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Abstract Adaptive therapy is a dynamic cancer treatment protocol that updates (or ‘adapts’) 
treatment decisions in anticipation of evolving tumor dynamics. This broad term encompasses many 
possible dynamic treatment protocols of patient- specific dose modulation or dose timing. Adap-
tive therapy maintains high levels of tumor burden to benefit from the competitive suppression of 
treatment- sensitive subpopulations on treatment- resistant subpopulations. This evolution- based 
approach to cancer treatment has been integrated into several ongoing or planned clinical trials, 
including treatment of metastatic castrate resistant prostate cancer, ovarian cancer, and BRAF- 
mutant melanoma. In the previous few decades, experimental and clinical investigation of adaptive 
therapy has progressed synergistically with mathematical and computational modeling. In this work, 
we discuss 11 open questions in cancer adaptive therapy mathematical modeling. The questions are 
split into three sections: (1) integrating the appropriate components into mathematical models (2) 
design and validation of dosing protocols, and (3) challenges and opportunities in clinical translation.

Introduction
Jeffrey West, Eunjung Kim, Rob Noble, Yannick Viossat, David Basanta, Alexander Anderson: Treat-
ment resistance in cancer therapy remains an overarching challenge across all types of cancer and 
all modes of treatment including targeted therapy, chemotherapy, and immunotherapy. Despite the 
ubiquity of the evolution of resistance, the ‘more is better’ paradigm still prevails as standard of care. 
Over the past decade, a small group of oncologists in collaboration with evolutionary biologists and 
experimental biologists have proposed an ‘adaptive therapy’ approach to cancer treatment (Gatenby 
et al., 2009b; Zhang et al., 2017; Zhang et al., 2022). Adaptive therapy maintains high levels of 
tumor burden in order to capitalize on competition between treatment- sensitive and treatment- 
resistant clones, and the potential cost of resistance.

In contrast to the periodic administration of dosing under intermittent therapy (e.g., in prostate 
[Hussain et al., 2013; Crook et al., 2012] or melanoma [Algazi et al., 2020] cancers), adaptive therapy 
is characterized by dynamic treatment protocols which update (or ‘adapt’) in anticipation to evolving 
tumor dynamics. These protocols are patient- specific, leading to variable dose modulation or dose 
timing between patients. While the term adaptive therapy is broad and encompasses many possible 
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dynamic treatment protocols, the term is often used with specific reference to a recent pilot clinical 
trial in prostate cancer. This first adaptive trial enrolled a small cohort of metastatic castrate- resistant 
prostate cancer patients, contingent upon a minimum of 50% drop in the level of prostate- specific 
antigen biomarker (PSA; a proxy for tumor burden) under abiraterone administration. Abiraterone is 
then withdrawn until PSA returns to pre- treatment levels and then restarted. This 50% rule leads to 
treatment holidays that are patient- specific (treatment protocol varies considerably between patients). 
Holidays are often shorter in later treatment cycles when PSA dynamics speed up (Zhang et  al., 
2017). Initial results of the trial indicate a prolonged progression- free survival and lower cumulative 
dose when compared to a contemporaneous cohort of patients receiving the standard of care (Zhang 
et al., 2021). A schematic of adaptive therapy is shown in Figure 1 (purple), which prolongs relapse 
when compared to a high- dose schedule (blue). While initial results appear promising, this trial was 
performed on a small cohort of men and did not include a randomized control arm (Mistry, 2021; 
Zhang et al., 2021). A similar and larger, randomized trial in metastatic castrate- resistant prostate 
cancer is planned (ANZadapt; NCT05393791).

The first trial has created interest in designing new adaptive treatment protocols in prostate cancer 
as well as other cancers. Adaptive treatment protocols are often binned into two dose- scheduling 
approaches: dose modulation and dose skipping. Both are designed to prolong sensitivity to therapy 
and both have been tested experimentally (Gatenby et al., 2009b; Enriquez- Navas et al., 2016), 
while only dose skipping has been translated to the clinic (Zhang et al., 2017). Throughout the text, 
we refer to the following treatment scheduling protocols:

1. Maximum tolerable dose (MTD): periodic administration of a high dose, limited by toxic side 
effects.

2. Intermittent therapy: periodic administration of a high dose with fixed, periodic treatment 
holidays.

Figure 1. Open questions in adaptive cancer therapy modeling: schematic of tumor burden under maximum tolerable dose (blue) and adaptive dosing 
(purple), with corresponding biopsies. Adaptive therapy is designed to exploit competition between treatment- sensitive (green) and resistant (red) cells 
to prolong the emergence of resistance. 11 questions representing future challenges in the field of adaptive therapy are shown, and answered within the 
text. Questions are color- coded by section: integrating the appropriate components into mathematical models (blue), design and validation of dosing 
protocols (red), and challenges and opportunities in clinical translation (yellow).

https://doi.org/10.7554/eLife.84263
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3. Adaptive therapy (dose skipping): adaptive dosing where a high dose is administered until 
a desired tumor response (e.g., 50% size reduction), followed by a treatment holiday until a 
desired upper threshold (e.g., 100%) and repeated.

4. Adaptive therapy (dose modulation): adaptive dosing where dose is modulated (increased or 
decreased) at regular intervals depending on tumor response.

In Figure 1, we introduce 11 open questions regarding future directions of mathematical modeling 
in adaptive cancer therapy. These were the result of a 4- d workshop on Cancer Adaptive Therapy 
Models (CATMo; https://catmo2020.org/) in December 2020. The conference brought together a 
multidisciplinary group of mathematicians, clinical oncologists, and experimental biologists to discuss 
successes, challenges and opportunities in adaptive therapy. We have categorized these questions 
into three sections: (1) integrating the appropriate components into mathematical models, (2) the 
design and validation of dosing protocols, and (3) challenges and opportunities in clinical translation.

Integrating the appropriate components into mathematical models
What components are necessary for a mathematical model of adaptive 
therapy?
Fred Adler: It is thought that the success of adaptive therapy in delaying the emergence of resis-
tance depends on three characteristics of the cancer: (a) resistance is costly, (b) resistant cells can be 
suppressed by competition with sensitive cells, and (c) therapy reduces the population of sensitive 
cells. Simple models based on these assumptions show that adaptive therapy can indeed delay the 
emergence of resistance. These simple models raise two further questions: (1) What are the appro-
priate objectives for evaluating the success of therapy? (2) Do the main results hold up in models that 
include additional components of real tumors?

Our ultimate objective is to maximize survivorship or quality- of- life adjusted survivorship of the 
patient. This depends on the cancer burden, the treatment burden, and the effectiveness of treatment 
in suppressing the cancer in the long run (Bayer et al., 2022). In most cases, we do not have sufficient 
information to quantify each of these costs and benefits over the long run, but we can consider them 
in concert to evaluate overall success.

Models of adaptive therapy typically include distinct sensitive and resistant cancer cell populations, 
although some recent models follow a continuum of cell types (Pressley et al., 2021). Model exten-
sions include (a) healthy cells: these cells are always present within a tumor and they will interact with 
cancer cells (West et al., 2018). (b) Immune cells: these cells can help control cancer but can them-
selves be affected by treatments (Piretto et al., 2018; Schättler et al., 2016; Park et al., 2019). (c) 
Resources: hormones (Kareva and Brown, 2021) introduce delays and can alter evolutionary trajec-
tories, and have been modeled as consumer- resource dynamics (Zazoua and Wang, 2019) and more 
mechanistic models with androgen dynamics (Jain et al., 2011). (d) Allee effect: cell populations that 
grow more slowly (per capita) at low populations (Konstorum et al., 2016) effectively introduce an 
element of cooperation. (e) Phenotypic plasticity: rapid changes in cell phenotypes can generate 
resistance far more quickly than mutation or population dynamics (Salgia and Kulkarni, 2018). See 
the table below for a list of common modeling approaches used in adaptive therapy.

A key result from our work on the basic model is a tradeoff curve between time for resistant cells 
to emerge and the mean cancer burden (Buhler et al., 2021). This tradeoff holds for both adaptive 
(dose skipping) and intermittent therapies, and is robust across all model extensions except for the 
Allee effect and cell plasticity. With an Allee effect, results are quite different. Recent experimental 
evidence suggests the presence of an Allee effect in vitro (Johnson et al., 2019), but the extent of 
this effect is unknown in vivo. Aggressive therapy can drive cells below the threshold and prevent both 
resistant cells and total cells from reaching their upper thresholds. Adaptive therapy, by backing off 
early to avoid favoring resistance, can behave quite poorly, leading to escape times nearly as short as 
those with no therapy and with a high total cell burden.

With the exception of the success of high- dose therapy with a strong Allee effect, no universal 
therapy can achieve all three objectives of lowering average dose, delaying time to emergence of 
resistant cells, and reducing total tumor burden. All strategies show a tradeoff between delaying 
emergence of resistant cells and a high cancer burden. Choosing the appropriate treatment requires 
assessing the individual patients and specific cancers, and include factors often not included in models, 
such as therapy toxicity (Ballesta and Clairambault, 2014). Phenotypic plasticity, where resistance is 
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induced by therapy rather than arising from mutations or preexisting variants (Salgia and Kulkarni, 
2018), makes resistance much more difficult to suppress (Feizabadi, 2017). Reversible behaviors can 
create complex responses to therapeutic timing (Hirata et al., 2010).

Effective adaptive therapies require fitting data on individual patients, and data may lack the reso-
lution to distinguish among alternative models. In the case of PSA in prostate cancer, a simple model 
(Hirata et al., 2010), a more complex model with basic androgen dynamics (Portz et al., 2012), and 
a detailed model of androgen dynamics (Jain et al., 2011) all fit data on a set of patients reasonably 
well, although with some exceptions (Hatano et  al., 2015). If models can be fit to the dynamics, 
adaptive therapies may be more robust to patient variability than prescribed timing of intermittent 
therapy. Although data may lack the resolution to identify specific mechanisms of interaction, such 
as the strength of competition between different cancer cell phenotypes, simple models may have 
the greatest potential to capture dynamics and guide therapy. The ideal combination will be patient- 
specific models combined with in vivo data, perhaps with immunocompetent mouse models, mouse 
PDX models (Siolas and Hannon, 2013), or in vitro data on patient derived cells that can reveal mech-
anisms of interaction in different treatment environments.

Paper Model type Key result

Martin et al., 1992b Gompertzian, Lotka- Volterra Theoretical models of extension of 
survival time using dose reduction 
strategies

Martin et al., 1992a Gompertzian, Lotka- Volterra Optimal control methods used to 
simulate tumors with drug- resistant 
and drug- sensitive cells in competition

Monro and Gaffney, 2009 Gompertzian Sensitive- resistant competition can 
extend survival times, but failed cure 
can reduce survival

Gatenby et al., 2009b Mathematical catastrophe theory The term ‘adaptive therapy’ coined: 
mathematical and experimental 
exploration of adaptive therapy

Bacevic et al., 2017 Hybrid cellular automaton Validation of cost of resistance in 
CDK inhibitors and role of spatial 
competition on fitness

Gallaher et al., 2018, Off- lattice agent- based Validation of cost of resistance in 
doxorubicin, and exploration of 
alternative adaptive protocols

Silva et al., 2012 Frequency- dependent competition Low doses of auxiliary treatment to 
accentuate cost of chemo- resistance 
and improve adaptive therapy

Zhang et al., 2017 Lotka- Volterra Publication of adaptive prostate trial 
data and associated Lotka- Volterra 
competition mathematical model

Smalley et al., 2019 Lotka- Volterra with phenotypic 
switching

In vivo adaptive dosing of BRAF 
inhibitors, compared to continuous or 
fixed intermittent therapy

Kim et al., 2021 Lotka- Volterra with phenotypic 
switching

Patient- specific prediction of adaptive 
melanoma therapy

Brady- Nicholls et al., 2021 Density- dependent competition Patient- specific predictions of adaptive 
prostate therapy

Strobl et al., 2020 Lotka- Volterra with turnover Mathematical investigation of cost, 
turnover, and competition in adaptive 
therapy

West et al., 2020 Lotka- Volterra Mathematical investigation of multi- 
drug adaptive therapy protocols

Viossat and Noble, 2021 Frequency, density- dependent 
competition

Extensive mathematical analysis of 
conditions where tumor containment 
is superior

https://doi.org/10.7554/eLife.84263
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How competitive are treatment-resistant phenotypes?
Rob Noble: Adaptive therapy aims to exploit competition between treatment- sensitive and resistant 
cells. Key questions remain largely unanswered. First, what is the nature of this competition? Mathe-
matical modelers typically assume that the fitness of resistant cells is a simple function of their relative 
abundance and/or the total tumor size (reviewed in Viossat and Noble, 2021). But frequency- or 
density- dependent mathematical functions only approximate average population dynamics. Actual 
clonal growth rates depend on the spatial arrangement of cells, their interaction ranges, and local 
levels of shared resources, all of which vary both within and between tumors (Noble et al., 2022; 
West et al., 2021; Fu et al., 2022). For example, if a tumor grows mainly at its boundary then spatial 
constraints alone could suffice to contain rare resistant clones, but only if they are located away from 
the boundary (Gallaher et al., 2018; Bacevic et al., 2017). A corollary is that the effectiveness of 
adaptive therapy may vary between cancer types due to different tumor architectures (Noble et al., 
2022). Although spatially structured computational and experimental models can account for some 
important factors – such as competition for space and oxygen – the ability to predict clinical outcomes 
hinges on these models accurately matching the parameters of human intra- tumor cell–cell interac-
tions, which remain largely uncharacterized. Further experimental studies and clinical image analyses 
are needed to quantify these parameters.

Second, are resistant cells less competitive? The seminal 2009 paper by Gatenby et al., 2009b 
postulated that cells insensitive to therapy incur a fitness cost in the absence of treatment, which 
adaptive therapy can exploit. A reduction in cell proliferation rate or carrying capacity (defined as the 
maximal cell density or the maximal cell number in the whole tumor) might result from cells diverting 
resources away from proliferation and towards breaking down or pumping out toxins. On the other 
hand, it is uncertain what fitness effects, if any, should result from mutations that modify specific drug 
targets. Experimental evidence is mixed. A study of tumor containment using a cyclin- dependent 
kinase inhibitor found a cost of resistance both in vitro and in mice (Bacevic et al., 2017). Conversely, 
cancer cells resistant to the tyrosine kinase inhibitor alectinib have been observed outcompeting 
ancestral cells in co- culture (Kaznatcheev et al., 2019). Competition assays should in any case be 
interpreted with caution because there are many potential mechanisms of resistance to a given treat-
ment and the relative fitness of each phenotype will vary with its microenvironment. Theoretical anal-
yses show that costs of resistance are not necessary to make adaptive therapy superior to higher dose 
treatment (Strobl et al., 2020; Viossat and Noble, 2021). Nevertheless, such costs – which could 
be exacerbated by auxiliary treatments (Silva and Gatenby, 2010; Silva et al., 2012) – are typically 
predicted to amplify clinical gains (Viossat and Noble, 2021).

Lastly, is competition the only important ecological interaction? Studies in vitro and in mice have 
detected positive ecological interactions (mutualism and commensalism; reviewed in Tabassum and 
Polyak, 2015) and asymmetric interactions (parasitism) between cancer clones (Miller et al., 1988; 
Noble et  al., 2021). These observations suggest that our theoretical models of clonal dynamics 
during cancer treatment may be overly simplistic, and they underscore the need for more and better 
data. Emerging spatial genomic, transcriptomic, and proteomic technologies (Seferbekova et al., 
2022) hold particular promise for inferring subclonal interactions within human tumors. Below, several 
sections discuss challenges and opportunities integrating mathematical models with wet lab data 
(How can we leverage mathematical modeling to support testing of adaptive therapy in the wet lab?) 
and clinical data (Is real- time patient prediction feasible?).

What is the role of plasticity and drug-induced mutations in adaptive 
therapy?
Eunjung Kim: The effectiveness of treatment holidays drastically changes when considering pheno-
type switching between drug- sensitive and - resistant phenotypes (Pillai et  al., 2022). Plasticity is 
often modeled as the expression of resistant cellular traits that vary from completely sensitive to 
fully resistant (Clairambault and Pouchol, 2019; Clairambault, 2019), in multidimensional fashion to 
consider multi- drug resistance (Cho and Levy, 2018a; Cho and Levy, 2018b). Treatment breaks can 
halt the expansion of the resistant cell population facilitated by drug- induced mutations or pheno-
type switching from sensitive to resistant states during therapy. Since phenotype switching to resis-
tant states is often reversible (reviewed in Boumahdi and de Sauvage, 2020), treatment holidays 
have the potential to re- sensitize the resistant cell population to future drug rechallenges. A recent 
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experimental study demonstrated that gene expression in melanoma cells reversed during treatment 
holidays, causing the cells to re- sensitize to a BRAF inhibitor rechallenge (Kavran et al., 2022).

