transfer phase. The update rule for the option values is described in *Equations 1-2*. Predictions for each experiment were simulated for a set of 50 agents, to match our number of participants per version. Each agent was associated with a set of parameters $[\beta, \alpha_c, \alpha_u]$ for the inverse temperature, the learning rate of the chosen option, the learning rate for unchosen options, respectively. The parameters were independently drawn from prior distributions, which we took to be Beta(1.1,1.1) for the learning rates and Gamma(1.2,5) for the inverse temperature. The value of the inverse temperature is irrelevant in the learning phase, because the feedback is always complete, which means that the options should converge, in average, to their subjective average value independently of the choice, provided that the learning rates are different from 0. Moreover, in the transfer phase, to obtain the agents’ preferences based on the learned option values, we chose to use an argmax decision rule instead of a softmax decision rule. At each trial t in the transfer phase, comparing option a and option b, the probability of choosing option a is calculated as follows

$$P_t(a) = \begin{cases}
1 & \text{if } Q_t(a) > Q_t(b) \\
0.5 & \text{if } Q_t(a) = Q_t(b) \\
0 & \text{if } Q_t(a) < Q_t(b)
\end{cases}$$

(8)

where Q_t is a vector of the final Q-values at the end of the learning phase.

Acknowledgements

SP is supported by the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC) (RaReMem: 101043804), and the Agence National de la Recherche (CogFinAgent: ANR-21-CE23-0002-02; RELATIVE: ANR-21-CE37-0008-01; RANGE: ANR-21-CE28-0024-01). The Department d’études cognitives is supported by the Agence National de la Recherche.
(ANR; FrontCog ANR-17-EURE-0017). SB acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No. 6948545).
Figure 1. Experimental design and model predictions of Experiment 1. (A) Choice contexts in the learning phase. Participants were presented with four choice contexts varying in the amplitude of the outcomes’ range (narrow or wide) and the number of options (binary or trinary decisions). (B) Means of each reward distribution. After each decision, the outcome of each option was displayed on the screen. Each outcome was drawn from a normal distribution with variance $\sigma^2 = 4$. NB: narrow binary, NT: narrow trinary, WB: wide binary, WT: wide trinary. (C) Model predictions of the transfer phase choice rates for the UNBIASED (left), DIVISIVE (middle) and RANGE (right) models. Note that choice rate in the transfer phase is calculated across all possible binary combinations involving a given option. While score is proportional to the agent’s preference for a given option, it does not sum to one, because any given choice counts for the final score of two options. Dashed lines represent the key prediction for each model.
Figure 2. Behavioral results of Experiment 1. Top: successive screens of a typical trial for the three versions of the main experiment: without forced trials (A), with forced trials and complete feedback information (B) and with forced trials and partial feedback information (C). Bottom: correct choice rate in the learning phase as a function of the choice context (left panels), and choice rate per option in the transfer phase (right panels) for the three versions of the main experiment: without forced trials (A), with forced trials and complete feedback information (B) and with forced trials and partial feedback information (C). In all panels, points indicate individual average, shaded areas indicate probability density function, 95% confidence interval, and SEM. NB: narrow binary, NT: narrow trinary, WB: wide binary, WT: wide trinary.

