
Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 1 of 28

Using adversarial networks to extend
brain computer interface decoding
accuracy over time
Xuan Ma1†, Fabio Rizzoglio1†, Kevin L Bodkin1, Eric Perreault2,3,4, Lee E Miller1,2,3,4,
Ann Kennedy1*

1Department of Neuroscience, Northwestern University, Chicago, United States;
2Department of Biomedical Engineering, Northwestern University, Evanston,
United States; 3Department of Physical Medicine and Rehabilitation, Northwestern
University, Chicago, United States; 4Shirley Ryan AbilityLab, Chicago, United States

Abstract Existing intracortical brain computer interfaces (iBCIs) transform neural activity into
control signals capable of restoring movement to persons with paralysis. However, the accuracy
of the ‘decoder’ at the heart of the iBCI typically degrades over time due to turnover of recorded
neurons. To compensate, decoders can be recalibrated, but this requires the user to spend extra
time and effort to provide the necessary data, then learn the new dynamics. As the recorded
neurons change, one can think of the underlying movement intent signal being expressed in
changing coordinates. If a mapping can be computed between the different coordinate systems,
it may be possible to stabilize the original decoder’s mapping from brain to behavior without reca-
libration. We previously proposed a method based on Generalized Adversarial Networks (GANs),
called ‘Adversarial Domain Adaptation Network’ (ADAN), which aligns the distributions of latent
signals within underlying low-dimensional neural manifolds. However, we tested ADAN on only a
very limited dataset. Here we propose a method based on Cycle-Consistent Adversarial Networks
(Cycle-GAN), which aligns the distributions of the full-dimensional neural recordings. We tested
both Cycle-GAN and ADAN on data from multiple monkeys and behaviors and compared them to
a third, quite different method based on Procrustes alignment of axes provided by Factor Analysis.
All three methods are unsupervised and require little data, making them practical in real life. Overall,
Cycle-GAN had the best performance and was easier to train and more robust than ADAN, making
it ideal for stabilizing iBCI systems over time.

Editor's evaluation
This paper reports a new way to deal with the drift of neural signals and representations over time
in a BCI. Given the context of the rapidly advancing field, the reviewers assessed the findings to be
useful and potentially valuable. With the code provided for other investigators to use, the strength
of evidence was convincing.

Introduction
Intracortical brain-computer interfaces (iBCIs) aim to restore motor function in people with paralysis
by transforming neural activity recorded from motor areas of the brain into an estimate of the user’s
movement intent. This transformation is accomplished using a neural ‘decoder’, an algorithm that
translates the moment-to-moment activity of a population of neurons into a signal used to control
intended movements. There has been substantial improvement in our ability to record and decode

TOOLS AND RESOURCES

*For correspondence:
ann.kennedy@northwestern.edu
†These authors contributed
equally to this work

Competing interest: The authors
declare that no competing
interests exist.

Funding: See page 19

Preprinted: 26 August 2022
Received: 18 October 2022
Accepted: 01 August 2023
Published: 23 August 2023

Reviewing Editor: Caleb
Kemere, Rice University, United
States

‍ ‍ Copyright Ma, Rizzoglio
et al. This article is distributed
under the terms of the Creative
Commons Attribution License,
which permits unrestricted use
and redistribution provided that
the original author and source
are credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.84296
mailto:ann.kennedy@northwestern.edu
https://doi.org/10.1101/2022.08.26.504777
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 2 of 28

from large populations of neurons in the past decade, which allows more information to be extracted
from the brain and conveyed to the external effectors of the iBCI. However, the long-term stability
of iBCIs is still far from satisfactory due in part to the instabilities in neural recordings. The relative
micromotion between the electrode tip and the brain tissue (Sussillo et al., 2016b), the changes of
regional extracellular environment (Perge et al., 2013), or even the active and inactive state shifts
of neurons (Volgushev et al., 2006) could contribute to such instabilities, resulting in the turnover
of signals picked by the chronically implanted electrodes on a time scale of days or even a few hours
(Downey et al., 2018). Given these changes, a decoder could produce inaccurate predictions of the
user’s intent leading to the degraded iBCI performance.

To counteract these effects, a neural decoder might be recalibrated with newly acquired data. A
disadvantage of this strategy is that during recalibration, normal use would be interrupted. Further-
more, the recalibration process likely means the user would need to learn the dynamics of the new
decoder, imposing additional time and cognitive burden. For persons with paralysis to live more
independently, an ideal iBCI would accommodate the gradual drift in neural recordings without super-
vision, thereby minimizing the need to periodically learn new decoders. For the performance of the
initial ‘day-0’ decoder to be maintained, an additional component, an “input stabilizer”, would need
to be added to transform the neural recordings made on a later day (‘day-k’) such that they take on
the statistics of the day-0 recordings.

Recently there has been a great deal of interest in the concept of a low-dimensional neural mani-
fold embedded within the neural space that is defined by the full set of recorded neurons, and the
‘latent signals’ that can be computed in it (Gallego et al., 2017). A previous paper from our group
demonstrated that by aligning the day-k and day-0 latent signals using canonical correlation analysis
(CCA), the performance of a fixed day-0 decoder could be maintained over months and even years,
despite turnover of the neural recordings.

Unfortunately, CCA has a couple significant limitations. For one, it is a linear process, not able to
account for the nonlinear mappings that have been demonstrated between high-dimensional neural
recordings and their low-dimensional manifolds (Altan et al., 2021; Naufel et al., 2019). Also, its use
in a real-life scenario would be cumbersome. This application of CCA can be thought of as rotating
two sets of neural signals ‘spatially’ to achieve optimal overlap (and thus temporal correlation). To do
so requires cropping or resampling the single-trial data of behaviors on day-0 and day-k such that
the paired trials correspond to the same behavior and contain the same number of timepoints, start
condition, and end condition. Without trial-alignment, no amount of spatial rotation will achieve a
correlation between the neural signals. However, motor behaviors in daily life are typically not well
structured, with well-defined onsets and offsets, making trial alignment difficult, if not impossible.
Where this method has been used successfully, it has been with highly stereotypic behaviors with
distinct trial structure.

Another recently published linear method for decoder stabilization uses a Procrustes-based
(Gower and Dijksterhuis, 2004) alignment on low-dimensional manifolds obtained from the neural
activity using Factor Analysis (Degenhart et al., 2020). This approach, which we will refer to as
‘Procrustes Alignment of Factors’ (PAF), successfully stabilized online iBCI cursor control with a fixed
decoder. Trial alignment is not needed for PAF, as it aligns the coordinate axes for the manifolds
directly. However, it does require a subset of the coordinate axes in which the manifold is embedded
(the neural recording channels) to be unchanged between days 0 and k. Furthermore, the use of a
Procrustes-based transformation means that this strategy cannot correct for nonlinear changes in the
neural manifold across days.

In another approach to decoder stabilization, we view changes in neural recordings as arbitrary
shifts in the distribution of population firing rates. From this perspective, the reason for poor cross-day
performance of decoders is clear: a decoder that is trained only on observations from a given distri-
bution (e.g. those of ‘day-0’) won’t perform well on data from other distributions (i.e. ‘day-k’). A
machine learning approach termed ‘domain adaptation’ has been used to cope with such distribu-
tion mismatches by learning a transformation that minimizes the difference between the transformed
distributions; this permits a model trained on one distribution to generalize to another (Farahani
et al., 2021; Pan et al., 2011). For example, if we have a classifier trained to distinguish photos of
objects, domain adaptation could be used to transform drawings of those objects into ‘photo-like’
equivalents, so that the existing photo-based classifier could be used to distinguish the drawn objects.

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 3 of 28

Domain adaptation can be implemented with Generative Adversarial Networks (GANs; Good-
fellow et al., 2014). GANs use two networks – a generator trained to transform a source distribu-
tion into a target distribution, and a discriminator trained to do the opposite: determine whether a
given distribution is real or synthesized by the generator. The adversarial nature of the generator and
discriminator enables the model to be trained in an unsupervised manner (Ganin and Lempitsky,
2015; Tzeng et al., 2017). GAN-based domain adaptation has been applied to computer vision prob-
lems, like adapting a classifier trained to recognize the digits of one style for use in recognizing those
of another style (Tzeng et al., 2017), or translating images in the style of one domain to another (e.g.
colorizing black-and-white photos, Isola et al., 2017).

We recently developed an approach we named Adversarial Domain Adaptation Network (ADAN;
Farshchian et al., 2018), that used a GAN to perform domain adaptation to enable a fixed day-0
iBCI decoder to work accurately on input signals recorded on day-k. ADAN finds low-dimensional
manifolds using a nonlinear autoencoder, and aligns the empirical distribution of the day-k recordings
(the source domain) to those of day-0 (the target domain) by aligning the distributions of residuals
(as in Zhao et al., 2016) between neural firing rates and their nonlinear autoencoder reconstructions
(that is, the portion of neurons’ activity not predicted from the manifold). Note that, compared to
PAF, ADAN performs the alignment in the high-dimensional space of reconstructed firing rates, but
requires the computation of a low-dimensional manifold to do so. In the earlier study we found that
ADAN outperforms both CCA and an alignment process that minimized the KL divergence between
the distributions of the day-k and day-0 latent spaces (Kullback-Leibler Divergence Minimization,
KLDM; Farshchian et al., 2018). However, ADAN was only tested on data from a single monkey and
a single task, for just 2 weeks. Our subsequent exploration into applying ADAN to other datasets
suggests that, while it can work in other settings, its performance is quite sensitive to model hyper-
parameter settings. This is consistent with previous reports that GANs can be highly dependent on
choice of architecture and a variety of hyperparameter settings (Farnia and Ozdaglar, 2020). We
therefore sought alternative GAN-based approaches that might offer more robust performance.

Recently, Zhu et al., 2017 developed a novel GAN architecture named Cycle-Consistent Adver-
sarial Networks (Cycle-GAN) in the context of image domain adaptation. Cycle-GAN introduced a
mechanism termed ‘cycle-consistency’, which helps to regularize model performance. Specifically,
Cycle-GAN implements both forward and inverse mappings between a pair of domains: the forward
mapping translates data in the source domain to the target domain, while the inverse mapping brings
the translated data back to the source domain. This regularization mechanism forces the learned
transformation between the source and the target distributions to be a bijection, thereby reducing the
search space of possible transformations (Almahairi et al., 2018; Zhu et al., 2017).

In addition to its promise of greater robustness, Cycle-GAN is to our knowledge unique among
neural alignment methods in that it does not rely on projection of neural population activity to a
low-dimensional manifold: rather, it aligns the full-dimensional distributions of the day-0 and day-k
recordings directly. Other alignment methods that we have explored (CCA, PAF, KLDM, and ADAN)
all work with low-dimensional latent signals. Aligning on full-dimensional data leads to the advantage
that the (small) information loss caused by dimensionality reduction can be avoided. Furthermore, as
most existing iBCI decoders are computed directly from the full-dimensional neural recordings, no
extra transformation of neural recordings is required between alignment and decoding.

In this study, we compare Cycle-GAN, ADAN, and PAF using datasets from several monkeys, span-
ning a broad variety of motor behaviors, and spanning several months. We chose not to test CCA, as it
requires trial alignment of the data, and it (as well as KLDM) was outperformed by ADAN in our earlier
study (Farshchian et al., 2018). We found that both GAN-based methods outperformed PAF. We also
demonstrated that the addition of cycle-consistency improved the alignment and made training much
less dependent on hyperparameters.

Results
Performance of a well-calibrated iBCI decoder declines over time
We trained six monkeys to perform five tasks: power and key grasping, center-out target reaching using
isometric wrist torque, and center-out and random-target reaching movements (Figure 2—figure
supplement 1). After training, each monkey was implanted with a 96-channel microelectrode array in

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 4 of 28

either the hand or arm area of M1. Four animals
(monkeys J, S, G, P) were also implanted with
intramuscular leads in forearm and hand muscles
contralateral to the cortical implant; these were
used to record electromyograms (EMGs). We
recorded multi-unit activity on each M1 electrode
together with motor output (EMGs and/or hand
trajectories) for many sessions across multiple
days. All recording sessions for a specific task and
an individual monkey were taken together to form
a dataset. We collected a total of seven data-
sets, and the recording sessions in each of them
spanned from ~30 to~100 days (See Materials
and methods; Figure 2—source data 1).

As in previous studies (Gallego et al., 2020;
Sussillo et al., 2016b), we found substantial
instability in the M1 neurons we recorded over
time, even though the motor outputs and task
performance were generally stable (Figure 2—
figure supplements 2 and 3). We first asked how
this instability affected the performance of an iBCI
decoder. We fit a Wiener filter decoder with data
recorded on a reference day (designated ‘day-0’;
Figure 1A). We then used this decoder to predict
the motor outputs from M1 neural recordings on
later days (‘day-k’) and computed the coefficient
of determination (R2) between the predictions
and the actual data (see Materials and methods).
Figure 2 shows example predictions from each
task. In all cases, both EMG (top row) and kine-
matic (bottom row) decoders could reconstruct
movement trajectories with high accuracy on
held-out trials from the day of training (‘day-0’).
However, the calibrated day-0 decoders consis-
tently failed to predict EMGs or hand trajecto-
ries accurately on day-k. The degradation of the
performance across time occurred for all behav-
ioral tasks and monkeys, and could be substantial
even a few days after decoder training (Figure 2—
figure supplement 4).

Adversarial networks mitigate
the performance declines of day-0
decoders
We proposed to use generative adversarial
network (GAN) based domain adaptation

(Figure 1B) to address the problem described above. We tested two different architectures: Adver-
sarial Domain Adaptation Network (ADAN) (Farshchian et al., 2018), and Cycle-Consistent Adversarial
Networks (Cycle-GAN) (Zhu et al., 2017). As both ADAN and Cycle-GAN were trained to reduce the
discrepancy between the neural recordings on day-0 and those on day-k by aligning their probability
density functions (PDFs), we call them ‘aligners’. Importantly, both ADAN and Cycle-GAN are static
methods, trained only on instantaneous neural activity datapoints with no knowledge of dynamics.
Both methods are causal and can be used in real time. We used the dataset with the longest recording
timespan (monkey J, isometric wrist task, spanning 95 days) to determine appropriate choices of the
hyperparameters for neural network training, which are presented in detail in a later section. We used

G

G

D

A

B

Day-0: train a BCI decoder

Day-k: adversarial domain adaptation training

Day-0 neural
signals

Day-0 neural
signals

Day-0?
Day-k?

