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Abstract An animal entering a new environment typically faces three challenges: explore the 
space for resources, memorize their locations, and navigate towards those targets as needed. Here 
we propose a neural algorithm that can solve all these problems and operates reliably in diverse and 
complex environments. At its core, the mechanism makes use of a behavioral module common to all 
motile animals, namely the ability to follow an odor to its source. We show how the brain can learn 
to generate internal “virtual odors” that guide the animal to any location of interest. This endotaxis 
algorithm can be implemented with a simple 3-layer neural circuit using only biologically realistic 
structures and learning rules. Several neural components of this scheme are found in brains from 
insects to humans. Nature may have evolved a general mechanism for search and navigation on the 
ancient backbone of chemotaxis.

eLife assessment
This valuable work proposes a framework inspired by chemotaxis for understanding how the brain 
might implement behaviors related to navigating toward a goal. The evidence supporting the 
conceptual claim is convincing. The article proposes a hypothesis that would be of interest to the 
broad systems neuroscience community, although it was noted the relationship to existing similar 
hypotheses could be clarified.

Introduction
Animals navigate their environment to look for resources – such as shelter, food, or a mate – and 
exploit such resources once they are found. Efficient navigation requires knowing the structure of 
the environment: which locations are connected to which others (Tolman, 1948). One would like 
to understand how the brain acquires that knowledge, what neural representation it adopts for the 
resulting map, how it tags significant locations in that map, and how that knowledge gets read out for 
decision-making during navigation.

Experimental work on these topics has mostly focused on simple environments – such as an open 
arena (Wilson and McNaughton, 1993), a pond (Morris et al., 1982), or a desert (Müller and Wehner, 
1988) – and much has been learned about neural signals in diverse brain areas under these condi-
tions (Sosa and Giocomo, 2021; Collett and Collett, 2002). However, many natural environments 
are highly structured, such as a system of burrows, or of intersecting paths through the underbrush. 
Similarly, for many cognitive tasks, a sequence of simple actions can give rise to complex solutions.
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One algorithm for finding a valuable resource is common to all animals: chemotaxis. Every motile 
species has a way to track odors through the environment, either to find the source of the odor or 
to avoid it (Baker et al., 2018). This ability is central to finding food, connecting with a mate, and 
avoiding predators. It is believed that brains originally evolved to organize the motor response in 
pursuit of chemical stimuli. Indeed, some of the oldest regions of the mammalian brain, including 
the hippocampus, seem organized around an axis that processes smells (Jacobs, 2012; Aboitiz and 
Montiel, 2015).

The specifics of chemotaxis, namely the methods for finding an odor and tracking it, vary by 
species, but the toolkit always includes a search strategy based on trial-and-error: try various actions 
that you have available, then settle on the one that makes the odor stronger (Baker et al., 2018). For 
example, a rodent will weave its head side-to-side, sampling the local odor gradient, then move in 
the direction where the smell is stronger. Worms and maggots follow the same strategy. Dogs track a 
ground-borne odor trail by casting across it side-to-side. Flying insects perform similar casting flights. 
Bacteria randomly change direction every now and then, and continue straight as long as the odor 
improves (Berg, 1988). We propose that this universal behavioral module for chemotaxis can be 
harnessed to solve general problems of search and navigation in a complex environment, even when 
tell-tale odors are not available.

For concreteness, consider a mouse exploring a labyrinth of tunnels (Figure 1A). The maze may 
contain a source of food that emits an odor (Figure 1A1). That odor will be strongest at the source 
and decline with distance along the tunnels of the maze. The mouse can navigate to the food loca-
tion by simply following the odor gradient uphill. Suppose that the mouse discovers some other 
interesting locations that do not emit a smell, like a source of water, or the exit from the labyrinth 
(Figures 1A2–3). It would be convenient if the mouse could tag such a location with an odorous mate-
rial, so it may be found easily on future occasions. Ideally, the mouse would carry with it multiple such 
odor tags, so it can mark different targets each with its specific recognizable odor.

Here we show that such tagging does not need to be physical. Instead, we propose a mechanism 
by which the mouse’s brain may compute a ‘virtual odor’ signal that declines with distance from a 
chosen target. That neural signal can be made available to the chemotaxis module as though it were a 
real odor, enabling navigation up the gradient toward the target. Because this goal signal is computed 
in the brain rather than sensed externally, we call this hypothetical process endotaxis.

The developments reported here were inspired by a recent experimental study with mice navi-
gating a complex labyrinth (Rosenberg et al., 2021) that includes 63 three-way junctions. Among 
other things, we observed that mice could learn the location of a resource in the labyrinth after 
encountering it just once, and perfect a direct route to that target location after ∼ 10 encounters. 
Furthermore, they could navigate back out of the labyrinth using a direct route they had not traveled 
before, even on the first attempt. Finally, the animals spent most of their waking time patrolling the 
labyrinth, even long after they had perfected the routes to rewarding locations. These patrols covered 
the environment efficiently, avoiding repeat visits to the same location. All this happened within a 
few hours of the animal’s first encounter with the labyrinth. Our modeling efforts here are aimed at 
explaining these remarkable phenomena of rapid spatial learning in a new environment: one-shot 
learning of a goal location, zero-shot learning of a return route, and efficient patrolling of a complex 
maze. In particular we want to do so with a biologically plausible mechanism that could be built out 
of neurons.

Results
A neural circuit to implement endotaxis
Figure 1B presents a neural circuit model that implements three goals: mapping the connectivity of 
the environment; tagging of goal locations with a virtual odor; and navigation toward those goals. The 
model includes four types of neurons: resource cells, point cells, map cells, and goal cells.

Resource cells
These are sensory neurons that fire when the animal encounters an interesting resource, for example, 
water or food, that may form a target for future navigation. Each resource cell is selective for a specific 
kind of stimulus. The circuitry that produces these responses is not part of the model.

https://doi.org/10.7554/eLife.84141
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Point cells
This layer of cells represents the animal’s location. (We avoid the term ‘place cell’ here because [1] 
that term has a technical meaning in the rodent hippocampus, whereas the arguments here extend 
to species that do not have a hippocampus; and [2] all the cells in this network have a place field, but 
it is smallest for the point cells.) Each neuron in this population has a small response field within the 
environment. The neuron fires when the animal enters that response field. We assume that these point 
cells exist from the outset as soon as the animal enters the environment. Each cell’s response field is 
defined by some conjunction of external and internal sensory signals at that location.
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Figure 1. A mechanism for endotaxis. (A) A constrained environment of tunnels linked by intersections, with special locations offering food, water, 
and the exit. (1) A real odor emitted by the food source decreases with distance (shading). (2) A virtual odor tagged to the water source. (3) A virtual 
odor tagged to the exit. (4) Abstract representation of this environment by a graph of nodes (intersections) and edges (tunnels). (B) A neural circuit to 
implement endotaxis. Open circles: four populations of neurons that represent ‘resource,’ ‘point,’ ‘map,’ and ‘goal.’ Arrows: signal flow. Solid circles: 
synapses. Point cells have small receptive fields localized in the environment and excite map cells. Map cells excite each other (green synapses) and 
also excite goal cells (blue synapses). Resource cells signal the presence of a resource, for example, cheese, water, or the exit. Map synapses and goal 
synapses are modified by activity-dependent plasticity. A ‘mode’ switch selects among various goal signals depending on the animal’s need. They may 
be virtual odors (water, exit) or real odors (cheese). Another goal cell (clock) may report how recently the agent has visited a location. The output of the 
mode switch gets fed to the chemotaxis module for gradient ascent. Mathematical symbols used in the text: ui is the output of a point cell at location i, 
wi is the input to the corresponding map cell, vi is the output of that map cell, M is the matrix of synaptic weights among map cells, G are the synaptic 
weights from the map cells onto goal cells, and rk is the output of goal cell k.
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Map cells
This layer of neurons learns the structure of the environment, namely how the various locations are 
connected in space. The map cells get excitatory input from point cells in a one-to-one fashion. These 
input synapses are static. The map cells also excite each other with all-to-all connections. These recur-
rent synapses are modifiable according to a local plasticity rule. After learning, they represent the 
topology of the environment.

Goal cells
Each goal cell serves to mark the locations of a special resource in the map of the environment. The 
goal cell receives excitatory input from a resource cell, which gets activated whenever that resource is 
present. It also receives excitatory synapses from map cells. Such a synapse is strengthened when the 
presynaptic map cell is active at the same time as the resource cell.

After the map and goal synapses have been learned, each goal cell carries a virtual odor signal 
for its assigned resource. The signal increases systematically as the animal moves closer to a location 
with that resource. A mode switch selects one among many possible virtual odors (or real odors) to 
be routed to the chemotaxis module for odor tracking. (The mode switch effectively determines the 
animal’s behavioral policy. In this report, we do not consider how or why the animal chooses one mode 
or another.) The animal then pursues its chemotaxis search strategy to maximize that odor, which leads 
it to the selected tagged location.

Why does the circuit work?
The key insight is that the output of the goal cell declines systematically with the distance of the 
animal from the target location. This relationship holds even if the environment is constrained with a 
complex connectivity graph (Figure 1A4). Here we explain how this comes about, with mathematical 
details to follow.

