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Abstract The ability to associate reward-predicting stimuli with adaptive behavior is frequently 
attributed to the prefrontal cortex, but the stimulus-specificity, spatial distribution, and stability 
of prefrontal cue-reward associations are unresolved. We trained head-fixed mice on an olfactory 
Pavlovian conditioning task and measured the coding properties of individual neurons across space 
(prefrontal, olfactory, and motor cortices) and time (multiple days). Neurons encoding cues or licks 
were most common in the olfactory and motor cortex, respectively. By quantifying the responses of 
cue-encoding neurons to six cues with varying probabilities of reward, we unexpectedly found value 
coding in all regions we sampled, with some enrichment in the prefrontal cortex. We further found 
that prefrontal cue and lick codes were preserved across days. Our results demonstrate that indi-
vidual prefrontal neurons stably encode components of cue-reward learning within a larger spatial 
gradient of coding properties.

eLife assessment
This study makes valuable observations about the representation of "value" in the mouse brain, 
by using a nice task design and recording from an impressive number of brain regions. The combi-
nation of state-of-the-art imaging and electrophysiology data offer solid support for the authors' 
conclusions. The paper will be of interest to a broad audience of neuroscientists interested in reward 
processing in the brain.

Introduction
Association of environmental stimuli with rewards and the subsequent orchestration of value-guided 
reward-seeking behavior are crucial functions of the nervous system linked to the prefrontal cortex 
(PFC) (Miller and Cohen, 2001; Klein-Flügge et al., 2022). PFC is heterogeneous, with many studies 
noting subregional differences in both neural coding Kennerley et al., 2009; Sul et al., 2010; Hunt 
et al., 2018; Wang et al., 2020a and functional impact on Dalley et al., 2004; Rudebeck et al., 
2008; Buckley et al., 2009; Kesner and Churchwell, 2011 value-based reward seeking in primates 
and rodents. Furthermore, functional manipulations of PFC subregions exhibiting robust value signals 
do not always cause a discernible impact on reward-guided behavior (Chudasama and Robbins, 
2003; St Onge and Floresco, 2010; Dalton et al., 2016; Verharen et al., 2020; Wang et al., 2020a), 
encouraging investigation of differences between value signals across PFC. Within individual PFC 
subregions, multiple studies have observed evolving neural representations across time, calling into 
question the stability of PFC signaling (Hyman et al., 2012; Malagon-Vina et al., 2018). A systematic 
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comparison of coding properties across rodent PFC and related motor and sensory regions, as well 
as across days and stimulus sets, is necessary to provide a full context for the contributions of PFC 
subregions to reward processing.

Identifying neural signals for value requires a number of considerations. One issue is that other task 
features can vary either meaningfully or spuriously with value. In particular, action coding is difficult 
to parse from value signaling, given the high correlations between behavior and task events (Musall 
et al., 2019; Zagha et al., 2022) and widespread neural coding of reward-seeking actions (Steinmetz 
et al., 2019). Additionally, without a sufficiently rich value axis, it is possible to misidentify neurons as 
‘value’ coding even though they do not generalize to valuations in other contexts (Stalnaker et al., 
2015; Hayden and Niv, 2021; Zhou et al., 2021). Because reports of the value have come from 
different experiments across different species, it is difficult to compare the presence of value signaling 
even across regions within the prefrontal cortex (Kennerley et al., 2009; Sul et al., 2010; Stalnaker 
et al., 2015; Otis et al., 2017; Hunt et al., 2018; Namboodiri et al., 2019; Wang et al., 2020a; 
Hayden and Niv, 2021; Zhou et al., 2021).

In this work, we sought to address the existing ambiguity in the distribution and stability of value 
signaling. We implemented an olfactory Pavlovian conditioning task that permitted the identification 
of value correlates within the domain of reward probability across two separate stimulus sets. With 
acute in vivo electrophysiology recordings, we were able to assess the coding of this task across 
11 brain regions, including five PFC subregions, as well as olfactory and motor cortex, in a single 
group of mice, permitting a well-controlled comparison of coding patterns across a large group of 
the task-relevant regions in the same subjects. Unexpectedly, in contrast to the graded cue and lick 
coding across these regions, the proportion of neurons encoding cue value was more consistent 
across regions, with a slight enrichment in PFC but with similar value decoding performance across 
all regions. To assess coding stability, we performed 2-photon calcium imaging of neurons in the PFC 
for multiple days and determined that the cue and lick codes we identified were stable over time. Our 
data demonstrate the universality and stability of cue-reward coding in the mouse cortex.

