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Abstract Existing intracortical brain computer interfaces (iBCIs) transform neural activity into 
control signals capable of restoring movement to persons with paralysis. However, the accuracy 
of the ‘decoder’ at the heart of the iBCI typically degrades over time due to turnover of recorded 
neurons. To compensate, decoders can be recalibrated, but this requires the user to spend extra 
time and effort to provide the necessary data, then learn the new dynamics. As the recorded 
neurons change, one can think of the underlying movement intent signal being expressed in 
changing coordinates. If a mapping can be computed between the different coordinate systems, 
it may be possible to stabilize the original decoder’s mapping from brain to behavior without reca-
libration. We previously proposed a method based on Generalized Adversarial Networks (GANs), 
called ‘Adversarial Domain Adaptation Network’ (ADAN), which aligns the distributions of latent 
signals within underlying low-dimensional neural manifolds. However, we tested ADAN on only a 
very limited dataset. Here we propose a method based on Cycle-Consistent Adversarial Networks 
(Cycle-GAN), which aligns the distributions of the full-dimensional neural recordings. We tested 
both Cycle-GAN and ADAN on data from multiple monkeys and behaviors and compared them to 
a third, quite different method based on Procrustes alignment of axes provided by Factor Analysis. 
All three methods are unsupervised and require little data, making them practical in real life. Overall, 
Cycle-GAN had the best performance and was easier to train and more robust than ADAN, making 
it ideal for stabilizing iBCI systems over time.

Editor's evaluation
This paper reports a new way to deal with the drift of neural signals and representations over time 
in a BCI. Given the context of the rapidly advancing field, the reviewers assessed the findings to be 
useful and potentially valuable. With the code provided for other investigators to use, the strength 
of evidence was convincing.

Introduction
Intracortical brain-computer interfaces (iBCIs) aim to restore motor function in people with paralysis 
by transforming neural activity recorded from motor areas of the brain into an estimate of the user’s 
movement intent. This transformation is accomplished using a neural ‘decoder’, an algorithm that 
translates the moment-to-moment activity of a population of neurons into a signal used to control 
intended movements. There has been substantial improvement in our ability to record and decode 
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from large populations of neurons in the past decade, which allows more information to be extracted 
from the brain and conveyed to the external effectors of the iBCI. However, the long-term stability 
of iBCIs is still far from satisfactory due in part to the instabilities in neural recordings. The relative 
micromotion between the electrode tip and the brain tissue (Sussillo et al., 2016b), the changes of 
regional extracellular environment (Perge et al., 2013), or even the active and inactive state shifts 
of neurons (Volgushev et al., 2006) could contribute to such instabilities, resulting in the turnover 
of signals picked by the chronically implanted electrodes on a time scale of days or even a few hours 
(Downey et al., 2018). Given these changes, a decoder could produce inaccurate predictions of the 
user’s intent leading to the degraded iBCI performance.

To counteract these effects, a neural decoder might be recalibrated with newly acquired data. A 
disadvantage of this strategy is that during recalibration, normal use would be interrupted. Further-
more, the recalibration process likely means the user would need to learn the dynamics of the new 
decoder, imposing additional time and cognitive burden. For persons with paralysis to live more 
independently, an ideal iBCI would accommodate the gradual drift in neural recordings without super-
vision, thereby minimizing the need to periodically learn new decoders. For the performance of the 
initial ‘day-0’ decoder to be maintained, an additional component, an “input stabilizer”, would need 
to be added to transform the neural recordings made on a later day (‘day-k’) such that they take on 
the statistics of the day-0 recordings.

Recently there has been a great deal of interest in the concept of a low-dimensional neural mani-
fold embedded within the neural space that is defined by the full set of recorded neurons, and the 
‘latent signals’ that can be computed in it (Gallego et al., 2017). A previous paper from our group 
demonstrated that by aligning the day-k and day-0 latent signals using canonical correlation analysis 
(CCA), the performance of a fixed day-0 decoder could be maintained over months and even years, 
despite turnover of the neural recordings.

Unfortunately, CCA has a couple significant limitations. For one, it is a linear process, not able to 
account for the nonlinear mappings that have been demonstrated between high-dimensional neural 
recordings and their low-dimensional manifolds (Altan et al., 2021; Naufel et al., 2019). Also, its use 
in a real-life scenario would be cumbersome. This application of CCA can be thought of as rotating 
two sets of neural signals ‘spatially’ to achieve optimal overlap (and thus temporal correlation). To do 
so requires cropping or resampling the single-trial data of behaviors on day-0 and day-k such that 
the paired trials correspond to the same behavior and contain the same number of timepoints, start 
condition, and end condition. Without trial-alignment, no amount of spatial rotation will achieve a 
correlation between the neural signals. However, motor behaviors in daily life are typically not well 
structured, with well-defined onsets and offsets, making trial alignment difficult, if not impossible. 
Where this method has been used successfully, it has been with highly stereotypic behaviors with 
distinct trial structure.

Another recently published linear method for decoder stabilization uses a Procrustes-based 
(Gower and Dijksterhuis, 2004) alignment on low-dimensional manifolds obtained from the neural 
activity using Factor Analysis (Degenhart et  al., 2020). This approach, which we will refer to as 
‘Procrustes Alignment of Factors’ (PAF), successfully stabilized online iBCI cursor control with a fixed 
decoder. Trial alignment is not needed for PAF, as it aligns the coordinate axes for the manifolds 
directly. However, it does require a subset of the coordinate axes in which the manifold is embedded 
(the neural recording channels) to be unchanged between days 0 and k. Furthermore, the use of a 
Procrustes-based transformation means that this strategy cannot correct for nonlinear changes in the 
neural manifold across days.

In another approach to decoder stabilization, we view changes in neural recordings as arbitrary 
shifts in the distribution of population firing rates. From this perspective, the reason for poor cross-day 
performance of decoders is clear: a decoder that is trained only on observations from a given distri-
bution (e.g. those of ‘day-0’) won’t perform well on data from other distributions (i.e. ‘day-k’). A 
machine learning approach termed ‘domain adaptation’ has been used to cope with such distribu-
tion mismatches by learning a transformation that minimizes the difference between the transformed 
distributions; this permits a model trained on one distribution to generalize to another (Farahani 
et al., 2021; Pan et al., 2011). For example, if we have a classifier trained to distinguish photos of 
objects, domain adaptation could be used to transform drawings of those objects into ‘photo-like’ 
equivalents, so that the existing photo-based classifier could be used to distinguish the drawn objects.

https://doi.org/10.7554/eLife.84296
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Domain adaptation can be implemented with Generative Adversarial Networks (GANs; Good-
fellow et al., 2014). GANs use two networks – a generator trained to transform a source distribu-
tion into a target distribution, and a discriminator trained to do the opposite: determine whether a 
given distribution is real or synthesized by the generator. The adversarial nature of the generator and 
discriminator enables the model to be trained in an unsupervised manner (Ganin and Lempitsky, 
2015; Tzeng et al., 2017). GAN-based domain adaptation has been applied to computer vision prob-
lems, like adapting a classifier trained to recognize the digits of one style for use in recognizing those 
of another style (Tzeng et al., 2017), or translating images in the style of one domain to another (e.g. 
colorizing black-and-white photos, Isola et al., 2017).

We recently developed an approach we named Adversarial Domain Adaptation Network (ADAN; 
Farshchian et al., 2018), that used a GAN to perform domain adaptation to enable a fixed day-0 
iBCI decoder to work accurately on input signals recorded on day-k. ADAN finds low-dimensional 
manifolds using a nonlinear autoencoder, and aligns the empirical distribution of the day-k recordings 
(the source domain) to those of day-0 (the target domain) by aligning the distributions of residuals 
(as in Zhao et al., 2016) between neural firing rates and their nonlinear autoencoder reconstructions 
(that is, the portion of neurons’ activity not predicted from the manifold). Note that, compared to 
PAF, ADAN performs the alignment in the high-dimensional space of reconstructed firing rates, but 
requires the computation of a low-dimensional manifold to do so. In the earlier study we found that 
ADAN outperforms both CCA and an alignment process that minimized the KL divergence between 
the distributions of the day-k and day-0 latent spaces (Kullback-Leibler Divergence Minimization, 
KLDM; Farshchian et al., 2018). However, ADAN was only tested on data from a single monkey and 
a single task, for just 2 weeks. Our subsequent exploration into applying ADAN to other datasets 
suggests that, while it can work in other settings, its performance is quite sensitive to model hyper-
parameter settings. This is consistent with previous reports that GANs can be highly dependent on 
choice of architecture and a variety of hyperparameter settings (Farnia and Ozdaglar, 2020). We 
therefore sought alternative GAN-based approaches that might offer more robust performance.

Recently, Zhu et al., 2017 developed a novel GAN architecture named Cycle-Consistent Adver-
sarial Networks (Cycle-GAN) in the context of image domain adaptation. Cycle-GAN introduced a 
mechanism termed ‘cycle-consistency’, which helps to regularize model performance. Specifically, 
Cycle-GAN implements both forward and inverse mappings between a pair of domains: the forward 
mapping translates data in the source domain to the target domain, while the inverse mapping brings 
the translated data back to the source domain. This regularization mechanism forces the learned 
transformation between the source and the target distributions to be a bijection, thereby reducing the 
search space of possible transformations (Almahairi et al., 2018; Zhu et al., 2017).

In addition to its promise of greater robustness, Cycle-GAN is to our knowledge unique among 
neural alignment methods in that it does not rely on projection of neural population activity to a 
low-dimensional manifold: rather, it aligns the full-dimensional distributions of the day-0 and day-k 
recordings directly. Other alignment methods that we have explored (CCA, PAF, KLDM, and ADAN) 
all work with low-dimensional latent signals. Aligning on full-dimensional data leads to the advantage 
that the (small) information loss caused by dimensionality reduction can be avoided. Furthermore, as 
most existing iBCI decoders are computed directly from the full-dimensional neural recordings, no 
extra transformation of neural recordings is required between alignment and decoding.

In this study, we compare Cycle-GAN, ADAN, and PAF using datasets from several monkeys, span-
ning a broad variety of motor behaviors, and spanning several months. We chose not to test CCA, as it 
requires trial alignment of the data, and it (as well as KLDM) was outperformed by ADAN in our earlier 
study (Farshchian et al., 2018). We found that both GAN-based methods outperformed PAF. We also 
demonstrated that the addition of cycle-consistency improved the alignment and made training much 
less dependent on hyperparameters.