Figure 2 – supplement 1. Behavioral results of the pilot Experiment similar to Experiment 1 and 2. Correct choice rate in the learning phase as a function of the choice context (left panels), and choice rate per option in the transfer phase (right panels) for Pilot Experiment 1 (A) and Pilot Experiment 2 (B). In all panels, points indicate individual average, shaded areas indicate probability density function, 95% confidence interval, and SEM. NB: narrow binary, NT: narrow trinary, WB: wide binary, WT: wide trinary. To ascertain that our task design would be feasible and that participants would be able to learn the values of ten options by trial-and-error, a pilot online-based experiment was originally performed. We recruited 40 participants (23 females, 16 males, 1 N/A, aged 30.35±9.73 years) via Prolific (www.prolific.co). In the pilot experiments, the outcome variance was set to $\sigma = 0$, i.e., the rewards were displayed without any noise (in the main tasks, the variance was set to $\sigma = 4$). In order to characterize learning behavior of participants, we analyzed the correct response rate in the learning and the transfer phases, i.e., choices directed toward the most favorable option at each trial. To assess successful learning, we first tested participants’ correct response rate against chance level. We found it to be above chance level in both the learning phase (0.5 and 0.33 in the binary and trinary learning contexts, respectively; Pilot experiment 1: $t(19)=11.83$, $p<.0001$, $d=2.65$; Pilot experiment 2: $t(19)=7.39$, $p<.0001$, $d=1.65$) and the transfer phase (0.5; Pilot experiment 1: $t(19)=5.87$, $p<.0001$, $d=1.31$; Pilot experiment 2: $t(19)=3.01$, $p=.0072$, $d=0.67$).
Choice contexts in the learning phase. Participants were presented with four choice contexts varying in the amplitude of the outcomes' range (narrow or wide) and the number of options (binary or trinary decisions). (B) Means of each reward distribution. After each decision, the outcome of each option was displayed on the screen. Each outcome was drawn from a normal distribution with variance $\sigma^2 = 4$. NB: narrow binary, NT: narrow trinary, WB: wide binary, WT: wide trinary. (C) Model predictions of the transfer phase choice rates for the UNBIASED (left), DIVISIVE (middle) and RANGE (right) models. Dashed lines represent the key prediction for each model. (D-F) Correct choice rate in the learning phase as a function of the choice context (left panels), and choice rate per option in the transfer phase (right panels) for the three versions of the main experiment: without forced trials (D), with forced trials and complete feedback information (E) and with forced trials and partial feedback information (F). In all panels, points indicate individual average, shaded areas indicate probability density function, 95% confidence interval, and SEM. NB: narrow binary, NT: narrow trinary, WB: wide binary, WT: wide trinary. In addition to Experiment 1, whose results are presented in the main text, we recruited 150 participants to perform a modified version of Experiment 1. The only difference between Experiment 1 and Experiment 2 is the value of the options in the narrow contexts: in Experiment 1, they went from 14 to 50; in Experiment 2, they went from 50 to 86. Similar to Experiment 1, participants were given a bonus depending on the number of points won in the experiment (average money won in pounds: 6.38±0.58, average performance against chance during the