The switching rate from resistant to sensitive states can impact the benefit of adaptive therapy. 
One recent study introduced a mathematical model of plasticity- mediated drug resistance of mela-
noma treated with BRAF/MEK inhibitors (Hodgkinson et al., 2022). Here, the mathematical modeling 
predicts small differences resistance emergence between continuous and adaptive therapy, but the 
latter leads to increased spatial heterogeneity. Another recent study integrated mathematical models 
with clinical data of a cohort of patients with melanoma treated with continuous therapy of BRAF/MEK 
inhibitors (Kim et al., 2021). The resulting calibrated mathematical models then simulated alternative 
treatment protocols. Modeling predicted that adaptive therapy (dose skipping) outperforms standard 
of care at different degrees among the patients (Kim et  al., 2021). Among mathematical model 
parameters that govern treatment response dynamics, both the switching rate from resistant to sensi-
tive states and the growth rate of sensitive cells determine the benefits of adaptive therapy. In another 
mathematical modeling study, a fixed schedule intermittent therapy was predicted to outperform the 
standard of care when treatment could induce resistant mutations in the cells (Greene et al., 2019). 
These properties of tumor plasticity or drug- induced mutation are variable between cancer types and 
possibly vary between cancer cells. For example, in melanoma, it was shown that phenotypic plasticity 
is more evident in one cell line than another (Smalley et al., 2019). There may be even more variability 
across patients in terms of how resistance emerges and is maintained. Thus, identifying the presence 
of phenotypic plasticity in a specific tumor could be an important factor in deciding if and how adap-
tive therapy should be applied.

What is the role of homeostasis and normal tissue in adaptive therapy?
David Basanta: A feature of current models of adaptive therapy lies in their simplicity in terms of algo-
rithms and assumptions. One key simplification is that tumor heterogeneity can be reduced to the 
types of cancer cells such as sensitive cells (that pay a significant fitness cost during treatment) and 
treatment- resistant cells (that may incur a cost of resistance relative to sensitive cells). In reality, the 
fitness of a cancer cell is not simply a cell- intrinsic property but includes its ability to take advantage of 
its dynamic tumor environment that includes not just other cancer cells but normal cells, vasculature, 
immune cells, and extracellular matrices (see Figure 2).

Figure 2. Disruption and restoration of tissue homeostasis. Left: bone tissue homeostasis, including bone resorption by osteoclasts and osteoblasts. 
Middle: tumor cells cause disruption of homeostasis, leading to altered microenvironment factors. Conventional therapy leads to increasing tumor 
resistance. Right: evolution- based treatment strategies aim to restore some degree of homeostasis while allowing the tumor to remain sensitive to 
future treatment.

© 2017, Cold Spring Harbor Laboratory Press. Figure 2 is reproduced from Figure 2 of Basanta and Anderson, 2017 with permission from Cold 
Spring Harbor Laboratory Press. Copyright 2017 Cold Spring Harbor Laboratory Press; all rights reserved. It is not covered by the CC- BY 4.0 license 
and further reproduction of this panel would need permission from the copyright holder.
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Far from living in isolation, cancer cells colonize tissues with an existing ecosystem made up of 
healthy, stromal cells that communicate with each other via molecular factors in order to maintain 
homeostasis. The tissue has a distinct physical and spatial architecture (Basanta and Anderson, 
2013). In the bone, for instance, homeostasis results from the interactions between several cell types 
such as osteoblasts, osteoclasts, osteocytes, monocytes, macrophages, and mesenchymal stem cells 
(MSC) (Bussard et al., 2008). While metastasis is a highly inefficient process, successful colonization 
of the bone by metastasizing prostate cancer cells leads to a process called the vicious cycle (Esposito 
et  al., 2018; Cook et  al., 2014). Successful prostate cancer cells in the bone take advantage of 
the interactions and signaling that goes on between the normal cells as they maintain homeostatic 
tissue microenvironments (Basanta and Anderson, 2013). Factors released by normal cells such as 
transforming growth factor  β  are utilized by nearby prostate cancer cells. Such factors accelerate the 
proliferation and survival of the cancer cells.

Proximity to stromal cells provides other benefits to cancer cells undergoing treatment. For 
instance, bone metastatic prostate cancer cells near MSCs are pre- selected to possess some level 
of chemoresistance (McGuire et al., 2021). Such cells are primed for resistance even prior to treat-
ment exposure. Also in the bone, myeloma cells (bone cancer) near MSCs or in the presence of 
growth factors secreted during bone remodeling can survive standard of care treatments based on 
proteosome inhibitors like bortezomib (Xu et al., 2012). This environmentally mediated drug resis-
tance (EMDR) explains why anticancer treatments prove less effective than otherwise expected. In the 
context of adaptive therapy, EMDR may provide the cancer cells with a therapy refuge regardless of 
whether they are resistant or sensitive to treatment.

For cancers where EMDR plays a large role, it may be advisable to be more aggressive in applying 
therapy and reducing the tumor burden. This is because treatment sensitive cells will remain viable 
even after large reductions in tumor burden. These sensitive cells surviving in or near a stromal refuge 
can then provide a source of competition for resistant cancer cells during drug holidays. Furthermore, 
one can include adjuvant treatments, targeting stromal cells, to modulate the role of EMDR. The goal 
of EMDR modulating drugs would not be to maximize tumor kill. Rather, such modulation would aim 
to improve the efficacy of adaptive therapy approaches to better control tumor burden and maintain 
quality of life over long periods of time.

Future adaptive therapy models should allow for EMDR. Such models could more faithfully incor-
porate the tumor microenvironment and the role of normal cells. Such models could then evaluate 
how best to manage or exploit EMDR when designing adaptive therapy protocols (M A et al., 2022). 
Even more might be gained by developing models that also recapitulate tissue homeostasis prior to 
carcinogenesis. As discussed elsewhere (Basanta and Anderson, 2017), cancers initiate in normal 
tissue environments and progressively overcome and exploit the rules of homeostasis. Adaptive 
therapy aims to control the tumor by introducing a different type of homeostasis. Hence, in improving 
the original adaptive therapy algorithm, we should consider the homeostasis that was disrupted by 
the tumor as well as the homeostasis that might be engineered by therapy.

Design and validation of dosing protocols
Cure or control?
Jill Gallaher: An explicit goal of adaptive therapy is to turn cancer into a chronic disease with sporadic 
(but life- long) management. Taking this approach likely means abandoning the hope of cure. Thus, 
its current appeal and modeling contexts have been for patients with essentially no curative options. 
However, there are cases when adaptive therapy would have been preferred when standard of care 
results in recurrence and adaptive therapy would have either resulted in longer control or less dose and 
therefore better quality of life. In other cases, standard of care could result in cure or longer control. 
But is identifying such patients prior to treatment even possible? Furthermore, if the standard of care 
regimen is tried and cure does not result, then it may not be possible to switch to an adaptive therapy 
regimen because at that point the resistant population of cancer cells may be too large compared to 
the sensitive cells to establish sufficient control (McClatchy et al., 2020). The window for extended 
disease control using an adaptive therapy protocol may only be open prior to treatment. The deci-
sion must be made at the start. If one only opts for standard of care for cure, failed curative attempts 
could lead to reduced survival times (Monro and Gaffney, 2009) relative to adaptive therapy. So how 
does one decide between these opposing strategies? What key disease characteristics are needed 
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to stratify patients into a treat- to- cure cohort (using continuous therapies) versus a treat- to- contain 
cohort (using adaptive therapies) (Hansen and Read, 2020a)?

Towards deciding between treat- to- cure or treat- to- contain strategies, bacterial studies in addition 
to cancer studies provide some insights. Initial pathogen heterogeneity may favor adaptive therapies. 
The treatment response of heterogeneous bacterial colonies depends on competition and tradeoffs 
among the bacterial strains. Colijn et al. studied how competition between microbial populations 
affects the optimal dosing of antibiotics (Colijn and Cohen, 2015). Large antibiotic doses were in 
some cases observed to reduce the bacterial load and prevent resistance and in other cases to select 
for more antibiotic resistant cells. They found that even if aggressive treatment was optimal for indi-
vidual strains, moderate treatments were better to avoid resistance for the entire community when 
there was strong inter- strain competition (Colijn and Cohen, 2015). Hansen et al. proposed a balance 
threshold hypothesizing that containment delays progression only if the overall effect of competi-
tive suppression exceeds the overall effect of mutational input (Hansen and Read, 2020a; Hansen 
et al., 2017). In cancer, like bacteria, tradeoffs between therapy resistance and competitiveness in 
the absence of therapy favor adaptive therapies over treat- to- cure. But these tradeoffs among cancer 
cells may only manifest in specific contexts or through temporary constraints on cell functions (Strobl 
et al., 2020). Furthermore, the effect of competition and tradeoffs may lessen if cells are not in direct 
contact (Strobl et al., 2022). For example, if the tumor is very invasive or if different metastases have 
different compositions of sensitive and resistant cells, the effects of tradeoffs and competition are 
reduced (Gallaher et al., 2018; Gallaher et al., 2022). Diverse metastatic sites or spatial segregation 
of heterogeneous cancer cells within tumors mean that different tumors or locations within tumors 
may respond strongly to treatment while others grow unimpeded. In these cases, an attempt at cure 
might be better than containment (Gallaher et al., 2022).

The ratio of sensitive to resistant subpopulations as well as the transition rates between them influ-
ence the efficacy of adaptive therapy and continuous treat- to- cure therapies. Both benefit from there 
being a low frequency of resistant cancer cells. But adaptive therapy may benefit more. An aggressive, 
maximum- tolerated chemotherapy approach will result in a larger initial response to therapy (Hansen 
and Read, 2020b), but if there is not complete disease eradication, even a small or emergent popu-
lation of resistant cancer cells can guarantee eventual disease progression. High doses necessarily 
promote the competitive release of preexisting resistant cells. However, high doses may also prevent 
de novo drug resistance by lessening the pool of sensitive cells from which resistant cells emerge 
(Colijn and Cohen, 2015). Phenotypic plasticity poses another challenge for both therapeutic strate-
gies where the application of treatment accelerates the transition of cancer cells into resistant states 
(see What is the role of plasticity and drug- induced mutations in adaptive therapy?). Nevertheless, 
adaptive therapy may be favored when treatment breaks result in the re- sensitization of cancer cells 
to the drug.

Overall disease burden and initial response to therapy should influence the choice of cure versus 
containment. In the case of antimicrobial drugs, Kouyos et al. evaluate the decision for aggressive 
versus moderate dosing in terms of two opposing ecological and evolutionary processes (Kouyos 
et al., 2014). Ecologically, the rate of disease burden reduction will increase with increasing dose. 
Evolutionarily, increasing the dose increases the selection pressure for resistant microbes (Kouyos 
et  al., 2014). Their work concludes that the optimal dose should be high enough to reduce the 
patient’s disease burden, and low enough to forestall the emergence of resistance. Adaptive therapy 
attempts to break this constraint by applying high doses when the frequency of sensitive cells is high 
and removing therapy when this frequency has declined. Yet, successful adaptive therapies may mean 
maintaining large tumor burdens to promote competition. On the other hand, the high tumor burden 
may increase the likelihood of new metastases or evolutionary breakthroughs by the cancer cells. In 
addition, the patient must be able to tolerate the large burden without debilitating or life- threatening 
symptoms.

The tumor burden alone does not reveal the underlying dynamics of cell turnover (Gallaher et al., 
2019), which is also important for treatment response. This background turnover results from the 
replacement through proliferation of cells that regularly die from spontaneous apoptosis, an immune 
response, or lack of resources. Both therapeutic strategies can benefit from a higher background cell 
turnover rate. An aggressive treatment may substantially decrease the tumor burden and increase the 
probability of cure by increasing the chance of spontaneous death of the resistant population (Strobl 
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et  al., 2022). An adaptive therapy approach benefits from a high cell- turnover rate by increasing 
the competition to mutational input balance threshold (Hansen and Read, 2020a) and increases the 
opportunities for sensitive cells to replace resistant cancer cells when therapy is off.

There are also practical clinical considerations of using each treatment strategy. An adaptive 
protocol must have frequent measures on which to base the decisions of when to increase or decrease 
dose rates. For adaptive therapy in prostate cancer, PSA is used as a surrogate for burden. In other 
cancers, it may be imaging, ctDNA, or other molecular markers (see Is real- time patient prediction 
feasible?). The biomarker used for decision- making needs to accurately measure changes in the 
disease burden and state. Frequent measures are best, thus inexpensive and less invasive biomarkers 
are favored. Ideally, decisions for adaptive protocols could also be guided by measurements of drug 
resistance, evolvability, or competition if possible. Otherwise, these measurements might be used as 
stratification factors from pretreatment tissue biopsy. A short induction period to determine disease 
kinetics could help with the stratification of patients with higher or lower likelihoods of cure under 
an aggressive treatment strategy. This allows for some measures of the cancer’s eco- evolutionary 
dynamics without committing to a specific therapeutic regimen (McClatchy et al., 2020). Further, 
overall survival is an important measure for comparing treatment strategies, but it must be balanced 
with toxicity and quality of life (Milano et al., 2021). For successful adaptive therapy, drug timing, 
which includes pharmacokinetics and pharmacodynamics, must be aligned with the growth rate of 
the tumor and the accumulating side effects for the patient. Attempting to cure a tumor with a slow 
response means a longer application of aggressive treatment, so drug toxicity becomes a key consid-
eration. With adaptive therapy, the treatment breaks can improve quality of life and reduce overall 
dose rates, but there is potential for accumulating side effects over an indefinite course of therapy. 
Cure or control could be favored depending on the patient, the disease state, and the drugs used.

What is the optimal adaptive dose administration protocol?
Yannick Viossat: Adaptive therapy often refers to the specific protocol used in the initial prostate clin-
ical trial (Zhang et al., 2017). However, the concept has wider applicability (Gatenby et al., 2009b; 
Enriquez- Navas et al., 2016; Bacevic et al., 2017; Carrère, 2017; Gallaher et al., 2018; Viossat 
and Noble, 2021; Cunningham et al., 2018; Cunningham et al., 2020; Hansen and Read, 2020b). 
The prostate trial’s design was driven by a compromise between mathematical model results and 
clinically feasible treatment protocols. In this section, we review optimal protocols revealed through 
investigations of mathematical models. Subsequent sections review the best practices to incorporate 
experimental (How can we leverage mathematical modeling to support testing of adaptive therapy in 
the wet lab?) and clinical data (Is real- time patient prediction feasible?) relating to dose modulation 
protocols.

Many mathematical models emphasize competition between sensitive and highly resistant cells 
and assume that the larger the tumor size, the stronger the competition (Martin et al., 1992b; Monro 
and Gaffney, 2009; Zhang et al., 2017; Carrère, 2017; Carrère and Zidani, 2020; Martin et al., 
1992a; Strobl et al., 2020; Viossat and Noble, 2021). Such models suggest maintaining the tumor 
at the maximal acceptable size in order to maximize competitive suppression of resistance (Hansen 
and Read, 2020b; Viossat and Noble, 2021). This may require delaying treatment if the tumor is 
initially small (Monro and Gaffney, 2009; Cunningham et  al., 2020; Hansen and Read, 2020b; 
Viossat and Noble, 2021). Time to tumor progression may be delayed by switching to high doses 
a short time before containment fails (Wang et al., 2021b; Viossat and Noble, 2021), but at the 
risk of making the tumor less treatable afterwards (Viossat and Noble, 2021). Moreover, aggressive 
treatment may increase toxicity and drug- induced mutations (Kuosmanen et al., 2021). However, 
maintaining a substantial tumor burden may create other potential problems: a lower quality of life, 
more metastases, increased mutation from sensitive to resistant tumor cells (Martin et al., 1992b; 
Hansen et al., 2017), or the appearance of new tumor cell types. Some models with a death rate that 
increases proportionally with tumor size find that MTD is superior to adaptive therapy (dose skipping) 
(Mistry, 2020).

If resistant cells are only partially resistant, they may be targeted by treating mildly, to exploit 
competition with sensitive cells, or aggressively, to exploit their remaining sensitivity. Theoretical 
models suggest that a sensible strategy is to first exploit competition by stabilizing tumor size, but 
then switch to MTD long before stabilization fails, as opposed to stabilizing the tumor for as long as 
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possible when resistant cells are fully resistant (Hansen and Read, 2020b; Viossat and Noble, 2021). 
The switching time could be timed with a decrease of treatment efficiency (Wang et al., 2021b), but 
the practical implementation and whether similar conclusions hold for models with many types of 
tumor cells (Pouchol et al., 2018) remains to be investigated.

Mathematical modeling has extensively explored differences between dose- modulation or dose- 
skipping (Enriquez- Navas et al., 2016; Gallaher et al., 2018). It is important to note there are several 
clinical case studies of intermittent therapy that lead to significant prolonging of time to progression 
(e.g., androgen deprivation therapy in prostate cancer [Matsuzaki et al., 2019], and carboplatin and 
docetaxel chemotherapy in metastatic lung adenocarcinoma [Shida et al., 2017]). This illustrates both 
the feasibility and the potential promise of treatment holidays. These clinical reports must be inte-
grated into theoretical frameworks. For example, if cell–cell competition increases with tumor size, 
a continuous low- dose treatment maintaining the tumor at a given threshold may be preferable to 
an intermittent treatment maintaining it between this threshold and some lower size. This is not a 
compelling argument against intermittent treatments though: indeed, the same models suggest that 
an intermittent treatment maintaining tumor size between this threshold and some larger size may 
increase competition even more (Hansen and Read, 2020b; Viossat and Noble, 2021).