Results
Performance of a well-calibrated iBCI decoder declines over time
We trained six monkeys to perform five tasks: power and key grasping, center-out target reaching using 
isometric wrist torque, and center-out and random-target reaching movements (Figure  2—figure 
supplement 1). After training, each monkey was implanted with a 96-channel microelectrode array in 

https://doi.org/10.7554/eLife.84296
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either the hand or arm area of M1. Four animals 
(monkeys J, S, G, P) were also implanted with 
intramuscular leads in forearm and hand muscles 
contralateral to the cortical implant; these were 
used to record electromyograms (EMGs). We 
recorded multi-unit activity on each M1 electrode 
together with motor output (EMGs and/or hand 
trajectories) for many sessions across multiple 
days. All recording sessions for a specific task and 
an individual monkey were taken together to form 
a dataset. We collected a total of seven data-
sets, and the recording sessions in each of them 
spanned from  ~30  to~100  days (See Materials 
and methods; Figure 2—source data 1).

As in previous studies (Gallego et  al., 2020; 
Sussillo et  al., 2016b), we found substantial 
instability in the M1 neurons we recorded over 
time, even though the motor outputs and task 
performance were generally stable (Figure  2—
figure supplements 2 and 3). We first asked how 
this instability affected the performance of an iBCI 
decoder. We fit a Wiener filter decoder with data 
recorded on a reference day (designated ‘day-0’; 
Figure 1A). We then used this decoder to predict 
the motor outputs from M1 neural recordings on 
later days (‘day-k’) and computed the coefficient 
of determination (R2) between the predictions 
and the actual data (see Materials and methods). 
Figure  2 shows example predictions from each 
task. In all cases, both EMG (top row) and kine-
matic (bottom row) decoders could reconstruct 
movement trajectories with high accuracy on 
held-out trials from the day of training (‘day-0’). 
However, the calibrated day-0 decoders consis-
tently failed to predict EMGs or hand trajecto-
ries accurately on day-k. The degradation of the 
performance across time occurred for all behav-
ioral tasks and monkeys, and could be substantial 
even a few days after decoder training (Figure 2—
figure supplement 4).

Adversarial networks mitigate 
the performance declines of day-0 
decoders
We proposed to use generative adversarial 
network (GAN) based domain adaptation 

(Figure 1B) to address the problem described above. We tested two different architectures: Adver-
sarial Domain Adaptation Network (ADAN) (Farshchian et al., 2018), and Cycle-Consistent Adversarial 
Networks (Cycle-GAN) (Zhu et al., 2017). As both ADAN and Cycle-GAN were trained to reduce the 
discrepancy between the neural recordings on day-0 and those on day-k by aligning their probability 
density functions (PDFs), we call them ‘aligners’. Importantly, both ADAN and Cycle-GAN are static 
methods, trained only on instantaneous neural activity datapoints with no knowledge of dynamics. 
Both methods are causal and can be used in real time. We used the dataset with the longest recording 
timespan (monkey J, isometric wrist task, spanning 95 days) to determine appropriate choices of the 
hyperparameters for neural network training, which are presented in detail in a later section. We used 
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Figure 1. Setup for stabilizing an intracortical brain 
computer interface (iBCI) with adversarial domain 
adaptation. (A) Initial iBCI decoder training on day-0. 
The decoder is computed to predict the motor outputs 
from neural signals, using either the full-dimensional 
neural recordings or the low-dimensional latent signals 
obtained through dimensionality reduction. This 
decoder will remain fixed over time after training. (B) A 
general framework for adversarial domain adaptation 
training on a subsequent day-k. The ‘Generator’ (G) is 
a feedforward neural network that takes day-k neural 
signals as the inputs and aims to transform them into a 
form similar to day-0 signals; we also refer to G as the 
‘aligner’. The ‘Discriminator’ (D) is another feedforward 
neural network that takes both the outputs of G 
(aligned day-k neural signals) and day-0 neural signals 
as the inputs and aims to discriminate between them. 
(C) A trained aligner and the fixed day-0 decoder are 
used for iBCI decoding on day-k. The aligned signals 
generated by G are fed to the day-0 decoder to 
produce the predicted motor outputs.
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the resulting hyperparameter values for the tests of all other monkeys and tasks. For comparison, we 
also used all datasets to test another type of ‘aligner’ that aimed to align the low-dimensional neural 
manifolds between day-0 and day-k (Degenhart et al., 2020), which we termed ‘Procrustes Align-
ment of Factors’ (PAF).

The tests were conducted with the procedures presented by Figure 1. First, we picked a given 
day as day-0, and used the data recorded on that day to fit a Wiener filter as the ‘day-0 decoder’ 
(Figure 1A). Then, we trained the three types of aligners (ADAN, Cycle-GAN, and PAF) to align the 
neural recordings on a different day (day-k) to those on day-0 (Figure 1B). Each day in a dataset other 
than the designated day-0 was treated as a day-k, whether it occurred before or after day-0. Finally, we 
processed the neural recordings on day-k with the trained aligners, fed the aligned signals to the fixed 
day-0 decoder, and evaluated the accuracy of the predictions this decoder could obtain (Figure 1C). 
For each of the seven datasets being tested, we repeated these three procedures for multiple instan-
tiations using different day-0s (see Figure 2—source data 1). To characterize the performance of the 
day-0 decoder after alignment, we represent the decoder accuracy as the ‘performance drop’ with 
respect to a daily recalibrated decoder (R2

aligned – R2
same-day). If an aligner works perfectly, we expect the 

performance drop of day-0 decoders to be close to 0, which means the decoder achieves accuracy 
equal to a within-day decoder after the alignment.

Unlike ADAN and PAF, Cycle-GAN alignment does not require computation of a latent repre-
sentation from neural recordings. As a result, Cycle-GAN is naturally suited to a decoder trained 
on the full-dimensional neural firing rate signals. It is theoretically possible to use a full-dimensional 
decoder with ADAN and PAF as well, by training on firing rates reconstructed from the latent spaces 
of the ADAN autoencoder and PAF factors respectively. However, we found that the performance 
of these full-dimensional decoders was inferior to that of a decoder trained on the inferred latent 
signals (Figure 3—figure supplement 1). For completeness, we also tested a decoder trained on 
Cycle-GAN-generated firing rates projected into a low-dimensional manifold obtained using Factor 
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Figure 2. The performance of well-calibrated decoders declines over time. (A) Actual EMGs (black) and predicted EMGs (orange) using the day-0 
decoder for flexor carpi ulnaris (FCU) and extensor carpi radialis longus (ECRl) during the isometric wrist task. (B) Actual and predicted EMGs using the 
day-0 decoder for flexor digitorum profundus (FDP) and first dorsal interosseous (1DI) during the power grasp task. (C) Actual hand trajectories and 
predictions using the day-0 decoder during the center-out (CO) reach task. Colors represent different reaching directions. (D) Actual and predicted hand 
trajectories using the day-0 decoder during the random-target (RT) reach task. Colors represent different reaching directions.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Table summarizing the datasets analyzed in this paper, including cortical implant site and date, number of recording sessions, number of 
days between recording start and end, recording days relative to time of array implantation, and motor outputs (EMG or hand velocities) recorded.

Figure supplement 1. Behavior tasks.

Figure supplement 2. Unstable neural recordings underlying stable motor outputs.

Figure supplement 3. Evaluation of the stability of M1 neural signals and motor outputs over time for monkeys / tasks (besides monkey J).

Figure supplement 4. The accuracy of a well-calibrated iBCI decoder degrades over time for different behavioral tasks.
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Analysis; as expected, its performance was slightly worse than that of a full-dimensional decoder, but 
still better than ADAN and PAF with a low-dimensional decoder (Figure 3—figure supplement 1).

In light of the analysis above, we here compare the better-performing of the two potential decoder 
input formats for each alignment method: full-dimensional for Cycle-GAN, and low-dimensional for 
ADAN and PAF (Figure 3, see Materials and methods for details). Aside from this difference of input 
dimensionality, the architecture of the day-0 decoder (a Wiener filter) was the same for all aligners. 
The within-day accuracy of the day-0 decoders of the three aligners was modestly but significantly 
different across tasks (Figure 3A): ADAN: R2=0.73 ± 0.009 (mean ± s.e.); Cycle-GAN: R2=0.72 ± 0.009; 
PAF: R2=0.71 ± 0.009 (p=0.008, linear mixed-effect model with the type of aligner as fixed and the 
type of task as random factor, n=204 samples, where each sample is one aligner/task/day-0/day-k 
combination).

To test for a significant performance difference between aligners, we fit a linear mixed-effect model 
with type of aligner and days as fixed factors and type of task as random factor for a quantitative eval-
uation of the performance of the three aligners (n=2361 samples). The performance drop of the day-0 
decoder on data collected on the day immediately following day-0 (i.e. day-1) after alignment was 
significantly different across the aligners (Cycle-GAN: –0.02±0.004 (mean ± s.e.); ADAN: –0.06±0.005; 
PAF: –0.11±0.005; p~0). Cycle-GAN significantly outperformed both ADAN (p~0) and PAF (p~0). 
ADAN also significantly outperformed PAF (p~0).

The performance degradation of day-0 decoders for periods greater than one day (Figure 2—
figure supplement 4) was also mitigated by all three alignment methods, although to different 
extents. Nonetheless, there remained a significant and increasing performance drop over time 
(Figure  3A and B). We found a significant interaction between time and alignment method 
(p=0.026), indicating that there was a difference between methods in performance drop over time, 
and a post-hoc comparison showed that Cycle-GAN had the least overall performance degrada-
tion, significantly better than PAF, and better, but not significantly so, than ADAN (p=0.008 vs PAF; 
p=0.328 vs ADAN). ADAN was better, but not significantly, than PAF (p=0.091). Taken together, this 
analysis shows that Cycle-GAN moderately outperforms both ADAN and PAF (see also Figure 3C; 
Figure 3—figure supplement 2B, C), and furthermore that the two nonlinear alignment methods 
tend to be more stable over time than PAF (see also Figure 3C; Figure 3—figure supplement 2A, 
B).

While CCA-style trial alignment is not required by Cycle-GAN, ADAN, or PAF, we did preprocess 
the data to exclude behaviors not related to the investigated task (inter-trial data) and used data only 
from the beginning to the end of each trial (see Materials and methods). Among other advantages, 
this helped to unify behavior across monkeys and behavioral tasks. However, in a true iBCI setting, 
the user has uninterrupted control, so it would be ideal to train the aligner on that data, without the 
need to classify and exclude portions of a recording session that are not task-related. Therefore, we 
also tested aligners on the continuous neural recordings on the isometric wrist task data of monkey J 
(Figure 3—figure supplement 3). Under this condition, Cycle-GAN was clearly superior to ADAN and 
PAF. We fit a linear mixed-effect model with type of aligner and days as fixed factors (n=531 samples) 
and found that the accuracy of the day-0 decoder on day-1 after alignment was significantly different 
across the aligners (Cycle-GAN: –0.05±0.015 (mean ±s.e.); ADAN: –0.14±0.023; PAF: –0.18±0.019; 
p~0). Cycle-GAN significantly outperformed both ADAN (p~0) and PAF (p~0), while ADAN outper-
formed PAF, but not significantly (p=0.134). On the other hand, we did not find a significant interac-
tion between time and alignment method (p=0.56), indicating that the performance degradation over 
time was mitigated in a similar way by all three methods.