learning phase and transfer phase: $M=0.78±0.099$, $t(149)=34.65$, $p<.0001$, $d=2.83$). No data had to be excluded for technical issues. In the learning phase, the correct response rate was significantly higher than chance level (0.5 and 0.33 in the binary and trinary learning contexts, respectively) in all conditions (least significant: $t(49)=13.71$, $p<.0001$, $d=1.94$; on average: $t(49)=15.75$, $p<.0001$, $d=2.23$). We further checked whether the task factors affected performance in the learning phase and found a small significant effect of the decision problem (the correct choice rate being higher in the binary compared to the trinary contexts: $F(1,49)=4.11$, $p=.048$, $\eta^2 =0.08$), but no effect of range amplitude (wide versus narrow; $F(1,49)=0.027$, $p=.87$, $\eta^2 =0.00$) or interaction ($F(1,49)=0.92$, $p=.34$, $\eta^2 =0.02$). In the transfer phase, the correct choice rate in the transfer was significantly higher than chance ($t(49)=9.56$, $p<.0001$, $d=1.35$), thus providing positive evidence of value retrieval and generalization of the mid value options. Contrary to what was predicted by the UNBIASED or the DIVISIVE models, the choice rate for the lowest value options (NB50, NT50, WB14, and WT14) did not follow the patterns depicted in panel C. In fact, all lowest value options displayed a similar choice rate ($F(3,49)=1.85$, $p=.14$, $\eta^2 =0.04$), which is only consistent with the predictions of the RANGE model. Concerning other features of the transfer performance, the mid value options valuation is also consistent with the RANGE model, which predict that these options will be valued equally (NT68 and WT68; $t(49)=-1.34$, $p=.19$, $d=0.19$), contrary to the UNBIASED and DIVISIVE models which both predict NT68 to be greater than WT68. Similar to Experiment 1, these mid value options displayed a choice rate very close to that of the corresponding lowest value options (NT50 and WT14): this feature is still not perfectly captured by the RANGE model (which predicts their choice rate perfectly in between those of high and low value options). To rule out that this effect was not due to a lack of attention for the low and mid value options, we also designed two additional experiments where we added forced choice trials to focus the participants’ attention on all possible options (Table 1). As in Experiment 1, focusing participants’ attention to all possible outcomes by forcing their choice did not significantly affect the behavioral performance neither in the learning phase ($F(2,147)=0.78$, $p=.46$, $\eta^2 =0.01$, Levene’s test $F(2,147)=0.38$, $p=.69$) nor in the transfer phase ($F(2,147)=0.81$, $p=.45$, $\eta^2 =0.01$, Levene’s test $F(2,147)=0.81$, $p=.45$). Given the absence of detectable differences across the experiments, in the model-based analyses that follow, we pooled the three experiments together. To sum up, the behavioral results are consistent with those of Experiment 1, are in contrast with the predictions of both the UNBIASED and the DIVISIVE models and are rather consistent with the range normalization process proposed by the RANGE model.
Figure 3. Qualitative model comparison. Behavioral data (black dots) superimposed on simulated data (colored bars) for the UNBIASED (A), DIVISIVE (B) and RANGE (C) models. Simulated data in the transfer phase were obtained with the best-fitting parameters, optimized on all four contexts of the learning phase. Dashed lines represent the key prediction for each model.