In a first phase, the animal explores the environment while the circuit builds a map. When the 
animal moves from one location to an adjacent one, those two point cells fire in rapid succession. That 
leads to a Hebbian strengthening of the excitatory synapses between the two corresponding map 
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Figure 2. The phases of endotaxis during exploration, goal-tagging, and navigation. A portion of the circuit in Figure 1 is shown, including a single 
goal cell that responds to the water resource. Bottom shows a graph of the environment, with nodes linked by edges, and the agent’s current location 
shaded in orange. Each node has a point cell that reports the presence of the agent to a corresponding map cell. Map cells are recurrently connected 
(green) and feed convergent signals onto the goal cell. (A) Initially the recurrent synapses are weak (empty circles). (B) During exploration, the agent 
moves between two adjacent nodes on the graph, and that strengthens (arrowhead) the connection between their corresponding map cells (filled 
circles). (C) After exploration, the map synapses reflect the connectivity of the graph. Now the map cells have an extended profile of activity (darker = 
more active), centered on the agent’s current location x and decreasing from there with distance on the graph. (D) When the agent reaches the water 
source y, the goal cell gets activated by the sensation of water, and this triggers plasticity (arrowhead) at its input synapses. Thus, the state of the map 
at the water location gets stored in the goal synapses. This event represents tagging of the water location. (E) During navigation, as the agent visits 
different nodes, the map state gets filtered through the goal synapses to excite the goal cell. This produces a signal in the goal cell that declines with 
the agent’s distance from the water location.
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Figure 3. Theory of the goal signal. Dependence of the goal signal on graph distance, and the consequences for endotaxis navigation. (A) The graph 
representing a binary tree labyrinth (Rosenberg et al., 2021) serves for illustration. Suppose the endotaxis model has acquired the adjacency matrix 
perfectly: M = A. We compute the goal signal Exy between any two nodes on the graph and compare the results at different values of the map gain 
γ . (B) Dependence of the goal signal Exy on the graph distance Dxy between the two nodes. Mean ± SD, error bars often smaller than markers. The 
maximal distance on this graph is 12. Note logarithmic vertical axis. The signal decays exponentially over many log units. At high γ , the decay distance 
is greater. (C) A detailed look at the goal signal, each point is for a pair of nodes (x, y). For low γ , the decay with distance is strictly monotonic. At high 
γ , there is overlap between the values at different distances. As γ  exceeds the critical value γc = 0.38, the distance dependence breaks down. (D) 
Using the goal signal for navigation. For every pair of start and end nodes, we navigate the route by following the goal signal and compare the distance 
traveled to the shortest graph distance. For all routes with the same graph distance, we plot the median navigated distance with 10 and 90% quantiles. 
Variable gain at a constant noise value of ϵ = 0.01. (E) As in panel (D) but varying the noise at a constant gain of γ = 0.34.
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cells (Figure 2A and B). In this way, the recurrent network of map cells learns the connectivity of the 
graph that describes the environment. To a first approximation, the matrix of synaptic connections 
among the map cells will converge to the correlation matrix of their inputs (Dayan and Abbott, 2001; 
Galtier et al., 2012), which in turn reflects the adjacency matrix of the graph (Equation 1). Now the 
brain can use this adjacency information to find the shortest path to a target.

After this map learning, the output of the map network is a hump of activity, centered on the 
current location x of the animal and declining with distance along the various paths in the graph of 
the environment (Figure 2C). If the animal moves to a different location y, the map output will change 
to another hump of activity, now centered on y (Figure 2D). The overlap of the two hump-shaped 
profiles will be large if nodes x and y are close on the graph, and small if they are distant. Fundamen-
tally the endotaxis network computes that overlap.

Suppose the animal visits y and finds water there. Then the water resource cell fires, triggering 
synaptic learning in the goal synapses. That stores the current profile of map activity vi(y) in the 
synapses Gki onto the goal cell k that responds to water (Figure 2D, Equation 9). When the animal 
subsequently moves to a different location x, the goal cell k receives the current map output v(x) 
filtered through the previously stored synaptic template v(y) (Figure 2E). This is the desired measure 
of overlap (Equation 10). Under suitable conditions, this goal signal declines monotonically with the 
shortest graph distance between x and y, as we will demonstrate both analytically and in simulations 
(sections ‘Theory of endotaxis’ and ‘Acquisition of map and targets during exploration’).

Theory of endotaxis
Here we formalize the processes of Figure 2 in a concrete mathematical model. The model is simple 
enough to allow some exact predictions for its behavior. The present section develops an analytical 
understanding of endotaxis that will help guide the numerical simulations in subsequent parts.

The environment is modeled as a graph consisting of n nodes, with adjacency matrix

	

Aij =




1, if node i can be reached from node j in one step

0, otherwise, including the i = j case �
(1)

We suppose the graph is undirected, meaning that every link can be traversed in both directions,

	 Aij = Aji�

Movements of the agent are modeled as a sequence of steps along that graph. During exploration, 
the agent performs a walk that tries to cover the entire environment. In the process, it learns the 
adjacency matrix A. During navigation, the agent uses that knowledge to travel to a known target.

For an agent navigating a graph, it is very useful to know the shortest graph distance between any 
two nodes

	 Dij = minimum number of steps needed to reach node i from node j� (2)

Given this information, one can navigate the shortest route from x to y: for each of the neighbors of x, 
look up its distance to y and step to the neighbor with the shortest distance. Then repeat that process 
until y is reached. Thus, the shortest route can be navigated one step at a time without any high-level 
advanced planning. This is the core idea behind endotaxis.

The network of Figure 1B effectively computes the shortest graph distances. We implement the 
circuit as a textbook linear rate model (Dayan and Abbott, 2001). Each map unit i has a synaptic 
input wi that it converts to an output vi,

	 vi = γwi� (3)

where γ is the gain of the units. The input consists of an external signal ui summed with a recurrent 
feedback through a connection matrix M

	
wi = ui +

∑
ij

Mijvj
�

(4)

where Mij is the synaptic strength from unit j to i.

https://doi.org/10.7554/eLife.84141
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The point neurons are one-hot encoders of location. A point neuron fires if the agent is at that 
location; all the others are silent:

	

ui(x) = firing rate of point cell i with the agent at node x

= δix �
(5)

where δix is the Kronecker delta.
So the vector of all map outputs is

	
v = γ

(
u + Mv

)
=
(

1
γ

1 − M
)−1

u
�

(6)

where u is the one-hot input from point cells.
Now consider goal cell number k that is associated to a particular location y because its resource is 

present at that node. The goal cell sums input from all the map units vi, weighted by its goal synapses 
Gki. So with the agent at node x, the goal signal rk is

	
rk(x) =

∑
i

Gki · vi(x) = gk · v(x) = gk ·
(

1
γ

1 − M
)−1

u(x)
�

(7)

where we write gk for the kth row vector of the goal synapse matrix G. This is the set of synapses from 
all map cells onto the specific goal cell in question.

Suppose now that the agent has learned the structure of the environment perfectly, such that the 
map synapses are a copy of the graph’s adjacency matrix (1),

	 M = A� (8)

Similarly, suppose that the agent has acquired the goal synapses perfectly, namely proportional to the 
map output at the goal location y:

	 gk = v(y)� (9)

Then as the agent moves to another location x, the goal cell reports a signal

	 rk(x) = gk · v(x) = v(y) · v(x) ≡ Exy� (10)

where the matrix

	
E =

(
1
γ

1 − A
)−1⊤(

1
γ

1 − A
)−1

�
(11)

It has been shown (Meister, 2023) that for small values of γ the elements of the resolvent matrix

	
Y =

(
1
γ

1 − A
)−1

�
(12)

are monotonically related to the shortest graph distances D. Specifically,

	
Yxy −−−→

γ→0
γ1+Dxy

� (13)

Building on that, the matrix E becomes

	
Exy −−−→

γ→0

∑
z

γ1+Dzxγ1+Dzy =
∑

z
γ2+Dzx+Dzy

�
(14)

The limit is dominated by the term with the smallest exponent, which occurs when z lies on a shortest 
path from x to y

	
min

z
(Dzx + Dzy) = Dxy�

where we have used the undirected nature of the graph, namely Dzx = Dxz.
Therefore,

https://doi.org/10.7554/eLife.84141
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Exy −−−→

γ→0
γ2+Dxy

� (15)

where Dxy is the smallest number of steps needed to get from node y to node x.
Figure 3 illustrates this relationship with numerical results on a binary tree graph. As expected, for 

small γ the goal signal decays exponentially with graph distance (Figure 3B). Therefore, an agent that 
makes local turning decisions to maximize that goal signal will reach the goal by the shortest possible 
path.

The exponential decay of the goal signal represents a challenge for practical implementation with 
biological circuits. Neurons have a finite signal-to-noise ratio, so detecting minute differences in the 
firing rate of a goal neuron will be unreliable. Because the goal signal changes by a factor of γ across 
every link in the graph, one wants to set the map neuron gain γ as large as possible. However, there 
is a critical gain value γc that sets a strict upper limit:

	
γ < γc ≡ 1

largest absolute eigenvalue of A�
(16)

For larger γ > γc, the goal signal Exy no longer represents graph distances (Meister, 2023). The largest 
eigenvalue of the adjacency matrix in turn is related to the number of edges per node. For graphs with 
2–4 edges per node, γc is typically about 0.3. The graph in Figure 3A has γc ≈ 0.383, and indeed Exy 
becomes erratic as γ approaches that value (Figure 3C).

To implement the finite dynamic range explicitly, we add some noise to the goal signal of Equation 
11:

	 rk(x) = gk · v(x) + η� (17)

where the noise η has a Gaussian distribution with full width ϵ:

	 η ∼ N (0, (ϵ/2)2)� (18)

The scale ϵ of this noise is expressed relative to the maximum value of the goal signal. If the agent 
must decide between two goal signals separated by less than ϵ, the noise will take a toll on the 
resulting navigation performance.

Of course, neurons everywhere within the network will carry some noise. We lump the cumulative 
effects of that into the final readout step because that allows for efficient calculations (see section 
‘Average navigated distance’). (In the circuit of Figure 1B, one can envision that the readout noise 
gets added after the mode switch.) What is a reasonable value for this effective readout noise? For 
reference, humans and animals can routinely discriminate sensory stimuli that differ by only 1%, for 
example, the pitch of tones or the intensity of a light, especially if they occur in close succession. 
Clearly the neurons all the way from receptors to perception must represent those small differences. 
Thus, we will use ϵ = 0.01 as a reference noise value in many of the results presented here.

The process of navigation toward a chosen goal signal is formalized in Algorithm 1. At each node, 
the agent inspects the goal signal that would be obtained at all the neighboring nodes, corrupted 
by the readout noise η. Then it steps to the neighbor with the highest value. Suppose the agent 
starts at node x and navigates following the goal signal for node y. The resulting navigation route 
x = s0, s1, . . . , sn = y has Lxy = n steps. Navigation is perfect if this equals the shortest graph distance, 
Lxy = Dxy. We will assess deviations from perfect performance by the excess length of the routes.

https://doi.org/10.7554/eLife.84141
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Algorithm 1 Navigation.