As referenced in the introduction, initial clinical trials (e.g., NCT02415621) employ a ‘rule of thumb’ 
decision for treatment holidays, such as the 50% rule. Mathematical modeling has investigated alter-
native simple rules, such as range- bounded adaptive therapy (Brady- Nicholls and Enderling, 2022), 
which is designed to increase competitive inhibition of resistant subpopulations with a straightforward 
clinical implementation (Hansen and Read, 2020b).

It has been hypothesized that tumor stabilization might also normalize tumor vasculature, 
leading to a larger drug efficiency (Gatenby et al., 2009b; Enriquez- Navas et al., 2016), and dose- 
modulation might normalize tumor environment more than dose- skipping (Enriquez- Navas et al., 
2016). Evidence remains scarce. In a mouse model (Enriquez- Navas et al., 2016), a dose- modulation 
strategy was more effective than a dose- skipping strategy, but maybe because the cumulative dose in 
the dose- modulation arm was higher.

In theoretical models, a tumor may be temporarily stabilized by a constant dose treatment 
during a short time interval. A practical question is to determine the appropriate stabilization dose. 
Cunningham et al., 2020 found that an upward dose- titration protocol, gradually increasing the dose 
until the tumor is stabilized, works better than a dose reduction protocol (see also Masud et  al., 
2022 for calculating an effective dose window). Indeed, starting from a high dose may quickly select 
for resistant phenotypes. However, with upward titration, tumor size may become dangerously large 
before the dose is sufficiently high to stabilize it. Rather than a fixed dose modulation (e.g., 10%), 
weighting the dose according to tumor responsiveness may lead to quicker stabilization (Viossat and 
Noble, 2021). Moreover, some protocols keep the same dose if tumor size changes little since the 
previous measurement (Gatenby et al., 2009b; Enriquez- Navas et al., 2016; Gallaher et al., 2018). 
Successive small changes, with a large total effect, may then never trigger dose- modulation. This 
suggests the next dose should depend on the most recent change in tumor size but perhaps also on 
its absolute size compared to some target (Viossat and Noble, 2021). Many of these ideas remain to 
be empirically tested and may be difficult to implement clinically.

Finally, agent- based models (You et al., 2017; Bacevic et al., 2017; Gallaher et al., 2018; Strobl 
et al., 2022) allow for testing of features that are not easily incorporated into differential equation 
models: spatial structure, cell mobility, or quiescence. Spatial structure may increase the cost of 
resistance, as resistant cells may be trapped inside the tumor, far from the proliferative edge. These 
models also lead to observations that are not easy to understand theoretically, such as the greater 
efficiency of dose- skipping over dose- modulation in Gallaher et al., 2018. This highlights that simple 
models may miss important phenomena and that more data and modeling are needed to optimize 
adaptive therapies.

How can we leverage mathematical modeling to support testing of adaptive 
therapy in the wet lab?
Maximilian Strobl: Thanks to promising preclinical and clinical results, there is growing interest in 
extending adaptive therapy to new disease settings. To do so requires experimental platforms for 
testing and, if necessary, improving the safety and efficacy of adaptive protocols. Experimental 

https://doi.org/10.7554/eLife.84263


 Review article      Cancer Biology | Medicine

West et al. eLife 2023;12:e84263. DOI: https://doi.org/10.7554/eLife.84263  11 of 25

systems are models and come with inherent assumptions and limitations. Mathematical modelers and 
experimentalists should collaborate closely in order to design preclinical studies to validate theoret-
ical models, assert safety, and develop adaptive protocols with the maximum benefit to patients.

Surveying the experimental literature on adaptive therapy, and based on our own experience, we 
identify three areas in need of further research. First, how do we design experiments to assess the 
competitive suppression in a particular cancer and thus the scope for such patients to benefit from 
adaptive therapy? To date, experiments have employed one of three model systems, or combinations 
thereof: (i) 2- D in vitro cell culture (e.g., Silva et al., 2012; Bacevic et al., 2017; Farrokhian et al., 
2022; Nam et al., 2021; Bondarenko et al., 2021), (ii) 3- D in vitro spheroids (e.g., Bacevic et al., 
2017; Strobl et al., 2020; Bondarenko et al., 2021), and (iii) subcutaneous in vivo mouse models, 
in which human cells are injected into immunocompromised animals (e.g., Gatenby et al., 2009b; 
Enriquez- Navas et al., 2016; Smalley et al., 2019; Wang et al., 2021b; Wang et al., 2021a). 2- D 
and 3- D in vitro models are inexpensive and quick, and allow for easy manipulation and monitoring 
of the ‘tumor.’ In contrast, by incorporating vasculature and stroma, orthotopic mouse models are 
more realistic, but they are expensive. Mouse models often do not include an immune system and 
see human cells competing with mouse rather than human cells. A solution to this problem will be the 
use of more advanced technology, such as organ- on- chip models (Kashaninejad et al., 2016; Wang 
et al., 2021c) or spontaneous mouse models, where mouse tumors develop ‘naturally’ in their tissues 
of origin (Kersten et al., 2017; Céspedes et al., 2006). But even with more advanced experimental 
systems, limitations remain. To address these, we need to better understand what cells compete 
for (as discussed in section 1.2), and how we can best quantify this competition (e.g., the ‘game 
assay’; Kaznatcheev et al., 2019; Farrokhian et al., 2022). We propose that by playing out different 
scenarios in silico, mathematical models can help us to refine what experiments we should perform, 
and in what experimental system(s), in order to deduce the competitive landscape in tumors and in 
order to inform on how adaptive therapy will perform in patients.

Second, there is the question of how drug resistance is modeled in the wet lab. One approach 
evolves resistant cells through long- term drug exposure, and subsequently performs experiments 
by mixing these cells with parental, sensitive cells (e.g., Bacevic et  al., 2017; Nam et  al., 2021; 
Wang et al., 2021b). This has the advantage that the resistant population can be characterized (e.g., 
measuring its growth rate), the initial resistant cell fraction can be controlled, and cell populations 
can be fluorescently tagged and followed over the course of the experiment. However, this design 
implicitly assumes the preexistence of resistant cells in the tumor and neglects the role of plasticity. 
Alternatively, drug resistance can be allowed to evolve naturally over the course of the experiment 
(e.g., Gatenby et al., 2009b; Enriquez- Navas et al., 2016; Smalley et al., 2019). But such experi-
ments are time consuming and provide less information about the resistant population. We suggest 
using mathematical modeling to examine how best to leverage each of these two approaches to 
gain information on the cancer of interest. In addition, emerging clone- tracking technology allows for 
ever more in- depth study of tumor evolution (Morgan et al., 2021). Mathematical modeling will be a 
useful tool in designing, and interpreting results from, clone- tracking experiments (Acar et al., 2020; 
Damaghi et al., 2021; Johnson et al., 2020).

Finally, there is the question of how to translate treatment algorithms from mathematical or exper-
imental models into clinical practice. Most mathematical models of adaptive therapy neglect drug 
pharmacokinetics, but clearly this impacts the drug delivery to the tumor and differs between animals 
and patients. In addition, there is a question of time scales: how does a weekly follow- up in mice 
compare to a reassessment every 3 mo in patients? And, what happens when treatment cannot be 
adjusted as planned due to toxicity or practical constraints (e.g., machine failure, or the intended day 
falling on a holiday/weekend)? This raises the question of how robust are adaptive schedules to devi-
ations, and what is the best strategy with which to respond when deviations occur. Some initial work 
on this topic has been carried out (Dua et al., 2021; Wang et al., 2021a), and we encourage more 
research in this direction in order to inform experimental and clinical trial design.

What are the best practices to design adaptive algorithms for multiple 
drugs?
Jeffrey West: It remains unclear how to extend adaptive therapy approaches to multiple treatments. 
When multiple drugs are available, the combinatorial possibilities expand rapidly. With  n  treatments 
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available, there exist  2n  possible combinations, each of which may be administered at each treat-
ment decision point. Current adaptive trials often utilize less than the full range of  2n  combinations. 
For example, the metastatic castrate- resistant prostate cancer adaptive trial (NCT02415621) admin-
isters Lupron (Leuprorelin; gonadotropin- releasing hormone analogue for medical castration) as a 
continuous backbone while Abiraterone acetate (an inhibitor of CYP17A1, designed to suppress the 
production of androgens) is given adaptively. The advanced BRAF- mutant melanoma adaptive trial 
(NCT03543969) administers Encorafenib (a small molecule BRAF- inhibitor) and Binimetinib (a selec-
tive MEK inhibitor) in combination adaptively, with Nivolumab (an immune checkpoint inhibitor that 
blocks PD- 1) administered continuously. In both examples, opening the trial design to include the full 
range of treatment permutations may extend therapeutic control, but at the cost of computational 
and investigational complexity.

Recently, the concept of steering tumor dynamics into periodic, repeatable evolutionary cycles 
was proposed (Newton and Ma, 2019; Ma and Newton, 2021; Liu et al., 2022). The ordering and 
timing of treatment combinations is chosen carefully to drive tumor phenotypic composition into 
a ‘cycle’ such that tumor composition at the start and end of a cycle of therapy are approximately 
equivalent (West et al., 2020; Dua et al., 2021). Evolutionary cycling was implemented as a strategy 
to combat resistance to osimertinib (a third- generation tyrosine kinase inhibitor) in EGFR- mutant non- 
small cell lung cancer (Wang et al., 2021a). Dynamics were described by a Lotka- Volterra competition 
model within a nonlinear mixed- effects modeling framework, and potential treatment schedules were 
screened in silico to select fixed protocols that drive tumor dynamics into periodic cycles. These fixed 
treatment plans implemented in vivo outperformed standard of care treatment schedules in a majority 
of cases. This study and others (Wang et al., 2021b; Thomas et al., 2022; West et al., 2020; West 
et al., 2019) illustrate the feasibility of model- driven treatment planning to reduce the combinatorial 
complexity for multi- drug adaptive therapies.

Traditionally, adaptive therapy abandons the goal of cure in favor of long- term control (see Cure or 
control?). However, the availability of additional treatments affords the opportunity to leverage evolu-
tionary principles for cure. Below, we explore two evolution- based treatment strategies: (1) double- 
bind therapy and (2) extinction therapy. Strictly speaking, these approaches cannot be classified as 
‘adaptive’ but it is important to consider the feasibility and potential promise of these alternative 
evolution- based strategies.

The first alternative evolution- based multidrug approach is to identify collaterally sensitive treat-
ments such that resistance to first- line treatment induces sensitivity to secondary treatments (Silva 
and Gatenby, 2010; Basanta et  al., 2012). In double- bind therapy, the drugs are given sequen-
tially rather than in combination (Gatenby et al., 2009a). Using mathematical models, it is possible 
to determine the optimal switching time between a pair of collaterally sensitive drugs (Yoon et al., 
2018). This approach can be extended to infer the optimal timing and ordering of a set of collaterally 
sensitive drugs (Yoon et al., 2021), which can allow for evolutionary steering (Iram et al., 2021; Acar 
et al., 2020) or even extinction (Gatenby et al., 2020a; Gatenby et al., 2019). A similar strategy 
termed the ‘primary- secondary’ approach administers the primary treatment adaptively, while the 
secondary treatment is administered within each adaptive treatment cycle in order to suppress long- 
term resistance (West et al., 2019).

A second alternative multidrug approach known as extinction therapy may provide a way out of the 
control versus cure conundrum introduced in Cure or control?. For many incurable cancers or specific 
patients that failed to be cured, an aggressive therapy given continuously will generate a complete 
response rendering the cancer temporarily clinically undetectable sometimes for periods of years, 
other times for just months. Rather than wait for the period of remission to end before switching ther-
apies, extinction therapy aims to exploit the vulnerabilities of small, fragmented populations (Artzy- 
Randrup et  al., 2021; Johnson et  al., 2019; Konstorum et  al., 2016). In this case, these small 
populations are the remnants that survived therapy either by virtue of resistance or position within the 
tumor (sometime referred to as stromal protection when the structure of normal cells prevent therapy 
reaching cancer cells). In models of extinction therapy, the initial therapy (called the first- strike) is 
stopped as soon as the disease burden shows a complete response (Gatenby et al., 2019; Gatenby 
and Brown, 2020b). At this point, therapy becomes a sequence (e.g., 45–90  d per sequence) of 
second strikes using different drugs with different modes of action, and that will not generate undue 
toxicities. While untried, one can imagine starting a patient that might be cured with an aggressive 
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therapy. If this therapy only generates a partial response, then immediately switch to another drug 
and/or an adaptive therapy before disease progression. If the therapy produces a complete response, 
then go into an extinction therapy regimen aiming for cure. If permanent remission does not ensue, 
then the initial first strike drug likely is still effective, and can then be used for an adaptive therapy. 
By switching therapies sooner before complete resistance has evolved, the physician and patient 
retain the option for switching to an adaptive therapy. While models of extinction therapy have been 
developed (Gatenby et al., 2020a), clinical evidence is sparse but supported by the standard of care 
multistep curative treatment in Pediatric Acute Lymphocytic Leukemia (Li et al., 2022), by two case 
studies involving cure in patients with metastatic breast cancer (Chue and La Course, 2019a; Chue 
and La Course, 2019b), and an ongoing clinical trial for patients with pediatric rhabdomyosarcoma 
(Reed et al., 2020).

Challenges and opportunities in clinical translation
Is real-time patient prediction feasible?
Renee Brady- Nicholls: Predicting precisely when a patient will progress during adaptive therapy 
offers the opportunity to appropriately modulate treatment, thereby extending patient response and 
survival. This requires sufficient monitoring of an individual patient’s disease using appropriate clinical 
markers. Choosing an appropriate biomarker depends on the extent of the disease (e.g., localized 
versus metastatic, or hormone sensitive versus castration resistant prostate cancer), as well as how 
frequently said biomarker can be collected to adequately follow the disease trajectory.

Prior to making model predictions, the chosen model should be calibrated and validated to 
demonstrate that it can accurately describe patient- specific biomarker dynamics (Brady and Ender-
ling, 2019). This requires analyzing the model to determine the sensitivity and identifiability of model 
parameters, relative to the data. Given a chosen model and available data, model parameters may 
be difficult to accurately estimate. This might be due to the model complexity or structure, as well as 
the given data. Evaluating the sensitivity of the model outputs, in this case the change in a modeled 
biomarker over time, with respect to small perturbations in the model parameters identifies sensitive 
and insensitive parameters (Banks and Tran, 2009). Sensitive parameters should be evaluated for 
correlations with other parameters as correlated parameters should not be estimated concurrently. If 
two parameters can be uniquely identified, then they are said to be identifiable (Olufsen and Ottesen, 
2013) and parameter optimization techniques can be used to determine their optimal values relative 
to the given data. Appropriate model development, calibration, and validation are essential when 
developing predictive models. If the model cannot accurately describe the data, then it should not be 
used to make predictions of subsequent patient responses.

Figure 3 illustrates a case study of the feasibility of real- time patient prediction. Here, the longi-
tudinal biomarker known as prostate- specific antigen (PSA) is used to fit a mathematical model and 
provide a patient- specific prediction in response to adaptive therapy in metastatic castration- resistant 
prostate cancer (Brady- Nicholls et al., 2021). Despite much controversy surrounding the clinical use 
of the absolute value of PSA in both the detection and monitoring of prostate cancer (Kim and 
Andriole, 2015), it has been shown to be an effective and inexpensive way to follow a patient’s 
response trajectory over time. Many mathematical models based on a variety of plausible mechanisms 
have been developed to describe PSA dynamics in response to treatment (Zhang et al., 2017; Baez 
and Kuang, 2016; Hirata et al., 2010; Morken et al., 2014; Portz et al., 2012).

The mathematical model (Figure 3A) uses stem and non- stem cell dynamics to describe patient- 
specific PSA dynamics in response to treatment. The model has five parameters ( ps ,  λ ,  α ,  ρ ,  φ ). Sensi-
tivity analysis found that  λ  was insensitive, while identifiability analysis showed that  ps ,  α ,  ρ , and  φ  were 
uncorrelated and identifiable. A leave- one- out analysis was used to calibrate and validate the model 
to longitudinal PSA data from 16 patients. That is, nested optimization was used to estimate patient- 
specific parameters for  ps  and  α , and uniform parameters for  φ  and  ρ  to accurately describe individual 
patient data for the 15 patients in the training cohort. The uniform  φ  and  ρ  values were then fixed and 
optimization was used to find the  ps  and  α  values for the left- out patient (Figure 3B). Once calibrated 
and validated to the patient data, the model was used to make patient- specific response predictions. 
Parameter analysis identified the stem cell self- renewal rate  ps  as the primary driver of differences in 
treatment response dynamics between responsive and resistant patients. This parameter was used to 
make subsequent response predictions. That is, the distribution of changes in  ps  from treatment cycle 
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 i  to  i + 1  was used to predict an individual patient’s response in cycle  i + 1  (Figure 3C). The model was 
able to predict patient response with 81% accuracy (Brady- Nicholls et al., 2021) (defined as the sum 
of correct responsive and resistant predictions divided by the total number of predictions). A similar 
modeling approach was used in biochemically recurrent prostate cancer patients receiving intermit-
tent androgen deprivation therapy to predict response dynamics with 89% accuracy (Brady- Nicholls 
et al., 2020). Clinically, an accurate predictive model can be used an additional tool that oncologists 
can use when making treatment decisions for individual patients. An accuracy above 50% (coin- toss) 
can provide clinicians with more confidence when making such critical decisions.