Figure 3 – supplement 1. Ruling out more complex forms of divisive normalization. Behavioral data (black dots) superimposed on simulated data (colored bars) for Experiment 1 (top row) and Experiment 2 (bottom row), for the DIVISIVE (A, D), DIVISIVE$^\omega$ (B, E) and DIVISIVE$^{\text{full}}$ (C, F) models. Simulated data in the transfer phase were obtained with the best-fitting parameters, optimized on all four contexts of the learning phase. Dashed lines represent key features that allow discriminating divisive normalization models from range normalization and unbiased value representations. To confirm that our power manipulation in the RANGE$^\omega$ model would not affect our predictions in the DIVISIVE model (especially, the difference in value between options from binary and trinary contexts, e.g., WB$_{86}$ and WT$_{86}$), we implemented the same manipulation in the DIVISIVE$^\omega$ model. In the DIVISIVE$^\omega$ model, the normalized outcome is power-transformed by the ω parameter ($0 < \omega < +\infty$), as follows:

$$s(R) = \left(\frac{\text{value option}}{\text{value option}} \right)^{\omega} \sum_{i=1}^{n}$$

where n is the number of contextually relevant stimuli. Crucially, for $\omega = 1$, the DIVISIVE$^\omega$ model reduces to the DIVISIVE model. As expected, the DIVISIVE$^\omega$ model was unable to match participants’ behavior, despite a small improvement in the prediction of the choice rates for mid and lowest value options, in both experiments. Moreover, over both experiments, quantitative model comparison favored the DIVISIVE$^\omega$ model over the DIVISIVE model ($\text{AUC}_{\text{DIV}} = 129.25 \pm 64.94,$
median = -116.98; oosLLDIV vs oosLLDIV(ω): $t(299) = 11.50$, $p < .0001$, $d = 0.66$) but not over range-adaptation model (oosLLDIV(ω) vs oosLLRAN(ω): $t(299) = -11.71$, $p < .0001$, $d = -0.68$). In conclusion, the addition of a power transformation was insufficient to correct the behavioral predictions of the DIVISIVE model. Finally, we acknowledge that the normalization rule we implemented is a simpler implementation of classical divisive normalization17–19. To make sure that this over-simplification did not affect the main results of this study, we implemented a more complex version of divisive normalization, including a semi-saturation parameter, a normalization weight parameter, and a p-norm parameter19:
\[
s(R_i) = \frac{R_i}{\sigma + \sum \eta^p}
\]
where n is the number of contextually relevant stimuli; the parameter $0 < \sigma < +\infty$ determines, in a neural system, how neural activity saturates with increased input and can be interpreted as the baseline activity level in the normalization; the parameter $0 < \eta < 1$ determines the contribution to the normalization from other alternatives; each alternative is scaled by the magnitude and number of its elements by a norm of degree $1 < p < +\infty$. Crucially, the DIVISIVEfull model is nested within the DIVISIVE and UNBIASED model: when $\sigma = 0$, $\eta = 1$ and $p = 1$, the DIVISIVEfull model reduces to the DIVISIVE model; when $\sigma = 1$ and $\eta = 0$, the DIVISIVEfull model reduces to the UNBIASED model (no normalization). Quantitative model comparison showed a substantial improvement in the ability of the DIVISIVEfull model to fit participants’ data over the simple DIVISIVE model (oosLLDIV(full) = -136.19±88.33, median = -120.63; oosLLDIV(ω) vs oosLLDIV(full): $t(299) = 4.69$, $p < .0001$, $d = 0.27$), but not over range adaptation models (oosLLDIV(ω) vs oosLLRAN(ω): $t(299) = -10.36$, $p < .0001$, $d = -0.60$). These comparisons were consistent with model simulations, which clearly show that the key features of the model fail to predict transfer performance. In conclusion, and unsurprisingly given the structure of the model, the more complex version of the divisive normalization rule was unable to match participants’ behavior in our task.

![Figure 3 – supplement 2. Choice rates per option in the transfer phase and model simulations.](image-url)
Figure 3 – supplement 3. Model attributions across participants. Model attributions per participant and percentage of participants explained by the RANGE, DIVISIVE, UNBIASED (left) and RANGE\(^\omega\) (right) models in experiment 1 (A) and experiment 2 (B).
Figure 4. Predictions of the non-linear RANGE model. (A) Curvature function of the normalized reward per participant. Each grey line was simulated with the best-fitting power parameter ω for each participant. Dashed line represents the identity function ($\omega = 1$), purple line represents the average curvature over participant, shaded area represents SEM. (B) Behavioral data (black dots) superimposed on simulated data (colored bars) for the RANGE$^\omega$ model. Simulated data in the transfer phase were obtained with the best-fitting parameters, optimized on all four contexts of the learning phase. Dashed lines represent the key prediction for the model.
Figure 5. Experimental design and main results of Experiment 3. (A) Choice contexts in the learning phase. Participants were presented with four choice contexts varying in the amplitude of the outcomes' range (narrow or wide) and the number of available options (trinary or binary decisions). (B) Trial sequence for a binary trial (50% or 75% of the total number of learning trials), where the high value option was presented but not available to the participant, and a standard trinary trial (50% or 25% of the total number of learning trials). (C) Behavioral data (black dots) superimposed on simulated data (colored bars) for the RANGE$^\omega$ and RANGE$^{10\omega}$ models. Simulated data in the transfer phase were obtained with the best-fitting parameters, optimized on all four contexts of the learning phase. Dashed lines represent the key prediction for the model. (D) Curvature functions of the normalized reward per participant. Each grey line was simulated with the best-fitting power parameters ω_1 and ω_2 for each participant. Dashed line represents the identity function ($\omega=1$), purple line represents the average curvature over participant, shaded area represents SEM. Results in (C) and (D) are pooled data for Experiment 3a and Experiment 3b.