Parameters: gain γ , noise ϵ
Input: map synapse matrix M, goal synapse vector g 
    s ← x� ▷ start navigation at node x  
    while not at goal do � ▷ stop when goal node is found
         for all nodes j that neighbor s do
                u(j)i ← δi,j for every point cell i� ▷ point cell output with agent at node j
                                                                                            

                v(j) ←
(

1
γ

1 − M
)−1

u(j)� ▷ map output

                r(j) ← g v(j) + η(j)� ▷ noisy goal signal, η ∼ N (0, (ϵ/2)2)
         end for
         s ← arg max

j
r(j)� ▷ choose the neighbor node with the highest goal signal  

    end while

Figure 3D and E illustrate how the navigated path distance Lxy depends on the noise level ϵ 
and the gain γ. For small gain or high noise, the goal signal extends only over a graph distance of 
5–6 links. Beyond that, the navigated distance Lxy begins to exceed the graph distance Dxy. As the 
gain increases, the goal signal extends further through the graph and navigation becomes reliable 
over longer distances (Figure 3D). Eventually, however, the goal signal loses its monotonic distance 
dependence (Figure 3C). At that stage, navigation across the graph may fail because the agent gets 
trapped in a local maximum of the goal signal. This can happen even before the critical gain value 
is reached (Figure 3C). For the example in Figure 3, the highest useful gain is γ = 0.34 whereas 
γc = 0.383.

For any given value of the gain, navigation improves with lower noise levels, as expected (Figure 3E). 
At the reference value of ϵ = 0.01, navigation is perfect even across the 12 links that separate the most 
distant points on this graph.

In summary, this analysis spells out the challenges that need to be met for endotaxis to work prop-
erly. First, during the learning phase, the agent must reliably extract the adjacency matrix of the graph 
and copy it into its map synapses. Second, during the navigation phase, the agent must evaluate the 
goal signal with enough resolution to distinguish the values at alternative nodes. The neuronal gain γ 
plays a central role: with γ too small, the goal signal decays rapidly with distance and vanishes into the 
noise just a few steps away from the goal. But at large γ the network computation becomes unstable.

Acquisition of map and targets during exploration
As discussed above, the goal of learning during exploration is that the agent acquires a copy of the 
graph’s adjacency matrix in its map synapses, M ≈ A, and stores the map output at a goal location y 
in the goal synapses g ≈ v(y). Here we explore how the rules for synaptic plasticity in the map and goal 
networks allow that to happen. Algorithm 2 spells out the procedure we implemented for learning 
from a random walk through the environment.

https://doi.org/10.7554/eLife.84141


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Zhang et al. eLife 2023;12:RP84141. DOI: https://doi.org/10.7554/eLife.84141 � 10 of 32

Algorithm 2 Map and goal-learning.

Parameters: γ, θ,α
Input: adjacency matrix A, resource signals F
   M ← 0� ▷ initiate map synapses at 0
   G ← 0� ▷ initiate goal synapses at 0  
   t ← 0� ▷ t  counts the steps  
   s(t) ← x� ▷ start random walk at x  
   while learning do
      t ← t + 1
      s(t) ← a random neighbor of s(t − 1)� ▷ continue the random walk

      ui(t) ← δi,s(t) for every point cell i� ▷ point cell output

      v(t) ←
(

1
γ

1 − M
)−1

u(t)�  ▷ map cell output

      for all map cell pairs (i, j) do
         if vj(t − 1) > θ and vi(t) > θ then� ▷ threshold on pre- and post-synaptic activity

            Mji, Mij ← 1� ▷ on a directed graph only increment Mij
         end if
      end for
      r ← Gv(t)� ▷ goal signals
      for every goal neuron k  do
         if Fk,s(t) > 0 then� ▷ the agent is at a location that contains resource k
            for every map neuron j  do

              Gkj ← Gkj + α(Fk,s(t) − rk)vj(t)� ▷ update goal synapses
            end for
         end if
      end for  
   end while

The map synapses Mij start out at zero strength. When the agent moves from node j = s(t) at time 
t to node i = s(t + 1), the map cells j and i are excited in close succession. When that happens, the 
agent potentiates the synapses between those two neurons to Mji = Mij = 1. Of course, a map cell can 
also get activated through the recurrent network, and we must distinguish that from direct input from 
its point cell. We found that a simple threshold criterion is sufficient. Here θ is a threshold applied to 
both the pre- and postsynaptic activity, and the map synapse gets established only if both neurons 
respond above threshold. The tuning requirements for this threshold are discussed below.

The goal synapses Gkj similarly start out at zero strength. Consider a particular goal cell k, and 
suppose its corresponding resource cell has activity Fky when the agent is at location y. When a posi-
tive resource signal arrives, that means the agent is at a goal location. If the goal signal rk received 
from the map output is smaller than the resource signal Fky, then the goal synapses get incremented 
by something proportional to the current map output. Learning at the goal synapses saturates when 
the goal signal correctly predicts the resource signal. The learning rate α sets how fast that will 
happen. Note that both the learning rules for map and goal synapses are Hebbian and strictly local: 
each synapse is modified based only on signals available in the pre- and postsynaptic neurons.

To illustrate the process of map and goal-learning, we simulate an agent exploring a simple ring 
graph by a random walk (Figure 4). At first, there are no targets in the environment that can deliver a 
resource (Figure 4A). Then we add one target location, and later a second one. Finally, we add a new 
link to the graph that makes a connection clear across the environment. As the agent explores the 
graph, we will track how its representations evolve by monitoring the map synapses and the profile 
of the goal signal.

At the outset, every time the agent steps to a new node, the map synapse corresponding to that 
link gets potentiated (Figure 4B). After enough steps, the agent has executed every link on the graph, 
and the matrix of map synapses resembles the full adjacency matrix of the graph (Figure 4B). At this 
stage, the agent has learned the connectivity of the environment.

Once a target appears in the environment, it takes the agent a few random steps to encounter 
it. At that moment, the goal synapses get potentiated for the first time, and suddenly a goal signal 
appears in the goal cell (Figure 4C). The profile of that goal signal is fully formed and spreads through 
the entire graph thanks to the pre-established map network. By following this goal signal uphill, the 
agent can navigate along the shortest path to the target from any node on the graph. Note that the 
absolute scale of the goal signal grows a little every time the agent visits the goal (Figure 4A) and 
eventually saturates.

https://doi.org/10.7554/eLife.84141
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Figure 4. Learning the map and the targets during exploration. (A) Simulation of a random walk on a ring with 14 nodes. Left: layout of the ring, 
with resource locations marked in blue. The walk progresses in 800 time steps (top to bottom); with the agent’s position marked in red (nodes 0–13, 
horizontal axis). At each time, the color map shows the goal signal that would be produced if the agent were at position ‘Node.’ White horizontal lines 
mark the appearance of a target at t = 200, a second target with the same resource at t = 400, and a new link across the ring at step t = 600. (B) The 
matrix M of map synapses at various times. The pixel in row i and column j represents the matrix element Mij. Color purple =0. Note the first few steps 
(number above graph) each add a new synapse. Eventually, M reflects the adjacency matrix of nodes on the graph. (C) Goal signals just before and just 
after the agent encounters the first target. (D) Goal signals just before and just after the agent encounters the second target. (E) Goal signals just before 
and just after the agent travels the new link for the first time. Parameters: γ = 0.32, θ = 0.27,α = 0.3.
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Sometime later, we introduce a second target elsewhere in the environment (Figure 4D). When the 
agent encounters it along its random walk, the goal synapses get updated, and the new goal signal 
has two peaks in its profile. Again, this goal signal grows during subsequent visits. By following that 
signal uphill from any starting point, the agent will be led to a nearby target by the shortest possible 
path.

When a new link appears, the agent eventually discovers it on its random walk. At that point, the 
goal signal changes instantaneously to incorporate the new route (Figure 4E). An agent following the 
new goal signal from node 13 on the ring will now be led to a target location in just three steps, using 
the shortcut, whereas previously it took five steps.

This simulation illustrates how the structure of the environment is acquired separately from the 
location of resources. The agent can explore and learn the map of the environment even without any 
resources present (Figure 4B). This learning takes place among the map synapses in the endotaxis 
circuit (Figure 1B). When a resource is found, its location gets tagged within that established map 
through learning by the goal synapses. The resulting goal signal is available immediately without the 
need for further learning (Figure 4C). If the distribution of resources changes, the knowledge in the 
map remains unaffected (Figure 4D) but the goal synapses can change quickly to incorporate the 
new target. Vice versa, if the graph of the environment changes, the map synapses get updated, and 
that adapts the goal signal to the new situation even without further change in the goal synapses 
(Figure 1E).

What happens if a previously existing link disappears from the environment, for example, because 
one corridor of the mouse burrow caves in? Ideally the agent would erase that link from the cognitive 
map. The learning algorithm (Algorithm 2) is designed for rapid and robust acquisition of a cognitive 
map starting from zero knowledge and does not contain a provision for forgetting. However, one can 
add a biologically plausible rule for synaptic depression that gradually erases memory of a link if the 
agent never travels it. Details are presented in section ‘Forgetting of links and resources’ (Figure 10). 
For the sake of simplicity, we continue the present analysis of endotaxis based on the simple three-
parameter algorithm presented above (Algorithm 2).

Choice of learning rule
The map learning rule in Algorithm 2 produces full-strength synapses Mij and Mji after a single co-ac-
tivation of the two neurons. A more common approach to synaptic learning uses small incremental 
updates and stabilizes the update rule with some form of normalization, based on the average pre- or 
postsynaptic activity over many steps (Gerstner and Kistler, 2002). For example, presynaptic normal-
ization leads the synaptic network to learn a transition probability matrix (Fang et al., 2023)

	 Tij = probability of stepping to node i given current node j�

Instead, we adopted the instantaneous update model for two reasons: most importantly, this allows 
the agent to learn a route after the first traversal, which is needed to explain the rapid learning 
observed in experimental animals. For example, section ‘Navigating a partial map: homing behavior’ 
models accurate homing after the first excursion into the labyrinth. Furthermore, when we repeated 
the analysis of Figure 3 using the transition matrix Tij instead of the adjacency matrix Aij, the goal 
signal correlated more weakly with distance, and even with the optimal gain setting the range of 
correct navigation was considerably reduced.