Aligned day-k
neural signals

Day-k neural
signals

Day-k neural
signals

Day-k motor
outputs

Day-0 motor
outputs

C
Day k: use day-0 decoder to predict day-k motor

outputs with aligned day-k signals

Aligned day-k
neural signals

Day-0
decoder

Day-0
decoder

Figure 1. Setup for stabilizing an intracortical brain
computer interface (iBCI) with adversarial domain
adaptation. (A) Initial iBCI decoder training on day-0.
The decoder is computed to predict the motor outputs
from neural signals, using either the full-dimensional
neural recordings or the low-dimensional latent signals
obtained through dimensionality reduction. This
decoder will remain fixed over time after training. (B) A
general framework for adversarial domain adaptation
training on a subsequent day-k. The ‘Generator’ (G) is
a feedforward neural network that takes day-k neural
signals as the inputs and aims to transform them into a
form similar to day-0 signals; we also refer to G as the
‘aligner’. The ‘Discriminator’ (D) is another feedforward
neural network that takes both the outputs of G
(aligned day-k neural signals) and day-0 neural signals
as the inputs and aims to discriminate between them.
(C) A trained aligner and the fixed day-0 decoder are
used for iBCI decoding on day-k. The aligned signals
generated by G are fed to the day-0 decoder to
produce the predicted motor outputs.

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 5 of 28

the resulting hyperparameter values for the tests of all other monkeys and tasks. For comparison, we
also used all datasets to test another type of ‘aligner’ that aimed to align the low-dimensional neural
manifolds between day-0 and day-k (Degenhart et al., 2020), which we termed ‘Procrustes Align-
ment of Factors’ (PAF).

The tests were conducted with the procedures presented by Figure 1. First, we picked a given
day as day-0, and used the data recorded on that day to fit a Wiener filter as the ‘day-0 decoder’
(Figure 1A). Then, we trained the three types of aligners (ADAN, Cycle-GAN, and PAF) to align the
neural recordings on a different day (day-k) to those on day-0 (Figure 1B). Each day in a dataset other
than the designated day-0 was treated as a day-k, whether it occurred before or after day-0. Finally, we
processed the neural recordings on day-k with the trained aligners, fed the aligned signals to the fixed
day-0 decoder, and evaluated the accuracy of the predictions this decoder could obtain (Figure 1C).
For each of the seven datasets being tested, we repeated these three procedures for multiple instan-
tiations using different day-0s (see Figure 2—source data 1). To characterize the performance of the
day-0 decoder after alignment, we represent the decoder accuracy as the ‘performance drop’ with
respect to a daily recalibrated decoder (R2

aligned – R2
same-day). If an aligner works perfectly, we expect the

performance drop of day-0 decoders to be close to 0, which means the decoder achieves accuracy
equal to a within-day decoder after the alignment.

Unlike ADAN and PAF, Cycle-GAN alignment does not require computation of a latent repre-
sentation from neural recordings. As a result, Cycle-GAN is naturally suited to a decoder trained
on the full-dimensional neural firing rate signals. It is theoretically possible to use a full-dimensional
decoder with ADAN and PAF as well, by training on firing rates reconstructed from the latent spaces
of the ADAN autoencoder and PAF factors respectively. However, we found that the performance
of these full-dimensional decoders was inferior to that of a decoder trained on the inferred latent
signals (Figure 3—figure supplement 1). For completeness, we also tested a decoder trained on
Cycle-GAN-generated firing rates projected into a low-dimensional manifold obtained using Factor

R² = 0.76

R² = 0.60

R² = 0.1

R² = -0.47

FCU

ECRl

R² = 0.86

R² = 0.85

FDP

1DI

R² = -0.02

R² = -1.08

Day-0 decoder
R² = 0.83

Power grasp
Monkey P

CO reach
Monkey M

RT reach
Monkey M

Isometric wrist
Monkey J

Day-0 Day-k (32)

Day-0 Day-k (95) Day-0 Day-k (51)

Day-0 Day-k (79)

Actual Actual Actual ActualDay-0 decoder
R² = -0.24

Day-0 decoder
R² = 0.65

Day-0 decoder
R² = -1.5

x
y

Actual Day-0 decoder

C

BA

D

2 s Actual Day-0 decoder2 s

x
y

Figure 2. The performance of well-calibrated decoders declines over time. (A) Actual EMGs (black) and predicted EMGs (orange) using the day-0
decoder for flexor carpi ulnaris (FCU) and extensor carpi radialis longus (ECRl) during the isometric wrist task. (B) Actual and predicted EMGs using the
day-0 decoder for flexor digitorum profundus (FDP) and first dorsal interosseous (1DI) during the power grasp task. (C) Actual hand trajectories and
predictions using the day-0 decoder during the center-out (CO) reach task. Colors represent different reaching directions. (D) Actual and predicted hand
trajectories using the day-0 decoder during the random-target (RT) reach task. Colors represent different reaching directions.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Table summarizing the datasets analyzed in this paper, including cortical implant site and date, number of recording sessions, number of
days between recording start and end, recording days relative to time of array implantation, and motor outputs (EMG or hand velocities) recorded.

Figure supplement 1. Behavior tasks.

Figure supplement 2. Unstable neural recordings underlying stable motor outputs.

Figure supplement 3. Evaluation of the stability of M1 neural signals and motor outputs over time for monkeys / tasks (besides monkey J).

Figure supplement 4. The accuracy of a well-calibrated iBCI decoder degrades over time for different behavioral tasks.

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 6 of 28

Analysis; as expected, its performance was slightly worse than that of a full-dimensional decoder, but
still better than ADAN and PAF with a low-dimensional decoder (Figure 3—figure supplement 1).

In light of the analysis above, we here compare the better-performing of the two potential decoder
input formats for each alignment method: full-dimensional for Cycle-GAN, and low-dimensional for
ADAN and PAF (Figure 3, see Materials and methods for details). Aside from this difference of input
dimensionality, the architecture of the day-0 decoder (a Wiener filter) was the same for all aligners.
The within-day accuracy of the day-0 decoders of the three aligners was modestly but significantly
different across tasks (Figure 3A): ADAN: R2=0.73 ± 0.009 (mean ± s.e.); Cycle-GAN: R2=0.72 ± 0.009;
PAF: R2=0.71 ± 0.009 (p=0.008, linear mixed-effect model with the type of aligner as fixed and the
type of task as random factor, n=204 samples, where each sample is one aligner/task/day-0/day-k
combination).

To test for a significant performance difference between aligners, we fit a linear mixed-effect model
with type of aligner and days as fixed factors and type of task as random factor for a quantitative eval-
uation of the performance of the three aligners (n=2361 samples). The performance drop of the day-0
decoder on data collected on the day immediately following day-0 (i.e. day-1) after alignment was
significantly different across the aligners (Cycle-GAN: –0.02±0.004 (mean ± s.e.); ADAN: –0.06±0.005;
PAF: –0.11±0.005; p~0). Cycle-GAN significantly outperformed both ADAN (p~0) and PAF (p~0).
ADAN also significantly outperformed PAF (p~0).

The performance degradation of day-0 decoders for periods greater than one day (Figure 2—
figure supplement 4) was also mitigated by all three alignment methods, although to different
extents. Nonetheless, there remained a significant and increasing performance drop over time
(Figure 3A and B). We found a significant interaction between time and alignment method
(p=0.026), indicating that there was a difference between methods in performance drop over time,
and a post-hoc comparison showed that Cycle-GAN had the least overall performance degrada-
tion, significantly better than PAF, and better, but not significantly so, than ADAN (p=0.008 vs PAF;
p=0.328 vs ADAN). ADAN was better, but not significantly, than PAF (p=0.091). Taken together, this
analysis shows that Cycle-GAN moderately outperforms both ADAN and PAF (see also Figure 3C;
Figure 3—figure supplement 2B, C), and furthermore that the two nonlinear alignment methods
tend to be more stable over time than PAF (see also Figure 3C; Figure 3—figure supplement 2A,
B).

While CCA-style trial alignment is not required by Cycle-GAN, ADAN, or PAF, we did preprocess
the data to exclude behaviors not related to the investigated task (inter-trial data) and used data only
from the beginning to the end of each trial (see Materials and methods). Among other advantages,
this helped to unify behavior across monkeys and behavioral tasks. However, in a true iBCI setting,
the user has uninterrupted control, so it would be ideal to train the aligner on that data, without the
need to classify and exclude portions of a recording session that are not task-related. Therefore, we
also tested aligners on the continuous neural recordings on the isometric wrist task data of monkey J
(Figure 3—figure supplement 3). Under this condition, Cycle-GAN was clearly superior to ADAN and
PAF. We fit a linear mixed-effect model with type of aligner and days as fixed factors (n=531 samples)
and found that the accuracy of the day-0 decoder on day-1 after alignment was significantly different
across the aligners (Cycle-GAN: –0.05±0.015 (mean ±s.e.); ADAN: –0.14±0.023; PAF: –0.18±0.019;
p~0). Cycle-GAN significantly outperformed both ADAN (p~0) and PAF (p~0), while ADAN outper-
formed PAF, but not significantly (p=0.134). On the other hand, we did not find a significant interac-
tion between time and alignment method (p=0.56), indicating that the performance degradation over
time was mitigated in a similar way by all three methods.

Cycle-GAN is robust to hyperparameter settings
While they can be powerful, GANs can present a training challenge: choosing suitable hyperparame-
ters is important, for example, to balance the learning process and prevent either of the two networks
(the generator or discriminator) from dominating the loss function. High sensitivity of model perfor-
mance to hyperparameter values would pose a potential barrier to the adoption of either ADAN or
Cycle-GAN as a tool for cross-day alignment. As in Ghosh et al., 2020, we assessed sensitivity to
hyperparameters by testing the impact of batch size and learning rates on alignment performance.
Because these hyperparameter sweeps are very computationally expensive, we evaluated them using
only the single dataset with the greatest span of time.

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 7 of 28

Isom. wrist
(monkey J)

Isom. wrist
(monkey S)

Key grasp
(monkey G)

Power grasp
(monkey P)

CO reach
(monkey M)

CO reach
(monkey C)

PAF ADAN Cycle-GANA

C

PAF PAF ADAN
RT reach

(monkey M)

B

R
²

1 20 40 60 80 100
Days from decoder training

0.0

0.2

0.4

0.6

0.8

R
²a

lig
ne

d -
 R

² sa
m

e-
da

y

R²aligned - R ² same-day

−0.6 −0.4 −0.2 0.0
−0.6

−0.4

−0.2

0.0

AD
AN

−0.6 −0.4 −0.2 0.0

C
yc

le
-G

AN

−0.6 −0.4 −0.2 0.0

C
yc

le
-G

AN

1 20 40 60 80 100
−0.6

−0.4

−0.2

0.0
Isometric Wrist

1 20 40 60

Grasping

1 10 20 30 40
−0.6

−0.4

−0.2

0.0
CO reaching

1 20 40 60 80

RT reaching

Days from decoder training

Figure 3. The proposed GANs-based domain adaptation methods outperform Procrustes Alignment of Factors
in diverse experimental settings. (A) Prediction accuracy over time using the fixed decoder trained on day-0
data is shown for all experimental conditions (single dots: R² as a function of days after decoder training, lines:
locally weighted scatterplot smoothing fits). We compared the performance of the day-0 decoder after domain
adaptation alignment with Cycle-GAN (green), ADAN (red) and PAF (blue). (B) We computed the prediction
performance drop with respect to a daily-retrained decoder (single dots: R² drop (R²aligned - R²same-day) for days after
decoder training, lines: linear fits). Cycle-GAN and ADAN both outperformed PAF, with Cycle-GAN degrading
most slowly for all the experimental conditions. (C) We compared the performance of each pair of aligners by
plotting the prediction performance drop of one aligner versus that of another. Each dot represents the R² drop
after decoder training relative to the within-day decoding. Marker colors indicate the task. Both proposed domain
adaptation techniques outperformed PAF (left and center panels), with Cycle-GAN providing the best domain
adaptation for most experimental conditions (right panel).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Cycle-GAN outperforms ADAN and Procrustes Alignment of Factors (PAF) with both full-
dimensional and low-dimensional day-0 decoder.

Figure 3 continued on next page

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 8 of 28

We trained both ADAN and Cycle-GAN aligners on day-k data relative to four selected day-0
reference days. We kept the learning rates for the generator (LRG) and the discriminator (LRD) fixed (for
ADAN, LRG = 0.0001, LRD/LRG = 0.5; for Cycle-GAN, LRG = 0.0001, LRD/LRG = 10). As in the previous
section, we evaluated the drops in aligned day-0 decoder accuracy. We found that ADAN maintained
good performance when batch size was small, but that performance started to drop significantly for
larger batch sizes (64: –0.13±0.0096 (mean ± s.e.); 256: –0.17±0.013; p~0, Wilcoxon’s signed rank
test, n=76; Figure 4A). In contrast, Cycle-GAN based aligners performed consistently at all tested
batch sizes. These results suggest that ADAN may need a small batch size, while Cycle-GAN-based
aligners have no strong requirement.

Neural network training time is inversely proportional to batch size - therefore given two batch
size options that give comparable model performance, the larger of the two will yield faster training.
We found that Cycle-GAN was slower than ADAN for smaller batch sizes, although neither method

Figure supplement 2. Cycle-GAN and ADAN consistently outperform Procrustes Alignment of Factors (PAF) for
all experimental conditions.

Figure supplement 3. Cycle-GAN outperforms ADAN and Procrustes Alignment of Factors (PAF) when aligning
continuous neural recordings.

Figure 3 continued

4 8 64 256 512
Batch size

4 8 64 256 512
Batch size

-0.2

0

-0.4

-0.6

R
²a

lig
ne

d -
 R

²s
am

e-
da

y

A BADAN Cycle-GAN

Tr
ai

ni
ng

 ti
m

e
(s

)

0
10

10²

10³

LRG

1e-5 1e-4 1e-3 0.1 0.5 1 10 50 100

C

-0.2

-0.4

-0.6

0

D

PAF

R
²a

lig
ne

d -
 R

²s
am

e-
da

y

LRD/LRG

Figure 4. Cycle-GAN is more robust to hyperparameter tuning than ADAN. Effect of different batch sizes during training of Cycle-GAN (green) and
ADAN (red) with mini-batch gradient descent on (A) the day-k performance of 4 selected day-0 decoders and (B) the execution time of 200 training
epochs. The much faster execution time of PAF (blue) is also shown for reference. Compared to ADAN, Cycle-GAN did not require a small batch
size, resulting in faster training (Cycle-GAN: 98 s with batch size 256; ADAN: 129 s with batch size 8; FA aligner: 11.5 s). Effect of training each domain
adaptation method with different generator (C) and discriminator (D) learning rate. The generator and the discriminator learning rate were denoted as
LRG and LRD, respectively. For LRD testing, we kept LRG fixed (LRG = 1e-4 for both ADAN and Cycle-GAN), and changed the ratio between LRD and LRG
(LRD/LRG). ADAN-based aligners did not perform well for large LRG or LRD/LRG values, while Cycle-GAN-based aligners remained stable for all the testing
conditions. In (A), (C) and (D) single dots show the prediction performance drop on each day-k relative to the 4 selected day-0s with respect to the R² of
a daily-retrained decoder (R²aligned - R²same-day). Boxplots show 25th, 50th and 75th percentiles of the R² drop with the whiskers extending to the entire data
spread, not including outliers.