We can learn several lessons from these studies when applying real- time prediction of adaptive 
therapy in new diseases. Model predictions are dependent on the quality and time- resolution of 

Figure 3. Model schematic, calibration, validation, and prediction. Adapted from Figure 4 of Brady- Nicholls 
et al., 2021. (A) Model schematic of treatment- resistant stem cells, sensitive non- stem cells, and prostate- specific 
antigen interactions. (B) Model calibration (patient 1014) and validation (patient 1016). Nested optimization was 
used to determine the cohort uniform parameters  ρ  and  φ  and the patient- specific parameters  ps  and  α  for the 
training cohort. The uniform values were fixed in the testing cohort, and optimization was used to find the patient- 
specific parameters  ps  and  α . (C) Model predictions for patient 1016. The model predicted resistance in 39% of 
cycle 2 simulations and response in 100% of cycle 3 simulations. Cycle 4 predictions showed resistance in 63% 
of model simulations. Using cycle- specific cutoffs  k2, k3 , and  k4 , the model correctly predicted that patient 1016 
would continue to respond in cycles 2 and 3 but become resistant in cycle 4.
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patient- specific biomarkers. Alternative biomarkers such as circulating tumor DNA (ctDNA) (Hennigan 
et al., 2019; Ku et al., 2019; Lau et al., 2020), circulating tumor cells (CTCs) (Ried et al., 2020; 
Salami et al., 2019), and relatively new biomarkers such as urine Lemos et al., 2019; Tosoian et al., 
2021 have been shown to be prognostic in prostate cancer and other diseases. Like PSA, these 
markers can be collected relatively frequently and via minimally invasive methods. They can be used 
to develop appropriate models that can be used to predict response to adaptive therapy.

Do adverse effects of maintaining high tumor burden negate potential 
benefit?
Joel Brown: The prostate adaptive trial (NCT024515621) is instructive here. The original model 
imagined two categories of sensitive cells that both require testosterone (Zhang et al., 2017). One 
producing its own, and the other requiring exogenous testosterone. Resistant cells are independent 
of testosterone and hence unaffected by androgen- focused therapy. In this model, the cost of resis-
tance was assumed to occur primarily through carrying capacity (the maximal cell density) with some 
contribution of competition coefficients.

The adaptive therapy patients performed better than the contemporaneous controls (median of 
33.5 and 14.3 mo radiographic progression free survival, respectively) (Zhang et al., 2021). To be 
considered for the trial, an initial response to therapy of at least a 50% decline in PSA and putative 
tumor burden was required. This meant they were responders and hence enjoyed a better prognosis 
than nonresponders, and nonresponders were not eligible for this trial (Mistry, 2021). The contempo-
raneous control group was selected from patients receiving continuous therapy and who, like the trial 
patients, were responders. No nonresponders were included in the control cohort. By way of caveat, 
this is an important consideration for any trial of adaptive therapy that lacks double- blind, randomized 
control arms. Most strikingly, some of the adaptive therapy patients performed better than expected 
from the initial model. At time of writing, four men remain on adaptive therapy after 4–6 y.

Evolutionary theory tells us that adaptive therapy, or more specifically competitive release therapy, 
works best if the sensitive cells are allowed to grow to the point where both frequency- and density- 
dependent feedbacks are strong. The frequency- dependent effects offer hope that the sensitive cells 
are competitively superior to the resistant ones. This cost of resistance can manifest as a reduction 
in maximum growth rates, reduction in carrying capacity, and the competitive effect of each cell 
type on the other (Zhang et al., 2022; Strobl et al., 2020; Pressley et al., 2021). A retrospective 
analysis of the near- finished trial (Zhang et al., 2022), permits parameter estimations, some patient 
specific, others estimated as patient- wide parameters. The efficacy of adaptive therapy seems best 
explained by highly asymmetric competition. It was estimated that the sensitive cells (a streamlined 
model combining the two sensitive cell types into one) have a competitive effect (per cell) on resistant 
cells that is six times higher than the reverse effect of resistant cells on sensitive ones. As others have 
noted in their models, such a high asymmetry favoring sensitive cells relative to resistant cells can 
result in indefinite control and disease containment (Viossat and Noble, 2021).

The prostate adaptive trial does provide some evidence that prolonged sensitivity may outweigh 
adverse effects of maintaining high tumor burden, but the promise of being able to perpetually 
control each patient’s disease did not happen. Why not? First, the periodic measurements of PSA on 
which to base decisions to stop or start therapy meant that patients often dropped more, and some-
times way more than the desired goal of 50%, and vice versa for when therapy was actually restarted. 
Virtually all models indicate a poorer performance of adaptive therapy with imprecise switch points 
that overshoot the targeted switch values. The second reason is decisive and it concerns enlisting the 
needed density- dependence. If the tumor burden and cancer cell populations sizes are well below 
carrying capacity, then both cell types may enjoy positive fitness in the absence of therapy (Zhang 
et al., 2017; Strobl et al., 2020; Hansen and Read, 2020a). As the tumor cell populations grow, per 
capita growth rates decline for both cell types, but with asymmetric competition, the resistant cells 
will experience negative fitness even as the sensitive cells continue to grow. This is a sweet spot. In 
this region of high tumor burden, the sensitive cells not only retard but reverse the growth rate of 
the resistant cells. Our retrospective analysis supports the conclusion of a number of mathematical 
and theoretical investigations. Namely, adaptive therapy seems to work best if (1) the threshold for 
ceasing therapy is quite high (80% rather than 50%, for instance), and (2) the overall tumor burden is 
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maintained as high as possible without endangering the patient (Kim et al., 2021; Hansen and Read, 
2020b; Viossat and Noble, 2021).

Retrospective analysis of mathematical modeling fit to adaptive patient data (Zhang et al., 2022) 
suggests that a physician ought to hold off resuming therapy until as late as possible in terms of the 
recovery of the tumor during a period of no therapy. With retrospective analysis of each patient, we 
find that failure of indefinite control happened because tumor burdens during periods of no therapy 
were being kept too low to permit sufficient density dependence to facilitate negative growth rates 
of the resistant cells. For these patients, therapy was resumed too soon! Yet, there are likely dangers 
associated with containment strategies aiming for overall high, and persistent tumor burdens. These 
fall into four important categories: (1) patients becoming symptomatic, (2) the ability of the biomarker 
to be sufficiently accurate and measurable frequently, (3) subsequent cancer evolution during the 
period of adaptive therapy, and (4) risk of new metastases.

An adaptive therapy clinical trial on metastatic thyroid cancer (NCT03630120) illustrates two of 
these concerns. The trial was suspended. The suspension was not mandated by the required stopping 
criteria, but because of two unanticipated issues. In one of the patients receiving adaptive therapy, 
there was an initially good response, therapy was stopped, and the tumor burden allowed to recover. 
However, the patient began to feel pain and other ill effects of the tumor burden before it had recov-
ered to pretreatment level. The patient had become symptomatic at which point either treatment 
must be resumed or a different course of therapy considered. In another patient, after the resumption 
of therapy the tumor continued to grow, at least based on the biomarker, with no indication of a future 
decline (Christine Chung and Joel S. Brown, unpublished data). The small number of patients in both 
the randomized control arm (continuous therapy) and the adaptive therapy arm precluded mean-
ingful interpretation of the potential efficacy of adaptive therapy. But it pointed to issues of patients 
becoming symptomatic, of the reliability of the biomarker as an accurate indicator of tumor burden, 
and of rapid changes in tumor burden and disease disposition that occurred at a faster time- scale than 
the ability to adjust therapies.

While not yet documented in any clinical trial of adaptive therapy, there remains the concern that 
high tumor burden, subjected to on and off therapy cycles may incubate additional mutations and 
adaptations by the cancer cells. For instance, with time, the resistant cancer cells may evolve traits 
that minimize or even reverse the cost of resistance. A large residual tumor population is more likely 
than a very small tumor burden to give rise to such mutations that propel the cancer cells to greater 
levels of malignancy. As of yet, models of adaptive therapy have not considered the risk of additional 
progressive evolution beyond that expected regarding drug sensitivity.

Current trials and most models of adaptive therapy consider the patient’s total tumor burden 
even when it is known that the cancer is spread across several or many metastatic sites. As the 
overall tumor burden shrinks, different lesions may not necessarily respond similarly or proportion-
ately. Furthermore, the fraction of resistant and sensitive cells may differ among lesions, particu-
larly if they are in different tissues. Over the course of adaptive therapy, the tumor burden may 
become more dispersed among lesions, more concentrated in a lower number of tumors, or, of 
most concern, metastasize to new sites. In the case of melanoma, whether under standard of care 
continuous therapy or as an adaptive therapy trial (NCT03543969), there is a risk of the disease 
metastasizing to the brain even as therapy efficacy may be good elsewhere in the patient’s body. 
A recent spatial model of the prostate clinical trial imagined dynamics both within and between 
metastatic sites in response to the on and off cycles of therapy. The model predicts that the adap-
tive therapy regimen will vary if the disease is represented by many small versus a few large tumors 
(Gallaher et al., 2022).

As more clinical trials of adaptive therapy emerge from integrating mathematical models with 
clinical opportunity and need, it will be essential to consider the tradeoffs associated with main-
taining relatively large tumor burdens. A large tumor burden may increase the efficiency of an adap-
tive therapy regimen while increasing the risks of additional progressive evolution, other ill effects 
of tumor burden, and the appearance of new lesions within the same or different tissues. Balancing 
these costs and benefits will likely be disease and drug specific, and will require a continued lockstep 
between mathematical models and empirical studies, data, and observations of patients.
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Can a mathematical model drive treatment decision-making?
Mark Robertson- Tessi and Sandy Anderson: Many models of adaptive therapy are currently hypothesis- 
generating models with less focus on predictive insight (Enderling and Wolkenhauer, 2020). One of 
the main goals of personalized therapy is the ability to predict likely tumor dynamics arising from all 
available treatment options, and then select the most promising. Therefore, there is a great need for 
clinically suitable predictive mathematical models that track patient- specific tumor dynamics. There 
are, however, numerous challenges that need to be surmounted for this approach to be broadly 
successful and able to be scaled to large numbers of patients.

To begin with, clinical data are often sparse and often collected at times of little value to a math-
ematical model. For example, imaging scans are often collected some time prior to therapy, and 
then, depending on the cancer, the first follow- up scan occurs after 6–12 wk. Yet, in many models of 
different diseases, the relevant action that would inform therapeutic decisions via modeling occurs 
during the immediate aftermath of therapy. Furthermore, the models benefit greatly from multiple 
data points, so it may take several follow- up scans to narrow the parameterization of a model to deter-
mine treatment efficacy and tumor dynamics, by which time the tumor may have progressed and thus 
no prediction is needed. In a sense, current imaging schedules are designed to detect progression 
reasonably soon after it occurs, often using the standard RECIST criteria or similar, while balancing 
the costs of repeated imaging. To move into predictive mathematical modeling, we must rethink how 
we collect patient data, in that we do not want to simply detect progression, but rather quantify and 
understand the tumor dynamics prior to progression such that one can inform treatment decisions to 
avoid it.

A second consideration is the uncertainty of the entire system, from patient to model. Even an 
optimally designed data collection protocol that would optimize model predictability will still leave 
significant uncertainties in such predictions. The idea that we will have the data and modeling to 
precisely predict the future course of a patient’s disease is not realistic, or even possible. Therefore, 
all predictions must include statistically rigorous uncertainty analyses. The concept of the ‘Phase i’ 
trial (Kim et al., 2016; Scott, 2012) has been developed as a framework to quantify and apply such 
uncertainties. The basic principle is to develop cohorts of virtual patients derived from a calibrated 
mathematical model and apply ‘clinical trials’ to such cohorts with varying regimens of treatment. 
Much like changes to the standard of care that arise from cohort- to- cohort comparisons, the same 
approach is used in the virtual cohorts to decide on the treatment that is most likely to succeed. In 
general, the complete virtual cohort is formed by examining historical data on the disease, both at the 
individual patient level and via cohort outcomes from clinical trials. Once this global cohort is estab-
lished from the model, an individual patient can be compared to each virtual patient and matched to 
those that exhibit similar dynamics as the real patient. This patient- specific virtual subcohort is then 
subjected to the available therapy options, and their outcomes as a cohort are compared. The results 
provide decision- support for the treating physician. Using mechanistic models – as opposed to statis-
tical models alone – has the advantage that as more patient data are collected on follow- up visits, the 
calibration and refinement of the patient’s subcohort can be improved by removing virtual patients 
that responded differently.

Adaptive therapy strategies are one part of a broader approach to introduce evolutionary prin-
ciples into dose scheduling to mitigate the evolution of resistance (Gatenby and Brown, 2020b; 
Noorbakhsh et  al., 2020; Belkhir et  al., 2021; Stanková et  al., 2019). Ongoing or planned 
evolution- based treatment trials include a trial in rhabdomyosarcoma, which includes both extinc-
tion therapy and adaptive therapy arms (NCT04388839) (Reed et  al., 2020), adaptive androgen 
deprivation for castration- sensitive prostate cancer (NCT03511196), adaptive abiraterone or enzalut-
amide in castration- resistant prostate cancer (ANZadapt; NCT05393791), adaptive administration of 
BRAF- MEK inhibitors for advanced BRAF mutant melanoma (NCT03543969), adaptive carboplatin in 
ovarian cancer (ACTOv trial; NCT05080556), adaptive therapy of Vismodegib in advanced basal cell 
carcinoma (NCT05651828), and a feasibility study (Robertson- Tessi et al., 2023) for implementing 
evolution- based strategies with the aid of mathematical modeling decision- support (the ‘evolutionary 
tumor board’ at the Moffitt Cancer Center; NCT04343365). Given the complexity of cancer as an 
evolutionary disease, many of these trials have been planned with insights gained from mathematical 
models.
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Concluding remarks
The questions outlined in the sections above can be categorized into the following: integrating the 
appropriate components into mathematical models (Integrating the appropriate components into 
mathematical models), the design and validation of dosing protocols (Design and validation of dosing 
protocols), and challenges and opportunities in clinical translation (Design and validation of dosing 
protocols). It is our opinion that work addressing these questions should occur concurrently, within an 
interdisciplinary framework of science.

Figure 4 shows a selection of influential papers and key clinical trials leading to advancements in 
the field of adaptive or evolution- based treatment. This figure illustrates that experimental and clinical 
investigation of adaptive therapy has progressed synergistically with mathematical and computational 
modeling. Perhaps the most important challenge concerns the communication between different 
disciplines: the practice of oncology, the theories of ecology and evolution, and the application of 
mathematical models to data were not historically in sync in terms of possibilities for both practice 
and outcome. An integrated team science approach focused on gaining a deeper understanding of 
each disease and the implications of each decision during treatment is key for the future success of an 
evolution- based cancer management.

Additional information

Funding

Funder Grant reference number Author

National Cancer Institute U01CA232382 Alexander RA Anderson

Historical timeline of advances in adaptive therapy

Theoretical models of 
extension of survival time using 

dose reduction strategies 
(Martin 1992, Math. Biosci.)

Optimal control methods used 
to simulate tumors with drug-

resistant & drug-sensitive cells 
in competition 

(Martin 1992, Math. Biosci.)

Sensitive-resistant competition 
can extend survival times, but 
failed cure can reduce survival
(Monro 2009, J. Theo. Bio.)

Low doses of auxiliary 
treatment to accentuate cost of 

chemo-resistance & improve 
adaptive therapy 

(Silva 2012, Cancer Res.)

In vivo adaptive dose-skipping 
versus dose-modulation

(Enriquez-Navas 2016, Sci. 
Trans. Med.)

Th
eo
re
tic
al

Ex
pe
rim
en
ta
l

C
lin
ic
al

1990 2010 20202008 2018 20222016 2017 2019 2021

The term “adaptive therapy” 
coined: mathematical & 

experimental exploration of 
adaptive therapy (Gatenby 

2009, Cancer Res.)

Recruitment begins for 
adaptive abiraterone trial 

(metastatic castration-resistant 
prostate cancer)

(Moffitt; NCT02415621)

Theoretical exploration of 
aggressive versus containment 

strategies 
(Hansen 2017, PLOS Bio.)

Publication of adaptive 
prostate trial data & associated 

Lotka-Volterra competition 
mathematical model (Zhang 

2017, Nature Comm.)