Figure 5 – supplement 1. Design and behavioral results of Experiment 3. (A) Experiment design of Experiment 3a and 3b. All contexts included 3 options, but one option was not selectable on either 50% or 75% of the learning trials. (B-C) Behavior results of Experiment 3a (B) and Experiment 3b (C) in each learning context. Left: choice rate in the trinary trials.
Figure 6. Results from the explicit elicitation phase of Experiment 1 and Experiment 3. (A, D) Reported subjective values in the elicitation phase for each option, in Experiment 1 (A) and Experiment 3 (D). Points indicate individual average, shaded areas indicate probability density function, 95% confidence interval, and SEM. Purple areas indicate the actual objective value for each option. (B, E) Difference between reported subjective value and actual objective value for each option, arranged in ascending order, in Experiment 1 (B) and Experiment 3 (E). The legend of the x-axis represents the values of the options of the context in which each option was learned (actual option value shown in bold black). Points indicate individual average, shaded areas indicate probability density function, 95% confidence interval, and SEM. (C, F) Behavioral choice-based data (black dots) superimposed on simulated choice-based data (colored bars), in Experiment 1 (C) and Experiment 3 (F). Simulated data were obtained with an argmax rule assuming that participants were making transfer phase decision based on the explicit subjective ratings of each option.
Figure 6 – supplement 1. Qualitative model comparison and explicit ratings of Experiment 2. Behavioral data (black dots) superimposed on simulated data (colored bars) for the UNBIASED (A), DIVISIVE (B), RANGE (C) and RANGE (ω) (D) models. Simulated data in the transfer phase were obtained with the best-fitting parameters, optimized on all four contexts of the learning phase. Each grey line was simulated with the best-fitting power parameter ω for each participant. Dashed lines represent the key prediction for each model. (E) Curvature function of the normalized reward per participant. Each grey line was simulated with the best-fitting power parameter ω for each participant. Dashed line represents the identity function (ω = 1), purple line represents the average curvature over participant, shaded area represents SEM. (F) Reported subjective values in the elicitation phase for each option. Points indicate individual average, shaded areas indicate probability density function, 95% confidence interval, and SEM. Purple areas indicate the actual objective value for each option. (G) Difference between reported subjective value and actual objective value for each option, arranged in ascending order. The legend of the x-axis represents the values of the options of the context in which each option was learned (actual option value shown in bold black). Points indicate individual average, shaded areas indicate probability density function, 95% confidence interval, and SEM. (H) Behavioral choice-based data (black dots) superimposed on simulated choice-based data (colored bars). Simulated data were obtained with an argmax rule assuming that subjects were making transfer phase decisions based on the explicit subjective ratings of each option. Similar to Experiment 1, model comparison favored the RANGE model over both the DIVISIVE and the UNBIASED models (oosLLRAN vs oosLLDIV: t(149)=10.61, p<.0001, d=0.87; oosLLRAN vs oosLLUNB: t(149)=5.71, p<.0001, d=0.47; Table 2). Model simulations also confirmed what inferred from the ex-ante simulations and indicated that the RANGE model predicts results much closer to the observed ones in respect of many key comparisons. Model comparison and model simulations of the RANGE (ω) model supported the conclusions from Experiment 1. On average, the power parameter ω was greater than 1 (mean±std: 2.83±1.47, t(149)=15.25, p<.0001, d=1.25), suggesting that participants value the mid value options less than the midpoint between lowest and highest options (i.e., closer to the lowest option). Quantitative model comparison favored the RANGE (ω) model over all other models, including the RANGE model (Table 2) (oosLLRAN vs oosLLRAN(ω): t(149)=8.63, p<.0001, d=0.70; Table 2). Moreover, the inspection of model simulations confirmed that the RANGE (ω) model perfectly captures participants’ behavior in the transfer phase. More specifically, the mid value options (NT14 and WT95) and the lowest value options (NB14, NT14, NB14 and WT14) were better estimated in all contexts. To conclude, the addition of a power parameter allowed our model to match participants’ behavior almost perfectly. Consistently with the results of Experiment 1, the subjective values elicited through explicit ratings were consistent with those elicited though binary choices in many key aspects. Again, to compare elicitation methods, we simulated transfer phase choices based on the explicit elicitation ratings. We found the pattern simulated using explicit ratings to perfectly match the actual choice rates of the transfer phase (t(149)=1.18, p=.24, d=0.10), suggesting that both elicitation methods tap into the same valuation system.
Tables