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 9 of 28

required more than a few minutes when operating
within their optimal batch size range (Figure 4B).
Thus, we set the ADAN batch size for subsequent
analyses to 8 and for Cycle-GAN to 256. Although
we could have increased the batch size for ADAN,
we decided instead to use a conservative value
further from its region of decreased performance
at the expense of slower training. For reference,
we also computed the execution time of PAF,
which was much faster than both ADAN and
Cycle-GAN (Figure 4B, dashed blue line) as it has
a closed form solution (Schönemann, 1966). We
also note that the inference time (i.e. the time it
takes to transform data once the aligner is trained)
for both Cycle-GAN and ADAN is well under 1
ms per 50 ms sample of neural firing rates– this is
because the forward map in both models consists
simply of a fully connected network with only two
hidden layers.

We next examined the effect of learning rates
for each aligner. We first tested different values
for the LRG, while fixing the ratio between LRD and
LRG (for ADAN, LRD/LRG = 0.5; for Cycle-GAN,
LRD/LRG = 10). As shown in Figure 4C, ADAN
achieved good performance when LRG was set to
1e-5 and 1e-4 but did not work well if LRG was
set to 1e-3. Cycle-GAN maintained stable perfor-
mance when LRG was set to 1e-3 and 1e-4, and
had a significant performance drop when LRG was
1e-5 (1e-4: –0.064±0.0062 (mean ± s.e.); 1e-5:
–0.095±0.0068; p~0, Wilcoxon’s signed rank test,
n=76), but still significantly better than ADAN with
the same LRG (Cycle-GAN: –0.095±0.0068 (mean
± s.e.); ADAN: –0.15±0.011; p~0, Wilcoxon’s
signed rank test, n=76). We then tested different
ratios between LRD and LRG with LRG fixed (LRG
= 1e-4 for both types of aligners). As Figure 4D
shows, ADAN could only be trained well when
LRD was equal to or smaller than LRG. On the
other hand, the performance of a Cycle-GAN
based aligner remained stable for all tested LRD/
LRG values.

GAN-based methods require very little training data for alignment
Aligners in practical iBCI applications must be fast to train and perhaps more importantly, require little
training data. Here we investigated the aligner performance with limited training data. We trained
ADAN, Cycle-GAN, and PAF to align the data on each day-k to four selected day-0s using randomly
selected subsets of the full 120-trial training set from Monkey J. We then decoded EMGs from the
aligned M1 signals on a fixed 40-trial held-out testing set using the day-0 decoder. As Figure 5A
shows, all three aligners improved the performance of day-0 decoders with 20 or fewer training trials.
Performance increased as more training trials were included but started to plateau near 40 trials.
When using only 10 trials, both ADAN and Cycle-GAN significantly outperformed PAF (Cycle-GAN:
–0.19±0.0076 (mean ± s.e.); ADAN: –0.21±0.011; PAF: –0.26±0.011; p~0, Wilcoxon’s signed rank
test, n=76), with Cycle-GAN significantly outperforming ADAN (p=0.003, Wilcoxon’s signed rank
test, n=76). It is also worth noting that ADAN and Cycle-GAN trained with only 20 trials significantly

10 20 120

**

-0.2

-0.4

0

8 10 20
Number of trials for aligner training

A

R
²al

ig
ne

d -
 R

²sa
m

e-
da

y
R

²al
ig

ne
d -

 R
²sa

m
e-

da
y

40 12080

PAF ADAN Cycle-GAN

-0.2

-0.4

-0.6

0

B

Number of trials for aligner training

Figure 5. Cycle-GAN and ADAN need only a limited
amount of data for training. (A) Effect of the number
of trials used for training Cycle-GAN (green), ADAN
(red) and PAF (blue) on the day-k decoding accuracy
using 4 selected day-0 fixed decoders. All the
aligners needed 20–40 trials to achieve a satisfactory
performance, before reaching a plateau. The average
prediction performance drop with respect to a daily-
retrained decoder (R²aligned - R²same-day) on all day-ks is
shown for each tested value of training trials (x-axis is
in log scale). When using 10 trials, both Cycle-GAN
and ADAN significantly outperformed PAF (B, left
boxplots). Moreover, both Cycle-GAN-based and
ADAN aligners trained with 20 trials had significantly
better performance than the PAF trained on all 120
trials (B, center and right boxplots). Single dots show
the prediction performance drop on each day-k to
the 4 selected day-0s with respect to a daily-retrained
decoder. Boxplots show 25th, 50th and 75th percentiles
of the R² drop with the whiskers extending to the entire
data spread, not including outliers. Asterisks indicate
significance levels: *p<0.05, **p<0.01, ***p<0.001.

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 10 of 28

outperformed PAF trained with the full training set of 120 trials (Cycle-GAN trained with 20 trials:
–0.10±0.0083 (mean ±s.e.); ADAN trained with 20 trials: –0.16±0.0096; PAF trained with 120 trials:
–0.20±0.011; p~0, Wilcoxon’s signed rank test, n=76) (Figure 5B).

Recovery of single-electrode activity patterns through alignment
Both ADAN and Cycle-GAN generate reconstructed versions of the aligned day-k single neuron
signals, agnostic to downstream use. However, our objective of decoder stabilization does not require
that the full distribution of day-0 responses be recovered: we need only recover signals that are rele-
vant to the decoding dimension. Decoder performance alone therefore does not provide a complete
picture of the quality of neural alignment. To more thoroughly investigate the extent to which distribu-
tion alignment introduces biases or artifacts in predicted neural responses, we first compared aligner
predictions of single-neuron with those of their recorded day-0 analogs.

Because PAF operates directly on the low-dimensional neural manifold, it can only generate single-
neuron responses in the aligned representation by projecting back out from the manifold. We found
that a stabilized day-0 decoder that uses these reconstructed firing rates from the latent space of the
PAF factors performs poorly (Figure 3—figure supplement 1C). In contrast to PAF, Cycle-GAN and
ADAN each generate synthetic firing rates for the full neural population (although ADAN still relies on
a low-dimensional manifold as an intermediate step). Therefore, we restricted our analysis of single-
neuron properties on the outputs of ADAN and Cycle-GAN.

Specifically, we asked how response properties of the day-k ‘aligned neurons’ differed from those
of the neurons recorded on the same electrode on day-0. To do so, we examined the aligned neural
representations generated by Cycle-GAN and ADAN, again using the 95-day isometric wrist task
dataset of monkey J. We first compared the peri-event time histograms (PETHs) of firing rates before
and after alignment, to determine how the aligners altered day-k neural activity at the level of single
electrodes. The PETHs in Figure 6A show three examples of the ways in which single-electrode
signals may differ across days, and the change produced by alignment. Electrode E35 is an example
of neuron drop-out, in which the activity captured on day-0 was not observed on day-95. The PETHs
of aligned day-95 data matched those of day-0 for all force directions, demonstrating that on day 95
both ADAN and Cycle-GAN aligners synthesized appropriate neural activity (Figure 6A). Second, E73
is an example of activity not present on day-0, but recorded on day-95. In this case, the day-95 activity
was suppressed to match that on day-0. Finally, E60 is an example of consistent neural activity over
the two days, which the aligners left unchanged.

We also examined the distributions of the recovered single-electrode activity by computing the
Maximum Mean Discrepancy (MMD Gretton et al., 2012a, see Materials and methods) between
all pairs of sessions (Figure 6B). Before alignment, the between-day MMDs were significantly larger

0

50

0

45

0

40

Fi
rin

g
ra

te
s

(H
z)

0.5 s

A

Day 0 Day 95 Day 95 ADAN Day 95 Cycle-GAN

E35

E73

E60

Mean of within-session = 0.059
0.02

1 20 40 60 80 100

0.1
0.2

1
2

M
M

D

Days between sessions

Between-session
(before alignment)
By ADAN
By Cycle-GAN
Within-session

B

Figure 6. The changes of single-electrode and coordinated neural activity patterns after alignment. (A) The PETHs of the multiunit activity from three
cortical electrodes (E35, E73, E60) before and after alignment. Each column corresponds to a target direction indicated by the arrows on the top. For
each direction, mean (solid lines) and standard errors (shaded areas) are shown for 15 trials. The dashed vertical line in each subplot indicates the time
of force onset. (B) Between-session MMDs for M1 signals before and after alignment, as well as the within-session MMDs. The main panel plots the
between-session MMDs before (orange) and after alignment (red: by ADAN, green: by Cycle-GAN) for all pairs of sessions with different days apart, and
the dashed purple line indicates the mean of the within-session MMD values. The side panel plots the histogram for each type of data. Note y-axis is in
log scale.

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 11 of 28

than the within-day MMDs (orange, between-day MMD: 1.42±0.029 (mean ± s.e.); purple, within-day
MMD: 0.059±0.0054; p~0, Wilcoxon’s rank sum test, n=171). After alignment, the between-day MMDs
were substantially reduced by both Cycle-GAN and ADAN, becoming comparable to the within-day
MMDs (ADAN: red, 0.19±0.0065 (mean ±s.e.); Cycle-GAN: green, 0.091±0.0024; within-day: purple,
0.059±0.0054). Cycle-GAN based aligners generally achieved a significantly lower between-day MMD
than ADAN across the entire timespan (p~0, Wilcoxon’s rank sum test, n=171).

Recovery of neural manifolds from aligned representations
While Cycle-GAN works only with the full-dimensional neural recordings, ADAN, whose discriminator
is essentially an autoencoder, computes a low-dimensional neural manifold from which it reconstructs
the high-level signals it needs to align the high-level residuals. Consequently, we wanted to explore
to what extent each method also altered the low-dimensional representations. We applied Principal
Component Analysis (PCA) to the firing rates recorded for the 95-day isometric wrist task of monkey J
on four selected day-0s and examined the trajectories of M1 neural activity within the neural subspaces
defined by the principal components (PCs, see Materials and methods). We then projected the firing
rates of the remaining day-k’s onto the neural subspace defined by the corresponding day-0 PCs.

Generally, the day-k neural trajectories projected onto the top two day-0 PCs did not match those
of day-0 (Figure 7A). However, after alignment (3rd and 4th columns), the day-k trajectories closely
resemble those of day-0.

Finally, to directly quantify the similarity between the neural manifolds of day-0 and an aligned day-k,
we calculated the principal angles (Knyazev and Argentati, 2002) between the neural subspaces for
all sessions relative to the selected day-0 (see Materials and methods). To interpret the magnitude
of the overlap between a given pair of days, we compared the observed angle with an upper bound
provided by the principal angles across random subspaces that preserved the covariance of the day-0
and day-95 neural data, using the method described in Elsayed et al., 2016. We also found a ‘with-
in-day’ bound by computing the angles between the day-0 neural recordings of even-numbered trials
and odd-numbered trials (this was done to reduce the effect of any within-day drift). We found that
alignment with either Cycle-GAN or ADAN made the neural manifolds of any day-k substantially
more similar to those of day-0. In particular, after applying Cycle-GAN-based aligners, the population
subspaces highly overlapped (Figure 7B).

Discussion
We previously demonstrated the utility of a GAN-based method, ADAN, to ‘align’ M1 data across
time, thereby allowing a fixed iBCI decoder to be used for weeks without re-calibration, despite a
gradual change in the neurons recorded over the same period (Farshchian et al., 2018). However, we
had tested ADAN on a very limited dataset. Because GANs are notoriously sensitive to hyperparam-
eter settings (Farnia and Ozdaglar, 2020; Ghosh et al., 2020; Kurach et al., 2018), it was unclear
how robust ADAN would be in practice. Another promising method, PAF, had been tested primarily
in terms of two monkeys’ online iBCI performance (Degenhart et al., 2020). We wished to compare
both approaches directly, using a very diverse dataset including recordings from six monkeys and five
tasks. We also compared a third approach based on a more recent GAN architecture, Cycle-GAN (Zhu
et al., 2017). Cycle-GAN has the potential advantage over ADAN that it reduces the search space of
aligners by encouraging the learned transformation to be a bijection, which might help stabilize its
performance. Moreover, unlike ADAN and PAF, the Cycle-GAN architecture does not require compu-
tation of a low-dimensional manifold underlying the neural population activity, allowing its straightfor-
ward use with spike-rate based decoders.

Both ADAN and Cycle-GAN achieved higher performance than PAF, but each method had tradeoffs.
Although ADAN needed less time to train than Cycle-GAN, PAF was much faster to train than both
GAN methods. But while slower, Cycle-GAN was easier to train than ADAN, in the sense that it was
less sensitive to hyperparameter values and therefore likely to be more effective ‘out-of-the-box’, and
when working with different data binning and sampling rates. Importantly, Cycle-GAN also had clearly
superior performance compared to both ADAN and PAF when tested with continuously recorded data
(with no trial segmentation). Overall, our work suggests that GAN-based alignment, and Cycle-GAN
in particular, is a promising method for improving the stability of an iBCI over time.

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 12 of 28

Comparison of GANs to other methods for iBCI stabilization
Other approaches to address iBCI decoder instability include supervised techniques that aim at stabi-
lizing iBCI performance by recalibrating the decoder during ongoing iBCI control by relying on access
to the task output variables (Dangi et al., 2014; Jarosiewicz et al., 2015; Orsborn et al., 2012), as
well as unsupervised methods that do not require to re-estimate decoder parameters and only need

Unaligned
ADAN-aligned
Cycle GAN-aligned

Days between

Day-0 PC1

D
ay

-0
 P

C
2

A

0 10

0

5

Day-0

0 10

Day-7

0 10

Day-7 ADAN

0 10

Day-7 CycleGan

0 10

Day-37

0 10

Day-37 ADAN

0 10

Day-37 CycleGan

Day-95 Day-95 ADAN

0 10

Day-95 CycleGan

2 4 6 8 10
M1 latent dimension

0

20

40

60

80

Pr
in

ci
pa

l a
ng

le
 (d

eg
)

0 100 10

Within-day
Upper bound

B

1 25 49 73 95

Figure 7. Neural manifold is stable over time after domain adaptation based neural alignment. (A) Representative latent trajectories when projecting
unaligned / aligned neural activity onto the first two principal components (PCs) for the day-0 neural activity of monkey J during isometric wrist task.
Top left corner: latent trajectories for day-0 firing rates, as the reference. 2nd column: latent trajectories for unaligned firing rates on day-7 (top row),
day-37 (center row) and day-95 (bottom row). 3rd column and 4th column: latent trajectories for firing rates aligned by ADAN (3rd column) and Cycle-
GAN (4th column) on day-7, day-37, and day-95. Data were averaged over the first 16 trials for each target location and aligned to movement onset for
visualization purposes. (B) First ten principal angles between the neural manifolds of day-0 and a given day-k for unaligned (black), aligned by ADAN
(red) and aligned by Cycle-GAN (green). Upper bound was found by computing principal angles between surrogate subspaces with preserved statistics
of day-0 and day-95 (0.1st percentile is shown). Within-day angles were found between subspaces relative to even-numbered and odd-numbered trials
of day-0 neural recordings. Principal angle values were averaged across four different time intervals (relative to initial decoder training) indicated by the
transparency of the line (lighter for days closer to day-0, darker for days further away from day-0).