Validation of cost of resistance 
in CDK inhibitors & role of 

spatial competition on fitness 
(Bacevic & Noble 2017, 

Nature Comm.)

Recruitment begins for 
adaptive BRAF-MEK inhibitor 

in advanced BRAF mutant 
melanoma 

(Moffitt; NCT03543969)

Recruitment begins for 
adaptive androgen deprivation 
in castration-sensitive prostate 

cancer 
(Moffitt; NCT03511196)

In vivo adaptive dosing of 
BRAF inhibitors, compared to 

continuous or fixed intermittent 
therapy 

(Smalley 2019, eBio Med.)

Patient-specific predictions of 
adaptive prostate therapy 
(Brady 2021, Neoplasia)

“Cancer Adaptive Therapy 
Models” – mathematicians, 
oncologists, and biologists 
discuss the state-of-the-art.

Mathematical investigation of 
multi-drug adaptive therapy 

protocols 
(West 2020, Cancer Res.)

Evolutionary Tumor Board 
feasibility study for evolutionary 

treatment strategies 
(Moffitt; NCT04343365)

Mathematical investigation of 
cost, turnover & competition in 

adaptive therapy 
(Strobl 2021, Cancer Res.)

Extensive mathematical 
analysis of conditions where 

tumor containment is superior 
(Viossat & Noble 2021, 

Nature Eco. & Evo.)

Adaptive carboplatin in 
relapsed high grade serous / 
endometrioid ovarian cancer 
(Multicenter; NCT05080556)

Publication

Clinical Trial

Workshop

Validation of cost of resistance 
in doxorubicin, & exploration of 
alternative adaptive protocols 
(Gallaher 2018, Cancer Res.)

A selection of influential 
papers and key clinical 

trials leading to 
advancements in the field 

of adaptive therapy.

Legend:

Patient-specific prediction of 
adaptive melanoma therapy 

(Kim 2021, Cancers)

Adaptive abiraterone or 
enzalutamide in metastatic 
castration-resistant prostate 

cancer
(ANZadapt; NCT05393791)

Figure 4. Timeline of advancements in adaptive therapy: a selection of influential papers and key clinical trials leading to advancements in the field of 
adaptive therapy. This selection includes papers with experimental or clinical adaptive data in addition to well- cited theoretical publications.

https://doi.org/10.7554/eLife.84263


 Review article      Cancer Biology | Medicine

West et al. eLife 2023;12:e84263. DOI: https://doi.org/10.7554/eLife.84263  19 of 25

Funder Grant reference number Author

Physical Sciences 
Oncology Network

U54CA193489 Alexander RA Anderson

Moffitt Center of 
Excellence for Evolutionary 
Therapy

Alexander RA Anderson

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Jeffrey West, Conceptualization, Visualization, Writing – original draft, Writing – review and editing; 
Fred Adler, Jill Gallaher, Maximilian Strobl, Joel Brown, Mark Roberson- Tessi, Writing – original draft, 
Writing – review and editing; Renee Brady- Nicholls, Visualization, Writing – original draft, Writing – 
review and editing; Eunjung Kim, Robert Noble, Yannick Viossat, David Basanta, Conceptualization, 
Writing – original draft, Writing – review and editing; Alexander RA Anderson, Conceptualization, 
Funding acquisition, Writing – original draft, Writing – review and editing

Author ORCIDs
Jeffrey West    http://orcid.org/0000-0001-9579-4664
Jill Gallaher    http://orcid.org/0000-0001-9831-6676
Maximilian Strobl    http://orcid.org/0000-0003-4484-8823
Robert Noble    http://orcid.org/0000-0002-8057-4252
Alexander RA Anderson    http://orcid.org/0000-0002-2536-4383

References
Acar A, Nichol D, Fernandez- Mateos J, Cresswell GD, Barozzi I, Hong SP, Trahearn N, Spiteri I, Stubbs M, 

Burke R, Stewart A, Caravagna G, Werner B, Vlachogiannis G, Maley CC, Magnani L, Valeri N, Banerji U, 
Sottoriva A. 2020. Exploiting evolutionary steering to induce collateral drug sensitivity in cancer. Nature 
Communications 11:1–14. DOI: https://doi.org/10.1038/s41467-020-15596-z

Algazi AP, Othus M, Daud AI, Lo RS, Mehnert JM, Truong TG, Conry R, Kendra K, Doolittle GC, Clark JI, 
Messino MJ, Moore DF, Lao C, Faller BA, Govindarajan R, Harker- Murray A, Dreisbach L, Moon J, 
Grossmann KF, Ribas A. 2020. Continuous versus intermittent BRAF and MEK inhibition in patients with 
BRAF- mutated melanoma: a randomized phase 2 trial. Nature Medicine 26:1564–1568. DOI: https://doi.org/ 
10.1038/s41591-020-1060-8, PMID: 33020646

Artzy- Randrup Y, Epstein T, Brown JS, Costa RLB, Czerniecki BJ, Gatenby RA. 2021. Novel evolutionary 
dynamics of small populations in breast cancer adjuvant and neoadjuvant therapy. NPJ Breast Cancer 7:1–7. 
DOI: https://doi.org/10.1038/s41523-021-00230-y

Bacevic K, Noble R, Soffar A, Wael Ammar O, Boszonyik B, Prieto S, Vincent C, Hochberg ME, Krasinska L, 
Fisher D. 2017. Spatial competition constrains resistance to targeted cancer therapy. Nature Communications 
8:1995. DOI: https://doi.org/10.1038/s41467-017-01516-1, PMID: 29222471

Baez J, Kuang Y. 2016. Mathematical models of androgen resistance in prostate cancer patients under 
intermittent androgen suppression therapy. Applied Sciences 6:352. DOI: https://doi.org/10.3390/app6110352

Ballesta A, Clairambault J. 2014. Physiologically based mathematical models to optimize therapies against 
metastatic colorectal cancer: a mini- review. Current Pharmaceutical Design 20:37–48. DOI: https://doi.org/10. 
2174/138161282001140113123441, PMID: 23530495

Banks HT, Tran HT. 2009. Mathematical and Experimental Modeling of Physical and Biological Processes. 
Chapman and Hall. DOI: https://doi.org/10.1201/b17175

Basanta D, Gatenby RA, Anderson ARA. 2012. Exploiting evolution to treat drug resistance: combination 
therapy and the double bind. Molecular Pharmaceutics 9:914–921. DOI: https://doi.org/10.1021/mp200458e, 
PMID: 22369188

Basanta D, Anderson ARA. 2013. Exploiting ecological principles to better understand cancer progression and 
treatment. Interface Focus 3:20130020. DOI: https://doi.org/10.1098/rsfs.2013.0020, PMID: 24511383

Basanta D, Anderson ARA. 2017. Homeostasis back and forth: an ecoevolutionary perspective of cancer. Cold 
Spring Harbor Perspectives in Medicine 7:a028332. DOI: https://doi.org/10.1101/cshperspect.a028332, PMID: 
28289244

Bayer P, Brown JS, Dubbeldam J, Broom M. 2022. A markovian decision model of adaptive cancer treatment 
and quality of life. Journal of Theoretical Biology 551–552:111237. DOI: https://doi.org/10.1016/j.jtbi.2022. 
111237, PMID: 35944591

Belkhir S, Thomas F, Roche B. 2021. Darwinian approaches for cancer treatment: benefits of mathematical 
modeling. Cancers 13:4448. DOI: https://doi.org/10.3390/cancers13174448, PMID: 34503256

Bondarenko M, Le Grand M, Shaked Y, Raviv Z, Chapuisat G, Carrère C, Montero M- P, Rossi M, Pasquier E, 
Carré M, André N. 2021. Metronomic chemotherapy modulates clonal interactions to prevent drug resistance 

https://doi.org/10.7554/eLife.84263
http://orcid.org/0000-0001-9579-4664
http://orcid.org/0000-0001-9831-6676
http://orcid.org/0000-0003-4484-8823
http://orcid.org/0000-0002-8057-4252
http://orcid.org/0000-0002-2536-4383
https://doi.org/10.1038/s41467-020-15596-z
https://doi.org/10.1038/s41591-020-1060-8
https://doi.org/10.1038/s41591-020-1060-8
http://www.ncbi.nlm.nih.gov/pubmed/33020646
https://doi.org/10.1038/s41523-021-00230-y
https://doi.org/10.1038/s41467-017-01516-1
http://www.ncbi.nlm.nih.gov/pubmed/29222471
https://doi.org/10.3390/app6110352
https://doi.org/10.2174/138161282001140113123441
https://doi.org/10.2174/138161282001140113123441
http://www.ncbi.nlm.nih.gov/pubmed/23530495
https://doi.org/10.1201/b17175
https://doi.org/10.1021/mp200458e
http://www.ncbi.nlm.nih.gov/pubmed/22369188
https://doi.org/10.1098/rsfs.2013.0020
http://www.ncbi.nlm.nih.gov/pubmed/24511383
https://doi.org/10.1101/cshperspect.a028332
http://www.ncbi.nlm.nih.gov/pubmed/28289244
https://doi.org/10.1016/j.jtbi.2022.111237
https://doi.org/10.1016/j.jtbi.2022.111237
http://www.ncbi.nlm.nih.gov/pubmed/35944591
https://doi.org/10.3390/cancers13174448
http://www.ncbi.nlm.nih.gov/pubmed/34503256


 Review article      Cancer Biology | Medicine

West et al. eLife 2023;12:e84263. DOI: https://doi.org/10.7554/eLife.84263  20 of 25

in non- small cell lung cancer. Cancers 13:2239. DOI: https://doi.org/10.3390/cancers13092239, PMID: 
34066944

Boumahdi S, de Sauvage FJ. 2020. The great escape: tumour cell plasticity in resistance to targeted therapy. 
Nature Reviews. Drug Discovery 19:39–56. DOI: https://doi.org/10.1038/s41573-019-0044-1, PMID: 31601994

Brady R, Enderling H. 2019. Mathematical models of cancer: when to predict novel therapies, and when not to. 
Bulletin of Mathematical Biology 81:3722–3731. DOI: https://doi.org/10.1007/s11538-019-00640-x, PMID: 
31338741

Brady- Nicholls R, Nagy JD, Gerke TA, Zhang T, Wang AZ, Zhang J, Gatenby RA, Enderling H. 2020. Prostate- 
specific antigen dynamics predict individual responses to intermittent androgen deprivation. Nature 
Communications 11:1750. DOI: https://doi.org/10.1038/s41467-020-15424-4, PMID: 32273504

Brady- Nicholls R, Zhang J, Zhang T, Wang AZ, Butler R, Gatenby RA, Enderling H. 2021. Predicting patient- 
specific response to adaptive therapy in metastatic castration- resistant prostate cancer using prostate- specific 
antigen dynamics. Neoplasia 23:851–858. DOI: https://doi.org/10.1016/j.neo.2021.06.013, PMID: 34298234

Brady- Nicholls R, Enderling H. 2022. Range- bounded adaptive therapy in metastatic prostate cancer. Cancers 
14:5319. DOI: https://doi.org/10.3390/cancers14215319, PMID: 36358738

Buhler CK, Terry RS, Link KG, Adler FR. 2021. Do mechanisms matter? comparing cancer treatment strategies 
across mathematical models and outcome objectives. Mathematical Biosciences and Engineering 18:6305–
6327. DOI: https://doi.org/10.3934/mbe.2021315, PMID: 34517535

Bussard KM, Gay CV, Mastro AM. 2008. The bone microenvironment in metastasis; what is special about bone? 
Cancer Metastasis Reviews 27:41–55. DOI: https://doi.org/10.1007/s10555-007-9109-4, PMID: 18071636

Carrère C. 2017. Optimization of an in vitro chemotherapy to avoid resistant tumours. Journal of Theoretical 
Biology 413:24–33. DOI: https://doi.org/10.1016/j.jtbi.2016.11.009, PMID: 27864095

Carrère C, Zidani H. 2020. Stability and reachability analysis for a controlled heterogeneous population of cells. 
Optimal Control Applications and Methods 41:1678–1704. DOI: https://doi.org/10.1002/oca.2627

Céspedes MV, Casanova I, Parreño M, Mangues R. 2006. Mouse models in oncogenesis and cancer therapy. 
Clinical & Translational Oncology 8:318–329. DOI: https://doi.org/10.1007/s12094-006-0177-7, PMID: 
16760006

Cho H, Levy D. 2018a. Modeling continuous levels of resistance to multidrug therapy in cancer. Applied 
Mathematical Modelling 64:733–751. DOI: https://doi.org/10.1016/j.apm.2018.07.025

Cho H, Levy D. 2018b. Modeling the chemotherapy- induced selection of drug- resistant traits during tumor 
growth. Journal of Theoretical Biology 436:120–134. DOI: https://doi.org/10.1016/j.jtbi.2017.10.005, PMID: 
29030212

Chue BMF, La Course BD. 2019a. Can we cure stage IV triple- negative breast carcinoma?: another case report of 
long- term survival (7 years). Medicine 98:e17251. DOI: https://doi.org/10.1097/MD.0000000000017251, PMID: 
31567994

Chue BMF, La Course BD. 2019b. Case report of long- term survival with metastatic triple- negative breast 
carcinoma: treatment possibilities for metastatic disease. Medicine 98:e15302. DOI: https://doi.org/10.1097/ 
MD.0000000000015302, PMID: 31008982

Clairambault J. 2019. An evolutionary perspective on cancer, with applications to anticancer drug resistance 
modelling and perspectives in therapeutic control. Journal of Mathematical Study 52:470–496. DOI: https:// 
doi.org/10.4208/jms.v52n4.19.06

Clairambault J, Pouchol C. 2019. A survey of adaptive cell population dynamics models of emergence of drug 
resistance in cancer, and open questions about evolution and cancer. BIOMATH 8:23. DOI: https://doi.org/10. 
11145/j.biomath.2019.05.147

Colijn C, Cohen T. 2015. How competition governs whether moderate or aggressive treatment minimizes 
antibiotic resistance. eLife 4:e10559. DOI: https://doi.org/10.7554/eLife.10559, PMID: 26393685

Cook LM, Shay G, Araujo A, Lynch CC. 2014. Integrating new discoveries into the “vicious cycle” paradigm of 
prostate to bone metastases. Cancer Metastasis Reviews 33:511–525. DOI: https://doi.org/10.1007/s10555- 
014-9494-4, PMID: 24414228

Crook JM, O’Callaghan CJ, Duncan G, Dearnaley DP, Higano CS, Horwitz EM, Frymire E, Malone S, Chin J, 
Nabid A, Warde P, Corbett T, Angyalfi S, Goldenberg SL, Gospodarowicz MK, Saad F, Logue JP, Hall E, 
Schellhammer PF, Ding K, et al. 2012. Intermittent androgen suppression for rising PSA level after radiotherapy. 
The New England Journal of Medicine 367:895–903. DOI: https://doi.org/10.1056/NEJMoa1201546, PMID: 
22931259

Cunningham JJ, Brown JS, Gatenby RA, Staňková K. 2018. Optimal control to develop therapeutic strategies for 
metastatic castrate resistant prostate cancer. Journal of Theoretical Biology 459:67–78. DOI: https://doi.org/ 
10.1016/j.jtbi.2018.09.022, PMID: 30243754

Cunningham J, Thuijsman F, Peeters R, Viossat Y, Brown J, Gatenby R, Staňková K, Newton PK. 2020. Optimal 
control to reach eco- evolutionary stability in metastatic castrate- resistant prostate cancer. PLOS ONE 
15:e0243386. DOI: https://doi.org/10.1371/journal.pone.0243386

Damaghi M, West J, Robertson- Tessi M, Xu L, Ferrall- Fairbanks MC, Stewart PA, Persi E, Fridley BL, Altrock PM, 
Gatenby RA, Sims PA, Anderson ARA, Gillies RJ. 2021. The harsh microenvironment in early breast cancer 
selects for a warburg phenotype. PNAS 118:3. DOI: https://doi.org/10.1073/pnas.2011342118