Cycle-GAN is robust to hyperparameter settings
While they can be powerful, GANs can present a training challenge: choosing suitable hyperparame-
ters is important, for example, to balance the learning process and prevent either of the two networks 
(the generator or discriminator) from dominating the loss function. High sensitivity of model perfor-
mance to hyperparameter values would pose a potential barrier to the adoption of either ADAN or 
Cycle-GAN as a tool for cross-day alignment. As in Ghosh et al., 2020, we assessed sensitivity to 
hyperparameters by testing the impact of batch size and learning rates on alignment performance. 
Because these hyperparameter sweeps are very computationally expensive, we evaluated them using 
only the single dataset with the greatest span of time.

https://doi.org/10.7554/eLife.84296
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in diverse experimental settings. (A) Prediction accuracy over time using the fixed decoder trained on day-0 
data is shown for all experimental conditions (single dots: R² as a function of days after decoder training, lines: 
locally weighted scatterplot smoothing fits). We compared the performance of the day-0 decoder after domain 
adaptation alignment with Cycle-GAN (green), ADAN (red) and PAF (blue). (B) We computed the prediction 
performance drop with respect to a daily-retrained decoder (single dots: R² drop (R²aligned - R²same-day) for days after 
decoder training, lines: linear fits). Cycle-GAN and ADAN both outperformed PAF, with Cycle-GAN degrading 
most slowly for all the experimental conditions. (C) We compared the performance of each pair of aligners by 
plotting the prediction performance drop of one aligner versus that of another. Each dot represents the R² drop 
after decoder training relative to the within-day decoding. Marker colors indicate the task. Both proposed domain 
adaptation techniques outperformed PAF (left and center panels), with Cycle-GAN providing the best domain 
adaptation for most experimental conditions (right panel).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Cycle-GAN outperforms ADAN and Procrustes Alignment of Factors (PAF) with both full-
dimensional and low-dimensional day-0 decoder.

Figure 3 continued on next page
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We trained both ADAN and Cycle-GAN aligners on day-k data relative to four selected day-0 
reference days. We kept the learning rates for the generator (LRG) and the discriminator (LRD) fixed (for 
ADAN, LRG = 0.0001, LRD/LRG = 0.5; for Cycle-GAN, LRG = 0.0001, LRD/LRG = 10). As in the previous 
section, we evaluated the drops in aligned day-0 decoder accuracy. We found that ADAN maintained 
good performance when batch size was small, but that performance started to drop significantly for 
larger batch sizes (64: –0.13±0.0096 (mean ± s.e.); 256: –0.17±0.013; p~0, Wilcoxon’s signed rank 
test, n=76; Figure 4A). In contrast, Cycle-GAN based aligners performed consistently at all tested 
batch sizes. These results suggest that ADAN may need a small batch size, while Cycle-GAN-based 
aligners have no strong requirement.

Neural network training time is inversely proportional to batch size - therefore given two batch 
size options that give comparable model performance, the larger of the two will yield faster training. 
We found that Cycle-GAN was slower than ADAN for smaller batch sizes, although neither method 

Figure supplement 2. Cycle-GAN and ADAN consistently outperform Procrustes Alignment of Factors (PAF) for 
all experimental conditions.

Figure supplement 3. Cycle-GAN outperforms ADAN and Procrustes Alignment of Factors (PAF) when aligning 
continuous neural recordings.

Figure 3 continued
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Figure 4. Cycle-GAN is more robust to hyperparameter tuning than ADAN. Effect of different batch sizes during training of Cycle-GAN (green) and 
ADAN (red) with mini-batch gradient descent on (A) the day-k performance of 4 selected day-0 decoders and (B) the execution time of 200 training 
epochs. The much faster execution time of PAF (blue) is also shown for reference. Compared to ADAN, Cycle-GAN did not require a small batch 
size, resulting in faster training (Cycle-GAN: 98 s with batch size 256; ADAN: 129 s with batch size 8; FA aligner: 11.5 s). Effect of training each domain 
adaptation method with different generator (C) and discriminator (D) learning rate. The generator and the discriminator learning rate were denoted as 
LRG and LRD, respectively. For LRD testing, we kept LRG fixed (LRG = 1e-4 for both ADAN and Cycle-GAN), and changed the ratio between LRD and LRG 
(LRD/LRG). ADAN-based aligners did not perform well for large LRG or LRD/LRG values, while Cycle-GAN-based aligners remained stable for all the testing 
conditions. In (A), (C) and (D) single dots show the prediction performance drop on each day-k relative to the 4 selected day-0s with respect to the R² of 
a daily-retrained decoder (R²aligned - R²same-day). Boxplots show 25th, 50th and 75th percentiles of the R² drop with the whiskers extending to the entire data 
spread, not including outliers.
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required more than a few minutes when operating 
within their optimal batch size range (Figure 4B). 
Thus, we set the ADAN batch size for subsequent 
analyses to 8 and for Cycle-GAN to 256. Although 
we could have increased the batch size for ADAN, 
we decided instead to use a conservative value 
further from its region of decreased performance 
at the expense of slower training. For reference, 
we also computed the execution time of PAF, 
which was much faster than both ADAN and 
Cycle-GAN (Figure 4B, dashed blue line) as it has 
a closed form solution (Schönemann, 1966). We 
also note that the inference time (i.e. the time it 
takes to transform data once the aligner is trained) 
for both Cycle-GAN and ADAN is well under 1 
ms per 50 ms sample of neural firing rates– this is 
because the forward map in both models consists 
simply of a fully connected network with only two 
hidden layers.

We next examined the effect of learning rates 
for each aligner. We first tested different values 
for the LRG, while fixing the ratio between LRD and 
LRG (for ADAN, LRD/LRG = 0.5; for Cycle-GAN, 
LRD/LRG = 10). As shown in Figure  4C, ADAN 
achieved good performance when LRG was set to 
1e-5 and 1e-4 but did not work well if LRG was 
set to 1e-3. Cycle-GAN maintained stable perfor-
mance when LRG was set to 1e-3 and 1e-4, and 
had a significant performance drop when LRG was 
1e-5 (1e-4: –0.064±0.0062 (mean ± s.e.); 1e-5: 
–0.095±0.0068; p~0, Wilcoxon’s signed rank test, 
n=76), but still significantly better than ADAN with 
the same LRG (Cycle-GAN: –0.095±0.0068 (mean 
± s.e.); ADAN: –0.15±0.011; p~0, Wilcoxon’s 
signed rank test, n=76). We then tested different 
ratios between LRD and LRG with LRG fixed (LRG 
= 1e-4 for both types of aligners). As Figure 4D 
shows, ADAN could only be trained well when 
LRD was equal to or smaller than LRG. On the 
other hand, the performance of a Cycle-GAN 
based aligner remained stable for all tested LRD/
LRG values.

GAN-based methods require very little training data for alignment
Aligners in practical iBCI applications must be fast to train and perhaps more importantly, require little 
training data. Here we investigated the aligner performance with limited training data. We trained 
ADAN, Cycle-GAN, and PAF to align the data on each day-k to four selected day-0s using randomly 
selected subsets of the full 120-trial training set from Monkey J. We then decoded EMGs from the 
aligned M1 signals on a fixed 40-trial held-out testing set using the day-0 decoder. As Figure 5A 
shows, all three aligners improved the performance of day-0 decoders with 20 or fewer training trials. 
Performance increased as more training trials were included but started to plateau near 40 trials. 
When using only 10 trials, both ADAN and Cycle-GAN significantly outperformed PAF (Cycle-GAN: 
–0.19±0.0076 (mean ± s.e.); ADAN: –0.21±0.011; PAF: –0.26±0.011; p~0, Wilcoxon’s signed rank 
test, n=76), with Cycle-GAN significantly outperforming ADAN (p=0.003, Wilcoxon’s signed rank 
test, n=76). It is also worth noting that ADAN and Cycle-GAN trained with only 20 trials significantly 
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Figure 5. Cycle-GAN and ADAN need only a limited 
amount of data for training. (A) Effect of the number 
of trials used for training Cycle-GAN (green), ADAN 
(red) and PAF (blue) on the day-k decoding accuracy 
using 4 selected day-0 fixed decoders. All the 
aligners needed 20–40 trials to achieve a satisfactory 
performance, before reaching a plateau. The average 
prediction performance drop with respect to a daily-
retrained decoder (R²aligned - R²same-day) on all day-ks is 
shown for each tested value of training trials (x-axis is 
in log scale). When using 10 trials, both Cycle-GAN 
and ADAN significantly outperformed PAF (B, left 
boxplots). Moreover, both Cycle-GAN-based and 
ADAN aligners trained with 20 trials had significantly 
better performance than the PAF trained on all 120 
trials (B, center and right boxplots). Single dots show 
the prediction performance drop on each day-k to 
the 4 selected day-0s with respect to a daily-retrained 
decoder. Boxplots show 25th, 50th and 75th percentiles 
of the R² drop with the whiskers extending to the entire 
data spread, not including outliers. Asterisks indicate 
significance levels: *p<0.05, **p<0.01, ***p<0.001.
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outperformed PAF trained with the full training set of 120 trials (Cycle-GAN trained with 20 trials: 
–0.10±0.0083 (mean ±s.e.); ADAN trained with 20 trials: –0.16±0.0096; PAF trained with 120 trials: 
–0.20±0.011; p~0, Wilcoxon’s signed rank test, n=76) (Figure 5B).

Recovery of single-electrode activity patterns through alignment
Both ADAN and Cycle-GAN generate reconstructed versions of the aligned day-k single neuron 
signals, agnostic to downstream use. However, our objective of decoder stabilization does not require 
that the full distribution of day-0 responses be recovered: we need only recover signals that are rele-
vant to the decoding dimension. Decoder performance alone therefore does not provide a complete 
picture of the quality of neural alignment. To more thoroughly investigate the extent to which distribu-
tion alignment introduces biases or artifacts in predicted neural responses, we first compared aligner 
predictions of single-neuron with those of their recorded day-0 analogs.

Because PAF operates directly on the low-dimensional neural manifold, it can only generate single-
neuron responses in the aligned representation by projecting back out from the manifold. We found 
that a stabilized day-0 decoder that uses these reconstructed firing rates from the latent space of the 
PAF factors performs poorly (Figure 3—figure supplement 1C). In contrast to PAF, Cycle-GAN and 
ADAN each generate synthetic firing rates for the full neural population (although ADAN still relies on 
a low-dimensional manifold as an intermediate step). Therefore, we restricted our analysis of single-
neuron properties on the outputs of ADAN and Cycle-GAN.