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 13 of 28

neural data, with no provided task output variables or task labels (Degenhart et al., 2020; Farsh-
chian et al., 2018; Gallego et al., 2020; Karpowicz et al., 2022; Willett et al., 2021). We restricted
our comparison to GAN-based aligners and PAF for several reasons. First, both GANs and PAF are
unsupervised methods. We argue that unsupervised methods are ideal for iBCI stabilization: because
they do not require data labels, they should be simpler to implement in eventual clinical applications.
Second, neither GANs nor PAF require trial alignment of the data, which CCA does require. This flexi-
bility allowed us to align the neural data for more complicated behaviors. For example, one task in this
study was a random-target reaching task in which monkeys moved a cursor between targets as they
appeared on screen; this task structure produces movements of random length and direction, with
varied speed and duration. Despite this complexity, all three of the tested aligners could still achieve
good performance. Importantly, though, we previously demonstrated that ADAN still achieves higher
performance than both CCA (Gallego et al., 2020) and KLDM (Farshchian et al., 2018) for the
stereotyped isometric wrist task (Farshchian et al., 2018).

Although earlier attempts to achieve alignment via KLDM achieved only moderate success, a
recent approach using KLD to align neural latent dynamics identified using Latent Factor Analysis
through Dynamical Systems (LFADS) (Pandarinath et al., 2018; Sussillo et al., 2016a) was more
successful (Karpowicz et al., 2022). Comparing this approach (called Nonlinear Manifold Alignment
with Dynamics, or NoMAD) with Cycle-GAN turns out to be problematic because they are solving
overlapping but different problems. A stable iBCI device has several interacting components: data
preprocessing, an aligner that registers neural representations across days, and a decoder that trans-
lates neural activity to a predicted motor command. Higher iBCI performance could arise from an
improvement to any of these processes. NoMAD includes the first two steps, performing both align-
ment of the neural representations via KLDM and data preprocessing via LFADS-based smoothing.
Because Karpowicz et al., contrast NoMAD (alignment +powerful dynamics-based smoothing) to two
methods that perform alignment with only very simple linear smoothing (ADAN and PAF), it is not
possible to tell from their manuscript the extent to which NoMAD’s higher performance arises from
better alignment vs their use of LFADS for data smoothing. Nevertheless, the effects of the prepro-
cessing can be inferred from their results: because of its more powerful dynamics preprocessing,
NoMAD outperforms ADAN (and PAF) not only at day-k, but also on day-0 where neural alignment
is not involved. The day-0 performance makes it clear that a substantial portion of NoMAD’s higher
performance comes not from its KLD-based alignment but from how the neural recordings are pre-
processed with LFADS.

We can also draw conclusions purely from the method NoMAD uses for alignment, namely by mini-
mizing the KLD between the distributions of day-0 and day-k states that come out of a day-0 LFADS
Generator network. This alignment strategy is very similar to the KLDM method tested in Farsh-
chian et al., 2018, where KLDM between neural states (obtained via an autoencoder) had inferior
performance compared even to ADAN. This suggests that the apparent performance improvement
of NoMAD over ADAN is a consequence of its embedded LFADS model rather than an indicator of
KLD being a better alignment strategy. Theoretically, one could therefore replace the KLD-based
alignment in NoMAD with a Cycle-GAN-based aligner and achieve even better performance. Going
forward, it will be important for the field to establish consensus benchmark datasets and evaluation
methods to disentangle the contributions of new methods in data preprocessing, neural alignment,
and decoding, within each of these three areas.

A very different approach to iBCI stabilization was proposed by Sussillo et al., who trained a
decoder with a large dataset spanning many months, under the hypothesis that neural turnover allows
neurons not only to disappear, but potentially also to reappear later (Sussillo et al., 2016b). Although
making the decoder robust to changes in the recorded neural populations, this approach has the
inherent disadvantage of requiring the accumulation of a long stretch of historical data, which might
be impractical for clinical use. In contrast to this approach, neither Cycle-GAN nor ADAN has a special
requirement for the robustness of the day-0 decoder, and effective performance can be achieved with
remarkably little data (Figure 5).

iBCI stabilization without manifolds
CCA, KLDM, PAF, and ADAN all rely on dimensionality reduction of the recorded neural popula-
tion prior to alignment. As a result, a portion of the variance of recorded neural activity is always

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 14 of 28

lost in the alignment process. In contrast, Cycle-GAN allows alignment to be performed on the full-
dimensional neural recording, and achieves a superior performance compared to ADAN and PAF
(Figure 3). This also means that Cycle-GAN can be used directly with any previously trained spike-rate
based decoder. This is in contrast to ADAN and PAF, which only align the neural latent space and
therefore require either a new, latent space decoder to be trained, or an additional post-alignment,
backwards-projection step to convert the latent representation into a predicted set of spikes. The
backwards-projection step leads to lower decoding performance for ADAN, and complete failure for
PAF, as shown in Figure 3—figure supplement 1.

Because Cycle-GAN operates in the higher-dimensional space of the recorded neurons, it also
recovers the response properties of individual neurons following alignment, providing the means to
infer their response properties across many days of recording, even when those neurons are not
actually observed. While single-neuron signals can in principle be generated by manifold-based align-
ment methods, we show here that these more indirectly reconstructed firing rates are less accu-
rate (Figure 6). The potential applications of this ability to synthesize neural data from population
recordings are yet undeveloped but intriguing. One possibility is that this strategy could be used to
synthesize a “null distribution” of neural responses, to better detect effects of learning or behavioral
changes that alter the response distribution of cells.

Sources of decoding error following cross-day alignment
In this study, we relied on offline estimates of decoder accuracy, as they allowed us to examine large
amounts of previously collected data across many monkeys and tasks. Also, by literally taking the
monkey out of the loop, we were able to examine the accuracy of the alignment and decoding
processes without the added complication of the monkeys’ unknown and variable adaptation to the
decoder. Although alignment by either ADAN or Cycle-GAN significantly improved the performance
of a day-0 decoder on a given day-k, in most cases it did not attain the performance of a re-cali-
brated decoder, especially at long time offsets between day-0 and day-k (Figure 3B). One interesting
potential cause of aligner performance drop is a change in the animal’s behavioral strategy across
days. Because the limb is kinematically redundant, the same hand position can be achieved with
different limb postures (e.g. wrist angle) and muscle activation patterns. Similarly, differing strategies
might be adopted to grasp the power or pinch force transducers. Even within a single experimental
session, an M1 decoder trained on one behavior often fails to perform well when tested on a different
behavior. Similarly, unsupervised M1 alignment will not be able to compensate for changes in strategy
if they shift EMG (or kinematic) signals outside the space of values observed during training of the
original decoder. We find some evidence for such drift in some tasks (predominantly the key grasp,
Figure 2—figure supplement 3C), as indicated by differences between within- and across-day MMD
of the motor outputs. Such differences were small, but could not be neglected (Figure 2—figure
supplements 2C and 3).

Network training challenges
Training GANs is a challenging task, in part because the learning rates of generator and discriminator
networks must be carefully balanced to allow the networks to be trained in tandem (Farnia and
Ozdaglar, 2020; Salimans et al., 2016). Many strategies have been proposed to improve the stability
of learning and facilitate the convergence of GANs (Arjovsky and Bottou, 2017; Brock et al., 2019;
Farnia and Ozdaglar, 2020; Nagarajan and Kolter, 2017; Pan et al., 2019; Salimans et al., 2016).
ADAN and Cycle-GAN incorporate several of those strategies. First, both networks include an L1
loss term in their objective function, a modification that has been found in practice to improve the
stabilization of model training by encouraging sparseness of model weights (Arjovsky and Bottou,
2017). The networks also use a two-timescale update rule for generator and discriminator learning
rates, which facilitates convergence of generator and discriminator to a balanced solution (Heusel
et al., 2017).

Correct optimization of GANs is also directly linked to proper tuning of the dynamics of learning
during training (Kurach et al., 2018; Saxena and Cao, 2021), which we investigated here in depth.
Given the many GAN variants, there are still no comprehensive guidelines for a particular architecture
(Ghosh et al., 2020). Consistent with this, we found that ADAN and Cycle-GAN differ substantially
in their sensitivity to learning rate and batch size hyperparameters. Notably, ADAN exhibited poor

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 15 of 28

generalization with larger batch sizes (like Keskar et al., 2016), while Cycle-GAN worked well across
all tested values (Figure 4A). The ability to work with larger batch sizes gave Cycle-GAN several
advantages over ADAN: its training was faster than ADAN (Figure 4B) and it also enabled Cycle-GAN
to maintain stable performance with higher learning rates (Figure 4C and D, similar to the observa-
tions of Goyal et al., 2017).

Conclusions
In summary, we demonstrated the successful use of GANs for the stabilization of an iBCI, thereby
overcoming the need for daily supervised re-calibration. Both approaches we tested (ADAN and
Cycle-GAN) require remarkably little training data, making them practical for long-term iBCI clinical
applications. Between the two approaches, Cycle-GAN achieved better performance which was less
affected by inaccurate hyperparameter tuning; it is therefore our recommended method for future
use. Notably, Cycle-GAN works directly with the unstable full-dimensional neural recordings, which
further increases its performance and simplifies its implementation.

Materials and methods
Subjects and behavior tasks
Six 9–10 kg adult male rhesus monkeys (Macaca mulatta) were used in this study. They were trained
to sit in a primate chair and control a cursor on a screen in front of them using different behavioral
apparatuses (Figure 2—figure supplement 1).

Monkeys J and S were trained to perform an isometric wrist task, which required them to control
the cursor on the screen by exerting forces on a small box placed around one of the hands. The box
was padded to comfortably constrain the monkey’s hand and minimize its movement within the box,
and the forces were measured by a 6 DOF load cell (JR3 Inc, CA) aligned to the wrist joint. During the
task, flexion/extension force moved the cursor right and left respectively, while force along the radial/
ulnar deviation axis moved the cursor up and down. Each trial started with the appearance of a center
target requiring the monkeys to hold for a random time (0.2–1.0 s), after which one of eight possible
outer targets selected in a block-randomized fashion appeared, accompanied with an auditory go
cue. The monkey was allowed to move the cursor to the target within 2.0 s and hold for 0.8 s to receive
a liquid reward. For both decoding and alignment analyses, we only used the data within each single
trial (from ‘trial start’ to ‘trial end’, Figure 2—figure supplement 1A). We did not do any temporal
alignment with the trials, so the lengths of the trials were different from each other.

Monkeys P and G were trained to perform a grasping task, which required them to reach and grasp
a gadget placed under the screen with one hand. The gadget was a cylinder for monkey P facilitating
a power grasp with the palm and the fingers, while a small rectangular cuboid for monkey G facili-
tating a key grasp with the thumb and the index finger. A pair of force sensitive resistors (FSRs) were
attached on the sides of the gadgets to measure the grasping forces the monkeys applied. The sum
and the difference of the FSR outputs were used to determine the position of the cursor on the vertical
axis and the horizontal axis respectively. At the beginning of each trial the monkey was required to
keep the hand resting on a touch pad for a random time (0.5–1.0 s). A successful holding triggered the
onset of one of three possible rectangular targets on the screen and an auditory go cue. The monkey
was required to place the cursor into the target and hold for 0.6 s by increasing and maintaining the
grasping force applied on the gadget (Figure 2—figure supplement 1B). For this task we extracted
trials from ‘go cue time’ to ‘trial end’, as the monkeys’ movements were quite random before the go
cue.

Monkeys C and M were trained to perform a center-out (CO) reaching task while grasping the
upright handle of a planar manipulandum, operated with the upper arm in a parasagittal plane.
Monkey C performed the task with the right hand, monkey M with the left. At the beginning of each
trial the monkey needed to move the hand to the center of the workspace. One of eight possible
outer targets equally spaced in a circle was presented to the monkey after a random waiting period.
The monkey needed to keep holding for a variable delay period until receiving an auditory go cue. To
receive a liquid reward, the monkey was required to reach the outer target within 1.0 s and hold within
the target for 0.5 s (Figure 2—figure supplement 1C). For this task we extracted trials from ‘go cue
time’ to ‘trial end’, since the monkeys kept static before the go cue.

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 16 of 28

Monkey M was trained to perform a random-target (RT) task, reaching a sequence of three targets
presented in random locations on the screen to complete a single trial. The RT task used the same
apparatus as the CO reach task. At the beginning of each trial the monkey also needed to move the
hand to the center of the workspace. Three targets were then presented to the monkey sequentially,
and the monkey was required to move the cursor into each of them within 2.0 s after viewing each
target. The positions of these targets were randomly selected, thus the cursor trajectory for each trial
presented a ‘random-target’ manner (Figure 2—figure supplement 1D). For this task we extracted
trials from ‘trial start’ to ‘trial end’.

All surgical and experimental procedures were approved by the Institutional Animal Care and Use
Committee (IACUC) of Northwestern University under protocol #IS00000367, and are consistent with
the Guide for the Care and Use of Laboratory Animals.

Implants and data recordings
Depending on the task, we implanted a 96-channel Utah electrode array (Blackrock Neurotech, Inc)
in either the hand or arm representation area of the primary motor cortex (M1), contralateral to the
arm being used for the task (see Figure 2—source data 1). The implant site was pre-planned and
finally determined during the surgery with reference to the sulcal patterns and the muscle contractions
evoked by intraoperative surface cortical stimulation. For each of monkeys J, S, G, and P, we also
implanted intramuscular leads in forearm and hand muscles of the arm used for the task in a separate
procedure (see Figure 2—source data 1). Electrode locations were verified during surgery by stimu-
lating each lead.

M1 activity was recorded during task performance using a Cerebus system (Blackrock Neurotech,
Inc). The signals on each channel were digitalized, bandpass filtered (250~5000 Hz) and converted to
spike times based on threshold crossings. The threshold was set with respect to the root-mean square
(RMS) activity on each channel and kept consistent across different recording sessions (monkeys J,
C and M: –5.5 x RMS; monkey S: –6.25 x RMS; monkey P: –4.75 x RMS; monkey G: –5.25 x RMS).
The time stamp and a 1.6 ms snippet of each spike surrounding the time of threshold crossing were
recorded. For all analyses in this study, we used multiunit threshold crossings on each channel instead
of discriminating well isolated single units. We applied a Gaussian kernel (S.D.=100 ms) to the spike
counts in 50 ms, non-overlapping bins to obtain a smoothed estimate of firing rate as function of time
for each channel.