Results
Distributed neural activity during an olfactory Pavlovian conditioning 
task
We trained mice on an olfactory Pavlovian conditioning task with three cue (conditioned stimulus) 
types that predicted reward on 100% (‘CS+’), 50% (‘CS50’), or 0% (‘CS−’) of trials (Figure 1A). Each 
mouse learned two odor sets (odor sets A and B), trained and imaged on separate days and then, for 
electrophysiology experiments, presented in six alternating blocks of 51 trials during the recording 
sessions (Figure 1B). Mice developed anticipatory licking (Figure 1C–D), and the rate of this licking 
correlated with reward probability (Figure 1—figure supplement 1), indicating that subjects success-
fully learned the meaning of all six odors.

Using Neuropixels 1.0 and 2.0 probes (Jun et al., 2017; Steinmetz et al., 2021), we recorded 
the activity of individual neurons in PFC, including anterior cingulate area (ACA), frontal pole (FRP), 
prelimbic area (PL), infralimbic area (ILA), and orbital area (ORB) (Wang et  al., 2020b; Laubach 
et al., 2018). We also recorded from: secondary motor cortex (MOs), including anterolateral motor 
cotex (ALM), which has a well-characterized role in licking Chen et al., 2017; olfactory cortex (OLF), 
including dorsal peduncular area (DP), dorsal taenia tecta (TTd), and anterior olfactory nucleus (AON), 
which receive input from the olfactory bulb (Igarashi et  al., 2012; Mori and Sakano, 2021); and 
striatum, including caudoputamen (CP) and nucleus accumbens (ACB), which are major outputs of 
PFC (Heilbronner et al., 2016, Figure 1E–F). In a separate group of mice, we performed longitudinal 
2-photon calcium imaging through a Gradient Refractive Index (GRIN) lens to track the activity of 
individual neurons in PL across several days of behavioral training (Figure 1G–H). Both techniques 
permitted robust measurement of the activity of neurons of interest and generated complementary 
results (Figure 1I–J, Figure 1—figure supplement 2).

Graded cue and lick coding across the recorded regions
In the electrophysiology experiment, we isolated the spiking activity of 5332 individual neurons 
in regions of interest across 5  mice (449-1550 neurons per mouse, Figure  2A, Figure  2—figure 
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Figure 1. Electrophysiology and calcium imaging during olfactory Pavlovian conditioning. (A) Trial structure in Pavlovian conditioning task. (B) Timeline 
for mouse training. (C) Mean (+/− standard error of the mean (SEM)) lick rate across mice (‍n = 5‍) on each trial type for each odor set during 
electrophysiology sessions. CS50(r) and CS50(u) are rewarded and unrewarded trials, respectively. Inset: mean anticipatory licks (change from baseline) 
for the CS+ and CS50 cues for every session, color-coded by mouse. ‍F(1, 66) = 36.6‍ for a main effect of cue in a two-way ANOVA including an effect of 
subject. (D) Same as (C ), for the third session of each odor set (‍n = 5‍ mice). ‍t(4) = −5.4‍ for a t-test comparing anticipatory licks on CS+ and CS50 trials. 
(E) Neuropixels probe tracks labeled with fluorescent dye (red) in cleared brain (autofluorescence, green). AP, anterior/posterior; ML, medial/lateral; DV, 
dorsal/ventral. Allen common-coordinate framework (CCF) regions delineated in gray. Outline of prelimbic area in purple (F) Reconstructed recording 
sites from all tracked probe insertions (‍n = 44‍ insertions, ‍n = 5‍ mice), colored by mouse. (G) Sample histology image of lens placement. Visualization 
includes DAPI (blue) and GCaMP (green) signal with lines indicating cortical regions from Allen Mouse Brain Common Coordinate Framework. 
(H) Location of all lenses from experimental animals registered to Allen Mouse Brain Common Coordinate Framework. Blue line indicates location 
of lens in (A). The dotted black line represents approximate location of tissue that was too damaged to reconstruct an accurate lens track. The white 