Specifically, we asked how response properties of the day-k ‘aligned neurons’ differed from those 
of the neurons recorded on the same electrode on day-0. To do so, we examined the aligned neural 
representations generated by Cycle-GAN and ADAN, again using the 95-day isometric wrist task 
dataset of monkey J. We first compared the peri-event time histograms (PETHs) of firing rates before 
and after alignment, to determine how the aligners altered day-k neural activity at the level of single 
electrodes. The PETHs in Figure  6A show three examples of the ways in which single-electrode 
signals may differ across days, and the change produced by alignment. Electrode E35 is an example 
of neuron drop-out, in which the activity captured on day-0 was not observed on day-95. The PETHs 
of aligned day-95 data matched those of day-0 for all force directions, demonstrating that on day 95 
both ADAN and Cycle-GAN aligners synthesized appropriate neural activity (Figure 6A). Second, E73 
is an example of activity not present on day-0, but recorded on day-95. In this case, the day-95 activity 
was suppressed to match that on day-0. Finally, E60 is an example of consistent neural activity over 
the two days, which the aligners left unchanged.

We also examined the distributions of the recovered single-electrode activity by computing the 
Maximum Mean Discrepancy (MMD Gretton et  al., 2012a, see Materials and methods) between 
all pairs of sessions (Figure 6B). Before alignment, the between-day MMDs were significantly larger 
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than the within-day MMDs (orange, between-day MMD: 1.42±0.029 (mean ± s.e.); purple, within-day 
MMD: 0.059±0.0054; p~0, Wilcoxon’s rank sum test, n=171). After alignment, the between-day MMDs 
were substantially reduced by both Cycle-GAN and ADAN, becoming comparable to the within-day 
MMDs (ADAN: red, 0.19±0.0065 (mean ±s.e.); Cycle-GAN: green, 0.091±0.0024; within-day: purple, 
0.059±0.0054). Cycle-GAN based aligners generally achieved a significantly lower between-day MMD 
than ADAN across the entire timespan (p~0, Wilcoxon’s rank sum test, n=171).

Recovery of neural manifolds from aligned representations
While Cycle-GAN works only with the full-dimensional neural recordings, ADAN, whose discriminator 
is essentially an autoencoder, computes a low-dimensional neural manifold from which it reconstructs 
the high-level signals it needs to align the high-level residuals. Consequently, we wanted to explore 
to what extent each method also altered the low-dimensional representations. We applied Principal 
Component Analysis (PCA) to the firing rates recorded for the 95-day isometric wrist task of monkey J 
on four selected day-0s and examined the trajectories of M1 neural activity within the neural subspaces 
defined by the principal components (PCs, see Materials and methods). We then projected the firing 
rates of the remaining day-k’s onto the neural subspace defined by the corresponding day-0 PCs.

Generally, the day-k neural trajectories projected onto the top two day-0 PCs did not match those 
of day-0 (Figure 7A). However, after alignment (3rd and 4th columns), the day-k trajectories closely 
resemble those of day-0.

Finally, to directly quantify the similarity between the neural manifolds of day-0 and an aligned day-k, 
we calculated the principal angles (Knyazev and Argentati, 2002) between the neural subspaces for 
all sessions relative to the selected day-0 (see Materials and methods). To interpret the magnitude 
of the overlap between a given pair of days, we compared the observed angle with an upper bound 
provided by the principal angles across random subspaces that preserved the covariance of the day-0 
and day-95 neural data, using the method described in Elsayed et al., 2016. We also found a ‘with-
in-day’ bound by computing the angles between the day-0 neural recordings of even-numbered trials 
and odd-numbered trials (this was done to reduce the effect of any within-day drift). We found that 
alignment with either Cycle-GAN or ADAN made the neural manifolds of any day-k substantially 
more similar to those of day-0. In particular, after applying Cycle-GAN-based aligners, the population 
subspaces highly overlapped (Figure 7B).

Discussion
We previously demonstrated the utility of a GAN-based method, ADAN, to ‘align’ M1 data across 
time, thereby allowing a fixed iBCI decoder to be used for weeks without re-calibration, despite a 
gradual change in the neurons recorded over the same period (Farshchian et al., 2018). However, we 
had tested ADAN on a very limited dataset. Because GANs are notoriously sensitive to hyperparam-
eter settings (Farnia and Ozdaglar, 2020; Ghosh et al., 2020; Kurach et al., 2018), it was unclear 
how robust ADAN would be in practice. Another promising method, PAF, had been tested primarily 
in terms of two monkeys’ online iBCI performance (Degenhart et al., 2020). We wished to compare 
both approaches directly, using a very diverse dataset including recordings from six monkeys and five 
tasks. We also compared a third approach based on a more recent GAN architecture, Cycle-GAN (Zhu 
et al., 2017). Cycle-GAN has the potential advantage over ADAN that it reduces the search space of 
aligners by encouraging the learned transformation to be a bijection, which might help stabilize its 
performance. Moreover, unlike ADAN and PAF, the Cycle-GAN architecture does not require compu-
tation of a low-dimensional manifold underlying the neural population activity, allowing its straightfor-
ward use with spike-rate based decoders.

Both ADAN and Cycle-GAN achieved higher performance than PAF, but each method had tradeoffs. 
Although ADAN needed less time to train than Cycle-GAN, PAF was much faster to train than both 
GAN methods. But while slower, Cycle-GAN was easier to train than ADAN, in the sense that it was 
less sensitive to hyperparameter values and therefore likely to be more effective ‘out-of-the-box’, and 
when working with different data binning and sampling rates. Importantly, Cycle-GAN also had clearly 
superior performance compared to both ADAN and PAF when tested with continuously recorded data 
(with no trial segmentation). Overall, our work suggests that GAN-based alignment, and Cycle-GAN 
in particular, is a promising method for improving the stability of an iBCI over time.

https://doi.org/10.7554/eLife.84296
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Comparison of GANs to other methods for iBCI stabilization
Other approaches to address iBCI decoder instability include supervised techniques that aim at stabi-
lizing iBCI performance by recalibrating the decoder during ongoing iBCI control by relying on access 
to the task output variables (Dangi et al., 2014; Jarosiewicz et al., 2015; Orsborn et al., 2012), as 
well as unsupervised methods that do not require to re-estimate decoder parameters and only need 
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Figure 7. Neural manifold is stable over time after domain adaptation based neural alignment. (A) Representative latent trajectories when projecting 
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Top left corner: latent trajectories for day-0 firing rates, as the reference. 2nd column: latent trajectories for unaligned firing rates on day-7 (top row), 
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neural data, with no provided task output variables or task labels (Degenhart et al., 2020; Farsh-
chian et al., 2018; Gallego et al., 2020; Karpowicz et al., 2022; Willett et al., 2021). We restricted 
our comparison to GAN-based aligners and PAF for several reasons. First, both GANs and PAF are 
unsupervised methods. We argue that unsupervised methods are ideal for iBCI stabilization: because 
they do not require data labels, they should be simpler to implement in eventual clinical applications. 
Second, neither GANs nor PAF require trial alignment of the data, which CCA does require. This flexi-
bility allowed us to align the neural data for more complicated behaviors. For example, one task in this 
study was a random-target reaching task in which monkeys moved a cursor between targets as they 
appeared on screen; this task structure produces movements of random length and direction, with 
varied speed and duration. Despite this complexity, all three of the tested aligners could still achieve 
good performance. Importantly, though, we previously demonstrated that ADAN still achieves higher 
performance than both CCA (Gallego et  al., 2020) and KLDM (Farshchian et  al., 2018) for the 
stereotyped isometric wrist task (Farshchian et al., 2018).

Although earlier attempts to achieve alignment via KLDM achieved only moderate success, a 
recent approach using KLD to align neural latent dynamics identified using Latent Factor Analysis 
through Dynamical Systems (LFADS) (Pandarinath et  al., 2018; Sussillo et  al., 2016a) was more 
successful (Karpowicz et al., 2022). Comparing this approach (called Nonlinear Manifold Alignment 
with Dynamics, or NoMAD) with Cycle-GAN turns out to be problematic because they are solving 
overlapping but different problems. A stable iBCI device has several interacting components: data 
preprocessing, an aligner that registers neural representations across days, and a decoder that trans-
lates neural activity to a predicted motor command. Higher iBCI performance could arise from an 
improvement to any of these processes. NoMAD includes the first two steps, performing both align-
ment of the neural representations via KLDM and data preprocessing via LFADS-based smoothing. 
Because Karpowicz et al., contrast NoMAD (alignment +powerful dynamics-based smoothing) to two 
methods that perform alignment with only very simple linear smoothing (ADAN and PAF), it is not 
possible to tell from their manuscript the extent to which NoMAD’s higher performance arises from 
better alignment vs their use of LFADS for data smoothing. Nevertheless, the effects of the prepro-
cessing can be inferred from their results: because of its more powerful dynamics preprocessing, 
NoMAD outperforms ADAN (and PAF) not only at day-k, but also on day-0 where neural alignment 
is not involved. The day-0 performance makes it clear that a substantial portion of NoMAD’s higher 
performance comes not from its KLD-based alignment but from how the neural recordings are pre-
processed with LFADS.

We can also draw conclusions purely from the method NoMAD uses for alignment, namely by mini-
mizing the KLD between the distributions of day-0 and day-k states that come out of a day-0 LFADS 
Generator network. This alignment strategy is very similar to the KLDM method tested in Farsh-
chian et al., 2018, where KLDM between neural states (obtained via an autoencoder) had inferior 
performance compared even to ADAN. This suggests that the apparent performance improvement 
of NoMAD over ADAN is a consequence of its embedded LFADS model rather than an indicator of 
KLD being a better alignment strategy. Theoretically, one could therefore replace the KLD-based 
alignment in NoMAD with a Cycle-GAN-based aligner and achieve even better performance. Going 
forward, it will be important for the field to establish consensus benchmark datasets and evaluation 
methods to disentangle the contributions of new methods in data preprocessing, neural alignment, 
and decoding, within each of these three areas.

A very different approach to iBCI stabilization was proposed by Sussillo et al., who trained a 
decoder with a large dataset spanning many months, under the hypothesis that neural turnover allows 
neurons not only to disappear, but potentially also to reappear later (Sussillo et al., 2016b). Although 
making the decoder robust to changes in the recorded neural populations, this approach has the 
inherent disadvantage of requiring the accumulation of a long stretch of historical data, which might 
be impractical for clinical use. In contrast to this approach, neither Cycle-GAN nor ADAN has a special 
requirement for the robustness of the day-0 decoder, and effective performance can be achieved with 
remarkably little data (Figure 5).

iBCI stabilization without manifolds
CCA, KLDM, PAF, and ADAN all rely on dimensionality reduction of the recorded neural popula-
tion prior to alignment. As a result, a portion of the variance of recorded neural activity is always 
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lost in the alignment process. In contrast, Cycle-GAN allows alignment to be performed on the full-
dimensional neural recording, and achieves a superior performance compared to ADAN and PAF 
(Figure 3). This also means that Cycle-GAN can be used directly with any previously trained spike-rate 
based decoder. This is in contrast to ADAN and PAF, which only align the neural latent space and 
therefore require either a new, latent space decoder to be trained, or an additional post-alignment, 
backwards-projection step to convert the latent representation into a predicted set of spikes. The 
backwards-projection step leads to lower decoding performance for ADAN, and complete failure for 
PAF, as shown in Figure 3—figure supplement 1.