The EMG signals were differentially amplified, band-pass filtered (4-pole, 50~500 Hz) and sampled
at 2000 Hz. The EMGs were subsequently digitally rectified and low-pass filtered (4-pole, 10 Hz,
Butterworth) and subsampled to 20 Hz. EMG channels with substantial noise were not included in the
analyses, and data points of each channel were clipped to be no larger than the mean plus 6 times the
S.D. of that channel. Within each recording session, we removed the baseline of each EMG channel by
subtracting the 2nd percentile of the amplitudes and normalized each channel to the 90th percentile.
For monkeys C and M, we recorded the positions of the endpoint of the reach manipulandum at a
sampling frequency of 1000 Hz using encoders in the two joints of the manipulandum.

iBCI day-0 decoder
The day-0 decoder was a Wiener filter of the type that we have used in several previous studies
(Cherian et al., 2011; Naufel et al., 2019). The filter was fit using linear regression to predict the motor
outputs (either EMG or hand velocity) at time t given neural responses from time t to time t - T, where
we set T=4 (200 ms) for all decoders used in this study. As the aligners being tested worked with either
low-dimensional manifolds or the full neural population, and required the associated day-0 decoders
to be compatible, we implemented different day-0 decoders to match the outputs of the aligners.
For Cycle-GAN, we trained a Wiener filter using the full-dimensional neural firing rates recorded on
day-0. For ADAN and PAF, we performed dimensionality reduction (ADAN: autoencoder, PAF: Factor
Analysis; dimensionality = 10 for both) to find a low-dimensional latent space, and trained the decoder
using the projections of the neural signals into this latent space. The Wiener filters were trained using
the day-0 data with four-fold cross validation, and the filter corresponding to the fold with the best R2
was selected as the fixed day-0 decoder. The parameters for the dimensionality reduction procedures
and the Wiener filter from the day-0 data were kept fixed for decoding on subsequent days.

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 17 of 28

iBCI aligners
Adversarial domain adaptation network (ADAN)
We adhered to the main architecture and the training procedures of the ADAN as described in Farsh-
chian et al., 2018. Briefly, we first find a nonlinear latent space by jointly training an autoencoder and
a long short-term memory (LSTM) neural network-based iBCI decoder using day-0 data. (Note that
this LSTM based decoder is only used for latent space discovery, not the later decoding stage that is
used for performance evaluation (see ‘ADAN day-0 training’ in Appendix for full details)). We then
construct an adversarial aligner comprised of a distribution alignment module (generator network
G) and a discriminator network D (Appendix 1—figure 1), where G is a shallow feedforward neural
network, and D is an autoencoder with the same architecture as that used for the day-0 latent space
discovery. During training of the aligner, G is fed with day-k neural firing rates and applies a nonlinear
transform over these data to match them to the day-0 neuron response distributions. The output of
G, and the true day-0 neural firing rates are then passed to D, which passes both inputs through the
autoencoder: namely, it projects each signal into the latent space and then reconstructs it. The distri-
butions of the residuals between the autoencoder inputs and the reconstructions are computed for
both the generator output and the true day-0 data, and a lower bound to the Wasserstein distance
is used to measure the dissimilarity between the two distributions. The goal of adversarial learning is
to find a discriminator D that maximizes the dissimilarity between responses of D to true day-0 firing
rates and to outputs of G, while also finding a generator G that minimizes the dissimilarity between
true day-0 firing rates and the outputs of G; this objective is called the adversarial loss. When the
training is completed, G will have been trained to ‘align’ the neural firing rates on day-k with those
on day-0. For a full description of the ADAN architecture and its training strategy, please refer to
Appendix and (Farshchian et al., 2018).

Cycle-GAN
The Cycle-GAN aligner is based on the structure proposed in Zhu et al., 2017. Like ADAN, Cycle-GAN
does not consider any dynamic information, aligning only the point clouds representing the instan-
taneous firing rate of M1 neurons. Unlike ADAN, it converts the full-dimensional neural firing rates
collected on day-k into a form resembling those collected on day-0, with no dimensionality reduction.
Cycle-GAN consists of two feedforward generator neural networks (G1 and G2) and two discriminator
networks (D1 and D2, see Appendix—figure 1B). These form two pairs of adversarial networks: G1
maps data from the day-k domain to the day-0 domain, while D1 aims to distinguish between the
day-0 samples and the output of G1. And in parallel, G2 maps data in the day-0 domain to the day-k
domain, while D2 distinguishes day-k data from output of G2. In contrast to ADAN, the cycle-GAN
discriminator networks operate directly on neural responses, rather than the residuals between low-
dimensional and full-dimensional responses.

The objective function for network training has two major terms. The first is an adversarial loss,
defined for both generator-discriminator pairs (G1 + D1 and G2 + D2) as in ADAN. The second term
is known as the cycle-consistency loss, which pushes the mappings G1 and G2 to become inverses of
each other: that is, a sample from one specific domain should be recovered to its original form after
going through the cycle composed of the two mappings. As argued by Zhu et al, the introduction
of the cycle-consistency loss regularizes the learning of the mapping functions, thereby reducing the
search space. In (Appendix—figure 1B) the purple arrows through G1 and G2 reflect the transforma-
tion of each sample from the day-k domain into the day-0 domain by G1, followed by the recovery
from the day-0 domain into the day-k domain by G2. Likewise, the orange arrows through G2 and G1
reflect a transformation from the day-0 domain to the day-k domain and back to the day-0 domain.
Further details about the Cycle-GAN based aligner are provided in Appendix.

GAN training and architecture
Both ADAN and Cycle-GAN were trained using the ADAM optimizer (Kingma and Ba, 2015) with
a four-fold cross validation. We used 400 training epochs and reported the alignment result that
produced the best decoder performance on a held-out validation set of trials. In addition to the
learning hyperparameters explored in the Results section, we examined several different architec-
tures for the aligner neural network of both ADAN and Cycle-GAN (varying the number of layers
and neurons per layer), and replaced the least absolute deviations (L1) for both the adversarial and

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 18 of 28

cycle-consistency loss with the least square error (L2) (Mao et al., 2016). None of the manipulations
substantially improved performance.

Procrustes alignment of factors (PAF)
We compared ADAN and Cycle-GAN aligners with a manifold-based stabilization method proposed
by Degenhart et al., 2020, the Procrustes Alignment of Factors (PAF, our term). PAF finds a low-
dimensional manifold using Factor Analysis, then applies a Procrustes transformation to the neural
manifold of day-0 to align it to that of day-k. The original application of PAF additionally removes
electrodes identified as “unstable” and unlikely to contribute to alignment; these are defined as elec-
trodes on day-k that have changed the most with respect to the day-0 manifold, and are removed iter-
atively until a criterion is met. However, we found that alignment performance did not degrade with
the number of included electrodes, so we decided to omit this stability criterion and use all recorded
electrodes for all the datasets. As for the GAN aligners, we trained and tested PAF using a Wiener
filter and four-fold cross validation.

Performance measures
Decoder accuracy
To evaluate the performance of decoders mapping M1 neural recordings to motor outputs (either
EMG or hand velocity), we used the coefficient of determination (R2). The R2 indicates the propor-
tion of variation of the actual motor output that was predicted by the iBCI decoder; this approach
is common in evaluation of iBCI systems (Morrow and Miller, 2003). As the motor outputs being
decoded are multi-dimensional (7 dimensions for EMG, 2 dimensions for hand velocity), we computed
a multivariate R2 in which, after computing the R2 for all the single dimensions, we take a weighted
average across dimensions, with weights determined by the variance of each dimension. This was
implemented using the ‘r2_score’ function of the scikit-learn python package with ‘variance weighted’
for the ‘multioutput’ parameter (Pedregosa et al., 2011).

Maximum mean discrepancy (MMD)
We used maximum mean discrepancy (MMD) in two contexts. First, we used MMD to evaluate the
similarity between the distribution of the aligned day-k neural activity and the day-0 neural activity,
as a way to examine the alignment performance (Figure 6). MMD provides a measure of distance
between two multivariate distributions, based on the distances between the mean embeddings of
samples drawn from each distribution in a reproducing kernel Hilbert space (Gretton et al., 2012a).
MMD is symmetric in the two distributions and equals zero if and only if the two distributions are the
same. To select our kernel, we followed a technique that has been proved feasible for optimizing
kernel choice (Gretton et al., 2012b): specifically we employed a family of four Gaussian kernels with
width between 5 Hz and 50 Hz. To define a ‘smallest possible’ MMD between aligned day-k and day-0
distributions, we divided neural signals recorded on the same day into non-overlapping folds, and
computed MMD between them; we call this the ‘within-session MMD’ in Figure 6.

We also use the MMD to quantify the similarity of the distributions of neural activity or motor
outputs between pairs of separate recording sessions for each dataset, as a way to quantify the record-
ings instabilities (Figure 2—figure supplements 2C and 3). For a pair of sessions, we divided each of
them into four non-overlapping folds, and computed the MMD between each fold and its counterpart
in the other session, then reported the mean value across folds. We also computed the ‘within-session
MMD’ for neural activity/motor outputs for each session, using the same way described above.

Principal angles
To evaluate the similarity between neural manifolds of day-0 and day-k before and after alignment, we
used principal angles (Knyazev and Argentati, 2002). Principal angles provide a metric to quantify
the alignment of two subspaces embedded in a higher-dimensional space. For any pair of C-dimen-
sional hyperplanes, there are C principal angles that exist between them. Following the approach
outlined in Knyazev and Argentati, 2002 and Elsayed et al., 2016, these angles are computed
as follows: first, we reduce each signal (here the day-0 and day-k neuron firing rates) to 10 dimen-
sions using PCA. Next, recursively for each C=1...10, we identify the pair of principal vectors that are

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 19 of 28

separated by the smallest angle and that are also perpendicular to the prior selected pairs, and report
that angle. When two hyperplanes are well-aligned, the leading principal angles between them can be
very small, but often the last few angles are quite large. We computed the principal angles using the
‘subspace_angles’ function of the SciPy python package (Virtanen et al., 2020).

To assess whether the angles after neural alignment were significantly small, we compared them
to an upper bound provided by the angle between two surrogate subspaces, using the strategy
described in Elsayed et al., 2016. Briefly, we generated 10,000 random pairs of day-0-like and day-
95-like subspaces in which we shuffled the timing of spikes within each neuron, destroying correlation
structure while preserving the statistics of neural firing rates within each day. We then computed the
principal angles between each pair, and used the 0.1th percentile of the principal angle distribution as
the threshold below which angles could be considered smaller than expected by chance given firing
rate statistics alone. We also defined a ‘within-day’ bound by computing the principal angles between
the day-0 neural recordings of even-numbered and odd-numbered trials, to reduce to a minimum the
effect of any within-day drift. If the alignment process is successful, we expect the neural manifolds of
day-0 and day-k to have principal angles similar to those of the within-day bound.

Statistics
We applied statistical tests to compare the decoding accuracy over time after neural alignment with
Cycle-GAN, ADAN, and PAF. For these comparisons, we ran a linear mixed-effect model with the
type of aligner and the number of days elapsed from decoder training as fixed factors and the type
of task as a random factor. In addition, we compared the performance of Cycle-GAN and ADAN with
different hyperparameter settings, including generator and discriminator learning rates, as well as
batch size. For all these comparisons, we used a two-sided Wilcoxon’s signed rank test. We also used
a two-sided Wilcoxon’s signed rank to test whether there was a significant difference between any
two methods when limited amount of training data was used for alignment. Finally, we compared the
MMD of neural distributions between all pairs of day-0/day-k sessions before and after alignment with
Cycle-GAN and ADAN. Since the distributions pre and after alignment are independent, we used a
two-sided Wilcoxon’s rank sum test. For all the statistical models, we used a significance threshold of
α=0.05. When making pairwise comparisons between the three aligners, we used a Bonferroni correc-
tion of 3. Sample sizes are reported in the corresponding results section.

Acknowledgements
We thank Ali Farshchian, Sara Solla and Ege Altan for valuable discussions. We thank current and
former members of the Miller Limb Lab, including Stephanie Naufel, Matthew Perich, and Christian
Ethier, for their contributions to data collection. The work was supported in part by grants to LEM (R01
NS053603, R01 NS074044).

Additional information

Funding

Funder Grant reference number Author

National Institute of
Neurological Disorders
and Stroke

R01 NS053603 Lee E Miller

National Institute of
Neurological Disorders
and Stroke

R01 NS074044 Lee E Miller

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions
Xuan Ma, Fabio Rizzoglio, Conceptualization, Data curation, Investigation, Visualization, Methodology,
Writing – original draft, Writing – review and editing; Kevin L Bodkin, Data curation, Investigation; Eric

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 20 of 28

Perreault, Conceptualization, Supervision, Writing – review and editing; Lee E Miller, Conceptual-
ization, Supervision, Funding acquisition, Writing – original draft, Writing – review and editing; Ann
Kennedy, Conceptualization, Supervision, Writing – original draft, Writing – review and editing

Author ORCIDs
Xuan Ma ‍ ‍ https://orcid.org/0000-0003-3352-1905
Fabio Rizzoglio ‍ ‍ http://orcid.org/0000-0002-6744-4605
Lee E Miller ‍ ‍ http://orcid.org/0000-0001-8675-7140
Ann Kennedy ‍ ‍ http://orcid.org/0000-0002-3782-0518

Ethics
All surgical and experimental procedures were approved by the Institutional Animal Care and Use
Committee (IACUC) of Northwestern University under protocol #IS00000367, and are consistent with
the Guide for the Care and Use of Laboratory Animals.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.84296.sa1
Author response https://doi.org/10.7554/eLife.84296.sa2

Additional files
Supplementary files
•  MDAR checklist

Data availability
Data from all animals and tasks is available via Dryad at: https://doi.org/10.5061/dryad.cvdncjt7n.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Ma X, Rizzoglio F,
Thacker S, Miller L

2023 Using adversarial networks
to extend brain computer
interface decoding
accuracy over time

https://​doi.​org/​10.​
5061/​dryad.​cvdncjt7n

Dryad Digital Repository,
10.5061/dryad.cvdncjt7n

References
Almahairi A, Rajeshwar S, Sordoni A, Bachman P, Courville A. 2018. Augmented cyclegan: Learning many-to-

many mappings from unpaired data. International Conference on Machine Learning. .
Altan E, Solla SA, Miller LE, Perreault EJ. 2021. Estimating the dimensionality of the manifold underlying

multi-electrode neural recordings. PLOS Computational Biology 17:e1008591. DOI: https://doi.org/10.1371/​
journal.pcbi.1008591, PMID: 34843461

Arjovsky M, Bottou L. 2017. Towards principled methods for training generative adversarial networks. arXiv.
https://​arxiv.​org/​abs/​1701.​07875

Arjovsky M, Chintala S, Bottou L. 2017. Wasserstein generative adversarial networks. Proceedings of the 34th
International Conference on Machine Learning (ICML). 214–223.