Dua R, Ma Y, Newton PK. 2021. Are adaptive chemotherapy schedules robust? A three- strategy stochastic 
evolutionary game theory model. Cancers 13:2880. DOI: https://doi.org/10.3390/cancers13122880, PMID: 
34207564

https://doi.org/10.7554/eLife.84263
https://doi.org/10.3390/cancers13092239
http://www.ncbi.nlm.nih.gov/pubmed/34066944
https://doi.org/10.1038/s41573-019-0044-1
http://www.ncbi.nlm.nih.gov/pubmed/31601994
https://doi.org/10.1007/s11538-019-00640-x
http://www.ncbi.nlm.nih.gov/pubmed/31338741
https://doi.org/10.1038/s41467-020-15424-4
http://www.ncbi.nlm.nih.gov/pubmed/32273504
https://doi.org/10.1016/j.neo.2021.06.013
http://www.ncbi.nlm.nih.gov/pubmed/34298234
https://doi.org/10.3390/cancers14215319
http://www.ncbi.nlm.nih.gov/pubmed/36358738
https://doi.org/10.3934/mbe.2021315
http://www.ncbi.nlm.nih.gov/pubmed/34517535
https://doi.org/10.1007/s10555-007-9109-4
http://www.ncbi.nlm.nih.gov/pubmed/18071636
https://doi.org/10.1016/j.jtbi.2016.11.009
http://www.ncbi.nlm.nih.gov/pubmed/27864095
https://doi.org/10.1002/oca.2627
https://doi.org/10.1007/s12094-006-0177-7
http://www.ncbi.nlm.nih.gov/pubmed/16760006
https://doi.org/10.1016/j.apm.2018.07.025
https://doi.org/10.1016/j.jtbi.2017.10.005
http://www.ncbi.nlm.nih.gov/pubmed/29030212
https://doi.org/10.1097/MD.0000000000017251
http://www.ncbi.nlm.nih.gov/pubmed/31567994
https://doi.org/10.1097/MD.0000000000015302
https://doi.org/10.1097/MD.0000000000015302
http://www.ncbi.nlm.nih.gov/pubmed/31008982
https://doi.org/10.4208/jms.v52n4.19.06
https://doi.org/10.4208/jms.v52n4.19.06
https://doi.org/10.11145/j.biomath.2019.05.147
https://doi.org/10.11145/j.biomath.2019.05.147
https://doi.org/10.7554/eLife.10559
http://www.ncbi.nlm.nih.gov/pubmed/26393685
https://doi.org/10.1007/s10555-014-9494-4
https://doi.org/10.1007/s10555-014-9494-4
http://www.ncbi.nlm.nih.gov/pubmed/24414228
https://doi.org/10.1056/NEJMoa1201546
http://www.ncbi.nlm.nih.gov/pubmed/22931259
https://doi.org/10.1016/j.jtbi.2018.09.022
https://doi.org/10.1016/j.jtbi.2018.09.022
http://www.ncbi.nlm.nih.gov/pubmed/30243754
https://doi.org/10.1371/journal.pone.0243386
https://doi.org/10.1073/pnas.2011342118
https://doi.org/10.3390/cancers13122880
http://www.ncbi.nlm.nih.gov/pubmed/34207564


 Review article      Cancer Biology | Medicine

West et al. eLife 2023;12:e84263. DOI: https://doi.org/10.7554/eLife.84263  21 of 25

Enderling H, Wolkenhauer O. 2020. Are all models wrong? Computational and Systems Oncology 1:1. DOI: 
https://doi.org/10.1002/cso2.1008, PMID: 33585835

Enriquez- Navas PM, Kam Y, Das T, Hassan S, Silva A, Foroutan P, Ruiz E, Martinez G, Minton S, Gillies RJ, 
Gatenby RA. 2016. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast 
cancer. Science Translational Medicine 8:327ra24– . DOI: https://doi.org/10.1126/scitranslmed.aad7842, PMID: 
26912903

Esposito M, Guise T, Kang Y. 2018. The biology of bone metastasis. Cold Spring Harbor Perspectives in 
Medicine 8:a031252. DOI: https://doi.org/10.1101/cshperspect.a031252, PMID: 29101110

Farrokhian N, Maltas J, Dinh M, Durmaz A, Ellsworth P, Hitomi M, McClure E, Marusyk A, Kaznatcheev A, 
Scott JG. 2022. Measuring competitive exclusion in non- small cell lung cancer. Science Advances 8:eabm7212. 
DOI: https://doi.org/10.1126/sciadv.abm7212, PMID: 35776787

Feizabadi MS. 2017. Modeling multi- mutation and drug resistance: analysis of some case studies. Theoretical 
Biology & Medical Modelling 14:6. DOI: https://doi.org/10.1186/s12976-017-0052-y, PMID: 28327183

Fu X, Zhao Y, Lopez JI, Rowan A, Au L, Fendler A, Hazell S, Xu H, Horswell S, Shepherd STC, Spencer CE, 
Spain L, Byrne F, Stamp G, O’Brien T, Nicol D, Augustine M, Chandra A, Rudman S, Toncheva A, et al. 2022. 
Spatial patterns of tumour growth impact clonal diversification in a computational model and the tracerx renal 
study. Nature Ecology & Evolution 6:88–102. DOI: https://doi.org/10.1038/s41559-021-01586-x, PMID: 
34949820

Gallaher JA, Enriquez- Navas PM, Luddy KA, Gatenby RA, Anderson ARA. 2018. Spatial heterogeneity and 
evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies. Cancer 
Research 78:2127–2139. DOI: https://doi.org/10.1158/0008-5472.CAN-17-2649, PMID: 29382708

Gallaher JA, Brown JS, Anderson ARA. 2019. The impact of proliferation- migration tradeoffs on phenotypic 
evolution in cancer. Scientific Reports 9:2425. DOI: https://doi.org/10.1038/s41598-019-39636-x, PMID: 
30787363

Gallaher J, Strobl M, West J, Zhang J, Gatenby R, Robertson- Tessi M, Anderson ARA. 2022. The Sum and the 
Parts: Dynamics of Multiple and Individual Metastases during Adaptive Therapy. bioRxiv. DOI: https://doi.org/ 
10.1101/2022.08.04.502852

Gatenby RA, Brown J, Vincent T. 2009a. Lessons from applied ecology: cancer control using an evolutionary 
double bind. Cancer Research 69:7499–7502. DOI: https://doi.org/10.1158/0008-5472.CAN-09-1354, PMID: 
19752088

Gatenby RA, Silva AS, Gillies RJ, Frieden BR. 2009b. Adaptive therapy. Cancer Research 69:4894–4903. DOI: 
https://doi.org/10.1158/0008-5472.CAN-08-3658, PMID: 19487300

Gatenby RA, Zhang J, Brown JS. 2019. First strike- second strike strategies in metastatic cancer: lessons from the 
evolutionary dynamics of extinction. Cancer Research 79:3174–3177. DOI: https://doi.org/10.1158/0008-5472. 
CAN-19-0807, PMID: 31221821

Gatenby RA, Artzy- Randrup Y, Epstein T, Reed DR, Brown JS. 2020a. Eradicating metastatic cancer and the 
eco- evolutionary dynamics of Anthropocene extinctions. Cancer Research 80:613–623. DOI: https://doi.org/10. 
1158/0008-5472.CAN-19-1941, PMID: 31772037

Gatenby RA, Brown JS. 2020b. Integrating evolutionary dynamics into cancer therapy. Nature Reviews. Clinical 
Oncology 17:675–686. DOI: https://doi.org/10.1038/s41571-020-0411-1, PMID: 32699310

Greene JM, Gevertz JL, Sontag ED. 2019. Mathematical approach to differentiate spontaneous and induced 
evolution to drug resistance during cancer treatment. JCO Clinical Cancer Informatics 3:1–20. DOI: https://doi. 
org/10.1200/CCI.18.00087, PMID: 30969799

Hansen E, Woods RJ, Read AF. 2017. How to use a chemotherapeutic agent when resistance to it threatens the 
patient. PLOS Biology 15:e2001110. DOI: https://doi.org/10.1371/journal.pbio.2001110, PMID: 28182734

Hansen E, Read AF. 2020a. Cancer therapy: attempt cure or manage drug resistance? Evolutionary Applications 
13:1660–1672. DOI: https://doi.org/10.1111/eva.12994, PMID: 32821276

Hansen E, Read AF. 2020b. Modifying adaptive therapy to enhance competitive suppression. Cancers 12:3556. 
DOI: https://doi.org/10.3390/cancers12123556, PMID: 33260773

Hatano T, Hirata Y, Suzuki H, Aihara K. 2015. Comparison between mathematical models of intermittent 
androgen suppression for prostate cancer. Journal of Theoretical Biology 366:33–45. DOI: https://doi.org/10. 
1016/j.jtbi.2014.10.034, PMID: 25451517

Hennigan ST, Trostel SY, Terrigino NT, Voznesensky OS, Schaefer RJ, Whitlock NC, Wilkinson S, Carrabba NV, 
Atway R, Shema S, Lake R, Sweet AR, Einstein DJ, Karzai F, Gulley JL, Chang P, Bubley GJ, Balk SP, Ye H, 
Sowalsky AG. 2019. Low Abundance of Circulating Tumor DNA in Localized Prostate Cancer. bioRxiv. DOI: 
https://doi.org/10.1101/655506

Hirata Y, Bruchovsky N, Aihara K. 2010. Development of a mathematical model that predicts the outcome of 
hormone therapy for prostate cancer. Journal of Theoretical Biology 264:517–527. DOI: https://doi.org/10. 
1016/j.jtbi.2010.02.027, PMID: 20176032

Hodgkinson A, Trucu D, Lacroix M, Le Cam L, Radulescu O. 2022. Computational model of heterogeneity in 
melanoma: designing therapies and predicting outcomes. Frontiers in Oncology 12:857572. DOI: https://doi. 
org/10.3389/fonc.2022.857572, PMID: 35494017

Hussain M, Tangen CM, Berry DL, Higano CS, Crawford ED, Liu G, Wilding G, Prescott S, Kanaga Sundaram S, 
Small EJ, Dawson NA, Donnelly BJ, Venner PM, Vaishampayan UN, Schellhammer PF, Quinn DI, Raghavan D, 
Ely B, Moinpour CM, Vogelzang NJ, et al. 2013. Intermittent versus continuous androgen deprivation in 
prostate cancer. The New England Journal of Medicine 368:1314–1325. DOI: https://doi.org/10.1056/ 
NEJMoa1212299, PMID: 23550669

https://doi.org/10.7554/eLife.84263
https://doi.org/10.1002/cso2.1008
http://www.ncbi.nlm.nih.gov/pubmed/33585835
https://doi.org/10.1126/scitranslmed.aad7842
http://www.ncbi.nlm.nih.gov/pubmed/26912903
https://doi.org/10.1101/cshperspect.a031252
http://www.ncbi.nlm.nih.gov/pubmed/29101110
https://doi.org/10.1126/sciadv.abm7212
http://www.ncbi.nlm.nih.gov/pubmed/35776787
https://doi.org/10.1186/s12976-017-0052-y
http://www.ncbi.nlm.nih.gov/pubmed/28327183
https://doi.org/10.1038/s41559-021-01586-x
http://www.ncbi.nlm.nih.gov/pubmed/34949820
https://doi.org/10.1158/0008-5472.CAN-17-2649
http://www.ncbi.nlm.nih.gov/pubmed/29382708
https://doi.org/10.1038/s41598-019-39636-x
http://www.ncbi.nlm.nih.gov/pubmed/30787363
https://doi.org/10.1101/2022.08.04.502852
https://doi.org/10.1101/2022.08.04.502852
https://doi.org/10.1158/0008-5472.CAN-09-1354
http://www.ncbi.nlm.nih.gov/pubmed/19752088
https://doi.org/10.1158/0008-5472.CAN-08-3658
http://www.ncbi.nlm.nih.gov/pubmed/19487300
https://doi.org/10.1158/0008-5472.CAN-19-0807
https://doi.org/10.1158/0008-5472.CAN-19-0807
http://www.ncbi.nlm.nih.gov/pubmed/31221821
https://doi.org/10.1158/0008-5472.CAN-19-1941
https://doi.org/10.1158/0008-5472.CAN-19-1941
http://www.ncbi.nlm.nih.gov/pubmed/31772037
https://doi.org/10.1038/s41571-020-0411-1
http://www.ncbi.nlm.nih.gov/pubmed/32699310
https://doi.org/10.1200/CCI.18.00087
https://doi.org/10.1200/CCI.18.00087
http://www.ncbi.nlm.nih.gov/pubmed/30969799
https://doi.org/10.1371/journal.pbio.2001110
http://www.ncbi.nlm.nih.gov/pubmed/28182734
https://doi.org/10.1111/eva.12994
http://www.ncbi.nlm.nih.gov/pubmed/32821276
https://doi.org/10.3390/cancers12123556
http://www.ncbi.nlm.nih.gov/pubmed/33260773
https://doi.org/10.1016/j.jtbi.2014.10.034
https://doi.org/10.1016/j.jtbi.2014.10.034
http://www.ncbi.nlm.nih.gov/pubmed/25451517
https://doi.org/10.1101/655506
https://doi.org/10.1016/j.jtbi.2010.02.027
https://doi.org/10.1016/j.jtbi.2010.02.027
http://www.ncbi.nlm.nih.gov/pubmed/20176032
https://doi.org/10.3389/fonc.2022.857572
https://doi.org/10.3389/fonc.2022.857572
http://www.ncbi.nlm.nih.gov/pubmed/35494017
https://doi.org/10.1056/NEJMoa1212299
https://doi.org/10.1056/NEJMoa1212299
http://www.ncbi.nlm.nih.gov/pubmed/23550669


 Review article      Cancer Biology | Medicine

West et al. eLife 2023;12:e84263. DOI: https://doi.org/10.7554/eLife.84263  22 of 25

Iram S, Dolson E, Chiel J, Pelesko J, Krishnan N, Güngör Ö, Kuznets- Speck B, Deffner S, Ilker E, Scott JG, 
Hinczewski M. 2021. Controlling the speed and trajectory of evolution with counterdiabatic driving. Nature 
Physics 17:135–142. DOI: https://doi.org/10.1038/s41567-020-0989-3

Jain HV, Clinton SK, Bhinder A, Friedman A. 2011. Mathematical modeling of prostate cancer progression in 
response to androgen ablation therapy. PNAS 108:19701–19706. DOI: https://doi.org/10.1073/pnas. 
1115750108, PMID: 22106268

Johnson KE, Howard G, Mo W, Strasser MK, Lima E, Huang S, Brock A. 2019. Cancer cell population growth 
kinetics at low densities deviate from the exponential growth model and suggest an allee effect. PLOS Biology 
17:e3000399. DOI: https://doi.org/10.1371/journal.pbio.3000399, PMID: 31381560

Johnson KE, Howard GR, Morgan D, Brenner EA, Gardner AL, Durrett RE, Mo W, Al’Khafaji A, Sontag ED, 
Jarrett AM, Yankeelov TE, Brock A. 2020. Integrating transcriptomics and bulk time course data into a 
mathematical framework to describe and predict therapeutic resistance in cancer. Physical Biology 18:016001. 
DOI: https://doi.org/10.1088/1478-3975/abb09c, PMID: 33215611

Kareva I, Brown JS. 2021. Estrogen as an essential resource and the coexistence of ER+ and ER– cancer cells. 
Frontiers in Ecology and Evolution 9:534. DOI: https://doi.org/10.3389/fevo.2021.673082

Kashaninejad N, Nikmaneshi MR, Moghadas H, Kiyoumarsi Oskouei A, Rismanian M, Barisam M, Saidi MS, 
Firoozabadi B. 2016. Organ- tumor- on- A- chip for chemosensitivity assay: A critical review. Micromachines 7:130. 
DOI: https://doi.org/10.3390/mi7080130, PMID: 30404302

Kavran AJ, Stuart SA, Hayashi KR, Basken JM, Brandhuber BJ, Ahn NG. 2022. Intermittent treatment of brafv600e 
melanoma cells delays resistance by adaptive resensitization to drug rechallenge. PNAS 119:e2113535119. 
DOI: https://doi.org/10.1073/pnas.2113535119, PMID: 35290123

Kaznatcheev A, Peacock J, Basanta D, Marusyk A, Scott JG. 2019. Fibroblasts and alectinib switch the 
evolutionary games played by non- small cell lung cancer. Nature Ecology & Evolution 3:450–456. DOI: https:// 
doi.org/10.1038/s41559-018-0768-z, PMID: 30778184

Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. 2017. Genetically engineered mouse models in 
oncology research and cancer medicine. EMBO Molecular Medicine 9:137–153. DOI: https://doi.org/10.15252/ 
emmm.201606857, PMID: 28028012

Kim EH, Andriole GL. 2015. Prostate- specific antigen- based screening: controversy and guidelines. BMC 
Medicine 13:61. DOI: https://doi.org/10.1186/s12916-015-0296-5, PMID: 25857320

Kim E, Rebecca VW, Smalley KSM, Anderson ARA. 2016. Phase i trials in melanoma: a framework to translate 
preclinical findings to the clinic. European Journal of Cancer 67:213–222. DOI: https://doi.org/10.1016/j.ejca. 
2016.07.024, PMID: 27689717

Kim E, Brown JS, Eroglu Z, Anderson ARA. 2021. Adaptive therapy for metastatic melanoma: predictions from 
patient calibrated mathematical models. Cancers 13:823. DOI: https://doi.org/10.3390/cancers13040823, 
PMID: 33669315

Konstorum A, Hillen T, Lowengrub J. 2016. Feedback regulation in a cancer stem cell model can cause an allee 
effect. Bulletin of Mathematical Biology 78:754–785. DOI: https://doi.org/10.1007/s11538-016-0161-5, PMID: 
27113934