Figure 1 continued on next page
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supplement 1A). The activity of neurons in all regions exhibited varying degrees of modulation in 
response to the six cues (Figure 2B). Broadly, there was strong modulation on CS+ and CS50 trials 
that appeared to be common to both odor sets (Figure 2—figure supplement 1B). Across regions, 
there was heterogeneity in both the magnitude and the timing of the neural modulation relative to 
odor onset (Figure 2—figure supplement 1C).

To quantify the relative contribution of cues and conditioned responding (licking) to the activity 
of neurons in each region, we implemented reduced rank kernel regression (Steinmetz et al., 2019), 
using cues, licks, and rewards to predict neurons’ activity on held-out trials (Figure 2C, Figure 2—
figure supplement 2A). To determine the contribution of cues, licks, and rewards to each neuron’s 
activity, we calculated unique variance explained by individually removing each predictor from the 
model and calculating the reduction in model performance (Figure 2D).

We identified individual neurons encoding cues, licks, or rewards as those for which that predictor 
uniquely contributed to 2% or more of their variance (a cutoff permitting no false positives and identi-
fying neurons with robust task modulation, see Methods and Figure 2—figure supplement 3). Neurons 
encoding cues (24% of all neurons), licks (11%), or both (16%) were most common. Neurons with any 
response to reward (independent of licking) were rare (5%) (Horst and Laubach, 2013). Cue neurons 
were characterized by sharp responses aligned to odor onset; in contrast, lick neurons’ responses 
were delayed and peaked around reward delivery (Figure 2—figure supplement 2B–C), consistent 
with the timing of licks (Figure 1C). The activity of cue neurons on rewarded and unrewarded CS50 
trials validated our successful isolation of neurons with cue but not lick responses (Figure 2—figure 
supplement 2D). The spatial distributions of cue and lick cells were noticeably different (Figure 2E). 
The differences could be described as graded across regions, with the most lick neurons in ALM, and 
the most cue neurons in olfactory cortex and ORB, though each type of neuron was observed in every 
region (Figure  2F–G, Figure  2—figure supplement 4). Thus, our quantification of task encoding 
revealed varying proportions of cue and lick signaling across all regions.

Cue value coding is present in all regions
To expand upon our analysis identifying cue-responsive neurons, we next assessed the presence of 
cue value coding in this population. The three cue types (CS+, CS50, or CS−) in our behavioral tasks 
varied in relative value according to the predicted probability of reward (Fiorillo et al., 2003; Eshel 
et al., 2016; Winkelmeier et al., 2022). We reasoned that a neuron encoding cue value should have 
activities that scaled with the relative value of the cues (Figure 3A). We modeled this relationship on 
a per-neuron basis by scaling a single cue kernel by its reward probability (0, 0.5, or 1, see Methods, 
Figure 3B). This model describes cue activity as similar across odors of the same value, and scaling 
in magnitude according to each odor’s value. To consider alternative cue coding patterns, we also fit 
each neuron with 152 additional models containing all possible permutations of these values across 
the six cues, as well as models with selective responses for 1, 2, 3, 4, 5, or 6 cues, and determined 
which model best fit each neuron (Figure 3—figure supplement 1). If cue responses were exclusively 
sensory and followed known olfactory coding properties (Stettler and Axel, 2009; Pashkovski et al., 
2020), there would be no bias toward the ranked value model (CS+>CS50>CS−). We found, however, 
that this model was the most frequent best model, accounting for 14% of cue neurons (Figure 3C). 
We refer to these neurons as value cells. There were two additional patterns that emerged across the 
population of cue neurons. First, there was a large fraction best explained by the model with equiv-
alent responses to all 6 cues, which we term untuned cells (14% of cue neurons). Second, many of 
the alternative models had coding patterns that were similar to the ranked value model, and these 
appeared to be overrepresented among cue neurons, as well. We quantified the similarity to ranked 
value by correlating the values assigned to each cue in each model with those assigned to the cues 

dotted line indicates prelimbic area (PL) borders.(I) ML and DV coordinates of all neurons recorded in one example session, colored by region, and spike 
raster from example PL neurons. (J) ROI masks for identified neurons and fluorescence traces from five example neurons.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Anticipatory licking during the electrophysiology sessions.