Because Cycle-GAN operates in the higher-dimensional space of the recorded neurons, it also 
recovers the response properties of individual neurons following alignment, providing the means to 
infer their response properties across many days of recording, even when those neurons are not 
actually observed. While single-neuron signals can in principle be generated by manifold-based align-
ment methods, we show here that these more indirectly reconstructed firing rates are less accu-
rate (Figure 6). The potential applications of this ability to synthesize neural data from population 
recordings are yet undeveloped but intriguing. One possibility is that this strategy could be used to 
synthesize a “null distribution” of neural responses, to better detect effects of learning or behavioral 
changes that alter the response distribution of cells.

Sources of decoding error following cross-day alignment
In this study, we relied on offline estimates of decoder accuracy, as they allowed us to examine large 
amounts of previously collected data across many monkeys and tasks. Also, by literally taking the 
monkey out of the loop, we were able to examine the accuracy of the alignment and decoding 
processes without the added complication of the monkeys’ unknown and variable adaptation to the 
decoder. Although alignment by either ADAN or Cycle-GAN significantly improved the performance 
of a day-0 decoder on a given day-k, in most cases it did not attain the performance of a re-cali-
brated decoder, especially at long time offsets between day-0 and day-k (Figure 3B). One interesting 
potential cause of aligner performance drop is a change in the animal’s behavioral strategy across 
days. Because the limb is kinematically redundant, the same hand position can be achieved with 
different limb postures (e.g. wrist angle) and muscle activation patterns. Similarly, differing strategies 
might be adopted to grasp the power or pinch force transducers. Even within a single experimental 
session, an M1 decoder trained on one behavior often fails to perform well when tested on a different 
behavior. Similarly, unsupervised M1 alignment will not be able to compensate for changes in strategy 
if they shift EMG (or kinematic) signals outside the space of values observed during training of the 
original decoder. We find some evidence for such drift in some tasks (predominantly the key grasp, 
Figure 2—figure supplement 3C), as indicated by differences between within- and across-day MMD 
of the motor outputs. Such differences were small, but could not be neglected (Figure 2—figure 
supplements 2C and 3).

Network training challenges
Training GANs is a challenging task, in part because the learning rates of generator and discriminator 
networks must be carefully balanced to allow the networks to be trained in tandem (Farnia and 
Ozdaglar, 2020; Salimans et al., 2016). Many strategies have been proposed to improve the stability 
of learning and facilitate the convergence of GANs (Arjovsky and Bottou, 2017; Brock et al., 2019; 
Farnia and Ozdaglar, 2020; Nagarajan and Kolter, 2017; Pan et al., 2019; Salimans et al., 2016). 
ADAN and Cycle-GAN incorporate several of those strategies. First, both networks include an L1 
loss term in their objective function, a modification that has been found in practice to improve the 
stabilization of model training by encouraging sparseness of model weights (Arjovsky and Bottou, 
2017). The networks also use a two-timescale update rule for generator and discriminator learning 
rates, which facilitates convergence of generator and discriminator to a balanced solution (Heusel 
et al., 2017).

Correct optimization of GANs is also directly linked to proper tuning of the dynamics of learning 
during training (Kurach et al., 2018; Saxena and Cao, 2021), which we investigated here in depth. 
Given the many GAN variants, there are still no comprehensive guidelines for a particular architecture 
(Ghosh et al., 2020). Consistent with this, we found that ADAN and Cycle-GAN differ substantially 
in their sensitivity to learning rate and batch size hyperparameters. Notably, ADAN exhibited poor 
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generalization with larger batch sizes (like Keskar et al., 2016), while Cycle-GAN worked well across 
all tested values (Figure  4A). The ability to work with larger batch sizes gave Cycle-GAN several 
advantages over ADAN: its training was faster than ADAN (Figure 4B) and it also enabled Cycle-GAN 
to maintain stable performance with higher learning rates (Figure 4C and D, similar to the observa-
tions of Goyal et al., 2017).

Conclusions
In summary, we demonstrated the successful use of GANs for the stabilization of an iBCI, thereby 
overcoming the need for daily supervised re-calibration. Both approaches we tested (ADAN and 
Cycle-GAN) require remarkably little training data, making them practical for long-term iBCI clinical 
applications. Between the two approaches, Cycle-GAN achieved better performance which was less 
affected by inaccurate hyperparameter tuning; it is therefore our recommended method for future 
use. Notably, Cycle-GAN works directly with the unstable full-dimensional neural recordings, which 
further increases its performance and simplifies its implementation.

Materials and methods
Subjects and behavior tasks
Six 9–10 kg adult male rhesus monkeys (Macaca mulatta) were used in this study. They were trained 
to sit in a primate chair and control a cursor on a screen in front of them using different behavioral 
apparatuses (Figure 2—figure supplement 1).

Monkeys J and S were trained to perform an isometric wrist task, which required them to control 
the cursor on the screen by exerting forces on a small box placed around one of the hands. The box 
was padded to comfortably constrain the monkey’s hand and minimize its movement within the box, 
and the forces were measured by a 6 DOF load cell (JR3 Inc, CA) aligned to the wrist joint. During the 
task, flexion/extension force moved the cursor right and left respectively, while force along the radial/
ulnar deviation axis moved the cursor up and down. Each trial started with the appearance of a center 
target requiring the monkeys to hold for a random time (0.2–1.0 s), after which one of eight possible 
outer targets selected in a block-randomized fashion appeared, accompanied with an auditory go 
cue. The monkey was allowed to move the cursor to the target within 2.0 s and hold for 0.8 s to receive 
a liquid reward. For both decoding and alignment analyses, we only used the data within each single 
trial (from ‘trial start’ to ‘trial end’, Figure 2—figure supplement 1A). We did not do any temporal 
alignment with the trials, so the lengths of the trials were different from each other.

Monkeys P and G were trained to perform a grasping task, which required them to reach and grasp 
a gadget placed under the screen with one hand. The gadget was a cylinder for monkey P facilitating 
a power grasp with the palm and the fingers, while a small rectangular cuboid for monkey G facili-
tating a key grasp with the thumb and the index finger. A pair of force sensitive resistors (FSRs) were 
attached on the sides of the gadgets to measure the grasping forces the monkeys applied. The sum 
and the difference of the FSR outputs were used to determine the position of the cursor on the vertical 
axis and the horizontal axis respectively. At the beginning of each trial the monkey was required to 
keep the hand resting on a touch pad for a random time (0.5–1.0 s). A successful holding triggered the 
onset of one of three possible rectangular targets on the screen and an auditory go cue. The monkey 
was required to place the cursor into the target and hold for 0.6 s by increasing and maintaining the 
grasping force applied on the gadget (Figure 2—figure supplement 1B). For this task we extracted 
trials from ‘go cue time’ to ‘trial end’, as the monkeys’ movements were quite random before the go 
cue.

Monkeys C and M were trained to perform a center-out (CO) reaching task while grasping the 
upright handle of a planar manipulandum, operated with the upper arm in a parasagittal plane. 
Monkey C performed the task with the right hand, monkey M with the left. At the beginning of each 
trial the monkey needed to move the hand to the center of the workspace. One of eight possible 
outer targets equally spaced in a circle was presented to the monkey after a random waiting period. 
The monkey needed to keep holding for a variable delay period until receiving an auditory go cue. To 
receive a liquid reward, the monkey was required to reach the outer target within 1.0 s and hold within 
the target for 0.5 s (Figure 2—figure supplement 1C). For this task we extracted trials from ‘go cue 
time’ to ‘trial end’, since the monkeys kept static before the go cue.
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Monkey M was trained to perform a random-target (RT) task, reaching a sequence of three targets 
presented in random locations on the screen to complete a single trial. The RT task used the same 
apparatus as the CO reach task. At the beginning of each trial the monkey also needed to move the 
hand to the center of the workspace. Three targets were then presented to the monkey sequentially, 
and the monkey was required to move the cursor into each of them within 2.0 s after viewing each 
target. The positions of these targets were randomly selected, thus the cursor trajectory for each trial 
presented a ‘random-target’ manner (Figure 2—figure supplement 1D). For this task we extracted 
trials from ‘trial start’ to ‘trial end’.

All surgical and experimental procedures were approved by the Institutional Animal Care and Use 
Committee (IACUC) of Northwestern University under protocol #IS00000367, and are consistent with 
the Guide for the Care and Use of Laboratory Animals.

Implants and data recordings
Depending on the task, we implanted a 96-channel Utah electrode array (Blackrock Neurotech, Inc) 
in either the hand or arm representation area of the primary motor cortex (M1), contralateral to the 
arm being used for the task (see Figure 2—source data 1). The implant site was pre-planned and 
finally determined during the surgery with reference to the sulcal patterns and the muscle contractions 
evoked by intraoperative surface cortical stimulation. For each of monkeys J, S, G, and P, we also 
implanted intramuscular leads in forearm and hand muscles of the arm used for the task in a separate 
procedure (see Figure 2—source data 1). Electrode locations were verified during surgery by stimu-
lating each lead.

M1 activity was recorded during task performance using a Cerebus system (Blackrock Neurotech, 
Inc). The signals on each channel were digitalized, bandpass filtered (250~5000 Hz) and converted to 
spike times based on threshold crossings. The threshold was set with respect to the root-mean square 
(RMS) activity on each channel and kept consistent across different recording sessions (monkeys J, 
C and M: –5.5 x RMS; monkey S: –6.25 x RMS; monkey P: –4.75 x RMS; monkey G: –5.25 x RMS). 
The time stamp and a 1.6 ms snippet of each spike surrounding the time of threshold crossing were 
recorded. For all analyses in this study, we used multiunit threshold crossings on each channel instead 
of discriminating well isolated single units. We applied a Gaussian kernel (S.D.=100 ms) to the spike 
counts in 50 ms, non-overlapping bins to obtain a smoothed estimate of firing rate as function of time 
for each channel.