Brock A, Donahue J, Simonyan K. 2019. Large Scale GAN Training for High Fidelity Natural Image Synthesis. 7th
International Conference on Learning Representations, ICLR 2019. .

Cherian A, Krucoff MO, Miller LE. 2011. Motor cortical prediction of EMG: evidence that a kinetic brain-machine
interface may be robust across altered movement dynamics. Journal of Neurophysiology 106:564–575. DOI:
https://doi.org/10.1152/jn.00553.2010, PMID: 21562185

Dangi S, Gowda S, Moorman HG, Orsborn AL, So K, Shanechi M, Carmena JM. 2014. Continuous closed-loop
decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in
brain-machine interfaces. Neural Computation 26:1811–1839. DOI: https://doi.org/10.1162/NECO_a_00632,
PMID: 24922501

Degenhart AD, Bishop WE, Oby ER, Tyler-Kabara EC, Chase SM, Batista AP, Yu BM. 2020. Stabilization of a
brain-computer interface via the alignment of low-dimensional spaces of neural activity. Nature Biomedical
Engineering 4:672–685. DOI: https://doi.org/10.1038/s41551-020-0542-9, PMID: 32313100

Downey JE, Schwed N, Chase SM, Schwartz AB, Collinger JL. 2018. Intracortical recording stability in human
brain-computer interface users. Journal of Neural Engineering 15:046016. DOI: https://doi.org/10.1088/1741-​
2552/aab7a0, PMID: 29553484

https://doi.org/10.7554/eLife.84296
https://orcid.org/0000-0003-3352-1905
http://orcid.org/0000-0002-6744-4605
http://orcid.org/0000-0001-8675-7140
http://orcid.org/0000-0002-3782-0518
https://doi.org/10.7554/eLife.84296.sa1
https://doi.org/10.7554/eLife.84296.sa2
https://doi.org/10.5061/dryad.cvdncjt7n
https://doi.org/10.5061/dryad.cvdncjt7n
https://doi.org/10.5061/dryad.cvdncjt7n
https://doi.org/10.1371/journal.pcbi.1008591
https://doi.org/10.1371/journal.pcbi.1008591
http://www.ncbi.nlm.nih.gov/pubmed/34843461
https://doi.org/10.1152/jn.00553.2010
http://www.ncbi.nlm.nih.gov/pubmed/21562185
https://doi.org/10.1162/NECO_a_00632
http://www.ncbi.nlm.nih.gov/pubmed/24922501
https://doi.org/10.1038/s41551-020-0542-9
http://www.ncbi.nlm.nih.gov/pubmed/32313100
https://doi.org/10.1088/1741-2552/aab7a0
https://doi.org/10.1088/1741-2552/aab7a0
http://www.ncbi.nlm.nih.gov/pubmed/29553484

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 21 of 28

Elsayed GF, Lara AH, Kaufman MT, Churchland MM, Cunningham JP. 2016. Reorganization between preparatory
and movement population responses in motor cortex. Nature Communications 7:13239. DOI: https://doi.org/​
10.1038/ncomms13239, PMID: 27807345

Farahani A, Voghoei S, Rasheed K, Arabnia HR. 2021. A brief review of domain adaptation. Stahlbock R, Weiss
GM, Abou-Nasr M, Yang CY, Arabnia HR, Deligiannidis L (Eds). Advances in Data Science and Information
Engineering Cham: Springer. p. 877–894. DOI: https://doi.org/10.1007/978-3-030-71704-9

Farnia F, Ozdaglar A. 2020. Do GANs always have Nash equilibria. Proceedings of the 37th International
Conference on Machine Learning. .

Farshchian A, Gallego JA, Cohen JP, Bengio Y, Miller LE, Solla SA. 2018. Adversarial Domain Adaptation for
Stable Brain-Machine Interfaces. arXiv. https://​arxiv.​org/​abs/​1810.​00045

Gallego JA, Perich MG, Miller LE, Solla SA. 2017. Neural manifolds for the control of movement. Neuron
94:978–984. DOI: https://doi.org/10.1016/j.neuron.2017.05.025, PMID: 28595054

Gallego JA, Perich MG, Chowdhury RH, Solla SA, Miller LE. 2020. Long-term stability of cortical population
dynamics underlying consistent behavior. Nature Neuroscience 23:260–270. DOI: https://doi.org/10.1038/​
s41593-019-0555-4, PMID: 31907438

Ganin Y, Lempitsky V. 2015. Unsupervised domain adaptation by backpropagation. International Conference on
Machine Learning. .

Ghosh B, Dutta IK, Carlson A, Totaro M, Bayoumi M. 2020. An Empirical Analysis of Generative Adversarial
Network Training Times with Varying Batch Sizes. 2020 11th IEEE Annual Ubiquitous Computing, Electronics &
Mobile Communication Conference (UEMCON). New York, NY, USA. DOI: https://doi.org/10.1109/​
UEMCON51285.2020.9298092

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 2014.
Generative Adversarial Networks. NeurlPS Proceedings. 1–9.

Gower JC, Dijksterhuis GB. 2004. Procrustes Problems Oxford University Press. DOI: https://doi.org/10.1093/​
acprof:oso/9780198510581.001.0001

Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, Tulloch A, Jia Y, He K. 2017. Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour. arXiv. https://​arxiv.​org/​abs/​1706.​02677

Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A. 2012a. A kernel two-sample test. The Journal of
Machine Learning Research 13:723–773.

Gretton A, Sejdinovic D, Strathmann H, Balakrishnan S, Pontil M, Fukumizu K, Sriperumbudur BK. 2012b.
Optimal kernel choice for large-scale two-sample tests. Advances in Neural Information Processing Systems. .

Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. 2017. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in Neural Information Processing Systems.

Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation 9:1735–1780. DOI: https://​
doi.org/10.1162/neco.1997.9.8.1735, PMID: 9377276

Isola P, Zhu JY, Zhou T, Efros AA. 2017. Image-to-Image Translation with Conditional Adversarial Networks. 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, 1125–1134. DOI: https://​
doi.org/10.1109/CVPR.2017.632

Jarosiewicz B, Sarma AA, Bacher D, Masse NY, Simeral JD, Sorice B, Oakley EM, Blabe C, Pandarinath C, Gilja V,
Cash SS, Eskandar EN, Friehs G, Henderson JM, Shenoy KV, Donoghue JP, Hochberg LR. 2015. Virtual typing
by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Science Translational
Medicine 7:313ra179. DOI: https://doi.org/10.1126/scitranslmed.aac7328, PMID: 26560357

Karpowicz BM, Ali YH, Wimalasena LN, Sedler AR, Keshtkaran MR. 2022. Stabilizing Brain-Computer Interfaces
through Alignment of Latent Dynamics Leveraging Manifolds and Dynamics to Stabilize iBCI Decoding.
bioRxiv. DOI: https://doi.org/10.1101/2022.04.06.487388

Keskar NS, Mudigere D, Nocedal J, Smelyanskiy M, Tang PTP. 2016. On large-batch training for deep learning:
generalization gap and sharp minima. arXiv. https://​arxiv.​org/​abs/​1609.​04836

Kingma DP, Ba JL. 2015. Adam: A method for stochastic optimization. 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track Proceedings. .

Knyazev AV, Argentati ME. 2002. Principal angles between subspaces in an A -Based scalar product: algorithms
and perturbation estimates. SIAM Journal on Scientific Computing 23:2008–2040. DOI: https://doi.org/10.​
1137/S1064827500377332

Kurach K, Lucic M, Zhai X, Michalski M, Gelly S. 2018. The gan landscape: losses, architectures, regularization,
and normalization. arXiv. https://​arxiv.​org/​abs/​1807.​04720

Ma X. 2023a. Adversarial_BCI. swh:1:rev:187857d4963dcffbdbf633502b1e41dafa4cd09a. Software Heritage.
https://archive.softwareheritage.org/swh:1:dir:61f8576b46cb85e1c8733545c9e174609fef1986;origin=https://​
github.com/limblab/adversarial_BCI;visit=swh:1:snp:41e68e953c61172eddae0e0f6333b52cc901855f;anchor=​
swh:1:rev:187857d4963dcffbdbf633502b1e41dafa4cd09a

Ma X. 2023b. Xds. swh:1:rev:104719352b92cfa9200f2dd91902151295aceea9. Software Heritage. https://​
archive.softwareheritage.org/swh:1:dir:e97a97a1e6099a7040b6ea9182fc986df4483179;origin=https://github.​
com/limblab/xds;visit=swh:1:snp:b2e04fad3346056accff8ba0c0945cada3e782b0;anchor=swh:1:rev:10471935​
2b92cfa9200f2dd91902151295aceea9

Ma X. 2023c. Decoder_Standard. swh:1:rev:032a8491381a9ac9267b0bd8003d84c10743aa35. Software
Heritage. https://archive.softwareheritage.org/swh:1:dir:d7a16712f127ca4ed63f266b4340286fd3168fd9;​
origin=https://github.com/xuanma/decoder_standard;visit=swh:1:snp:2027d231fb61aae42b39f3d1c7f35de7​
55872401;anchor=swh:1:rev:032a8491381a9ac9267b0bd8003d84c10743aa35

https://doi.org/10.7554/eLife.84296
https://doi.org/10.1038/ncomms13239
https://doi.org/10.1038/ncomms13239
http://www.ncbi.nlm.nih.gov/pubmed/27807345
https://doi.org/10.1007/978-3-030-71704-9
https://doi.org/10.1016/j.neuron.2017.05.025
http://www.ncbi.nlm.nih.gov/pubmed/28595054
https://doi.org/10.1038/s41593-019-0555-4
https://doi.org/10.1038/s41593-019-0555-4
http://www.ncbi.nlm.nih.gov/pubmed/31907438
https://doi.org/10.1109/UEMCON51285.2020.9298092
https://doi.org/10.1109/UEMCON51285.2020.9298092
https://doi.org/10.1093/acprof:oso/9780198510581.001.0001
https://doi.org/10.1093/acprof:oso/9780198510581.001.0001
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1126/scitranslmed.aac7328
http://www.ncbi.nlm.nih.gov/pubmed/26560357
https://doi.org/10.1101/2022.04.06.487388
https://doi.org/10.1137/S1064827500377332
https://doi.org/10.1137/S1064827500377332
https://archive.softwareheritage.org/swh:1:dir:61f8576b46cb85e1c8733545c9e174609fef1986;origin=https://github.com/limblab/adversarial_BCI;visit=swh:1:snp:41e68e953c61172eddae0e0f6333b52cc901855f;anchor=swh:1:rev:187857d4963dcffbdbf633502b1e41dafa4cd09a
https://archive.softwareheritage.org/swh:1:dir:61f8576b46cb85e1c8733545c9e174609fef1986;origin=https://github.com/limblab/adversarial_BCI;visit=swh:1:snp:41e68e953c61172eddae0e0f6333b52cc901855f;anchor=swh:1:rev:187857d4963dcffbdbf633502b1e41dafa4cd09a
https://archive.softwareheritage.org/swh:1:dir:61f8576b46cb85e1c8733545c9e174609fef1986;origin=https://github.com/limblab/adversarial_BCI;visit=swh:1:snp:41e68e953c61172eddae0e0f6333b52cc901855f;anchor=swh:1:rev:187857d4963dcffbdbf633502b1e41dafa4cd09a
https://archive.softwareheritage.org/swh:1:dir:e97a97a1e6099a7040b6ea9182fc986df4483179;origin=https://github.com/limblab/xds;visit=swh:1:snp:b2e04fad3346056accff8ba0c0945cada3e782b0;anchor=swh:1:rev:104719352b92cfa9200f2dd91902151295aceea9
https://archive.softwareheritage.org/swh:1:dir:e97a97a1e6099a7040b6ea9182fc986df4483179;origin=https://github.com/limblab/xds;visit=swh:1:snp:b2e04fad3346056accff8ba0c0945cada3e782b0;anchor=swh:1:rev:104719352b92cfa9200f2dd91902151295aceea9
https://archive.softwareheritage.org/swh:1:dir:e97a97a1e6099a7040b6ea9182fc986df4483179;origin=https://github.com/limblab/xds;visit=swh:1:snp:b2e04fad3346056accff8ba0c0945cada3e782b0;anchor=swh:1:rev:104719352b92cfa9200f2dd91902151295aceea9
https://archive.softwareheritage.org/swh:1:dir:e97a97a1e6099a7040b6ea9182fc986df4483179;origin=https://github.com/limblab/xds;visit=swh:1:snp:b2e04fad3346056accff8ba0c0945cada3e782b0;anchor=swh:1:rev:104719352b92cfa9200f2dd91902151295aceea9
https://archive.softwareheritage.org/swh:1:dir:d7a16712f127ca4ed63f266b4340286fd3168fd9;origin=https://github.com/xuanma/decoder_standard;visit=swh:1:snp:2027d231fb61aae42b39f3d1c7f35de755872401;anchor=swh:1:rev:032a8491381a9ac9267b0bd8003d84c10743aa35
https://archive.softwareheritage.org/swh:1:dir:d7a16712f127ca4ed63f266b4340286fd3168fd9;origin=https://github.com/xuanma/decoder_standard;visit=swh:1:snp:2027d231fb61aae42b39f3d1c7f35de755872401;anchor=swh:1:rev:032a8491381a9ac9267b0bd8003d84c10743aa35
https://archive.softwareheritage.org/swh:1:dir:d7a16712f127ca4ed63f266b4340286fd3168fd9;origin=https://github.com/xuanma/decoder_standard;visit=swh:1:snp:2027d231fb61aae42b39f3d1c7f35de755872401;anchor=swh:1:rev:032a8491381a9ac9267b0bd8003d84c10743aa35

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 22 of 28

Mao X, Li Q, Xie H, Lau RYK, Wang Z. 2016. Multi-Class Generative Adversarial Networks with the L2 Loss
Function. arXiv. https://​arxiv.​org/​abs/​1611.​04076

Morrow MM, Miller LE. 2003. Prediction of muscle activity by populations of sequentially recorded primary
motor cortex neurons. Journal of Neurophysiology 89:2279–2288. DOI: https://doi.org/10.1152/jn.00632.2002,
PMID: 12612022

Nagarajan V, Kolter JZ. 2017. Gradient descent GAN optimization is locally stable. Advances in Neural
Information Processing Systems.