This rapid learning rule reflects an implicit assumption that the environment is static, such that 
the learned transition will always be available. For adaptation to slow changes in the environment, 
see section ‘Forgetting of links and resources.’ Note also that the above procedure Algorithm 2 
updates both synapses between neurons i and j. This assumes implicitly that the experienced 
edge on the graph can also be traversed in the opposite direction, which applies to many navi-
gation problems. To learn a directed environment – such as a city map with one-way streets or a 
game in which moves cannot be reversed – one may use a directed learning rule that requires the 
presynaptic neuron to fire before the postsynaptic neuron. This will update only the synapse Mij 
representing the edge that was actually traveled. For all simulations in this article, we will use the 
symmetric learning rule.

https://doi.org/10.7554/eLife.84141
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Navigation using the learned goal signal
We now turn to the ‘exploitation’ component of endotaxis, namely use of the learned information to 
navigate toward targets. In the simulations of Figure 5, we allow the agent to explore a graph. Every 
node on the graph drives a separate resource cell, thus the agent simultaneously learns goal signals to 
every node. After a random walk sufficient to cover the graph several times, we test the agent’s ability 
to navigate to the goals by ascending on the learned goal signal. For that purpose, we teleport the 
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Figure 5. Navigation using the learned map and targets. (A–C) Ring with 50 nodes. (A) Goal signal for a single target location (blue dot on left icon) 
after learning during random exploration with 10,000 steps. Color scale is logarithmic, yellow = high. Note the monotonic decay of the goal signal 
with graph distance from the target. (B) Results of all-to-all navigation where every node is a separate goal. For all pairs of nodes, this shows the 
navigated distance vs the graph distance. Median ±10/90 percentiles for all routes with the same graph distance. ‘Ideal’ navigation would follow the 
identity. The actual navigation is ideal over short distances, then begins to deviate from ideal at a critical distance that depends on the noise level 
ϵ. (C) As in (B) over a wider range, note logarithmic axis. Noise ϵ = 0.01. Includes comparison to navigation by a random walk; and navigation using 
the optimal goal signal based on knowledge of the graph structure and target location. γ = 0.41, θ = 0.39,α = 0.1. (D–F) As in (A–C) for a binary 
tree graph with 127 nodes. (D) Goal signal to the node marked on the left icon. This was the reward port in the labyrinth experiments of Rosenberg 
et al., 2021. White lines separate the branches of the tree. γ = 0.33, θ = 0.30,α = 0.1. (G–I) As in (A–C) for a ‘Tower of Hanoi’ graph with 81 nodes. 
γ = 0.29, θ = 0.27,α = 0.1.

https://doi.org/10.7554/eLife.84141


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Zhang et al. eLife 2023;12:RP84141. DOI: https://doi.org/10.7554/eLife.84141 � 14 of 32

agent to an arbitrary start node in the graph and ask how many steps it takes to reach the goal node 
following the policy of Algorithm 1. In these tests, the learning of map and goal synapses was turned 
off during the navigation phase, so we could separately assess how learning and navigating affect the 
performance. However, there is no functional requirement for this, and indeed one of the attractive 
features of this model is that learning and navigation can proceed in parallel at all times.

Figure  5A–C shows results on a ring graph with 50 nodes. With suitable values of the model 
parameters (γ, θ,α) – more on that later – the agent learns a goal signal that declines monotonically 
with distance from the target node (Figure 5A). The ability to ascend on that goal signal depends 
on the noise level ϵ, which determines whether the agent can sense the difference in goal signal at 
neighboring nodes. At a high noise level ϵ = 0.1, the agent finds the target by the shortest route from 
up to five links away (Figure 5B); beyond that range, some navigation errors creep in. At a low noise 
level of ϵ = 0.005, navigation is perfect up to 10 links away. Every factor of two increase in noise seems 
to reduce the range of navigation by about one link.

How does the process of learning the map of the environment affect the ultimate navigation 
performance? Figure 5C makes that comparison by considering an agent with oracular knowledge 
of the graph structure and target location (Equations 9 and 10). Interestingly, this barely improves 
the distance range for perfect navigation. By contrast, an agent performing a random walk with zero 
knowledge of the environment would take about 40 times longer to reach the target than by using 
endotaxis (Figure 5C).

The ring graph is particularly simple, but how well does endotaxis learn in a more realistic environ-
ment? Figure 5D–F shows results on a binary tree graph with six levels: this is the structure of a maze 
used in a recent study on mouse navigation (Rosenberg et al., 2021). In those experiments, mice 
learned quickly how to reach the reward location (blue dot in Figure 5D) from anywhere within the 
maze. Indeed, the endotaxis agent can learn a goal signal that declines monotonically with distance 
from the reward port (Figure 5D). At a noise level of ϵ = 0.01, navigation is perfect over distances of 
9 links and close to perfect over the maximal distance of 12 links that occurs in this maze (Figure 5E). 
Again, the challenge of having to learn the map affects the performance only slightly (Figure 5F). 
Finally, comparison with the random agent shows that endotaxis shortens the time to target by a 
factor of 100 on this graph (Figure 5F).

Figure 5G–I shows results for a more complex graph that represents a cognitive task, namely the 
game ‘Tower of Hanoi.’ Disks of different sizes are stacked on three pegs, with the constraint that no 
disk can rest on top a smaller one. The game is solved by rearranging the pile of disks from the center 
peg to another. In any state of the game, there are either two or three possible actions, and they form 
an interesting graph with many loops (Figure 5G). The player starts at the top node (all disks on the 
center peg) and the two possible solutions correspond to the bottom left and right corners. Again, 
random exploration leads the endotaxis agent to learn the connectivity of the game and to discover 
the solutions. The resulting goal signal decays systematically with graph distance from the solution 
(Figure 5G). At a noise of ϵ = 0.01, navigation is perfect once the agent gets to within nine moves 
of the target (Figure 5H). This is not quite sufficient for an error-free solution from the starting posi-
tion, which requires 15 moves. However, compared to an agent executing random moves, endotaxis 
speeds up the solution by a factor of 10 (Figure 5I). If the game is played with only three disks, the 
maximal graph distance is 7, and endotaxis solves it perfectly at ϵ = 0.01.

These results show that endotaxis functions well in environments with very different structure: 
linear, tree-shaped, and cyclic. Random exploration in conjunction with synaptic learning can effi-
ciently acquire the connectivity of the environment and the location of targets. With a noise level of 
1%, the resulting goal signal allows perfect navigation over distances of ∼9 steps, independent of the 
nature of the graph. This is a respectable range: personal experience suggests that we rarely learn 
routes that involve more than nine successive decisions. Chess openings, which are often played in a 
fast and reflexive fashion, last about 10 moves.

Parameter sensitivity
The endotaxis model has only three parameters: the gain γ of map units, the threshold θ for learning 
at map synapses, and the learning rate α at goal synapses. How does performance depend on these 
parameters? Do they need to be tuned precisely? And does the optimal tuning depend on the spatial 
environment? There is a natural hierarchy to the parameters if one separates the process of learning 

https://doi.org/10.7554/eLife.84141
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from that of navigation. Suppose the circuit has learned the structure of the environment perfectly, 
such that the map synapses reflect the adjacencies (Equation 9), and the goal synapses reflect the 
map output at the goal (Equation 10). Then the optimal navigation performance of the endotaxis 
system depends only on the gain γ and the noise level ϵ. For a given γ, in turn, the precision of map 
learning depends only on the threshold θ (see Algorithm 2). Finally, if the gain is set optimally and 
the map was learned properly, the identification of targets depends only on the goal-learning rate α. 
Figure 6 explores these relationships in turn.

We simulated the learning phase of endotaxis as in the preceding section (Figure 5B, E and H), 
using a noise level of ϵ = 0.01, and systematically varying the model parameters (γ, θ,α). For each 

0.2 0.25 0.3 0.35 0.4

Threshold, 

0.2

0.25

0.3

0.35

0.38

0.4

0.41

0.42

G
a
i
n
,
 

1 3 10 30 100

Edge visits

0.03

0.1

0.3

1.0

3.0

L
e
a
r
n
i
n
g
 
r
a
t
e
,
 

0.2 0.25 0.3

Threshold, 

0.2

0.25

0.3

0.31

0.32

0.33

0.34

0.35

G
a
i
n
,
 

1 3 10 30 100

Edge visits

0.03

0.1

0.3

1.0

3.0

L
e
a
r
n
i
n
g
 
r
a
t
e
,
 

0.2 0.25

Threshold, 

0.2

0.25

0.27

0.28

0.29

0.3

G
a
i
n
,
 

1 3 10 30 100

Edge visits

0.03

0.1

0.3

1.0

3.0

L
e
a
r
n
i
n
g
 
r
a
t
e
,
 

2

4

6

8

10

G
o
a
l
 
s
i
g
n
a
l
 
r
a
n
g
e

2

4

6

8

10

G
o
a
l
 
s
i
g
n
a
l
 
r
a
n
g
e

2

4

6

8

G
o
a
l
 
s
i
g
n
a
l
 
r
a
n
g
e

A

B

C

Figure 6. Sensitivity of performance to the model parameters. On each of the three graphs, we simulated endotaxis for all-to-all navigation, where each 
node serves as a start and a goal node. The performance measure was the range of the goal signal, defined as the graph distance over which at least 
half the navigated routes follow the shortest path. The exploration path for synaptic learning was of medium length, visiting each edge on the graph 
approximately 10 times. The noise was set to ϵ = 0.01. (A) Ring graph with 50 nodes. Left: dependence of the goal signal range on the gain γ  and 
the threshold θ for learning map synapses. Performance increases with higher gain until it collapses beyond the critical value. For each gain, there is a 
sharply defined range of useful thresholds, with lower values at lower gain. Right: dependence of the goal signal range on the learning rate α at goal 
synapses, and the length of the exploratory walk, measured in visits per edge of the graph. For a short walk (one edge visit), a high learning rate is best. 
For a long walk (100 edge visits), a lower learning rate wins out. (B) As in (A) for the Binary tree maze with 127 nodes. (C) As in (A) for the Tower of Hanoi 
graph with 81 nodes.
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parameter set, we measured the graph distance over which at least half of the navigated routes were 
perfect. We defined this distance as the range of the goal signal.

For example, on the ring graph (Figure 6A) the signal range improves with gain until performance 
collapses beyond a maximal gain value. This is just as predicted by the theory (Figure 3), except 
that the maximal gain γmax = 0.41 is somewhat below the critical value γc = 0.5. Clearly the added 
complications of having to learn the map and goal locations take their toll at high gain. Below the 
maximal cutoff, the dependence of performance on gain is rather gentle: for example, a 14% change 
in gain from 0.35 to 0.40 leads to a 26% change in performance. At any given gain value, there is a 
range of values for the threshold θ within which the map is learned perfectly. Note that this range is 
generous and does not require precise adjustment: for example, under a near-maximal gain of 0.38, 
the threshold can vary freely over a 35% range.