Figure supplement 2. Similar neural activity in prelimbic area using electrophysiology and calcium imaging.

Figure 1 continued

https://doi.org/10.7554/eLife.84604
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Figure 2. Graded cue and lick coding across the recorded regions. (A) Location of each recorded neuron relative to bregma, projected onto one 
hemisphere. Each neuron is colored by common-coordinate framework (CCF) region. Numbers indicate total neurons passing quality control from each 
region. (B) Mean normalized activity of all neurons from each region, aligned to odor onset, grouped by whether peak cue activity (0–2.5 s) was above 
(top) or below (bottom) baseline in held out trials. Number of neurons noted for each plot. (C) Example kernel regression prediction of an individual 
neuron’s normalized activity on an example trial. (D) CS+ trial activity from an example neuron and predictions with full model and with cues, licks, and 
reward removed. Numbers in parentheses are model performance (fraction of variance explained). (E) Coordinates relative to bregma of every neuron 
encoding only cues or only licks, projected onto one hemisphere. (F) Fraction of neurons in each region and region group classified as coding cues, 
licks, reward, or all combinations of the three. (G) Additional cue (left) or lick (right) neurons in region on Y-axis compared to region on x-axis as a fraction 
of all neurons, for regions with statistically different proportions (see Methods).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Task-related neural activity across brain regions.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.84604


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Ottenheimer, Hjort, Bowen et al. eLife 2023;12:RP84604. DOI: https://​doi.​org/​10.​7554/​eLife.​84604 � 6 of 30

in the ranked value model; this approach revealed an enrichment in neurons best fit by models most 
similar to ranked value (35% of cue neurons, Figure 3C–D). We refer to neurons best fit by models 
most similar to the value model as value-like cells.

Value characteristics were particularly strong among the neurons we identified as value cells. In 
particular, there was strong modulation for the CS+ odors, moderate modulation for CS50 odors, 
and the least modulation for CS− odors (Figure 3E). These characteristics were present to varying 
degrees in value-like cells, as well (Figure 3F). A key characteristic of value cells, however, was the 
singular value axis on which the cues were encoded. This was evident when projecting population 
activity onto the dimensions separating CS+ trials from CS− trials and CS50 trials from CS− trials 
(Figure 3—figure supplement 2A); the trajectory of value neurons traveled the same angle in this 
space for CS+ and CS50 trials, but differed for value-like (Figure 3—figure supplement 2B). We 
additionally characterized the coding properties of these populations with single-unit and pseudo 
ensemble decoding. For individual neurons decoding the six cue identities, performance was better 
using value cells than value-like or untuned cells (Figure 3G). At the population level, however, all 
groups of neurons performed similarly (Figure 3H). A key feature of a value signal beyond decoding 
cue identity, though, is the ability to represent many distinct cues along a shared value axis. Therefore, 
the value cells should be able to decode the value of a cue never presented during the training of 
the model. With this approach, models trained on value cells had better predictions of held-out cue 
value, leading to higher decoding accuracy (CS+, CS50, or CS−), compared to value-like and untuned 
cells (Figure 3I). Therefore, we successfully identified a population of neurons strongly encoding key 
features of value.

Interestingly, the frequency of value cells was similar across the recorded regions (Figure  4A). 
Despite the regional variability in the number of cue cells broadly (Figure 2F–G), there were very 
few regions that statistically differed in their proportions of value cells (Figure 4A, Figure 4—figure 
supplement 1). Overall, there were slightly more value cells across all of PFC than in motor and 
olfactory cortex (Figure 4A, Figure 4—figure supplement 1). Although the olfactory cortex had the 
most cue cells, these were less likely to encode value than cue cells in other regions (Figure 4—figure 
supplement 2). Value-like cells were also widespread; they were less frequent in the motor cortex as a 
fraction of all neurons, but they were equivalently distributed in all regions as a fraction of cue neurons 
(Figure 4B, Figure 4—figure supplement 1, Figure 4—figure supplement 2).