Naufel S, Glaser JI, Kording KP, Perreault EJ, Miller LE. 2019. A muscle-activity-dependent gain between motor
cortex and EMG. Journal of Neurophysiology 121:61–73. DOI: https://doi.org/10.1152/jn.00329.2018, PMID:
30379603

Orsborn AL, Dangi S, Moorman HG, Carmena JM, Member S. 2012. Closed-loop decoder adaptation on
intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization
conditions. IEEE Transactions on Neural Systems and Rehabilitation Engineering 20:468–477. DOI: https://doi.​
org/10.1109/TNSRE.2012.2185066, PMID: 22772374

Pan SJ, Tsang IW, Kwok JT, Yang Q. 2011. Domain adaptation via transfer component analysis. IEEE Transactions
on Neural Networks 22:199–210. DOI: https://doi.org/10.1109/TNN.2010.2091281, PMID: 21095864

Pan Z, Yu W, Yi X, Khan A, Yuan F, Zheng Y. 2019. Recent progress on generative adversarial networks (GANs): a
survey. IEEE Access 7:36322–36333. DOI: https://doi.org/10.1109/ACCESS.2019.2905015

Pandarinath C, O’Shea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, Trautmann EM, Kaufman MT, Ryu SI,
Hochberg LR, Henderson JM, Shenoy KV, Abbott LF, Sussillo D. 2018. Inferring single-trial neural population
dynamics using sequential auto-encoders. Nature Methods 15:805–815. DOI: https://doi.org/10.1038/
s41592-​018-0109-9, PMID: 30224673

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R,
Dubourg V. 2011. Scikit-learn: machine learning in python. The Journal of Machine Learning Research 12:2825–
2830.

Perge JA, Homer ML, Malik WQ, Cash S, Eskandar E, Friehs G, Donoghue JP, Hochberg LR. 2013. Intra-day
signal instabilities affect decoding performance in an intracortical neural interface system. Journal of Neural
Engineering 10:036004. DOI: https://doi.org/10.1088/1741-2560/10/3/036004, PMID: 23574741

Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. 2016. Improved techniques for training
GANs. Advances in Neural Information Processing Systems. .

Saxena D, Cao J. 2021. Generative adversarial networks (GANs) challenges, solutions, and future directions.
ACM Computing Surveys 54:1–42. DOI: https://doi.org/10.1145/3446374

Schönemann PH. 1966. A generalized solution of the orthogonal procrustes problem. Psychometrika 31:1–10.
DOI: https://doi.org/10.1007/BF02289451

Sussillo D, Jozefowicz R, Abbott LF, Pandarinath C. 2016a. LFADS - Latent Factor Analysis via Dynamical
Systems. arXiv. https://​arxiv.​org/​abs/​1608.​06315

Sussillo D, Stavisky SD, Kao JC, Ryu SI, Shenoy KV. 2016b. Making brain-machine interfaces robust to future
neural variability. Nature Communications 7:13749. DOI: https://doi.org/10.1038/ncomms13749, PMID:
27958268

Tzeng E, Hoffman J, Saenko K, Darrell T. 2017. Adversarial Discriminative Domain Adaptation. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, 7167–7176. DOI: https://doi.​
org/10.1109/CVPR.2017.316

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P,
Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E,
Kern R, Larson E, Carey CJ, et al. 2020. Author Correction: SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nature Methods 17:261–272. DOI: https://doi.org/10.1038/s41592-020-0772-5, PMID:
32094914

Volgushev M, Chauvette S, Mukovski M, Timofeev I. 2006. Precise long-range synchronization of activity and
silence in neocortical neurons during slow-wave oscillations [corrected]. The Journal of Neuroscience 26:5665–
5672. DOI: https://doi.org/10.1523/JNEUROSCI.0279-06.2006, PMID: 16723523

Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. 2021. High-performance brain-to-text
communication via handwriting. Nature 593:249–254. DOI: https://doi.org/10.1038/s41586-021-03506-2,
PMID: 33981047

Zhao J, Mathieu M, LeCun Y. 2016. Energy-Based Generative Adversarial Network. arXiv. https://​arxiv.​org/​abs/​
1609.​03126

Zhu JY, Park T, Isola P, Efros AA. 2017. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial
Networks. 2017 IEEE International Conference on Computer Vision (ICCV). Venice, 2223–2232. DOI: https://​
doi.org/10.1109/ICCV.2017.244

https://doi.org/10.7554/eLife.84296
https://doi.org/10.1152/jn.00632.2002
http://www.ncbi.nlm.nih.gov/pubmed/12612022
https://doi.org/10.1152/jn.00329.2018
http://www.ncbi.nlm.nih.gov/pubmed/30379603
https://doi.org/10.1109/TNSRE.2012.2185066
https://doi.org/10.1109/TNSRE.2012.2185066
http://www.ncbi.nlm.nih.gov/pubmed/22772374
https://doi.org/10.1109/TNN.2010.2091281
http://www.ncbi.nlm.nih.gov/pubmed/21095864
https://doi.org/10.1109/ACCESS.2019.2905015
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1038/s41592-018-0109-9
http://www.ncbi.nlm.nih.gov/pubmed/30224673
https://doi.org/10.1088/1741-2560/10/3/036004
http://www.ncbi.nlm.nih.gov/pubmed/23574741
https://doi.org/10.1145/3446374
https://doi.org/10.1007/BF02289451
https://doi.org/10.1038/ncomms13749
http://www.ncbi.nlm.nih.gov/pubmed/27958268
https://doi.org/10.1109/CVPR.2017.316
https://doi.org/10.1109/CVPR.2017.316
https://doi.org/10.1038/s41592-020-0772-5
http://www.ncbi.nlm.nih.gov/pubmed/32094914
https://doi.org/10.1523/JNEUROSCI.0279-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16723523
https://doi.org/10.1038/s41586-021-03506-2
http://www.ncbi.nlm.nih.gov/pubmed/33981047
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 23 of 28

Appendix 1
Detailed methods for iBCI decoders and aligners
Testing neural alignment on your data
We provide a step-by-step tutorial on the use of CycleGAN and ADAN for neural alignment on
GitHub in our adversarial_BCI repository: https://github.com/limblab/adversarial_BCI, (copy
archived at swh:1:rev:187857d4963dcffbdbf633502b1e41dafa4cd09a; Ma, 2023a) in the Jupyter
notebooks ​ADAN_​aligner.​ipynb and ​Cycle_​GAN_​aligner.​ipynb. Briefly, the steps covered by these
notebooks are as follows:

1.	 Set up requirements. In addition to common Python data science libraries, our alignment code
makes use of the following more specialized packages:

a.	 XDS cross-platform data structure, documentation for which can be found at https://​
github.com/limblab/XDS, (copy archived at swh:1:rev:104719352b92cfa9200f2d-
d91902151295aceea9; Ma, 2023b). Datasets should be packaged into the XDS format
for analysis using the provided notebooks, or else datasets should be formatted into lists
of numpy arrays as described in the notebook (see documentation on variables day0_
spike and day0_EMG in the notebook).

b.	 A simple Wiener filter decoder module, found at https://github.com/xuanma/decoder_​
standard, (copy archived at swh:1:rev:032a8491381a9ac9267b0bd8003d84c10743aa35;
Ma, 2023c).

c.	 Pytorch, a Python library for working with deep neural network models, is required for
Cycle-GAN. Tensorflow 1.* is required for ADAN. Note that because our alignment
models are quick to train, they do not require a computer with a GPU.

2.	 Data preprocessing. Given extracellular spike trains from an implanted recording device (here
a 96-channel Utah array) we compute spike counts per channel using 50 ms time binning, then
smooth these spike counts using a Gaussian kernel with a standard deviation of 100 ms. Our
provided notebook loads and pre-processes neural recording data from two days of experi-
ments, namely the source and target days. Similarly, raw EMG recordings are pre-processed via
rectification and filtering, as described in the Methods section of this manuscript.

3.	 Trial selection. In our demo notebook, we use only the first 160 trials on a given recording day.
Selection of trials is achieved by indexing into our day0_spike, day0_EMG, dayk_spike, and
dayk_EMG lists, which contain the now-preprocessed data following spike count smoothing and
EMG envelope extraction, segmented into trials.

4.	 Train the day-0 decoders. The goal of alignment is to be able to use a previously trained neural
decoder to predict EMG activity on neural recording data from a new experimental session. In
our work, we use a simple Wiener filter decoder as our “previously trained decoder”. In the
provided notebook, we explain the design of the Wiener filter decoder, and provide a function
train_wiener_filter to train a Wiener filter decoder on the day-0 data as well as wrapper code
implementing four-fold cross-validation. The training code applies data splits, formats data for
the decoder, and trains and tests the Wiener filter decoder for each split, reporting back multi-
variate R2 values and saving the best-performing decoder to a .npy file for further use. The
notebook also uses a function plot_actual_and_pred_EMG to plot the predicted EMG signals
using the decoder alongside the corresponding ground-truth EMG signals.

5.	 Define the blocks for the Cycle-GAN (or ADAN) aligner. The next step is to define the architec-
ture of the alignment model. Model definition code is provided in both notebooks; for example,
they Cycle-GAN notebook defines Generator and Discriminator classes, each of which has an
__init__ function to initialize the network architecture and a function forward which takes an
input firing rate signal and returns a transformed version of that signal.

6.	 Train the Cycle-GAN (or ADAN) aligner. Having designed the architecture of our model, we
next provide a function train_cycle_gan_aligner to carry out training. This function first carries
out several setup steps:

a.	 Specifying the value of model hyperparameters (which can be set by the user).
b.	 Initializing two Generator and two Discriminator networks.
c.	 Defining the type of loss function (MSE or L1-penalized) and optimizer to be used by the

model; these are standard terms provided by torch.

https://doi.org/10.7554/eLife.84296
https://github.com/limblab/adversarial_BCI
https://archive.softwareheritage.org/swh:1:dir:61f8576b46cb85e1c8733545c9e174609fef1986;origin=https://github.com/limblab/adversarial_BCI;visit=swh:1:snp:41e68e953c61172eddae0e0f6333b52cc901855f;anchor=swh:1:rev:187857d4963dcffbdbf633502b1e41dafa4cd09a
https://github.com/limblab/XDS
https://github.com/limblab/XDS
https://archive.softwareheritage.org/swh:1:dir:e97a97a1e6099a7040b6ea9182fc986df4483179;origin=https://github.com/limblab/xds;visit=swh:1:snp:b2e04fad3346056accff8ba0c0945cada3e782b0;anchor=swh:1:rev:104719352b92cfa9200f2dd91902151295aceea9
https://archive.softwareheritage.org/swh:1:dir:e97a97a1e6099a7040b6ea9182fc986df4483179;origin=https://github.com/limblab/xds;visit=swh:1:snp:b2e04fad3346056accff8ba0c0945cada3e782b0;anchor=swh:1:rev:104719352b92cfa9200f2dd91902151295aceea9
https://github.com/xuanma/decoder_standard
https://github.com/xuanma/decoder_standard
https://archive.softwareheritage.org/swh:1:dir:d7a16712f127ca4ed63f266b4340286fd3168fd9;origin=https://github.com/xuanma/decoder_standard;visit=swh:1:snp:2027d231fb61aae42b39f3d1c7f35de755872401;anchor=swh:1:rev:032a8491381a9ac9267b0bd8003d84c10743aa35

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 24 of 28

d.	 Initializing DataLoader objects to feed the training or test dataset into the torch model.
It then carries out the GAN training loop. Briefly, each iteration does the following,
where “loss” is by default the mean-squared error between two signals:

e.	 Sample a pair of neural recording trials, one from day-0 and one from day-k.
f.	 Compute the identity loss, which takes the error between day-k data and its transfor-

mation by the day-0 Generator (and similarly for day-0 and the day-k Generator). This
loss regularizes the Generator to be close to an identity mapping when provided with
samples from its target domain, an approach used in the original Cycle-GAN manuscript
and adopted from Taigman, Polyak, & Wolf 2017.

g.	 Compute the GAN loss for the day-0 data using the day-0 Generator + Discriminator (and
similarly for day-k). For the day-0 Generator, this loss is the accuracy of the Discriminator
in distinguishing true day-k data from synthetic day-k data; for the day-0 Discriminator,
the loss is the error rather than the accuracy.

h.	 Compute the cycle-consistency loss for the day-0 data by feeding the synthetic day-k
data through the day-k Generator and computing the error between this output and the
original day-0 data (and similarly for day-k).

i.	 Sum applicable losses for each Generator (identity, GAN-Generator, and cycle-consistency)
and each Discriminator (GAN-Discriminator only).

j.	 Compute the gradient with respect to each loss, and pass this information to the optim-
izer, which will update the model parameters at the end of each epoch.

k.	 To monitor training progress, the aligner is evaluated on the validation set every 10
epochs, and performance is logged.

7.	 Test the trained aligner. The provided function test_cycle_gan_aligner takes as input a trained
aligner and a neural dataset, and returns as output the aligned version of that dataset. It does
this by passing the data through the trained model network.

8.	 Plot performance. The notebook next shows how to evaluate the quality of the previously
trained day-0 decoder when fed aligned neural signals. As in step 3 above, the provided func-
tion plot_actual_and_pred_EMG is used, but now we are feeding aligned day-k neural activity
into the decoder and comparing the decoder’s prediction to the day-0 EMG.

We advise the reader to consult the complete Jupyter notebook for additional commentary and
documentation of these steps. In addition to this practical guide to use of Cycle-GAN for alignment,
we have included additional technical documentation of the alignment process in the following
sections.

iBCI day-0 decoders
We used a Wiener filter (Cherian et al., 2011) as the day-0 iBCI decoder:

	﻿‍
y
(
t
)

=
T−1∑
τ=0

β
(
τ
)

x
(
t − τ

)
‍�

(1)

where ‍y
(
t
)
‍ is a q-dimensional vector (q is 2 for hand velocity prediction and varied with the number

of recorded EMGs for EMG prediction, see Appendix 1—table 1) representing the motor outputs
to be predicted at time t, while ‍x

(
t
)
‍ is a p-dimensional vector for the inputs to the Wiener filter at

time t, and ‍β
(
τ
)
‍ is a ‍q × p‍ matrix corresponding to the filter parameters for time step ‍τ ‍. For Cycle-

GAN, ‍x
(
t
)
‍ is the full-dimensional neural firing rates, thus p equals to the number of the electrodes

in the cortical array (denoted as C). For ADAN, ‍x
(
t
)
‍ is the projection of the neural firing rates in a

nonlinear latent space found by an autoencoder (see next section for details). For PAF, ‍x
(
t
)
‍ is the

projection of the neural firing rates in a linear latent space found by factor analysis. We set ‍p = 10‍ for
both ADAN and PAF. We can also write Equation 1 in matrix form:

	﻿‍ Y = XB‍� (2)

where Y is a ‍M × q‍ matrix for the motor outputs to be predicted with M being the number of
samples, X is a ‍M ×

(
T × p

)
‍ matrix, and B is a ‍

(
T × p

)
× q‍ matrix for the regression coefficients to be

estimated. We also added an additional bias term for both X and B. B was determined by a ridge
regression estimator:

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 25 of 28

	﻿‍
B̂ =

(
XT X + λI

)−1
XT Y

‍�
(3)

We chose a ridge regression to limit the risk of decoder overfitting by penalizing solutions with large
regression coefficients with the regularization term ‍λ‍. The value of ‍λ‍ was chosen by sweeping a
range of 20 values between 10 and 105 on a logarithmic scale. We used a 4-fold cross validation to
train the decoder for each aligner type and ultimately selected the model with the highest R2 on the
test set as the fixed day-0 decoder.