Once the gain and synaptic threshold are set so as to acquire the map synapses, the quality of goal-
learning depends only on the learning rate α. With large α, a single visit to the goal fully potentiates 
the goal synapses so that they do not get updated further. This allows for a fast acquisition of that 
target, but at the risk of imperfect learning, because the map may not be fully explored yet. A small 
α will update the synapses only partially over many successive visits to the goal. This leads to a poor 
performance after short exploration, because the weak goal signal competes with noise, but superior 
performance after long explorations: a tradeoff between speed of learning and accuracy. Precisely this 
speed-accuracy tradeoff is seen in the simulations (Figure 6A, right): a high learning rate is optimal for 
short explorations, but for longer ones a small learning rate wins out. An intermediate value of α = 1 
delivers a good compromise performance.

We found qualitatively similar behavior for the other two environments studied here: the binary 
maze graph (Figure 6B) and the Tower of Hanoi graph (Figure 6C). In each case, the maximal usable 
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Figure 7. Benefits of a nonlinear activation function. (A) The activation function relating a map neuron’s output v to its total input w. Red: linear function 
with gain γ . Blue: nonlinear function with saturation at w > 1. (B–D) Range of the goal signal, as defined in Figure 6, as a function of the gain γ  (noise 
ϵ = 0.01). Range increases with gain up to a maximal value. The maximal range achieved is higher with nonlinear activation (blue) than linear activation 
(red). Results for the ring graph (B), binary tree maze (C), and Tower of Hanoi graph (D). (E) Output of map cells during early exploration of the ring 
graph (gain γ = 0.49). Suppose the agent has walked back and forth between nodes 2 and 5, so all their corresponding map synapses are established 
(black bars). Then the agent steps to node 6 for the first time (orange). Lines plot the output of the map cells with the agent at locations 2, 3, 4, 5, or 
6. Dotted line indicates the maximal possible setting of the threshold θ in the learning rule. With linear activation (left), a map cell receiving purely 
recurrent input (4) may produce a signal larger than threshold (arrowhead above the dotted line). Thus, cells 4 and 6 would form an erroneous synapse. 
With a saturating activation function (right), the map amplitude stays constant throughout learning, and this confound does not happen. (F) The 
goal signal from an end node of the binary maze, plotted along the path from another end node. Map and goal synapses set to their optimal values 
assuming full knowledge of the graph and the target (gain γ = 0.37). With linear activation (red), the goal signal has a local maximum, so navigation to 
the target fails. With a saturating activation function (blue), the goal signal is monotonic and leads the agent to the target.
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gain is slightly below the critical value γc of that graph. A learning rate of α = 1 delivers intermediate 
results. For long explorations, a lower learning rate is best.

In summary, this sensitivity analysis shows that the optimal parameter set for endotaxis does 
depend on the environment. This is not altogether surprising: every neural network needs to adapt to 
the distribution of inputs it receives so as to perform optimally. At the same time, the required tuning 
is rather generous, allowing at least 10–20%  slop in the parameters for reasonable performance. 
Furthermore, a single parameter set of γ = 0.29, θ = 0.26,α = 1 performs quite well on both the binary 
maze and the Tower of Hanoi graphs, which are dramatically different in character.

A saturating activation function improves navigation
So far, the model of the map network used neurons with a linear activation function (Equation 3), 
meaning the output v is simply proportional to the input, v = γw. We also explored nonlinear activa-
tion functions v = f(w) and found that the performance of endotaxis improves under certain conditions 
(Fang et al., 2023). The most important feature is that f(w) should saturate for inputs x that are larger 
than the output of the point cells (u = 1 in Equation 4). The detailed shape matters little, so for illus-
tration we will use a linear-flat activation curve (Figure 7A):

	

f(w) =




γw, if w ≤ 1

γ, if w > 1�
(19)

Figure 7B–D reports the range of navigation on the three sample graphs, defined and computed 
from simulations as in the preceding section (Figure  6). The effective range is the largest graph 
distance over which the median trajectory chooses the shortest route. As observed using linear map 
neurons (Figure 6), the range increases with the gain γ until it collapses beyond some maximal value 
(Figure 7B–D). However, the saturating activation function allowed for higher gain values, which led 
to considerable increases in the range of navigation: by a factor of 2.2 for the ring graph, and 1.5 for 
the Tower of Hanoi graph. On the binary maze, the saturating activation function allowed perfect 
navigation over the maximal distance available of 12 steps.

The enhanced performance was a result of better map learning as well as better navigation. To 
understand the former, consider Figure 7E: here the agent has begun to learn the ring graph by 
walking back and forth between a few nodes (2–5), thus establishing all their pairwise map synapses; 
then it steps to a new node (6). With a linear activation function (Figure 7E, left), the recurrent synapses 
enhance the map output, so the map signal with the agent in the explored region (2–5) is considerably 
larger than after stepping to the new node. This interferes with the mechanism for map learning: the 
learning rule must identify which of the map cells represents the current location of the agent, and 
does so by setting a threshold on the output signal (Algorithm 2). In the present example, this leads to 
erroneous synapses because a map cell that receives only recurrent input (4) produces outputs larger 
than the threshold (arrowhead in Figure 7E). With the saturating activation function (Figure 7E, right), 
the directly activated map cells always have the largest output signal, so the learning rule can operate 
without errors.

The saturating activation function also helps after learning is complete. In Figure 7F, the agent is 
given perfect knowledge of the binary maze map, then asked to use the resulting goal signals to navi-
gate from one end node to another. With a linear activation function, the goal signal has a large local 
maximum that traps the agent. The nonlinear activation function produces a monotonic goal signal 
that leads the agent to the target.

Both these aspects of enhanced performance can be traced to the normalizing effect of the nonlin-
earity that keeps the peak output of the map constant. Such normalization could be performed by 
other mechanisms as well, for example, a global inhibitory feedback among the map neurons.

In summary, this section shows that altering details of the model can substantially extend its perfor-
mance. For the remainder of this article, we will return to the linear activation curve because inter-
esting behavioral phenomena can be observed even with the simple linear model.

Navigating a partial map: Homing behavior
We have seen that endotaxis can learn both connections in the environment and the locations of 
targets after just one visit (Figure 6.) This suggests that the agent can navigate well on whatever 
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portion of the environment it has already seen, before covering it exhaustively. To illustrate this, we 
analyze an ethologically relevant instance.

Consider a mouse that enters an unfamiliar environment for the first time, such as a labyrinth 
constructed by graduate students (Rosenberg et al., 2021). Given the uncertainties about what lurks 
inside, the mouse needs to retain the ability to flee back to the entrance as fast as possible. For 
concreteness, take the mouse trajectory in Figure 8A. The animal has entered the labyrinth (location 
1), made its way to one of the end nodes (3), then explored further to another end node (4). Suppose 
it needs to return to the entrance now. One way would be to retrace all its steps. But the shorter way 
is to take a left at (2) and cut out the unnecessary branch to (3). Experimentally we found that mice 
indeed take the short direct route instead of retracing their path (Rosenberg et al., 2021). They can 
do so even on the very first visit of an unfamiliar labyrinth. Can endotaxis explain this behavior?

We assume that the entrance is a salient location, so the agent dedicates a goal cell to the root 
node of the binary tree. Figure 8B plots the goal signal after the path in panel A, just as the agent 
wants to return home. The goal signal is nonzero only at the locations the agent has visited along its 
path. It clearly increases monotonically toward the entrance (Figure 8C). At a noise level of ϵ = 0.01, 
the agent can navigate to the entrance by the shortest path without error. Note specifically that the 
agent does not retrace its steps when arriving at location (2), but instead turns toward (1).

One unusual aspect of homing is that the goal is identified first, before the agent has even entered 
the environment to explore it. That strengthens the goal synapse from the sole map cell that is active 
at the entrance. Only subsequently does the agent build up map synapses that allow the goal signal 
to spread throughout the map network. Still, in this situation, the single synapse onto the goal cell is 
sufficient to convey a robust signal for homing.

Efficient patrolling
Beside exploring and exploiting, a third mode of navigating the environment is patrolling. At this 
stage, the animal knows the lay of the land, and has perhaps discovered some special locations, but 
continues to patrol the environment for new opportunities or threats. In our study of mice freely inter-
acting with a large labyrinth, the animals spent more than 85% of the time patrolling the maze (Rosen-
berg et al., 2021). This continued for hours after they had perfected the targeting of reward locations 
and the homing back to the entrance. Presumably, the goal of patrolling is to cover the entire environ-
ment frequently and efficiently so as to spot any changes as soon as they develop. So the ideal path in 
patrolling would visit every node on the graph in the smallest number of steps possible. In the binary 
tree maze used for our experiments, that optimal patrol path takes 252 steps: it visits every end node 
of the labyrinth exactly once without any repeats (Figure 9A).
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Figure 8. Homing by endotaxis. (A) A binary tree maze as used in Rosenberg et al., 2021. A simulated mouse begins to explore the labyrinth (colored 
trajectory, purple = early, yellow = late), traveling from the entrance (1) to one of the end nodes (3), then to another end node (4). Can it return to the 
entrance from there using endotaxis? (B) Goal signal learned by the end of the walk in (A), displayed as in Figure 5D, purple = 0. Note the goal signal is 
nonzero only at the nodes that have been encountered so far. From all those nodes, it increases monotonically toward the entrance. (C) Detailed plot of 
the goal signal along the shortest route for homing. Parameters γ = 0.33, θ = 0.30,α = 10, ϵ = 0.01.
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Real mice do not quite execute this optimal path, but their patrolling behavior is much more effi-
cient than random (Figure 9B). They avoid revisiting areas they have seen recently. Could endotaxis 
implement such an efficient patrol of the environment? The task is to steer the agent to locations 
that have not been visited recently. One can formalize this by imagining a resource called ‘neglect’ 
distributed throughout the environment. At each location, neglect increases with time, then resets to 
zero the moment the agent visits there. To use this in endotaxis, one needs a goal cell that represents 
neglect.