We next investigated the robustness of the value representation in each of our recorded regions. 
Principal component analysis on value and value-like cells from each region revealed similarly strong 
value-related dynamics across motor, prefrontal, and olfactory regions (Figure 4C–D). We quantified 
the robustness of value coding in each region by decoding cue value using selections of value cells 
from each region and found similar performance across all regions (Figure 1E). Taken together, these 
data illustrate that, in contrast to cue and lick coding broadly, value coding is similarly represented 
across the regions we sampled. In fact, this observation extended to the striatal regions we sampled 
as well, indicating that such value coding is widespread even beyond cortex (Figure 4—figure supple-
ment 3).

Because cue valuations can be influenced by preceding reward outcomes, we next considered 
whether the cue value signaling we detected was sensitive to the history of reinforcement (Nakahara 
et al., 2004; Ottenheimer et al., 2020; Winkelmeier et al., 2022). To estimate the subjects’ trial-by-
trial cue valuation, we fit a linear model predicting the number of anticipatory licks on each trial using 
cue type, overall reward history, and cue type-specific reward history as predictors. We found a strong 
influence of cue type-specific reward history and a more modest influence of overall reward history 
(Figure 5A). We used the model prediction of licks per trial as our estimate of trial value; the effects 
of reward history on lick rate were apparent when grouping trials by the value estimates from the trial 
value model (Figure 5B).

Figure supplement 2. Identification of cue and lick cells with GLM.

Figure supplement 3. Validation of variance cutoff for variable coding.

Figure supplement 4. Comparing proportions of cue and lick neurons across regions.

Figure 2 continued

https://doi.org/10.7554/eLife.84604
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Figure 3. Robust value encoding and decoding among cue cells. (A) Normalized activity of an example value cell with increasing modulation for 
cues with higher reward probability.(B) For the same neuron, model-fit cue kernel for the original value model and with one of the 152 alternatively-
permuted cue coding models. (C) Distribution of best model fits across all cue neurons. Light blue is value model, purple is value-like models, gray is 
untuned model, and the remaining models are dark blue. Value-like models are shaded according to their correlation with ranked value, as illustrated 
in (D). Dashed line is chance proportion when assuming even distribution. (D) Schematic of value assigned to each of the six cues for many of the cue 
coding models (full schematic in Figure 3—figure supplement 1). Value-like models are sorted by their correlation with the ranked value model. 
(E) Left: normalized activity of every value cell, sorted by mean firing 0–1.5s following odor set A CS+ onset. Right: mean normalized activity of all value 
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We, therefore, investigated whether value cells showed similar trial-by-trial differences in their cue-
evoked firing rates (Figure 5C). To test this, we compared the fit of our original cue coding models 
(Figure 3B–D) with an alternative model in which the kernel scaled with the per-trial value estimates 
from our trial value model (Figure 5D). Overall, 5% of cue cells, including 15% of the value cells, were 
best fit by the history model. Although the number of anticipatory licks per trial was used to generate 
the trial value estimates, the precise licking pattern on those trials was a poorer predictor of neural 
responses than the trial value-scaled cue kernel model (Figure 5E). To further evaluate the history 
component of these neurons, we calculated these neurons’ activity on CS50 trials of varying value 
estimates from the trial value model and projected it onto the population dimension maximizing the 
separation between CS+ and CS−. We hypothesized that high value CS50 trials would be closer to 
CS+ activity while low value CS50 trials would be closer to CS− activity. Indeed, history cells (and lick 
cells) demonstrated graded activity along this dimension, in contrast to non-history value, value-like, 
and untuned cells (Figure 5F–H). Finally, we examined the regional distribution of history cells and 
found low numbers across all regions, but with a higher prevalence overall in PFC than in motor and 
olfactory cortex (Figure 5I), lending additional support for slightly enhanced value coding in PFC.