The EMG signals were differentially amplified, band-pass filtered (4-pole, 50~500 Hz) and sampled 
at 2000  Hz. The EMGs were subsequently digitally rectified and low-pass filtered (4-pole, 10  Hz, 
Butterworth) and subsampled to 20 Hz. EMG channels with substantial noise were not included in the 
analyses, and data points of each channel were clipped to be no larger than the mean plus 6 times the 
S.D. of that channel. Within each recording session, we removed the baseline of each EMG channel by 
subtracting the 2nd percentile of the amplitudes and normalized each channel to the 90th percentile. 
For monkeys C and M, we recorded the positions of the endpoint of the reach manipulandum at a 
sampling frequency of 1000 Hz using encoders in the two joints of the manipulandum.

iBCI day-0 decoder
The day-0 decoder was a Wiener filter of the type that we have used in several previous studies 
(Cherian et al., 2011; Naufel et al., 2019). The filter was fit using linear regression to predict the motor 
outputs (either EMG or hand velocity) at time t given neural responses from time t to time t - T, where 
we set T=4 (200 ms) for all decoders used in this study. As the aligners being tested worked with either 
low-dimensional manifolds or the full neural population, and required the associated day-0 decoders 
to be compatible, we implemented different day-0 decoders to match the outputs of the aligners. 
For Cycle-GAN, we trained a Wiener filter using the full-dimensional neural firing rates recorded on 
day-0. For ADAN and PAF, we performed dimensionality reduction (ADAN: autoencoder, PAF: Factor 
Analysis; dimensionality = 10 for both) to find a low-dimensional latent space, and trained the decoder 
using the projections of the neural signals into this latent space. The Wiener filters were trained using 
the day-0 data with four-fold cross validation, and the filter corresponding to the fold with the best R2 
was selected as the fixed day-0 decoder. The parameters for the dimensionality reduction procedures 
and the Wiener filter from the day-0 data were kept fixed for decoding on subsequent days.
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iBCI aligners
Adversarial domain adaptation network (ADAN)
We adhered to the main architecture and the training procedures of the ADAN as described in Farsh-
chian et al., 2018. Briefly, we first find a nonlinear latent space by jointly training an autoencoder and 
a long short-term memory (LSTM) neural network-based iBCI decoder using day-0 data. (Note that 
this LSTM based decoder is only used for latent space discovery, not the later decoding stage that is 
used for performance evaluation (see ‘ADAN day-0 training’ in Appendix for full details)). We then 
construct an adversarial aligner comprised of a distribution alignment module (generator network 
G) and a discriminator network D (Appendix 1—figure 1), where G is a shallow feedforward neural 
network, and D is an autoencoder with the same architecture as that used for the day-0 latent space 
discovery. During training of the aligner, G is fed with day-k neural firing rates and applies a nonlinear 
transform over these data to match them to the day-0 neuron response distributions. The output of 
G, and the true day-0 neural firing rates are then passed to D, which passes both inputs through the 
autoencoder: namely, it projects each signal into the latent space and then reconstructs it. The distri-
butions of the residuals between the autoencoder inputs and the reconstructions are computed for 
both the generator output and the true day-0 data, and a lower bound to the Wasserstein distance 
is used to measure the dissimilarity between the two distributions. The goal of adversarial learning is 
to find a discriminator D that maximizes the dissimilarity between responses of D to true day-0 firing 
rates and to outputs of G, while also finding a generator G that minimizes the dissimilarity between 
true day-0 firing rates and the outputs of G; this objective is called the adversarial loss. When the 
training is completed, G will have been trained to ‘align’ the neural firing rates on day-k with those 
on day-0. For a full description of the ADAN architecture and its training strategy, please refer to 
Appendix and (Farshchian et al., 2018).

Cycle-GAN
The Cycle-GAN aligner is based on the structure proposed in Zhu et al., 2017. Like ADAN, Cycle-GAN 
does not consider any dynamic information, aligning only the point clouds representing the instan-
taneous firing rate of M1 neurons. Unlike ADAN, it converts the full-dimensional neural firing rates 
collected on day-k into a form resembling those collected on day-0, with no dimensionality reduction. 
Cycle-GAN consists of two feedforward generator neural networks (G1 and G2) and two discriminator 
networks (D1 and D2, see Appendix—figure 1B). These form two pairs of adversarial networks: G1 
maps data from the day-k domain to the day-0 domain, while D1 aims to distinguish between the 
day-0 samples and the output of G1. And in parallel, G2 maps data in the day-0 domain to the day-k 
domain, while D2 distinguishes day-k data from output of G2. In contrast to ADAN, the cycle-GAN 
discriminator networks operate directly on neural responses, rather than the residuals between low-
dimensional and full-dimensional responses.

The objective function for network training has two major terms. The first is an adversarial loss, 
defined for both generator-discriminator pairs (G1 + D1 and G2 + D2) as in ADAN. The second term 
is known as the cycle-consistency loss, which pushes the mappings G1 and G2 to become inverses of 
each other: that is, a sample from one specific domain should be recovered to its original form after 
going through the cycle composed of the two mappings. As argued by Zhu et al, the introduction 
of the cycle-consistency loss regularizes the learning of the mapping functions, thereby reducing the 
search space. In (Appendix—figure 1B) the purple arrows through G1 and G2 reflect the transforma-
tion of each sample from the day-k domain into the day-0 domain by G1, followed by the recovery 
from the day-0 domain into the day-k domain by G2. Likewise, the orange arrows through G2 and G1 
reflect a transformation from the day-0 domain to the day-k domain and back to the day-0 domain. 
Further details about the Cycle-GAN based aligner are provided in Appendix.

GAN training and architecture
Both ADAN and Cycle-GAN were trained using the ADAM optimizer (Kingma and Ba, 2015) with 
a four-fold cross validation. We used 400 training epochs and reported the alignment result that 
produced the best decoder performance on a held-out validation set of trials. In addition to the 
learning hyperparameters explored in the Results section, we examined several different architec-
tures for the aligner neural network of both ADAN and Cycle-GAN (varying the number of layers 
and neurons per layer), and replaced the least absolute deviations (L1) for both the adversarial and 
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cycle-consistency loss with the least square error (L2) (Mao et al., 2016). None of the manipulations 
substantially improved performance.

Procrustes alignment of factors (PAF)
We compared ADAN and Cycle-GAN aligners with a manifold-based stabilization method proposed 
by Degenhart et al., 2020, the Procrustes Alignment of Factors (PAF, our term). PAF finds a low-
dimensional manifold using Factor Analysis, then applies a Procrustes transformation to the neural 
manifold of day-0 to align it to that of day-k. The original application of PAF additionally removes 
electrodes identified as “unstable” and unlikely to contribute to alignment; these are defined as elec-
trodes on day-k that have changed the most with respect to the day-0 manifold, and are removed iter-
atively until a criterion is met. However, we found that alignment performance did not degrade with 
the number of included electrodes, so we decided to omit this stability criterion and use all recorded 
electrodes for all the datasets. As for the GAN aligners, we trained and tested PAF using a Wiener 
filter and four-fold cross validation.

Performance measures
Decoder accuracy
To evaluate the performance of decoders mapping M1 neural recordings to motor outputs (either 
EMG or hand velocity), we used the coefficient of determination (R2). The R2 indicates the propor-
tion of variation of the actual motor output that was predicted by the iBCI decoder; this approach 
is common in evaluation of iBCI systems (Morrow and Miller, 2003). As the motor outputs being 
decoded are multi-dimensional (7 dimensions for EMG, 2 dimensions for hand velocity), we computed 
a multivariate R2 in which, after computing the R2 for all the single dimensions, we take a weighted 
average across dimensions, with weights determined by the variance of each dimension. This was 
implemented using the ‘r2_score’ function of the scikit-learn python package with ‘variance weighted’ 
for the ‘multioutput’ parameter (Pedregosa et al., 2011).

Maximum mean discrepancy (MMD)
We used maximum mean discrepancy (MMD) in two contexts. First, we used MMD to evaluate the 
similarity between the distribution of the aligned day-k neural activity and the day-0 neural activity, 
as a way to examine the alignment performance (Figure 6). MMD provides a measure of distance 
between two multivariate distributions, based on the distances between the mean embeddings of 
samples drawn from each distribution in a reproducing kernel Hilbert space (Gretton et al., 2012a). 
MMD is symmetric in the two distributions and equals zero if and only if the two distributions are the 
same. To select our kernel, we followed a technique that has been proved feasible for optimizing 
kernel choice (Gretton et al., 2012b): specifically we employed a family of four Gaussian kernels with 
width between 5 Hz and 50 Hz. To define a ‘smallest possible’ MMD between aligned day-k and day-0 
distributions, we divided neural signals recorded on the same day into non-overlapping folds, and 
computed MMD between them; we call this the ‘within-session MMD’ in Figure 6.

We also use the MMD to quantify the similarity of the distributions of neural activity or motor 
outputs between pairs of separate recording sessions for each dataset, as a way to quantify the record-
ings instabilities (Figure 2—figure supplements 2C and 3). For a pair of sessions, we divided each of 
them into four non-overlapping folds, and computed the MMD between each fold and its counterpart 
in the other session, then reported the mean value across folds. We also computed the ‘within-session 
MMD’ for neural activity/motor outputs for each session, using the same way described above.

Principal angles
To evaluate the similarity between neural manifolds of day-0 and day-k before and after alignment, we 
used principal angles (Knyazev and Argentati, 2002). Principal angles provide a metric to quantify 
the alignment of two subspaces embedded in a higher-dimensional space. For any pair of C-dimen-
sional hyperplanes, there are C principal angles that exist between them. Following the approach 
outlined in Knyazev and Argentati, 2002 and Elsayed et  al., 2016, these angles are computed 
as follows: first, we reduce each signal (here the day-0 and day-k neuron firing rates) to 10 dimen-
sions using PCA. Next, recursively for each C=1...10, we identify the pair of principal vectors that are 
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separated by the smallest angle and that are also perpendicular to the prior selected pairs, and report 
that angle. When two hyperplanes are well-aligned, the leading principal angles between them can be 
very small, but often the last few angles are quite large. We computed the principal angles using the 
‘subspace_angles’ function of the SciPy python package (Virtanen et al., 2020).

To assess whether the angles after neural alignment were significantly small, we compared them 
to an upper bound provided by the angle between two surrogate subspaces, using the strategy 
described in Elsayed et al., 2016. Briefly, we generated 10,000 random pairs of day-0-like and day-
95-like subspaces in which we shuffled the timing of spikes within each neuron, destroying correlation 
structure while preserving the statistics of neural firing rates within each day. We then computed the 
principal angles between each pair, and used the 0.1th percentile of the principal angle distribution as 
the threshold below which angles could be considered smaller than expected by chance given firing 
rate statistics alone. We also defined a ‘within-day’ bound by computing the principal angles between 
the day-0 neural recordings of even-numbered and odd-numbered trials, to reduce to a minimum the 
effect of any within-day drift. If the alignment process is successful, we expect the neural manifolds of 
day-0 and day-k to have principal angles similar to those of the within-day bound.