Kouyos RD, Metcalf CJE, Birger R, Klein EY, Abel zur Wiesch P, Ankomah P, Arinaminpathy N, Bogich TL, 
Bonhoeffer S, Brower C, Chi- Johnston G, Cohen T, Day T, Greenhouse B, Huijben S, Metlay J, Mideo N, 
Pollitt LC, Read AF, Smith DL, et al. 2014. The path of least resistance: aggressive or moderate treatment? 
Proceedings. Biological Sciences 281:20140566. DOI: https://doi.org/10.1098/rspb.2014.0566, PMID: 
25253451

Ku SY, Gleave ME, Beltran H. 2019. Towards precision oncology in advanced prostate cancer. Nature Reviews. 
Urology 16:645–654. DOI: https://doi.org/10.1038/s41585-019-0237-8, PMID: 31591549

Kuosmanen T, Cairns J, Noble R, Beerenwinkel N, Mononen T, Mustonen V. 2021. Drug- induced resistance 
evolution necessitates less aggressive treatment. PLOS Computational Biology 17:e1009418. DOI: https://doi. 
org/10.1371/journal.pcbi.1009418, PMID: 34555024

Lau E, McCoy P, Reeves F, Chow K, Clarkson M, Kwan EM, Packwood K, Northen H, He M, Kingsbury Z, 
Mangiola S, Kerger M, Furrer MA, Crowe H, Costello AJ, McBride DJ, Ross MT, Pope B, Hovens CM, 
Corcoran NM. 2020. Detection of ctDNA in plasma of patients with clinically localised prostate cancer is 
associated with rapid disease progression. Genome Medicine 12:72. DOI: https://doi.org/10.1186/s13073-020- 
00770-1, PMID: 32807235

Lemos AEG, Matos A, Ferreira LB, Gimba ERP. 2019. The long non- coding RNA pca3: an update of its functions 
and clinical applications as a biomarker in prostate cancer. Oncotarget 10:6589–6603. DOI: https://doi.org/10. 
18632/oncotarget.27284, PMID: 31762940

Li W, Zhang Y, Kankala RK, Zou L, Chen Z. 2022. Antibody and cellular- based therapies for pediatric acute 
lymphoblastic leukemia: mechanisms and prospects. Pharmacology 107:368–375. DOI: https://doi.org/10. 
1159/000524040, PMID: 35390793

Liu R, Wang S, Tan X, Zou X. 2022. Identifying optimal adaptive therapeutic schedules for prostate cancer 
through combining mathematical modeling and dynamic optimization. Applied Mathematical Modelling 
107:688–700. DOI: https://doi.org/10.1016/j.apm.2022.03.004

Ma Y, Newton PK. 2021. Role of synergy and antagonism in designing multidrug adaptive chemotherapy 
schedules. Physical Review. E 103:032408. DOI: https://doi.org/10.1103/PhysRevE.103.032408, PMID: 
33862722

https://doi.org/10.7554/eLife.84263
https://doi.org/10.1038/s41567-020-0989-3
https://doi.org/10.1073/pnas.1115750108
https://doi.org/10.1073/pnas.1115750108
http://www.ncbi.nlm.nih.gov/pubmed/22106268
https://doi.org/10.1371/journal.pbio.3000399
http://www.ncbi.nlm.nih.gov/pubmed/31381560
https://doi.org/10.1088/1478-3975/abb09c
http://www.ncbi.nlm.nih.gov/pubmed/33215611
https://doi.org/10.3389/fevo.2021.673082
https://doi.org/10.3390/mi7080130
http://www.ncbi.nlm.nih.gov/pubmed/30404302
https://doi.org/10.1073/pnas.2113535119
http://www.ncbi.nlm.nih.gov/pubmed/35290123
https://doi.org/10.1038/s41559-018-0768-z
https://doi.org/10.1038/s41559-018-0768-z
http://www.ncbi.nlm.nih.gov/pubmed/30778184
https://doi.org/10.15252/emmm.201606857
https://doi.org/10.15252/emmm.201606857
http://www.ncbi.nlm.nih.gov/pubmed/28028012
https://doi.org/10.1186/s12916-015-0296-5
http://www.ncbi.nlm.nih.gov/pubmed/25857320
https://doi.org/10.1016/j.ejca.2016.07.024
https://doi.org/10.1016/j.ejca.2016.07.024
http://www.ncbi.nlm.nih.gov/pubmed/27689717
https://doi.org/10.3390/cancers13040823
http://www.ncbi.nlm.nih.gov/pubmed/33669315
https://doi.org/10.1007/s11538-016-0161-5
http://www.ncbi.nlm.nih.gov/pubmed/27113934
https://doi.org/10.1098/rspb.2014.0566
http://www.ncbi.nlm.nih.gov/pubmed/25253451
https://doi.org/10.1038/s41585-019-0237-8
http://www.ncbi.nlm.nih.gov/pubmed/31591549
https://doi.org/10.1371/journal.pcbi.1009418
https://doi.org/10.1371/journal.pcbi.1009418
http://www.ncbi.nlm.nih.gov/pubmed/34555024
https://doi.org/10.1186/s13073-020-00770-1
https://doi.org/10.1186/s13073-020-00770-1
http://www.ncbi.nlm.nih.gov/pubmed/32807235
https://doi.org/10.18632/oncotarget.27284
https://doi.org/10.18632/oncotarget.27284
http://www.ncbi.nlm.nih.gov/pubmed/31762940
https://doi.org/10.1159/000524040
https://doi.org/10.1159/000524040
http://www.ncbi.nlm.nih.gov/pubmed/35390793
https://doi.org/10.1016/j.apm.2022.03.004
https://doi.org/10.1103/PhysRevE.103.032408
http://www.ncbi.nlm.nih.gov/pubmed/33862722


 Review article      Cancer Biology | Medicine

West et al. eLife 2023;12:e84263. DOI: https://doi.org/10.7554/eLife.84263  23 of 25

M A M, Kim J- Y, Pan C- H, Kim E. 2022. The impact of the spatial heterogeneity of resistant cells and fibroblasts 
on treatment response. PLOS Computational Biology 18:e1009919. DOI: https://doi.org/10.1371/journal.pcbi. 
1009919, PMID: 35263336

Martin RB, Fisher ME, Minchin RF, Teo KL. 1992a. Low- intensity combination chemotherapy maximizes host 
survival time for tumors containing drug- resistant cells. Mathematical Biosciences 110:221–252. DOI: https:// 
doi.org/10.1016/0025-5564(92)90039-y, PMID: 1498451

Martin RB, Fisher ME, Minchin RF, Teo KL. 1992b . Optimal control of tumor size used to maximize survival time 
when cells are resistant to chemotherapy. Mathematical Biosciences 110:201–219. DOI: https://doi.org/10. 
1016/0025-5564(92)90038-x, PMID: 1498450

Masud M, Kim J, Kim E. 2022. Containing Cancer with Personalized Minimum Effective Dose. bioRxiv. DOI: 
https://doi.org/10.1101/2022.03.28.486150

Matsuzaki T, Iwami E, Sasahara K, Kuroda A, Nakajima T, Terashima T. 2019. A case report of metastatic lung 
adenocarcinoma with long- term survival for over 11 years. Medicine 98:e14100. DOI: https://doi.org/10.1097/ 
MD.0000000000014100, PMID: 30681568

McClatchy DM, Willers H, Hata AN, Piotrowska Z, Sequist LV, Paganetti H, Grassberger C. 2020. Modeling 
resistance and recurrence patterns of combined targeted- chemoradiotherapy predicts benefit of shorter 
induction period. Cancer Research 80:5121–5133. DOI: https://doi.org/10.1158/0008-5472.CAN-19-3883, 
PMID: 32907839

McGuire JJ, Frieling JS, Lo CH, Li T, Muhammad A, Lawrence HR, Lawrence NJ, Cook LM, Lynch CC. 2021. 
Mesenchymal stem cell- derived interleukin- 28 drives the selection of apoptosis resistant bone metastatic 
prostate cancer. Nature Communications 12:723. DOI: https://doi.org/10.1038/s41467-021-20962-6, PMID: 
33526787

Milano MT, Biswas T, Simone CB, Lo SS. 2021. Oligometastases: history of a hypothesis. Annals of Palliative 
Medicine 10:5923–5930. DOI: https://doi.org/10.21037/apm.2020.03.31, PMID: 32279519

Miller BE, Miller FR, Wilburn D, Heppner GH. 1988. Dominance of a tumor subpopulation line in mixed 
heterogeneous mouse mammary tumors. Cancer Research 48:5747–5753 PMID: 3167832. 

Mistry HB. 2020. Evolutionary Based Adaptive Dosing Algorithms: Beware the Cost of Cumulative Risk. bioRxiv. 
DOI: https://doi.org/10.1101/2020.06.23.167056

Mistry HB. 2021. On the reporting and analysis of a cancer evolutionary adaptive dosing trial. Nature 
Communications 12:316. DOI: https://doi.org/10.1038/s41467-020-20174-4, PMID: 33436546

Monro HC, Gaffney EA. 2009. Modelling chemotherapy resistance in palliation and failed cure. Journal of 
Theoretical Biology 257:292–302. DOI: https://doi.org/10.1016/j.jtbi.2008.12.006, PMID: 19135065

Morgan D, Jost TA, De Santiago C, Brock A. 2021. Applications of high- resolution clone tracking technologies in 
cancer. Current Opinion in Biomedical Engineering 19:100317. DOI: https://doi.org/10.1016/j.cobme.2021. 
100317, PMID: 34901584

Morken JD, Packer A, Everett RA, Nagy JD, Kuang Y. 2014. Mechanisms of resistance to intermittent androgen 
deprivation in patients with prostate cancer identified by a novel computational method. Cancer Research 
74:3673–3683. DOI: https://doi.org/10.1158/0008-5472.CAN-13-3162, PMID: 24853547

Nam A, Mohanty A, Bhattacharya S, Kotnala S, Achuthan S, Hari K, Srivastava S, Guo L, Nathan A, Chatterjee R, 
Jain M, Nasser MW, Batra SK, Rangarajan G, Massarelli E, Levine H, Jolly MK, Kulkarni P, Salgia R. 2021. 
Dynamic phenotypic switching and group behavior help non- small cell lung cancer cells evade chemotherapy. 
Biomolecules 12:8. DOI: https://doi.org/10.3390/biom12010008, PMID: 35053156

Newton PK, Ma Y. 2019. Nonlinear adaptive control of competitive release and chemotherapeutic resistance. 
Physical Review. E 99:022404. DOI: https://doi.org/10.1103/PhysRevE.99.022404, PMID: 30934318

Noble RJ, Walther V, Roumestand C, Hochberg ME, Hibner U, Lassus P. 2021. Paracrine behaviors arbitrate 
parasite- like interactions between tumor subclones. Frontiers in Ecology and Evolution 9:675638. DOI: https:// 
doi.org/10.3389/fevo.2021.675638, PMID: 35096847

Noble R, Burri D, Le Sueur C, Lemant J, Viossat Y, Kather JN, Beerenwinkel N. 2022. Spatial structure governs 
the mode of tumour evolution. Nature Ecology & Evolution 6:207–217. DOI: https://doi.org/10.1038/s41559- 
021-01615-9, PMID: 34949822

Noorbakhsh J, Zhao Z- M, Russell JC, Chuang JH. 2020. Treating cancer as an invasive species. Molecular Cancer 
Research 18:20–26. DOI: https://doi.org/10.1158/1541-7786.MCR-19-0262, PMID: 31527151

Olufsen MS, Ottesen JT. 2013. A practical approach to parameter estimation applied to model predicting heart 
rate regulation. Journal of Mathematical Biology 67:39–68. DOI: https://doi.org/10.1007/s00285-012-0535-8, 
PMID: 22588357

Park DS, Robertson- Tessi M, Luddy KA, Maini PK, Bonsall MB, Gatenby RA, Anderson ARA. 2019. The Goldilocks 
window of personalized chemotherapy: getting the immune response just right. Cancer Research 79:5302–
5315. DOI: https://doi.org/10.1158/0008-5472.CAN-18-3712, PMID: 31387920

Pillai M, Chen Z, Jolly MK, Li C. 2022. Quantitative landscapes reveal trajectories of cell- state transitions 
associated with drug resistance in melanoma. IScience 25:105499. DOI: https://doi.org/10.1016/j.isci.2022. 
105499, PMID: 36425754

Piretto E, Delitala M, Ferraro M. 2018. Combination therapies and intra- tumoral competition: insights from 
mathematical modeling. Journal of Theoretical Biology 446:149–159. DOI: https://doi.org/10.1016/j.jtbi.2018. 
03.014, PMID: 29548736

Portz T, Kuang Y, Nagy JD. 2012. A clinical data validated mathematical model of prostate cancer growth under 
intermittent androgen suppression therapy. AIP Advances 2:011002. DOI: https://doi.org/10.1063/1.3697848

https://doi.org/10.7554/eLife.84263
https://doi.org/10.1371/journal.pcbi.1009919
https://doi.org/10.1371/journal.pcbi.1009919
http://www.ncbi.nlm.nih.gov/pubmed/35263336
https://doi.org/10.1016/0025-5564(92)90039-y
https://doi.org/10.1016/0025-5564(92)90039-y
http://www.ncbi.nlm.nih.gov/pubmed/1498451
https://doi.org/10.1016/0025-5564(92)90038-x
https://doi.org/10.1016/0025-5564(92)90038-x
http://www.ncbi.nlm.nih.gov/pubmed/1498450
https://doi.org/10.1101/2022.03.28.486150
https://doi.org/10.1097/MD.0000000000014100
https://doi.org/10.1097/MD.0000000000014100
http://www.ncbi.nlm.nih.gov/pubmed/30681568
https://doi.org/10.1158/0008-5472.CAN-19-3883
http://www.ncbi.nlm.nih.gov/pubmed/32907839
https://doi.org/10.1038/s41467-021-20962-6
http://www.ncbi.nlm.nih.gov/pubmed/33526787
https://doi.org/10.21037/apm.2020.03.31
http://www.ncbi.nlm.nih.gov/pubmed/32279519
http://www.ncbi.nlm.nih.gov/pubmed/3167832
https://doi.org/10.1101/2020.06.23.167056
https://doi.org/10.1038/s41467-020-20174-4
http://www.ncbi.nlm.nih.gov/pubmed/33436546
https://doi.org/10.1016/j.jtbi.2008.12.006
http://www.ncbi.nlm.nih.gov/pubmed/19135065
https://doi.org/10.1016/j.cobme.2021.100317
https://doi.org/10.1016/j.cobme.2021.100317
http://www.ncbi.nlm.nih.gov/pubmed/34901584
https://doi.org/10.1158/0008-5472.CAN-13-3162
http://www.ncbi.nlm.nih.gov/pubmed/24853547
https://doi.org/10.3390/biom12010008
http://www.ncbi.nlm.nih.gov/pubmed/35053156
https://doi.org/10.1103/PhysRevE.99.022404
http://www.ncbi.nlm.nih.gov/pubmed/30934318
https://doi.org/10.3389/fevo.2021.675638
https://doi.org/10.3389/fevo.2021.675638
http://www.ncbi.nlm.nih.gov/pubmed/35096847
https://doi.org/10.1038/s41559-021-01615-9
https://doi.org/10.1038/s41559-021-01615-9
http://www.ncbi.nlm.nih.gov/pubmed/34949822
https://doi.org/10.1158/1541-7786.MCR-19-0262
http://www.ncbi.nlm.nih.gov/pubmed/31527151
https://doi.org/10.1007/s00285-012-0535-8
http://www.ncbi.nlm.nih.gov/pubmed/22588357
https://doi.org/10.1158/0008-5472.CAN-18-3712
http://www.ncbi.nlm.nih.gov/pubmed/31387920
https://doi.org/10.1016/j.isci.2022.105499
https://doi.org/10.1016/j.isci.2022.105499
http://www.ncbi.nlm.nih.gov/pubmed/36425754
https://doi.org/10.1016/j.jtbi.2018.03.014
https://doi.org/10.1016/j.jtbi.2018.03.014
http://www.ncbi.nlm.nih.gov/pubmed/29548736
https://doi.org/10.1063/1.3697848


 Review article      Cancer Biology | Medicine

West et al. eLife 2023;12:e84263. DOI: https://doi.org/10.7554/eLife.84263  24 of 25

Pouchol C, Clairambault J, Lorz A, Trélat E. 2018. Asymptotic analysis and optimal control of an integro- 
differential system modelling healthy and cancer cells exposed to chemotherapy. Journal de Mathématiques 
Pures et Appliquées 116:268–308. DOI: https://doi.org/10.1016/j.matpur.2017.10.007

Pressley M, Salvioli M, Lewis DB, Richards CL, Brown JS, Staňková K. 2021. Evolutionary dynamics of treatment- 
induced resistance in cancer informs understanding of rapid evolution in natural systems. Frontiers in Ecology 
and Evolution 9:460. DOI: https://doi.org/10.3389/fevo.2021.681121

Reed DR, Metts J, Pressley M, Fridley BL, Hayashi M, Isakoff MS, Loeb DM, Makanji R, Roberts RD, Trucco M, 
Wagner LM, Alexandrow MG, Gatenby RA, Brown JS. 2020. An evolutionary framework for treating pediatric 
sarcomas. Cancer 126:2577–2587. DOI: https://doi.org/10.1002/cncr.32777, PMID: 32176331