ADAN day-0 training
The day-0 wiener filter for ADAN was built from a nonlinear latent space estimated from day-0
neural firing rates using an autoencoder (AE) originally described in Farshchian et al., 2018. The
AE consists of an input layer, five hidden layers and an output layer. The input and the output
layers have C units, while the hidden layers (from input to output) have 64, 32, 10, 32 and 64 units,
respectively. Hence, the AE compresses the C-dimensional neural firing rates into a 10-dimensional
latent representation. The units in the layer and the output layers as well as those in the latent layer
have linear activation functions, while units in the remaining hidden layers have a nonlinear one
(exponential linear unit, ELU). The AE is trained to minimize the reconstruction error defined as the
mean square error (MSE) between the input and the output data. When day-0 neural firing rates

‍
{

x
}
‍ are fed through the AE, the latent layer activity ‍

{
l
}
‍ and the corresponding reconstructions ‍

{
x̂
}
‍

are obtained. The 10-dimensional latent activity ‍
{

l
}
‍ is then mapped onto the q-dimensional motor

output vector through a long-short-term memory (LSTM, Hochreiter and Schmidhuber, 1997):

	﻿‍ ŷ = LSTM
(
l
)
‍� (4)

where ‍y‍ is the actual motor output (either EMG or hand velocity) recorded at day-0 and ‍̂y‍ is its
prediction with the LSTM. The LSTM is designed with one layer and a number of units that equals the
number of recorded EMGs (if the motor output is EMG) or two (if the motor output is hand velocity).
The AE and the LSTM are simultaneously trained by minimizing a loss function that accounts for
both the MSE of the reconstruction of the firing rates (‍L(AE)‍) and the MSE of the motor output
predictions (‍L(LSTM)‍):

	﻿‍
L = λL(AE) + L(LSTM) = 1

M

M∑
i=1

(λ ∥x̂ − x∥2 + ∥ŷ − y∥2)
‍�

(5)

where M is the total number of training samples. The weighting factor ‍λ‍ equalizes the contribution
of the two terms so that the learning algorithm does not prioritize one over the other. For each
training epoch, ‍λ‍ is updated as the ratio between the values of ‍L(AE)‍ and ‍L(LSTM)‍ at the end of
the preceding epoch.

The simultaneous training of the AE and the LSTM allows extracting a low-dimensional space of
neural activity constrained to include features related to movement intent. Such neural manifold is
then used to train the Wiener filter used as the fixed day-0 decoder for this study. At each epoch of
training, the current latent signal ‍

{
l
}
‍ was used as input for Equation 3 to obtain a linear prediction of

the actual motor output. We used 400 epochs of training and ultimately selected the parameters of
the wiener filter at the epoch that had the best performance (in the R2 sense) on the held-out test set.

ADAN based aligner. The discriminator D of ADAN is an autoencoder (Appendix 1—figure 1A),
and has the same architecture as that used to find the nonlinear latent space on day-0 (day-0 AE).
The parameters of D (‍θD‍) are initialized with the parameters of the day-0 AE. The generator G is a
feedforward neural network with one hidden layer with C neurons (i.e., the number of the electrodes
in the cortical array). The parameters of G (‍θG‍) are initialized as identity matrices. We set a nonlinear
activation function (ELU) for the hidden layer, and a linear one for the output layer.

Here we denote the day-0 neural firing rates as ‍
{

xi
}M

i=1‍ and the day-k neural firing rates as

‍
{

zj
}N

j=1‍, where both ‍xi‍ and ‍zj‍ are C-dimensional vectors representing the neural firing rates from C
electrodes at a given time bin, and M and N are the total number of samples for day-0 and day-k
data respectively. Since at one time we fed the networks with S training samples as a batch, we can
write a training batch from ‍

{
x
}
‍ or ‍

{
z
}
‍ in matrix form as X or Z. During training, we fed Z to G and

got G(Z) as the aligned day-k neural firing rates. At the same time, we fed D with both G(Z) and X.
As D is an autoencoder, it would produce the reconstructions of them from the latent space, which

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 26 of 28

can be written as ‍Ĝ(Z)‍ and ‍̂X‍. Hence, we could get the residuals between the true data and these
reconstructions by computing:

	﻿‍

RX = X − X̂

RG
(

Z
) = G

(
Z
)
− Ĝ

(
Z
)
‍�

(6)

RX and RG(Z) are both ‍S × C‍ matrices. We then computed the scalar reconstruction losses as the L1
norm of each column of RX and RG(Z). Let ‍ρ(RX)‍ and ‍ρ(RG(Z))‍ represent the distributions of these
scalar losses, and let ‍µ(RX)‍ and ‍µ(RG(Z))‍ be the corresponding means of ‍ρ(RX)‍ and ‍ρ(RG(Z))‍. We
measured the dissimilarity between ‍ρ(RX)‍ and ‍ρ(RG(Z))‍ by a lower bound to the Wasserstein
distance (Arjovsky et al., 2017), which is given by the absolute value of the difference between
‍µ(RX)‍ and ‍µ(RG(Z))‍:‍W(ρ(RX), ρ(RG(Z))) ≥ |µ(RX) − µ(RG(Z))|‍. The parameters of the generator (‍θG‍) and
discriminator (‍θD‍) are updated via batch gradient descent by minimizing their corresponding cost
functions:

	﻿‍

L
(
D
)

= µ
(
RX

)
− µ

(
RG

(
Z
)
)

L
(
G
)

= µ
(

RG
(

Z
)
)

‍�
(7)

For each epoch of training,‍L(G)‍ is first minimized and followed by ‍L(D)‍. Minimizing ‍L(G)‍ implies
bringing the output of the generator (i.e., the aligned day-k neural data, G(Z)) close to the day-0
data X. When G(Z) is fed through D, residuals with mean ‍µZ‍ are obtained. Since D is initialized with
the day-0 AE weights, ‍µZ‍ can be reduced if ‍θG‍ are updated to appropriately modify G(Z) and make
it resemble X. When ‍L(G)‍ is minimized, the gradients flow through both D and G, but only the
parameters ‍θG‍ are updated at this stage.

While G is trying to decrease ‍µZ‍, D is working as an adversary. Minimizing ‍L(D)‍ implies maximizing
the difference between ‍µ(RX)‍ and ‍µ(RG(Z))‍ (i.e., their Wasserstein distance W). Again, since D is
initialized with the day-0 AE weights (and the generator is an identity matrix when training begins),
the residuals of the day-k data will be greater than those of the day-0 data, hence ‍

(
µZ > µX

)
‍. Thus, if

‍θD‍ are updated to maximize ‍
(
µZ − µX

)
‍, or equivalently minimize ‍

(
µX − µZ

)
‍, this relation is maintained

during training. Since scalar residuals and their means are always nonnegative, maximization of W
is achieved by decreasing ‍µX‍ while increasing ‍µZ‍. The adversarial mechanism between G and D
ensures that the neural alignment is achieved in an unsupervised manner.

Appendix 1—table 1. ADAN hyperparameters.

parameter value

Total number of trainable parameters 35,946

Batch size 8

Discriminator (‍D‍) learning rate 0.00005

Generator (‍G‍) learning rate 0.0001

Number of training epochs 200

Cycle-GAN based aligner
The Cycle-GAN generators, G1 and G2 are both shallow feedforward neural networks with one
hidden layer with C neurons. We set a nonlinear activation function (RELU) for the hidden layer, and
a linear one for the output layer. The discriminators, D1 and D2 are also shallow feedforward neural
networks with one hidden layer. The input layer and the hidden layer both have C neurons, while the
output layer has 1 neuron, as the output is a class label indicating which distribution the input sample
belongs to. Same as G1 and G2, the hidden layer of D1 and D2 uses a nonlinear activation function
(RELU), and the output layer uses a linear one. The layer weights of each network were initialized
through Xavier initialization.

As shown in (Appendix 1—figure 1B), we fed the day-k neural firing rates Z to G1 to get the
aligned day-k neural firing rates (G1(Z)), and the day-0 neural firing rates X to G2 to convert data in
the day-0 domain back into the day-k domain (G2(X)). Meanwhile, the discriminator D1 was fed with
X and (G1(Z)) to distinguish between the ‘real and the ‘fake’ day-0 data, while D2 was fed with Z and

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 27 of 28

(G2(X)) to distinguish between the ‘real’ and the ‘fake’ day-k data. Specifically, the discriminators
would assign each sample a class label to tell if it belonged to the C-dimensional distribution of the
real data (‍ρ

(
X
)
‍ or ‍ρ

(
Z
)
‍) or from the distribution of the fake data generated by G1 or G2.

For the network training, we expected G1 and G2 to generate more convincing samples, while D1
and D2 to be more perceptive to better discriminate between the true and the fake samples. The
performances of the networks in such contest could be quantified by adversarial losses. As with
ADAN, here we adopted the mean absolute error (MAE), or L1 loss, as the adversarial loss function.
For G1 and D1, the adversarial loss can be expressed as follows:

	﻿‍

Ladv
(
D1

)
= EX∼pdata

(
X
) [||D1

(
X
)
− b||1

]
+ EZ∼pdata

(
Z
) [||D1

(
G1

(
Z
))

− a||1
]

Ladv
(
G1

)
= EZ∼pdata

(
Z
) [||D1

(
G1

(
Z
))

− c||1
]

‍�
(8)

where ‍a‍ is the label for the fake neural firing rates, b is the label for the real neural firing rates, and
c is the value that G1 wants D1 to believe for fake neural firing rates. Typically, we can set ‍a = 0‍, and
‍b = c = 1‍. For D2 and G2, the adversarial loss ‍Ladv

(
D2

)
‍ and ‍Ladv

(
G2

)
‍ have a similar form:

	﻿‍

Ladv
(
D2

)
= EZ∼pdata

(
Z
) [||D2

(
Z
)
− b||1

]
+ EX∼pdata

(
X
) [||D2

(
G2

(
X
))

− a||1
]

Ladv
(
G2

)
= EX∼pdata

(
X
) [||D2

(
G2

(
X
))

− c||1
]

‍�
(9)

The core idea of Cycle-GAN is to make the learned mapping functions cycle-consistent so as
to reduce the space of possible mapping functions. As shown in (Appendix 1—figure 1), the two
highlighted cycles should be able to bring the corresponding data back to the original domain, for
example, the distribution of the recovered day-k neural firing rates G2(G1(Z)) should be similar to the
distribution of the real day-k neural firing rates Z. Therefore, we define the cycle consistency loss as
follows:

	﻿‍ Lcyc
(
G1, G2

)
= EX∼p

(
X
) [||G1

(
G2

(
X
))

− X||1
]

+ EZ∼p
(

Z
) [||G2

(
G1

(
Z
))

− Z||1
]
‍� (10)

Note here we also applied the L1 loss.
Taken together, the full loss function is written as:

	﻿‍ L
(
G1, G2, D1, D2

)
= Ladv

(
D1

)
+ Ladv

(
G1

)
+ Ladv

(
D2

)
+ Ladv

(
G2

)
+ Lcyc

(
G1, G2

)
‍� (11)

and the training process is to solve this min-max optimization problem:

	﻿‍
G∗

1 , G∗
2 , D∗

1 , D∗
2 = arg min

G1,G2
max
D1,D2

L
(
G1, G2, D1, D2

)
‍� (12)

Appendix 1—table 2. Cycle-GAN hyperparameters.

parameter value

Total number of trainable parameters 74,208

Batch size 256

Discriminator (‍D1‍) learning rate 0.01

Discriminator (‍D2‍) learning rate 0.01

Generator (‍G1‍) learning rate 0.001

Generator (‍G2‍) learning rate 0.001

Number of training epochs 200

https://doi.org/10.7554/eLife.84296

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Ma, Rizzoglio et al. eLife 2023;12:e84296. DOI: https://doi.org/10.7554/eLife.84296 � 28 of 28

A

B

FRday-k

FRday-k

FRday-0
Reconstr.

FRday-0

Reconstr.
aligned
FRday-0

Adversarial
loss

Cycle loss

Cycle loss
Adversarial

loss

FRday-k Aligned FRday-k

FRday-0
Aligned
FRday-0

FRday-0

Aligned
FRday-k

Recov.
FRday-0

Recov.
FRday-k

G2

G1
D1

Encoder Decoder

D2

G

Latent
space

Discriminator

Appendix 1—figure 1. Adversarial neural networks proposed for iBCI stabilization. (A) The architecture of
ADAN. A feedforward network (the generator, ‘G’) takes the neural firing rates on day-k (‘FRday-k’) as input and
applies a transform on them to produce the aligned neural firing rates (‘Aligned FRday-k’). Next, an autoencoder
(the ‘Discriminator’) takes as input both the firing rates on day-0 (‘FRday-0’) and the Aligned FRday-k and aims to
discriminate between them, giving the adversarial loss. (B) The architecture of CycleGAN used as an aligner for
an iBCI. A feedforward neural network (‘G1’) takes FRday-k as input and produces Aligned FRday-k after applying a
transformation. Another feedforward network (‘D1’) aims to discriminate between Aligned FRday-k and FRday-0; the
performance of D1 contributes the first adversarial loss. A second pair of feedforward networks (‘G2’ and ‘D2’)
function in the same way, but aim to convert FRday-0 into an Aligned FRday-0 that resembles FRday-k; these contribute
to the second adversarial loss. The discrepancy between the real FRday-k and Recovered FRday-k (generated by
passing FRday-k through G1 followed by G2) contributes a cycle loss (and similarly for FRday-0 and Recovered FRday-0).
The purple and orange arrows highlight these two cyclical paths through the two networks.

https://doi.org/10.7554/eLife.84296

	Using adversarial networks to extend brain computer interface decoding accuracy over time
	Editor's evaluation
	Introduction
	Results
	Performance of a well-calibrated iBCI decoder declines over time
	Adversarial networks mitigate the performance declines of day-0 decoders
	Cycle-GAN is robust to hyperparameter settings
	GAN-based methods require very little training data for alignment
	Recovery of single-electrode activity patterns through alignment
	Recovery of neural manifolds from aligned representations

	Discussion
	Comparison of GANs to other methods for iBCI stabilization
	iBCI stabilization without manifolds
	Sources of decoding error following cross-day alignment
	Network training challenges
	Conclusions

	Materials and methods
	Subjects and behavior tasks
	Implants and data recordings
	iBCI day-0 decoder
	iBCI aligners
	Adversarial domain adaptation network (ADAN)
	Cycle-GAN
	GAN training and architecture
	Procrustes alignment of factors (PAF)

	Performance measures
	Decoder accuracy
	Maximum mean discrepancy (MMD)
	Principal angles

	Statistics

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References
	Appendix 1
	Detailed methods for iBCI decoders and aligners
	Testing neural alignment on your data
	iBCI day-0 decoders
	ADAN day-0 training
	Cycle-GAN based aligner