Statistics
We applied statistical tests to compare the decoding accuracy over time after neural alignment with 
Cycle-GAN, ADAN, and PAF. For these comparisons, we ran a linear mixed-effect model with the 
type of aligner and the number of days elapsed from decoder training as fixed factors and the type 
of task as a random factor. In addition, we compared the performance of Cycle-GAN and ADAN with 
different hyperparameter settings, including generator and discriminator learning rates, as well as 
batch size. For all these comparisons, we used a two-sided Wilcoxon’s signed rank test. We also used 
a two-sided Wilcoxon’s signed rank to test whether there was a significant difference between any 
two methods when limited amount of training data was used for alignment. Finally, we compared the 
MMD of neural distributions between all pairs of day-0/day-k sessions before and after alignment with 
Cycle-GAN and ADAN. Since the distributions pre and after alignment are independent, we used a 
two-sided Wilcoxon’s rank sum test. For all the statistical models, we used a significance threshold of 
α=0.05. When making pairwise comparisons between the three aligners, we used a Bonferroni correc-
tion of 3. Sample sizes are reported in the corresponding results section.
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Appendix 1
Detailed methods for iBCI decoders and aligners
Testing neural alignment on your data
We provide a step-by-step tutorial on the use of CycleGAN and ADAN for neural alignment on 
GitHub in our adversarial_BCI repository: https://github.com/limblab/adversarial_BCI, (copy 
archived at swh:1:rev:187857d4963dcffbdbf633502b1e41dafa4cd09a; Ma, 2023a) in the Jupyter 
notebooks ​ADAN_​aligner.​ipynb and ​Cycle_​GAN_​aligner.​ipynb. Briefly, the steps covered by these 
notebooks are as follows:

1.	 Set up requirements. In addition to common Python data science libraries, our alignment code 
makes use of the following more specialized packages:

a.	 XDS cross-platform data structure, documentation for which can be found at https://​
github.com/limblab/XDS, (copy archived at swh:1:rev:104719352b92cfa9200f2d-
d91902151295aceea9; Ma, 2023b). Datasets should be packaged into the XDS format 
for analysis using the provided notebooks, or else datasets should be formatted into lists 
of numpy arrays as described in the notebook (see documentation on variables day0_
spike and day0_EMG in the notebook).

b.	 A simple Wiener filter decoder module, found at https://github.com/xuanma/decoder_​
standard, (copy archived at swh:1:rev:032a8491381a9ac9267b0bd8003d84c10743aa35; 
Ma, 2023c).

c.	 Pytorch, a Python library for working with deep neural network models, is required for 
Cycle-GAN. Tensorflow 1.* is required for ADAN. Note that because our alignment 
models are quick to train, they do not require a computer with a GPU.

2.	 Data preprocessing. Given extracellular spike trains from an implanted recording device (here 
a 96-channel Utah array) we compute spike counts per channel using 50 ms time binning, then 
smooth these spike counts using a Gaussian kernel with a standard deviation of 100 ms. Our 
provided notebook loads and pre-processes neural recording data from two days of experi-
ments, namely the source and target days. Similarly, raw EMG recordings are pre-processed via 
rectification and filtering, as described in the Methods section of this manuscript.

3.	 Trial selection. In our demo notebook, we use only the first 160 trials on a given recording day. 
Selection of trials is achieved by indexing into our day0_spike, day0_EMG, dayk_spike, and 
dayk_EMG lists, which contain the now-preprocessed data following spike count smoothing and 
EMG envelope extraction, segmented into trials.

4.	 Train the day-0 decoders. The goal of alignment is to be able to use a previously trained neural 
decoder to predict EMG activity on neural recording data from a new experimental session. In 
our work, we use a simple Wiener filter decoder as our “previously trained decoder”. In the 
provided notebook, we explain the design of the Wiener filter decoder, and provide a function 
train_wiener_filter to train a Wiener filter decoder on the day-0 data as well as wrapper code 
implementing four-fold cross-validation. The training code applies data splits, formats data for 
the decoder, and trains and tests the Wiener filter decoder for each split, reporting back multi-
variate R2 values and saving the best-performing decoder to a .npy file for further use. The 
notebook also uses a function plot_actual_and_pred_EMG to plot the predicted EMG signals 
using the decoder alongside the corresponding ground-truth EMG signals.

5.	 Define the blocks for the Cycle-GAN (or ADAN) aligner. The next step is to define the architec-
ture of the alignment model. Model definition code is provided in both notebooks; for example, 
they Cycle-GAN notebook defines Generator and Discriminator classes, each of which has an 
__init__ function to initialize the network architecture and a function forward which takes an 
input firing rate signal and returns a transformed version of that signal.

6.	 Train the Cycle-GAN (or ADAN) aligner. Having designed the architecture of our model, we 
next provide a function train_cycle_gan_aligner to carry out training. This function first carries 
out several setup steps:

a.	 Specifying the value of model hyperparameters (which can be set by the user).
b.	 Initializing two Generator and two Discriminator networks.
c.	 Defining the type of loss function (MSE or L1-penalized) and optimizer to be used by the 

model; these are standard terms provided by torch.
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d.	 Initializing DataLoader objects to feed the training or test dataset into the torch model.
It then carries out the GAN training loop. Briefly, each iteration does the following, 
where “loss” is by default the mean-squared error between two signals:

e.	 Sample a pair of neural recording trials, one from day-0 and one from day-k.
f.	 Compute the identity loss, which takes the error between day-k data and its transfor-

mation by the day-0 Generator (and similarly for day-0 and the day-k Generator). This 
loss regularizes the Generator to be close to an identity mapping when provided with 
samples from its target domain, an approach used in the original Cycle-GAN manuscript 
and adopted from Taigman, Polyak, & Wolf 2017.

g.	 Compute the GAN loss for the day-0 data using the day-0 Generator + Discriminator (and 
similarly for day-k). For the day-0 Generator, this loss is the accuracy of the Discriminator 
in distinguishing true day-k data from synthetic day-k data; for the day-0 Discriminator, 
the loss is the error rather than the accuracy.

h.	 Compute the cycle-consistency loss for the day-0 data by feeding the synthetic day-k 
data through the day-k Generator and computing the error between this output and the 
original day-0 data (and similarly for day-k).

i.	 Sum applicable losses for each Generator (identity, GAN-Generator, and cycle-consistency) 
and each Discriminator (GAN-Discriminator only).

j.	 Compute the gradient with respect to each loss, and pass this information to the optim-
izer, which will update the model parameters at the end of each epoch.

k.	 To monitor training progress, the aligner is evaluated on the validation set every 10 
epochs, and performance is logged.

7.	 Test the trained aligner. The provided function test_cycle_gan_aligner takes as input a trained 
aligner and a neural dataset, and returns as output the aligned version of that dataset. It does 
this by passing the data through the trained model network.

8.	 Plot performance. The notebook next shows how to evaluate the quality of the previously 
trained day-0 decoder when fed aligned neural signals. As in step 3 above, the provided func-
tion plot_actual_and_pred_EMG is used, but now we are feeding aligned day-k neural activity 
into the decoder and comparing the decoder’s prediction to the day-0 EMG.

We advise the reader to consult the complete Jupyter notebook for additional commentary and 
documentation of these steps. In addition to this practical guide to use of Cycle-GAN for alignment, 
we have included additional technical documentation of the alignment process in the following 
sections.

iBCI day-0 decoders
We used a Wiener filter (Cherian et al., 2011) as the day-0 iBCI decoder:

	﻿‍
y
(
t
)

=
T−1∑
τ=0

β
(
τ
)

x
(
t − τ

)
‍�

(1)

where ‍y
(
t
)
‍ is a q-dimensional vector (q is 2 for hand velocity prediction and varied with the number 

of recorded EMGs for EMG prediction, see Appendix 1—table 1) representing the motor outputs 
to be predicted at time t, while ‍x

(
t
)
‍ is a p-dimensional vector for the inputs to the Wiener filter at 

time t, and ‍β
(
τ
)
‍ is a ‍q × p‍ matrix corresponding to the filter parameters for time step ‍τ ‍. For Cycle-

GAN, ‍x
(
t
)
‍ is the full-dimensional neural firing rates, thus p equals to the number of the electrodes 

in the cortical array (denoted as C). For ADAN, ‍x
(
t
)
‍ is the projection of the neural firing rates in a 

nonlinear latent space found by an autoencoder (see next section for details). For PAF, ‍x
(
t
)
‍ is the 

projection of the neural firing rates in a linear latent space found by factor analysis. We set ‍p = 10‍ for 
both ADAN and PAF. We can also write Equation 1 in matrix form:

	﻿‍ Y = XB‍� (2)

where Y is a ‍M × q‍ matrix for the motor outputs to be predicted with M being the number of 
samples, X is a ‍M ×

(
T × p

)
‍ matrix, and B is a ‍

(
T × p

)
× q‍ matrix for the regression coefficients to be 

estimated. We also added an additional bias term for both X and B. B was determined by a ridge 
regression estimator:
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	﻿‍
B̂ =

(
XT X + λI

)−1
XT Y

‍�
(3)

We chose a ridge regression to limit the risk of decoder overfitting by penalizing solutions with large 
regression coefficients with the regularization term ‍λ‍. The value of ‍λ‍ was chosen by sweeping a 
range of 20 values between 10 and 105 on a logarithmic scale. We used a 4-fold cross validation to 
train the decoder for each aligner type and ultimately selected the model with the highest R2 on the 
test set as the fixed day-0 decoder.

ADAN day-0 training
The day-0 wiener filter for ADAN was built from a nonlinear latent space estimated from day-0 
neural firing rates using an autoencoder (AE) originally described in Farshchian et al., 2018. The 
AE consists of an input layer, five hidden layers and an output layer. The input and the output 
layers have C units, while the hidden layers (from input to output) have 64, 32, 10, 32 and 64 units, 
respectively. Hence, the AE compresses the C-dimensional neural firing rates into a 10-dimensional 
latent representation. The units in the layer and the output layers as well as those in the latent layer 
have linear activation functions, while units in the remaining hidden layers have a nonlinear one 
(exponential linear unit, ELU). The AE is trained to minimize the reconstruction error defined as the 
mean square error (MSE) between the input and the output data. When day-0 neural firing rates 

‍
{

x
}
‍ are fed through the AE, the latent layer activity ‍

{
l
}
‍ and the corresponding reconstructions ‍

{
x̂
}
‍ 

are obtained. The 10-dimensional latent activity ‍
{

l
}
‍ is then mapped onto the q-dimensional motor 

output vector through a long-short-term memory (LSTM, Hochreiter and Schmidhuber, 1997):

	﻿‍ ŷ = LSTM
(
l
)
‍� (4)

where ‍y‍ is the actual motor output (either EMG or hand velocity) recorded at day-0 and ‍̂y‍ is its 
prediction with the LSTM. The LSTM is designed with one layer and a number of units that equals the 
number of recorded EMGs (if the motor output is EMG) or two (if the motor output is hand velocity). 
The AE and the LSTM are simultaneously trained by minimizing a loss function that accounts for 
both the MSE of the reconstruction of the firing rates (‍L(AE)‍) and the MSE of the motor output 
predictions (‍L(LSTM)‍):

	﻿‍
L = λL(AE) + L(LSTM) = 1

M

M∑
i=1

(λ ∥x̂ − x∥2 + ∥ŷ − y∥2)
‍�

(5)

where M is the total number of training samples. The weighting factor ‍λ‍ equalizes the contribution 
of the two terms so that the learning algorithm does not prioritize one over the other. For each 
training epoch, ‍λ‍ is updated as the ratio between the values of ‍L(AE)‍ and ‍L(LSTM)‍ at the end of 
the preceding epoch.