We add to the core model a goal cell that represents ‘neglect.’ It receives excitation from every 
map cell via synapses that are equal and constant in strength (see clock symbol in Figure 1B). This 
produces a goal signal that is approximately constant everywhere in the environment. Now suppose 
that the point neurons undergo a form of habituation: when a point cell fires because the agent walks 
through its field, its sensitivity decreases by some habituation factor. That habituation then decays 
over time until the point cell recovers its original sensitivity. As a result, the most recently visited points 
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Figure 9. Patrolling by endotaxis. (A) Left: a binary tree maze as used in Rosenberg et al., 2021, plotted here so every node has a different vertical 
offset. Right: a perfect patrol path through this environment. It visits every node in 252 steps, then starts over. (B) Patrolling efficiency of different agents 
on the binary tree maze. The focus here is on the 64 end nodes of the labyrinth. We ask how many distinct end nodes are found (vertical axis) as a 
function of the number of end nodes visited (horizontal axis). For the perfect patrolling path, that relationship is the identity (‘perfect’). For a random 
walk, the curve is shifted far to the right (‘random’, note log axis). Ten mice in Rosenberg et al., 2021 showed patrolling behavior within the shaded 
range. Solid lines are the endotaxis agent, operating at different noise levels ϵ. Note ϵ = 0.01 produces perfect patrolling; in fact, panel (A) is a path 
produced by this agent. Higher noise levels lead to lower efficiency. The behavior of mice corresponds to ϵ ≈ 1. Gain γ = 0.33, habituation β = 1.2, 
with recovery time τ = 100 steps.
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on the graph produce a smaller goal signal. Endotaxis based on this goal signal will therefore lead the 
agent to the areas most in need of a visit.

Figure 9B illustrates that this is a powerful way to implement efficient patrols. Here we modeled 
endotaxis on the binary tree labyrinth, using the standard parameters useful for exploration, exploita-
tion, and homing in previous sections. To this, we added a habituation in the point cells with exponen-
tial recovery dynamics. Formally, the procedure is defined by Algorithm 3. Again, we turned off the 
learning rules (Algorithm 2) during this simulation to observe the effects of habituation in isolation. A 
fully functioning agent can keep the learning rules on at all times (Figure 11).

Algorithm 3 Patrolling.

Parameters: gain γ , noise ϵ, habituation β, recovery time τ
Input: map synapses M
      hi ← 1, for all point cells i� ▷ starting sensitivity of point cell at node i
      s ← x� ▷ begin patrolling at node x  
      while patrolling do

            hs ← hs e−β� ▷ habituation of point cell s
            hi ← 1 − (1 − hi) e−1/τ , for all i� ▷ resensitization of all point cells
            for all nodes j  that neighbor s do� ▷ agent tests available options
                  ui(j) ← δi,jhj for all i� ▷ point cell output with agent at node j

                  v(j) ←
(

1
γ

1 − M
)−1

u(j)� ▷ map output

                  p(j) ← 1
Z
∑

i
vi(j) + η� ▷ sum of map output with noise, normalized so max = 1

            end for

            s ← arg max
j

p(j)� ▷ move to neighbor node with the highest patrol signal

      end while

With appropriate choices of habituation β and recovery time τ , the agent does in fact execute 
a perfect patrol path on the binary tree, traversing every edge of the graph exactly once, and then 
repeating that sequence indefinitely (Figure 9A). For this to work, some habituation must persist for 
the time taken to traverse the entire tree; in this simulation, we used τ = 100 steps on a graph that 
requires 252 steps. As in all applications of endotaxis, the performance also depends on the readout 
noise ϵ. For increasing readout noise, the agent’s behavior transitions gradually from the perfect 
patrol to a random walk (Figure 9B). The patrolling behavior of real mice is situated about halfway 
along that range, at an equivalent readout noise of ϵ = 1 (Figure 9B).

Finally, this suggests a unified explanation for exploration and patrolling: in both modes, the agent 
follows the output of the ‘neglect’ cell, which is just the sum total of the map output. However, in the 
early exploration phase, when the agent is still assembling the cognitive map, it gives the neglect 
signal zero or low weight, so the turning decisions are dominated by the readout noise and produce 
something close to a random walk. Later on, the agent assigns a higher weight to the neglect signal, 
so it exceeds the readout noise and shifts the behavior toward systematic patrolling. In our simu-
lations, an intrinsic readout noise of ϵ = 0.01 is sufficiently low to enable even a perfect patrol path 
(Figure 9B).

In summary, the core model of endotaxis can be enhanced by adding a basic form of habituation 
at the input neurons. This allows the agent to implement an effective patrolling policy that steers 
towards regions which have been neglected for a while. Of course, habituation among point cells will 
also change the dynamics of map learning during the exploration phase. We found that both map 
and goal synapses are still learned effectively, and navigation to targets is only minimally affected by 
habituation (Figure 11).

Discussion
Summary of claims
We have presented a biologically plausible neural mechanism that can support learning, navigation, 
and problem solving in complex environments. The algorithm, called endotaxis, offers an end-to-end 
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solution for assembling a cognitive map (Figure 4), memorizing interesting targets within that map, 
navigating to those targets (Figure 5), as well as accessory functions like instant homing (Figure 8) and 
effective patrolling (Figure 9). Conceptually, it is related to chemotaxis, namely the ability to follow 
an odor signal to its source, which is shared universally by most or all motile animals. The endotaxis 
network creates an internal ‘virtual odor’ which the animal can follow to reach any chosen target location 
(Figure 1). When the agent begins to explore the environment, the network learns both the structure of 
the space, namely which points are connected, and the location of valuable resources (Figure 4), even 
after a single experience (Figures 4 and 8). The agent can then navigate back to those target locations 
efficiently from any point in the environment (Figure 5). Beyond spatial navigation, endotaxis can also 
learn the solution to purely cognitive tasks (Figure 5) that can be formulated as search on a graph 
(section ‘Theory of endotaxis’). It takes as given two elementary facts: the existence of place cells that 
fire when the animal is at a specific location, and a behavioral module that allows the animal to follow an 
odor gradient uphill. The proposed circuit (Figure 1) provides the interface from the place cells to the 
virtual odor gradient. In the following sections, we consider how these findings relate to phenomena of 
animal behavior and neural circuitry, and prior art in the area of theory and modeling.

Theories and models of spatial learning
Broadly speaking, endotaxis can be seen as a form of reinforcement learning (Sutton and Barto, 
2018): the agent learns from rewards or punishments in the environment and develops a policy that 
allows for subsequent navigation to special locations. The goal signal in endotaxis plays the role of a 
value function in reinforcement learning theory. From experience, the agent learns to compute that 
value function for every location and control its actions accordingly. Within the broad universe of 
reinforcement learning algorithms, endotaxis combines some special features as well as limitations 
that are inspired by empirical phenomena of animal learning, and also make it suitable for a biological 
implementation.

First, most of the learning happens without any reinforcement. During the exploratory random walk, 
endotaxis learns the topology of the environment, specifically by updating the synapses in the map 
network (M in Figure 1B). Rewards are not needed for this map learning, and indeed the goal signal 
remains zero during this period (Figure 4). Once a reward is encountered, the goal synapses (G in 
Figure 1B) get set, and the goal signal instantly spreads through the known portion of the environment. 
Thus, the agent learns how to navigate to the goal location from a single reinforcement (Figure 4). This 
is possible because the ground has been prepared, as it were, by learning a map. In animal behavior, 
the acquisition of a cognitive map without rewards is called latent learning. Early debates in animal 
psychology pitched latent learning and reinforcement learning as alternative explanations (This-
tlethwaite, 1951). Instead, in the endotaxis algorithm, neither can function without the other as the 
goal signal explicitly depends on both the map and goal synapses (Equation 18, Algorithm 1).

More specifically, the neural signals in endotaxis bear some similarity to the so-called successor 
representation (Dayan, 1993; Corneil and Gerstner, 2015; Stachenfeld et al., 2017; Garvert et al., 
2017; Fang et al., 2023). This is a proposal for how the brain might encode the current state of 
the agent, intended to simplify the mathematics of time-difference reinforcement learning. In that 
representation, there is a neuron for every state of the agent, and the activity of neuron j is the time-
discounted probability that the agent will find itself at state j in the future. Similarly, the output of the 
endotaxis map network is related to future states of the agent and follows a similar functional depen-
dence on distance (Meister, 2023, Equation 7). However, despite these formal similarities, the under-
lying logic is quite different. In the successor representation, γ plays the role of a temporal discount 
factor for rewards (Dayan, 1993); essentially it is the proportionality factor in the agent’s belief that 
‘time is money.’ In this picture, varying γ allows the agent to make predictions with different time 
horizons (Fang et al., 2023; Stachenfeld et al., 2017). In endotaxis, there is no time/reward tradeoff. 
The agent simply wants the shortest path to the goal. The map network reflects the objective connec-
tivity of the environment to the farthest extent possible. Here γ is the gain of the map neurons that, 
when properly chosen, allows the neural network to perform that computation. The agent may want 
to tune γ to the statistics of the environment, although we showed that a common value of γ works 
quite well across environments (Figure 6). (These differences in how the problem is formulated can 
lead to slightly different mathematical expressions, for example, compare the role of γ in Equation 7 
with Equation 2 of Fang et al., 2023.)
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Second, endotaxis does not tabulate the list of available actions at each state. That information 
remains externalized in the environment: the agent simply tries whatever actions are available at the 
moment, then picks the best one. This is a characteristically biological mode of action and most organ-
isms have a behavioral routine that executes such trial-and-error. This ‘externalized cognition’ simpli-
fies the learning task: for any given navigation policy, the agent needs to learn only one scalar function 
of location, namely the goal signal. By comparison, many machine learning algorithms develop a value 
function for state–action pairs, which then allows more sophisticated planning (Sutton and Barto, 
2018; Moerland et al., 2023). The relative simplicity of the endotaxis circuit depends on the limitation 
to learning only state functions.

Some key elements of the endotaxis model have appeared in prior work, starting with the notion of 
ascending a scalar goal signal during navigation (Schmajuk and Thieme, 1992; Voicu and Schmajuk, 
2000; Samsonovich and Ascoli, 2005). Several models assume the existence of a map layer, in which 
individual neurons stand for specific places, and the excitatory synapses between neurons represent 
the connections between those places (Gaussier et al., 2002; Schölkopf and Mallot, 1995; Voicu 
and Schmajuk, 2000; Trullier and Meyer, 2000; Martinet et al., 2011; Ponulak and Hopfield, 2013; 
Khajeh-Alijani et al., 2015). Then the agent somehow reads out those connections in order to find 
the shortest path between its current location (the start node) and a desired target (the end node).