Table 1. Experimental design. Each version of each experiment was composed of four different learning contexts. Results of experiments 1 and 3 are presented in the main text; results of experiment 2 are presented in Figure 2-supp. 2 and Figure 6-supp. 1. Into square brackets are represent mean outcomes for the lowest, mid (when applicable) and highest value option in a given context. Concerning “forced choices” “unary” refers to situations where only one option is available and the participants cannot make a choice; “binary” refers to situations where the participant can choose between two out of three options (the high value option cannot be chosen).

<table>
<thead>
<tr>
<th>N Learning contexts</th>
<th>N forced choices (type / feedback)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[14,50]</td>
</tr>
<tr>
<td>Experiment 1a</td>
<td>50</td>
</tr>
<tr>
<td>Experiment 1b</td>
<td>50</td>
</tr>
<tr>
<td>Experiment 1c</td>
<td>50</td>
</tr>
<tr>
<td>Experiment 2a</td>
<td>50</td>
</tr>
<tr>
<td>Experiment 2b</td>
<td>50</td>
</tr>
<tr>
<td>Experiment 2c</td>
<td>50</td>
</tr>
<tr>
<td>Experiment 3a</td>
<td>100</td>
</tr>
<tr>
<td>Experiment 3b</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2. Quantitative model comparison. Values reported here represent mean ± std and median of out-of-sample log-likelihood for each model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Experiment 1 (N=150)</th>
<th>Experiment 2 (N=150, see Supplementary materials)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Out-of-sample log-likelihood</td>
<td>Out-of-sample log-likelihood</td>
</tr>
<tr>
<td></td>
<td>mean±std</td>
<td>median</td>
</tr>
<tr>
<td>UNBIASED</td>
<td>-275.31 ± 268.75</td>
<td>-162.53</td>
</tr>
<tr>
<td>DIVISIVE</td>
<td>-143.45 ± 70.58</td>
<td>-124.91</td>
</tr>
<tr>
<td>RANGE</td>
<td>-116.72 ± 57.91</td>
<td>-109.23</td>
</tr>
<tr>
<td>Non-linear RANGE</td>
<td>-97.70 ± 55.52</td>
<td>-78.73</td>
</tr>
</tbody>
</table>
References

2. Huber, J., Payne, J. W. & Puto, C. Adding Asymmetrically Dominated Alternatives: Violations of

3. Klein, T. A., Ullsperger, M. & Jocham, G. Learning relative values in the striatum induces violations of

4. Bavard, S., Lebreton, M., Khamassi, M., Coricelli, G. & Palminteri, S. Reference-point centering and
 range-adaptation enhance human reinforcement learning at the cost of irrational preferences. *Nat.

5. Spektor, M. S., Gluth, S., Fontanesi, L. & Rieskamp, J. How similarity between choice options affects

6. Yamada, H., Louie, K., Tymula, A. & Glimcher, P. W. Free choice shapes normalized value signals in

7. Conen, K. E. & Padoa-Schioppa, C. Partial Adaptation to the Value Range in the Macaque

8. Pompilio, L. & Kacelnik, A. Context-dependent utility overrides absolute memory as a determinant of

10. Solvi, C. et al. Bumblebees retrieve only the ordinal ranking of foraging options when comparing
 memories obtained in distinct settings. 2022.04.05.487177 Preprint at
 https://doi.org/10.1101/2022.04.05.487177 (2022).

45. Bernoulli, D. *Specimen Theoriae Novae de Mensura Sortis.* (1738).