The simultaneous training of the AE and the LSTM allows extracting a low-dimensional space of 
neural activity constrained to include features related to movement intent. Such neural manifold is 
then used to train the Wiener filter used as the fixed day-0 decoder for this study. At each epoch of 
training, the current latent signal ‍

{
l
}
‍ was used as input for Equation 3 to obtain a linear prediction of 

the actual motor output. We used 400 epochs of training and ultimately selected the parameters of 
the wiener filter at the epoch that had the best performance (in the R2 sense) on the held-out test set.

ADAN based aligner. The discriminator D of ADAN is an autoencoder (Appendix 1—figure 1A), 
and has the same architecture as that used to find the nonlinear latent space on day-0 (day-0 AE). 
The parameters of D (‍θD‍) are initialized with the parameters of the day-0 AE. The generator G is a 
feedforward neural network with one hidden layer with C neurons (i.e., the number of the electrodes 
in the cortical array). The parameters of G (‍θG‍) are initialized as identity matrices. We set a nonlinear 
activation function (ELU) for the hidden layer, and a linear one for the output layer.

Here we denote the day-0 neural firing rates as  ‍
{

xi
}M

i=1‍ and the day-k neural firing rates as 

‍
{

zj
}N

j=1‍, where both ‍xi‍ and ‍zj‍ are C-dimensional vectors representing the neural firing rates from C 
electrodes at a given time bin, and M and N are the total number of samples for day-0 and day-k 
data respectively. Since at one time we fed the networks with S training samples as a batch, we can 
write a training batch from ‍

{
x
}
‍ or ‍

{
z
}
‍ in matrix form as X or Z. During training, we fed Z to G and 

got G(Z) as the aligned day-k neural firing rates. At the same time, we fed D with both G(Z) and X. 
As D is an autoencoder, it would produce the reconstructions of them from the latent space, which 
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can be written as ‍Ĝ(Z)‍ and ‍̂X‍. Hence, we could get the residuals between the true data and these 
reconstructions by computing:

	﻿‍

RX = X − X̂

RG
(

Z
) = G

(
Z
)
− Ĝ

(
Z
)
‍�

(6)

RX and RG(Z) are both ‍S × C‍ matrices. We then computed the scalar reconstruction losses as the L1 
norm of each column of RX and RG(Z). Let ‍ρ(RX)‍ and ‍ρ(RG(Z))‍ represent the distributions of these 
scalar losses, and let ‍µ(RX)‍ and ‍µ(RG(Z))‍ be the corresponding means of ‍ρ(RX)‍ and ‍ρ(RG(Z))‍. We 
measured the dissimilarity between ‍ρ(RX)‍ and ‍ρ(RG(Z))‍ by a lower bound to the Wasserstein 
distance (Arjovsky et al., 2017), which is given by the absolute value of the difference between 
‍µ(RX)‍ and ‍µ(RG(Z))‍:‍W(ρ(RX), ρ(RG(Z))) ≥ |µ(RX) − µ(RG(Z))|‍. The parameters of the generator (‍θG‍) and 
discriminator (‍θD‍) are updated via batch gradient descent by minimizing their corresponding cost 
functions:

	﻿‍
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= µ
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− µ

(
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Z
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)
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(
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= µ
(

RG
(

Z
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‍�
(7)

For each epoch of training,‍L(G)‍ is first minimized and followed by ‍L(D)‍. Minimizing ‍L(G)‍ implies 
bringing the output of the generator (i.e., the aligned day-k neural data, G(Z)) close to the day-0 
data X. When G(Z) is fed through D, residuals with mean ‍µZ‍ are obtained. Since D is initialized with 
the day-0 AE weights, ‍µZ‍ can be reduced if ‍θG‍ are updated to appropriately modify G(Z) and make 
it resemble X. When ‍L(G)‍ is minimized, the gradients flow through both D and G, but only the 
parameters ‍θG‍ are updated at this stage.

While G is trying to decrease ‍µZ‍, D is working as an adversary. Minimizing ‍L(D)‍ implies maximizing 
the difference between ‍µ(RX)‍ and ‍µ(RG(Z))‍ (i.e., their Wasserstein distance W). Again, since D is 
initialized with the day-0 AE weights (and the generator is an identity matrix when training begins), 
the residuals of the day-k data will be greater than those of the day-0 data, hence ‍

(
µZ > µX

)
‍. Thus, if 

‍θD‍ are updated to maximize ‍
(
µZ − µX

)
‍, or equivalently minimize ‍

(
µX − µZ

)
‍, this relation is maintained 

during training. Since scalar residuals and their means are always nonnegative, maximization of W 
is achieved by decreasing ‍µX‍ while increasing ‍µZ‍. The adversarial mechanism between G and D 
ensures that the neural alignment is achieved in an unsupervised manner.

Appendix 1—table 1. ADAN hyperparameters.

parameter value

Total number of trainable parameters 35,946

Batch size 8

Discriminator (‍D‍) learning rate 0.00005

Generator (‍G‍) learning rate 0.0001

Number of training epochs 200

Cycle-GAN based aligner
The Cycle-GAN generators, G1 and G2 are both shallow feedforward neural networks with one 
hidden layer with C neurons. We set a nonlinear activation function (RELU) for the hidden layer, and 
a linear one for the output layer. The discriminators, D1 and D2 are also shallow feedforward neural 
networks with one hidden layer. The input layer and the hidden layer both have C neurons, while the 
output layer has 1 neuron, as the output is a class label indicating which distribution the input sample 
belongs to. Same as G1 and G2, the hidden layer of D1 and D2 uses a nonlinear activation function 
(RELU), and the output layer uses a linear one. The layer weights of each network were initialized 
through Xavier initialization.

As shown in (Appendix 1—figure 1B), we fed the day-k neural firing rates Z to G1 to get the 
aligned day-k neural firing rates (G1(Z)), and the day-0 neural firing rates X to G2 to convert data in 
the day-0 domain back into the day-k domain (G2(X)). Meanwhile, the discriminator D1 was fed with 
X and (G1(Z)) to distinguish between the ‘real and the ‘fake’ day-0 data, while D2 was fed with Z and 
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(G2(X)) to distinguish between the ‘real’ and the ‘fake’ day-k data. Specifically, the discriminators 
would assign each sample a class label to tell if it belonged to the C-dimensional distribution of the 
real data (‍ρ

(
X
)
‍ or ‍ρ

(
Z
)
‍) or from the distribution of the fake data generated by G1 or G2.

For the network training, we expected G1 and G2 to generate more convincing samples, while D1 
and D2 to be more perceptive to better discriminate between the true and the fake samples. The 
performances of the networks in such contest could be quantified by adversarial losses. As with 
ADAN, here we adopted the mean absolute error (MAE), or L1 loss, as the adversarial loss function. 
For G1 and D1, the adversarial loss can be expressed as follows:

	﻿‍
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)
= EX∼pdata

(
X
) [||D1
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]
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Z
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]
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Z
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]

‍�
(8)

where ‍a‍ is the label for the fake neural firing rates, b is the label for the real neural firing rates, and 
c is the value that G1 wants D1 to believe for fake neural firing rates. Typically, we can set ‍a = 0‍, and 
‍b = c = 1‍. For D2 and G2, the adversarial loss ‍Ladv

(
D2

)
‍ and ‍Ladv

(
G2

)
‍ have a similar form:

	﻿‍
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]
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= EX∼pdata
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X
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− c||1
]

‍�
(9)

The core idea of Cycle-GAN is to make the learned mapping functions cycle-consistent so as 
to reduce the space of possible mapping functions. As shown in (Appendix 1—figure 1), the two 
highlighted cycles should be able to bring the corresponding data back to the original domain, for 
example, the distribution of the recovered day-k neural firing rates G2(G1(Z)) should be similar to the 
distribution of the real day-k neural firing rates Z. Therefore, we define the cycle consistency loss as 
follows:

	﻿‍ Lcyc
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G1, G2

)
= EX∼p

(
X
) [||G1

(
G2

(
X
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− X||1
]

+ EZ∼p
(

Z
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(
Z
))

− Z||1
]
‍� (10)

Note here we also applied the L1 loss.
Taken together, the full loss function is written as:
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)
= Ladv

(
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)
+ Ladv

(
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)
+ Ladv

(
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)
+ Ladv

(
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)
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(
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)
‍� (11)

and the training process is to solve this min-max optimization problem:

	﻿‍
G∗

1 , G∗
2 , D∗

1 , D∗
2 = arg min

G1,G2
max
D1,D2

L
(
G1, G2, D1, D2

)
‍� (12)

Appendix 1—table 2. Cycle-GAN hyperparameters.

parameter value

Total number of trainable parameters 74,208

Batch size 256

Discriminator (‍D1‍) learning rate 0.01

Discriminator (‍D2‍) learning rate 0.01

Generator (‍G1‍) learning rate 0.001

Generator (‍G2‍) learning rate 0.001

Number of training epochs 200
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Appendix 1—figure 1. Adversarial neural networks proposed for iBCI stabilization. (A) The architecture of 
ADAN. A feedforward network (the generator, ‘G’) takes the neural firing rates on day-k (‘FRday-k’) as input and 
applies a transform on them to produce the aligned neural firing rates (‘Aligned FRday-k’). Next, an autoencoder 
(the ‘Discriminator’) takes as input both the firing rates on day-0 (‘FRday-0’) and the Aligned FRday-k and aims to 
discriminate between them, giving the adversarial loss. (B) The architecture of CycleGAN used as an aligner for 
an iBCI. A feedforward neural network (‘G1’) takes FRday-k as input and produces Aligned FRday-k after applying a 
transformation. Another feedforward network (‘D1’) aims to discriminate between Aligned FRday-k and FRday-0; the 
performance of D1 contributes the first adversarial loss. A second pair of feedforward networks (‘G2’ and ‘D2’) 
function in the same way, but aim to convert FRday-0 into an Aligned FRday-0 that resembles FRday-k; these contribute 
to the second adversarial loss. The discrepancy between the real FRday-k and Recovered FRday-k (generated by 
passing FRday-k through G1 followed by G2) contributes a cycle loss (and similarly for FRday-0 and Recovered FRday-0). 
The purple and orange arrows highlight these two cyclical paths through the two networks.
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