Ried K, Tamanna T, Matthews S, Eng P, Sali A. 2020. New screening test improves detection of prostate cancer 
using circulating tumor cells and prostate- specific markers. Frontiers in Oncology 10:582. DOI: https://doi.org/ 
10.3389/fonc.2020.00582, PMID: 32391268

Robertson- Tessi M, Brown J, Poole M, Johnson M, Marusyk A, Gallaher J, Luddy K, Whelan C, West J, Strobl M, 
Turati V, Enderling H, Schell M, Tan A, Boyle T, Makanji R, Farinhas J, Soliman H, Lemanne D, Gatenby R, et al. 
2023. Feasibility of an Evolutionary Tumor Board for Generating Novel Personalized Therapeutic Strategies. 
medRxiv. DOI: https://doi.org/10.1101/2023.01.18.23284628v1

Salami SS, Singhal U, Spratt DE, Palapattu GS, Hollenbeck BK, Schonhoft JD, Graf R, Louw J, Jendrisak A, 
Dugan L, Wang Y, Tomlins SA, Dittamore R, Feng FY, Morgan TM. 2019. Circulating tumor cells as a predictor 
of treatment response in clinically localized prostate cancer. JCO Precision Oncology 3:00352. DOI: https://doi. 
org/10.1200/po.18.00352, PMID: 32832835

Salgia R, Kulkarni P. 2018. The genetic/non- genetic duality of drug resistance in cancer. Trends in Cancer 
4:110–118. DOI: https://doi.org/10.1016/j.trecan.2018.01.001, PMID: 29458961

Schättler H, Ledzewicz U, Amini B. 2016. Dynamical properties of a minimally parameterized mathematical 
model for metronomic chemotherapy. Journal of Mathematical Biology 72:1255–1280. DOI: https://doi.org/10. 
1007/s00285-015-0907-y, PMID: 26089097

Scott J. 2012. Phase I trialist. The Lancet. Oncology 13:236. DOI: https://doi.org/10.1016/s1470-2045(12) 
70098-0, PMID: 22489289

Seferbekova Z, Lomakin A, Yates LR, Gerstung M. 2022. Spatial biology of cancer evolution. Nat Rev Genet 
1:19. DOI: https://doi.org/10.1038/s41576-022-00553-x, PMID: 36494509

Shida Y, Hakariya T, Miyata Y, Sakai H. 2017. Three cases of nonmetastatic prostate cancer treated successfully 
with primary intermittent androgen deprivation therapy over 10 years. Clinical Case Reports 5:425–428. DOI: 
https://doi.org/10.1002/ccr3.854, PMID: 28396761

Silva AS, Gatenby RA. 2010. A theoretical quantitative model for evolution of cancer chemotherapy resistance. 
Biology Direct 5:1–17. DOI: https://doi.org/10.1186/1745-6150-5-25, PMID: 20406443

Silva AS, Kam Y, Khin ZP, Minton SE, Gillies RJ, Gatenby RA. 2012. Evolutionary approaches to prolong 
progression- free survival in breast cancer. Cancer Research 72:6362–6370. DOI: https://doi.org/10.1158/0008- 
5472.CAN-12-2235, PMID: 23066036

Siolas D, Hannon GJ. 2013. Patient- Derived tumor xenografts: transforming clinical samples into mouse models. 
Cancer Research 73:5315–5319. DOI: https://doi.org/10.1158/0008-5472.CAN-13-1069, PMID: 23733750

Smalley I, Kim E, Li J, Spence P, Wyatt CJ, Eroglu Z, Sondak VK, Messina JL, Babacan NA, Maria- Engler SS, 
De Armas L, Williams SL, Gatenby RA, Chen YA, Anderson ARA, Smalley KSM. 2019. Leveraging transcriptional 
dynamics to improve BRAF inhibitor responses in melanoma. EBioMedicine 48:178–190. DOI: https://doi.org/ 
10.1016/j.ebiom.2019.09.023, PMID: 31594749

Stanková K, Brown JS, Dalton WS, Gatenby RA. 2019. Optimizing cancer treatment using game theory: a review. 
JAMA Oncology 5:96–103. DOI: https://doi.org/10.1001/jamaoncol.2018.3395, PMID: 30098166

Strobl M, West J, Viossat Y, Damaghi M, Robertson- Tessi M, Brown J, Gatenby R, Maini P, Anderson A. 2020. 
Turnover Modulates the Need for a Cost of Resistance in Adaptive Therapy. bioRxiv. DOI: https://doi.org/10. 
1101/2020.01.22.914366

Strobl MAR, Gallaher J, West J, Robertson- Tessi M, Maini PK, Anderson ARA. 2022. Spatial structure impacts 
adaptive therapy by shaping intra- tumoral competition. Communications Medicine 2:46. DOI: https://doi.org/ 
10.1038/s43856-022-00110-x, PMID: 35603284

Tabassum DP, Polyak K. 2015. Tumorigenesis: it takes a village. Nature Reviews Cancer 15:473–483. DOI: 
https://doi.org/10.1038/nrc3971, PMID: 26156638

Thomas DS, Cisneros LH, Anderson ARA, Maley CC. 2022. In silico investigations of multi- drug adaptive therapy 
protocols. Cancers 14:2699. DOI: https://doi.org/10.3390/cancers14112699, PMID: 35681680

Tosoian JJ, Trock BJ, Morgan TM, Salami SS, Tomlins SA, Spratt DE, Siddiqui J, Kunju LP, Botbyl R, Chopra Z, 
Pandian B, Eyrich NW, Longton G, Zheng Y, Palapattu GS, Wei JT, Niknafs YS, Chinnaiyan AM. 2021. Use of the 
myprostatescore test to rule out clinically significant cancer: validation of a straightforward clinical testing 
approach. Journal of Urology 205:732–739. DOI: https://doi.org/10.1097/JU.0000000000001430, PMID: 
33080150

Viossat Y, Noble R. 2021. A theoretical analysis of tumour containment. Nature Ecology & Evolution 5:826–835. 
DOI: https://doi.org/10.1038/s41559-021-01428-w, PMID: 33846605

Wang J, Zhang Y, Liu X, Liu H. 2021a. Is the fixed periodic treatment effective for the tumor system without 
complete information? Cancer Management and Research 13:8915–8928. DOI: https://doi.org/10.2147/CMAR. 
S339787, PMID: 34876854

Wang J, Zhang Y, Liu X, Liu H. 2021b. Optimizing adaptive therapy based on the reachability to tumor resistant 
subpopulation. Cancers 13:5262. DOI: https://doi.org/10.3390/cancers13215262, PMID: 34771426

https://doi.org/10.7554/eLife.84263
https://doi.org/10.1016/j.matpur.2017.10.007
https://doi.org/10.3389/fevo.2021.681121
https://doi.org/10.1002/cncr.32777
http://www.ncbi.nlm.nih.gov/pubmed/32176331
https://doi.org/10.3389/fonc.2020.00582
https://doi.org/10.3389/fonc.2020.00582
http://www.ncbi.nlm.nih.gov/pubmed/32391268
https://doi.org/10.1101/2023.01.18.23284628v1
https://doi.org/10.1200/po.18.00352
https://doi.org/10.1200/po.18.00352
http://www.ncbi.nlm.nih.gov/pubmed/32832835
https://doi.org/10.1016/j.trecan.2018.01.001
http://www.ncbi.nlm.nih.gov/pubmed/29458961
https://doi.org/10.1007/s00285-015-0907-y
https://doi.org/10.1007/s00285-015-0907-y
http://www.ncbi.nlm.nih.gov/pubmed/26089097
https://doi.org/10.1016/s1470-2045(12)70098-0
https://doi.org/10.1016/s1470-2045(12)70098-0
http://www.ncbi.nlm.nih.gov/pubmed/22489289
https://doi.org/10.1038/s41576-022-00553-x
http://www.ncbi.nlm.nih.gov/pubmed/36494509
https://doi.org/10.1002/ccr3.854
http://www.ncbi.nlm.nih.gov/pubmed/28396761
https://doi.org/10.1186/1745-6150-5-25
http://www.ncbi.nlm.nih.gov/pubmed/20406443
https://doi.org/10.1158/0008-5472.CAN-12-2235
https://doi.org/10.1158/0008-5472.CAN-12-2235
http://www.ncbi.nlm.nih.gov/pubmed/23066036
https://doi.org/10.1158/0008-5472.CAN-13-1069
http://www.ncbi.nlm.nih.gov/pubmed/23733750
https://doi.org/10.1016/j.ebiom.2019.09.023
https://doi.org/10.1016/j.ebiom.2019.09.023
http://www.ncbi.nlm.nih.gov/pubmed/31594749
https://doi.org/10.1001/jamaoncol.2018.3395
http://www.ncbi.nlm.nih.gov/pubmed/30098166
https://doi.org/10.1101/2020.01.22.914366
https://doi.org/10.1101/2020.01.22.914366
https://doi.org/10.1038/s43856-022-00110-x
https://doi.org/10.1038/s43856-022-00110-x
http://www.ncbi.nlm.nih.gov/pubmed/35603284
https://doi.org/10.1038/nrc3971
http://www.ncbi.nlm.nih.gov/pubmed/26156638
https://doi.org/10.3390/cancers14112699
http://www.ncbi.nlm.nih.gov/pubmed/35681680
https://doi.org/10.1097/JU.0000000000001430
http://www.ncbi.nlm.nih.gov/pubmed/33080150
https://doi.org/10.1038/s41559-021-01428-w
http://www.ncbi.nlm.nih.gov/pubmed/33846605
https://doi.org/10.2147/CMAR.S339787
https://doi.org/10.2147/CMAR.S339787
http://www.ncbi.nlm.nih.gov/pubmed/34876854
https://doi.org/10.3390/cancers13215262
http://www.ncbi.nlm.nih.gov/pubmed/34771426


 Review article      Cancer Biology | Medicine

West et al. eLife 2023;12:e84263. DOI: https://doi.org/10.7554/eLife.84263  25 of 25

Wang H, Brown PC, Chow ECY, Ewart L, Ferguson SS, Fitzpatrick S, Freedman BS, Guo GL, Hedrich W, 
Heyward S, Hickman J, Isoherranen N, Li AP, Liu Q, Mumenthaler SM, Polli J, Proctor WR, Ribeiro A, Wang JY, 
Wange RL, et al. 2021c. 3D cell culture models: drug pharmacokinetics, safety assessment, and regulatory 
consideration. Clinical and Translational Science 14:1659–1680. DOI: https://doi.org/10.1111/cts.13066, PMID: 
33982436

West J., Ma Y, Newton PK. 2018. Capitalizing on competition: an evolutionary model of competitive release in 
metastatic castration resistant prostate cancer treatment. Journal of Theoretical Biology 455:249–260. DOI: 
https://doi.org/10.1016/j.jtbi.2018.07.028, PMID: 30048718

West JB, Dinh MN, Brown JS, Zhang J, Anderson AR, Gatenby RA. 2019. Multidrug cancer therapy in metastatic 
castrate- resistant prostate cancer: an evolution- based strategy. Clinical Cancer Research 25:4413–4421. DOI: 
https://doi.org/10.1158/1078-0432.CCR-19-0006, PMID: 30992299

West J, You L, Zhang J, Gatenby RA, Brown JS, Newton PK, Anderson ARA. 2020. Towards multidrug adaptive 
therapy. Cancer Research 80:1578–1589. DOI: https://doi.org/10.1158/0008-5472.CAN-19-2669, PMID: 
31948939

West J, Schenck RO, Gatenbee C, Robertson- Tessi M, Anderson ARA. 2021. Normal tissue architecture 
determines the evolutionary course of cancer. Nature Communications 12:2060. DOI: https://doi.org/10.1038/ 
s41467-021-22123-1, PMID: 33824323

Xu S, Menu E, De Becker A, Van Camp B, Vanderkerken K, Van Riet I. 2012. Bone marrow- derived mesenchymal 
stromal cells are attracted by multiple myeloma cell- produced chemokine CCL25 and favor myeloma cell 
growth in vitro and in vivo. Stem Cells 30:266–279. DOI: https://doi.org/10.1002/stem.787, PMID: 22102554

Yoon N, Vander Velde R, Marusyk A, Scott JG. 2018. Optimal therapy scheduling based on a pair of collaterally 
sensitive drugs. Bulletin of Mathematical Biology 80:1776–1809. DOI: https://doi.org/10.1007/s11538-018- 
0434-2, PMID: 29736596

Yoon N, Krishnan N, Scott J. 2021. Theoretical modeling of collaterally sensitive drug cycles: shaping 
heterogeneity to allow adaptive therapy. Journal of Mathematical Biology 83:1–29. DOI: https://doi.org/10. 
1007/s00285-021-01671-6

You L, Brown JS, Thuijsman F, Cunningham JJ, Gatenby RA, Zhang J, Staňková K. 2017. Spatial vs. non- spatial 
eco- evolutionary dynamics in a tumor growth model. Journal of Theoretical Biology 435:78–97. DOI: https:// 
doi.org/10.1016/j.jtbi.2017.08.022, PMID: 28870617

Zazoua A, Wang W. 2019. Analysis of mathematical model of prostate cancer with androgen deprivation therapy. 
Communications in Nonlinear Science and Numerical Simulation 66:41–60. DOI: https://doi.org/10.1016/j. 
cnsns.2018.06.004

Zhang J, Cunningham JJ, Brown JS, Gatenby RA. 2017. Integrating evolutionary dynamics into treatment of 
metastatic castrate- resistant prostate cancer. Nature Communications 8:1816. DOI: https://doi.org/10.1038/ 
s41467-017-01968-5, PMID: 29180633

Zhang J, Cunningham JJ, Brown JS, Gatenby RA. 2021. Response to mistry. Nature Communications 12:329. 
DOI: https://doi.org/10.1038/s41467-020-20175-3, PMID: 33436553

Zhang J, Cunningham J, Brown J, Gatenby R. 2022. Evolution- based mathematical models significantly prolong 
response to abiraterone in metastatic castrate- resistant prostate cancer and identify strategies to further 
improve outcomes. eLife 11:e76284. DOI: https://doi.org/10.7554/eLife.76284, PMID: 35762577

https://doi.org/10.7554/eLife.84263
https://doi.org/10.1111/cts.13066
http://www.ncbi.nlm.nih.gov/pubmed/33982436
https://doi.org/10.1016/j.jtbi.2018.07.028
http://www.ncbi.nlm.nih.gov/pubmed/30048718
https://doi.org/10.1158/1078-0432.CCR-19-0006
http://www.ncbi.nlm.nih.gov/pubmed/30992299
https://doi.org/10.1158/0008-5472.CAN-19-2669
http://www.ncbi.nlm.nih.gov/pubmed/31948939
https://doi.org/10.1038/s41467-021-22123-1
https://doi.org/10.1038/s41467-021-22123-1
http://www.ncbi.nlm.nih.gov/pubmed/33824323
https://doi.org/10.1002/stem.787
http://www.ncbi.nlm.nih.gov/pubmed/22102554
https://doi.org/10.1007/s11538-018-0434-2
https://doi.org/10.1007/s11538-018-0434-2
http://www.ncbi.nlm.nih.gov/pubmed/29736596
https://doi.org/10.1007/s00285-021-01671-6
https://doi.org/10.1007/s00285-021-01671-6
https://doi.org/10.1016/j.jtbi.2017.08.022
https://doi.org/10.1016/j.jtbi.2017.08.022
http://www.ncbi.nlm.nih.gov/pubmed/28870617
https://doi.org/10.1016/j.cnsns.2018.06.004
https://doi.org/10.1016/j.cnsns.2018.06.004
https://doi.org/10.1038/s41467-017-01968-5
https://doi.org/10.1038/s41467-017-01968-5
http://www.ncbi.nlm.nih.gov/pubmed/29180633
https://doi.org/10.1038/s41467-020-20175-3
http://www.ncbi.nlm.nih.gov/pubmed/33436553
https://doi.org/10.7554/eLife.76284
http://www.ncbi.nlm.nih.gov/pubmed/35762577

	A survey of open questions in adaptive therapy: Bridging mathematics and clinical translation
	Introduction
	Integrating the appropriate components into mathematical models
	What components are necessary for a mathematical model of adaptive therapy?
	How competitive are treatment-resistant phenotypes?
	What is the role of plasticity and drug-induced mutations in adaptive therapy?
	What is the role of homeostasis and normal tissue in adaptive therapy?

	Design and validation of dosing protocols
	Cure or control?
	What is the optimal adaptive dose administration protocol?
	How can we leverage mathematical modeling to support testing of adaptive therapy in the wet lab?
	What are the best practices to design adaptive algorithms for multiple drugs?

	Challenges and opportunities in clinical translation
	Is real-time patient prediction feasible?
	Do adverse effects of maintaining high tumor burden negate potential benefit?
	Can a mathematical model drive treatment decision-making?

	Concluding remarks

	Additional information
	Funding
	Author contributions
	Author ORCIDs

	References