Very different schemes have been proposed for this readout of the map. The most popular scheme 
is to somehow inject a signal into the desired end node, let it propagate backward through the 
network, and read out the magnitude or gradient of the signal near the start node (Glasius et al., 
1996; Gaussier et al., 2002; Gorchetchnikov and Hasselmo, 2005; Martinet et al., 2011; Ponulak 
and Hopfield, 2013; Khajeh-Alijani et al., 2015). In general, this requires some accessory system 
that can look up which neuron in the map corresponds to the desired end node, and which neuron 
to the agent’s current location or its neighbors; often these accessory functions remain unspecified 
(Schölkopf and Mallot, 1995; Voicu and Schmajuk, 2000; Khajeh-Alijani et al., 2015). By contrast, in 
the endotaxis model the signal is propagated in the forward direction starting with the activity of the 
place cell at the agent’s current location. The signal strength is read out at the goal location: The goal 
neuron is the same neuron that also responds directly to the rewarding feature at the goal location. 
For example, the proximity to water is read out by a neuron that is also excited when the animal drinks 
water. In this way, the brain does not need to maintain a separate lookup table for goal neurons. If the 
agent wants to find water, it should simply follow the same neuron that fires when it drinks.

Another distinguishing feature of endotaxis is that it operates continuously. Many models for navi-
gation have to separate the phase of spatial learning from the phase of goal-directed navigation. 
Sometimes plasticity needs to be turned off or reset during one phase or the other (Samsonovich and 
Ascoli, 2005; Ponulak and Hopfield, 2013). Sometimes a special signal must be injected during goal-
seeking (Voicu and Schmajuk, 2000). Sometimes the rules change depending on whether the agent 
approaches or leaves a target (Blum and Abbott, 1996). Again this requires additional supervisory 
systems that often go unexplained. By contrast, endotaxis is ‘always on.’ Whether the animal explores 
a new environment, navigates to a target, or patrols a well-known graph, the synaptic learning rules 
are always the same. The animal chooses its policy by setting the mode switch that selects one of the 
available goal signals for the taxis module (Figure 1). Nothing has to change under the hood in the 
operation of the circuit. All the same signals are used for map learning, target learning, and navigation.

In summary, various components of the endotaxis model have appeared in other proposed schemes 
for spatial learning and navigation. The present model stands out in that all the essential functions 
are covered in a feed-forward and neuromorphically plausible manner, without invoking unexplained 
control schemes.

Animal behavior
The millions of animal species no doubt use a wide range of mechanisms to get around their environ-
ment, and it is worth specifying which types of navigation endotaxis might solve. First, the learning 
mechanism proposed here applies to complex environments, namely those in which discrete paths 
form sparse connections between points. For a rodent and many other terrestrial animals, the paths 
they may follow are usually constrained by obstacles or by the need to remain under cover. In those 
conditions, the brain cannot assume that the distance between points is given by Euclidean geometry, 
or that beacons for a goal will be visible in a straight line from far away, or that a target can be reached 
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by following a known heading. As a concrete example, a mouse wishing to exit from deep inside a 
labyrinth (Figure 8A, Rosenberg et al., 2021) can draw little benefit from knowing the distance and 
heading of the entrance.

Second, we are focusing on the early experience with a new environment. Endotaxis can get an 
animal from zero knowledge to a cognitive map that allows reliable navigation toward goals discov-
ered on a previous foray. It explains how an animal can return home from inside a complex environ-
ment on the first attempt (Rosenberg et al., 2021) or navigate to a special location after encountering 
it just once (Figures 6 and 8). But it does not implement more advanced routines of spatial reasoning, 
such as stringing a habitual sequence of actions together into one, or deliberating internally to plan 
entire routes. Clearly, given enough time in an environment, animals may develop algorithms other 
than the beginner’s choice proposed here.

A key characteristic of endotaxis, distinct from other forms of navigation, is the reliance on trial-and-
error. The agent does not deliberate to plan the shortest path to the goal. Instead, it finds the shortest 
path by locally sampling the real-world actions available at its current point, and choosing the one that 
maximizes the virtual odor signal. In fact, there is strong evidence that animals navigate by real-world 
trial-and-error, at least in the early phase of learning (Redish, 2016). Lashley, 1912, in his first scientific 
paper on visual discrimination in the rat, reported that rats at a decision point often hesitate ‘with a 
swaying back and forth between the passages.’ These actions – called ‘vicarious trial and error’ – look 
eerily like sniffing out an odor gradient, but they occur even in the absence of any olfactory cues. Similar 
behaviors occur in arthropods (Tarsitano, 2006) and humans (Santos-Pata and Verschure, 2018) when 
poised at a decision point. We suggest that the animal does indeed sample a gradient, not of an odor, 
but of an internally generated virtual odor that reflects the proximity to the goal. The animal seems to 
use the same policy of spatial sampling that it would apply to a real odor signal.

Frequently, a rodent stopped at a maze junction merely turns its head side-to-side, rather than 
walking down a corridor to sample the gradient. Within the endotaxis model, this could be explained 
if some of the point cells in the lowest layer (Figure 1B) are selective for head direction or for the view 
down a specific corridor. During navigation, activation of that ‘direction cell’ systematically precedes 
activation of point cells further down that corridor. Therefore, the direction cell gets integrated into 
the map network. From then on, when the animal turns in that direction, this action takes a step along 
the graph of the environment without requiring a walk in ultimately fruitless directions. In this way, the 
agent can sample the goal gradient while minimizing energy expenditure.

Once the animal gains familiarity with the environment, it performs fewer of the vicarious trial-and-
error movements, and instead moves smoothly through multiple intersections in a row (Redish, 2016). 
This may reflect a transition between different modes of navigation, from the early endotaxis, where 
every action gets evaluated on its real-world merit, to a mode where many actions are strung together 
into behavioral motifs. Eventually the animal may also develop an internal forward model for the 
effects of its own actions, which would allow for prospective planning of an entire route (Kay et al., 
2020; Nyberg et al., 2022). An interesting direction for future research is to seek a neuromorphic 
circuit model for such action planning; perhaps it can be built naturally on top of the endotaxis circuit.

Brain circuits
The key elements in the proposed circuitry (Figure 1) are a large population of neurons with sparsely 
selective responses; massive convergence from that population onto a smaller set of output neurons; 
and synaptic plasticity at the output neurons gated by signals from the animal’s experience. A promi-
nent instance of this motif is found in the mushroom body of the arthropod brain (Heisenberg, 2003; 
Strausfeld et al., 2009). Here the Kenyon cells, with their sparse odor responses (Stopfer, 2014), 
play the role of both point and map cells. They are strongly recurrently connected; in fact, most of the 
Kenyon cell output synapses are onto other Kenyon cells (Eichler et al., 2017; Takemura et al., 2017). 
Kenyon cells converge onto a much smaller set of mushroom body output neurons (Aso et al., 2014), 
which play the role of goal cells. Plasticity at the synapse between Kenyon cells and output neurons is 
gated by neuromodulators that encode rewards or punishments (Cohn et al., 2015). Mushroom body 
output neurons are known to guide the turning decisions of the insect (Aso et al., 2014), perhaps 
through their projections to the central complex (Li et  al., 2020), an area critical to the animal’s 
turning behavior (Honkanen et al., 2019). Conceivably, this is where the insect’s basic chemotaxis 
module is implemented.
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In the conventional view, the mushroom body helps with odor discrimination and forms memories 
of discrete odors that are associated with salient experience (Heisenberg, 2003). Subsequently, the 
animal can seek or avoid those odors. But the endotaxis model suggests a different interpretation: 
insects can also use odors as landmarks in the environment. In this more general form of navigation, 
the odor is not a goal in itself, but serves to mark a route toward some entirely different goal (Knaden 
and Graham, 2016; Steck et al., 2009). A Kenyon cell, through its sparse odor selectivity, may be 
active at only one place in the environment, and thus provide the required location-selective input to 
the endotaxis circuit. Recurrent synapses among Kenyon cells will learn the connectivity among these 
odor-defined locations, and the output neurons will learn to produce a goal signal that leads the insect 
to a rewarding location, which itself may not even have a defined odor.

Bees and certain ants rely strongly on vision for their navigation. Here the insect uses discrete 
panoramic views of the landscape as markers for its location (Webb and Wystrach, 2016; Buehlmann 
et al., 2020; Sun et al., 2020). In those species, the mushroom body receives massive input from 
visual areas of the brain. If the Kenyon cells respond sparsely to the landscape views, like the point 
cells in Figure 1, then the mushroom body can tie together these discrete vistas into a cognitive map 
that supports navigation toward arbitrary goal locations.

The same circuit motifs are commonly found in other brain areas, including the mammalian 
neocortex and hippocampus. While the synaptic circuitry there is less understood than in the insect 
brain, one can record from neurons more conveniently. Much of that work on neuronal signals 
during navigation has focused on the rodent hippocampal formation (Moser et al., 2015), and it is 
instructive to compare these recordings to the expectations from the endotaxis model. The three 
cell types in the model – point cells, map cells, and goal cells – all have place fields, in that they 
fire preferentially in certain regions within the graph of the environment. However, they differ in 
important respects.

The place field is smallest for a point cell; somewhat larger for a map cell, owing to recurrent 
connections in the map network; and larger still for goal cells, owing to additional pooling in the goal 
network. Such a wide range of place field sizes has indeed been observed in surveys of the rodent 
hippocampus, spanning at least a factor of 10 in diameter (Wilson and McNaughton, 1993; Kjel-
strup et al., 2008). Some place cells show a graded firing profile that fills the available environment. 
Furthermore, one finds more place fields near the goal location of a navigation task, even when that 
location has no overt markers (Hollup et al., 2001). Both of those characteristics are expected of the 
goal cells in the endotaxis model.

The endotaxis model assumes that point cells exist from the very outset in any environment. Indeed, 
many place cells in the rodent hippocampus appear within minutes of the animal’s entry into an arena 
(Wilson and McNaughton, 1993; Frank et al., 2004). Furthermore, any given environment activates 
only a small fraction of these neurons. Most of the ‘potential place cells’ remain silent, presumably 
because their sensory trigger feature does not match any of the locations in the current environment 
(Alme et al., 2014; Epsztein et al., 2011). In the endotaxis model, each of these sets of point cells is 
tied into a different map network, which would allow the circuit to maintain multiple cognitive maps 
in memory (Muller et al., 1991).

Goal cells, on the other hand, are expected to have large place fields, centered on a goal loca-
tion, but extending over much of the environment, so the animal can follow the gradient of their 
activity (Burgess and O’Keefe, 1996). Indeed, such cells have been reported in rat cortex (Hok 
et al., 2005). In the endotaxis model, a goal cell appears suddenly when the animal first arrives at 
a memorable location, the input synapses from the map network are potentiated, and the neuron 
immediately develops a place field (Figure 4). This prediction is reminiscent of a startling experi-
mental observation in recordings from hippocampal area CA1: a neuron can suddenly start firing 
with a fully formed place field that may be located anywhere in the environment (Bittner et al., 
2017). This event appears to be triggered by a calcium plateau potential in the dendrites of the 
place cell, which potentiates the excitatory synaptic inputs the cell receives. A surprising aspect of 
this discovery was the large extent of the resulting place field, which requires the animal several 
seconds to cover. Subsequent cellular measurements indeed revealed a plasticity mechanism that 
extends over several seconds (Magee and Grienberger, 2020). The endotaxis model relies on just 
such a plasticity rule for map learning (Algorithm 2) that can correlate events at subsequent nodes 
on the agent’s trajectory.

https://doi.org/10.7554/eLife.84141
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Outlook
Endotaxis is a hypothetical neural circuit solution to the problems of spatial exploration, learning, and 
navigation. Its compact circuit structure and all-in-one functionality suggest that it would fit in even the 
smallest brains. Effectively, endotaxis represents a brain module that could be interposed between 
a spatial-sensing module, which produces place cells, and a taxis module, which delivers the move-
ments to ascend a goal signal. It further relies on some high-level policy that sets the ‘mode switch’ 
by which the animal chooses what goal to pursue. Future research might get at this behavioral control 
mechanism through a program of anatomical module tracing: first find the neural circuit that controls 
chemotaxis behavior. Then test if that module receives a convergence of goal signals from other 
circuits with non-olfactory information. If so, the mechanism of arbitrage that routes one or another 
goal signal to the taxis module should reveal the high-level coordination of the animal’s behavior. 
Given the recent technical developments in mapping the connectome (Dorkenwald et al., 2023), 
we believe that such a program of module tracing is within reach, probably first for the insect brain.

Materials and methods
Simulations
Numerical simulations were performed as described (see Algorithms 1–4). Parameter settings are 
listed in the text and figure captions. The sensitivity to parameters is reported in Figure 6. Code that 
produced all the results is available in a public repository.

Average navigated distance
In the text, we often assess the performance of an endotaxis agent by considering point-to-point navi-
gation between all pairs of points on a graph. Given the readout noise ϵ that affects the goal signal, 
navigation is a stochastic process with many random decisions along the route. Different random 
instantiations of the process will produce routes of different lengths. Fortunately, there is a way to 
calculate the expectation value of the route length without any Monte Carlo simulation.

Consider navigation to goal node y. From the state of the network (M and G), we compute the 
goal signal Eyj at every node j. When the agent is at node j, it chooses among the neighbor nodes 
the one with the highest sum of goal signal and noise (Algorithm 1). Based on the goal signal Eyj and 
the noise ϵ, one can compute the probability for each such possible step from j. This leads to a tran-
sition matrix for the random walk

	 T(y)
ij = probability of stepping to i when at j while in pursuit of y�

Subsequent decisions along the route are independent of each other. Hence, the process is a 
Markov chain. Then we make use of a well-known result for first-capture times on a Markov chain to 
compute the expected number of steps to arrival at y starting from any node x.

Note the method assumes that the process is stationary Markov, such that the goal signal Exy does 
not change in the course of navigation. In our analysis of patrolling (Figures 9 and 11), this assumption 
is violated because the habituation state of the point cells depends on what path the agent took to 
the current node. In those cases, we resorted to Monte Carlo simulations to estimate the distribution 
of route lengths.

Nonlinear activation function
The activation function of a map neuron is the relationship of input to output

	 vi = f
(
wi
)
� (20)

where (Equation 4)

	
wi = ui +

∑
j

Mijvj
�

(21)

is the input to the map neuron. Most of the report assumes a linear activation function (Equation 3)

	 f
(
w
)

= γw� (22)

https://doi.org/10.7554/eLife.84141
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For Figure 7, we used a saturating function instead (Equation 20):

	

f(w) =




γw, if w ≤ 1

γ, if w > 1�
(23)

The recurrent network equation vi = f


ui +

∑
j

Mijvj


 was solved using Python’s fsolve.

Forgetting of links and resources
In section ‘Acquisition of map and targets during exploration,’ we discuss the learning algorithm that 
acquires the connectivity of the environment and the locations of resources. It reacts rapidly to the 
appearance of new links in the environment: as soon as the agent travels from one point to another, 
the synapse between the corresponding map cells gets established. Suppose now that a previously 
existing link becomes blocked: How can one remove the corresponding synapse from the map? A 
simple solution would be to let all synapses decay over time, balanced by strengthening whenever a 
link gets traveled. In that case, the entire map would be forgotten when the animal goes to sleep for 
a few hours, whereas it is clear that animals retain such maps over many days. Instead, one wants a 
mode of active forgetting: memory of the link from node i to j should be weakened only if the agent 
find itself at node i and repeatedly chooses not to go to j. We formalize this in Algorithm 4, which 
differs only slightly from Algorithm 2.

Algorithm 4 Learning and forgetting.

Parameters: gain γ , threshold θ, goal-learning rate α, forgetting rate δ
Input: adjacency matrix A, resource signals F
  M ← 0� ▷ initiate map synapses at 0
  G ← 0� ▷ initiate goal synapses at 0  
  t ← 0� ▷ t  counts the steps  
  s(t) ← x� ▷ start random walk at x  
  while learning do
      t ← t + 1
      s(t) ← a random neighbor of s(t − 1)� ▷ continue the random walk
      ui(t) ← δi,s(t) for every point cell i� ▷ point cell output

      v(t) ←
(

1
γ

1 − M
)−1

u(t)� ▷ map cell output

      for all map cell pairs (i, j) do
        if vj(t − 1) > θ then�  ▷ if pre-synaptic high
            if vi(t) > θ then�  ▷ if post-synaptic also high
              Mij, Mji ← 1� ▷ potentiate the synapses
            else� ▷ if post-synaptic low

              Mij ← e−δ Mij� ▷ depress the synapses

              Mji ← e−δ Mji
            end if
        end if
      end for
      r ← Gv(t)� ▷ goal signals
      for every goal neuron k do
        D ← Fk,s(t) − rk� ▷ difference between resource signal and prediction from the map
        if D > 0 then� ▷ if the resource signal exceeds the prediction from the map
            for every map neuron j do
              Gkj ← Gkj + αDvj(t)� ▷ potentiate goal synapses
            end for
        else� ▷ if resource signal less than prediction
            for every map neuron j do

              Gkj ← e−δvj Gkj� ▷ depress goal synapses
            end for
        end if
      end for  
  end while

Here the added parameter δ determines how much a map synapse gets depressed each time 
the corresponding link is not chosen. Similarly, goal synapses decay if their prediction for a resource 
exceeds the resource signal received by the goal cell. The synaptic learning rule resembles the BCM 

https://doi.org/10.7554/eLife.84141
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rule (Bienenstock et al., 1982): synaptic modification is conditional on presynaptic activity and leads 
to either potentiation or depression depending on the level of postsynaptic activity.

Figure 10 illustrates this process with a simulation analogous to Figure 4. The agent explores a 
ring graph by a random walk. At some point, a new link appears clear across the ring. Later on that link 
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Figure 10. Forgetting a link during exploration. (A) Simulation of a random walk on a ring with 14 nodes as in Figure 4. Left: layout of the ring, with 
resource locations marked in blue. The walk progresses in 1000 time steps (top to bottom); with the agent’s position marked in red (nodes 0–13, 
horizontal axis). At each time, the color map shows the goal signal that would be produced if the agent were at position ‘Node.’ White horizontal lines 
mark the appearance of a new link between nodes 4 and 11 at t = 200, and disappearance of that link at t = 400. (B) The matrix M of map synapses at 
various times. The pixel in row i and column j represents the matrix element Mij. Color purple = 0. Note the first few steps (number above graph) each 
add a new synapse. Eventually, M reflects the adjacency matrix of nodes on the graph, and changes as a link is added and removed. (C) Goal signals 
just before and just after the agent travels the new link. (D) Goal signals just before the link disappears and at the end of the walk. (E) Strength of two 
synapses in the map, M4,5 and M4,11, plotted against time during the random walk. Model parameters: γ = 0.32, θ = 0.27,α = 0.3, δ = 0.1.
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disappears again. Acquisition of the link happens very quickly, within a single time step (Figure 10A 
and C). Forgetting that link takes longer, on the order of several hundred steps (Figure 10A, D and 
E). In this simulation, δ = 0.1, so the map synapses decay by about 10% whenever a link is not traveled. 
One could, of course, accelerate that with a higher δ, but at the cost of destabilizing the entire map. 
Even the synapses for intact links get depressed frequently (Figure 10E) because the random choices 
of the agent lead it to take any given link only a fraction of the time.

One limitation of the endotaxis agent is that it does not keep a record of what actions are available 
at each node. Instead, it leaves that information in the environment (see ‘Discussion’) and simply tries 
all the actions that are available. When faced with a blocked tunnel, the endotaxis agent does not 
know that this was previously available. Clearly, a more advanced model of the world that includes a 
state–action table would allow more effective editing of the cognitive map.

Habituation in point cells
In section ‘Efficient patrolling,’ we discuss an extension of the core endotaxis model in which a point 
neuron undergoes habituation after the agent passes through its node. With every visit, the neuron’s 
sensitivity declines by a factor e−β. Between visits the sensitivity gradually returns toward 1 with an 
exponential recovery time of τ  steps (see Algorithm 3).

This addition to the model changes the dynamics of the network input throughout the phases of 
exploration, navigation, and patrolling. We explored how the resulting performance is affected by 
applying a strong habituation that decays slowly (β = 1.2, τ = 100) and comparing to the basic model 
with no habituation (β = 0). During the learning phase, when the map and goal synapses are estab-
lished via a random walk, the main change is that it takes somewhat longer to learn the map. This is 
because synaptic updates happen only when both pre- and postsynaptic map cells exceed a threshold 
(see Algorithm 2), and that requires that both of the respective point neurons be in a high-sensitivity 
state. Remarkably all the parameter settings (γ, θ,α) that support learning and navigating under stan-
dard conditions (Figure 6) also work well when habituation takes place.

To illustrate the overall effect that habituation has on performance, we simulated learning and 
navigation on the binary tree graph of Figure 9. For every pair of start and end nodes, we asked 
how the actual navigated distance compared to the shortest graph distance. Figure 11 shows that 
performance is affected only slightly. At the standard noise value ϵ = 0.01 used in other simulations, 
the range of navigation extends over 10 or more steps under both conditions.
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