Cue coding emerges along with behavioral learning
To determine the timescales over which these coding schemes emerged and persisted, we performed 
longitudinal 2-photon calcium imaging and tracked the activity of individual neurons across several 
days of behavioral training (Figure  6A). We targeted a GRIN lens to PL, a location with robust 
cue and lick coding (Figure 2F) and where cue responses were predominantly value or value-like 
(Figure 4A–B, Figure 4—figure supplement 2). Mice (‍n = 8‍) developed anticipatory licking during 
the first sessions of odor set A (A1) that differentiated CS+ trials from CS50 (‍t(7) = 3.2‍, ‍p = 0.015‍) and 
CS− (‍t(7) = 7.0‍, ‍p = 0.0002‍) trials and CS50 trials from CS− (‍t(7) = 3.7‍, ‍p = 0.008‍) trials (Figure 6B–C). Visu-
alizing the normalized activity across the imaging plane following CS+ presentation early and late 
in session A1 revealed a pronounced increase in modulation across this first session (Figure 6D–E). 
Individual neurons (‍n = 705‍, 41-165 per mouse) also displayed a notable increase in modulation in 
response to the CS+ after task learning (Figure 6F).

To determine whether this increase in activity was best explained by a cue-evoked response, licking, 
or both, we again used kernel regression to fit and predict the activity of each neuron for early, middle, 
and late trials in session A1. The number of individual neurons encoding cues more than doubled 
from early to late A1 trials (Figure 6G). The unique variance cues increased across this first session, 
in contrast to licks and reward (Figure 6H). This stark change in cue coding was also noticeable when 
plotting neurons encoding cues, licks, or both, as defined at the end of the sessions, on both early 
and late trials (Figure 6I). These data indicated that PFC neural activity related to cues (but not licks) 
rapidly emerge during initial learning of the behavioral task.

Cue and lick coding is stable across days
We next assessed whether cue and lick coding were stable across days. By revisiting the same imaging 
plane on each day of training, we were able to identify neurons that were present on all three days 
of odor set A training (‍n = 371‍, 20-65 per mouse) (Figure 7A–B). There was remarkable conserva-
tion of task responding across days, both on an individual neuron level (Figure 7C) and across all 

cells, grouped by whether peak cue activity (0–2.5s) was above (top) or below (bottom) baseline in held out trials. Number of neurons noted for each 
plot. (F) As in (E), for value-like cells. (G) Accuracy (mean ± SEM across neurons) of decoded cue identity for single neurons of value (‍n = 248‍), value-like 
(‍n = 606‍), and untuned (‍n = 238‍) neurons. * indicates where value, value-like, and untuned neurons significantly differed from each other and baseline 
(all ‍p < 0.001‍, Bonferroni corrected). All pairwise comparisons in Supplementary file 2. (H) Accuracy (mean ± SD across bootstrapped iterations) of 
decoded cue identity using different numbers of neurons. (I) Left: estimated value (mean ± SD across 1000 bootstrapped iterations) of held out CS+ 
(top) and CS− (bottom) trials using linear models trained on the activity of value, value-like, or untuned neurons. Right: accuracy (mean ± SD across 
bootstrapped iterations) of decoded cue value using these value estimates. * indicates where the accuracy of value neurons exceeded value-like and 
untuned neurons (all ‍p < 0.016‍, bootstrapped). All pairwise comparisons in Supplementary file 2.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Schematic of value model shuffles.

Figure supplement 2. Population analysis of value coding schemes.

Figure 3 continued
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Figure 4. Widespread cue value coding. (A) Fraction of neurons in each region and region group classified as value cells (blue) and other cue neurons 
(gray), as well as fraction (± 95% CI) estimated from a linear mixed effects model with random effect of session (see Methods). Prefrontal cortex (PFC) 
has more value cells than motor (‍p = 0.002‍) and olfactory (‍p = 0.00005‍) cortex. All pairwise comparisons in Supplementary file 3. (B) As in (A), for 
value-like cells. Motor cortex has fewer value-like cells than PFC (‍p = 8 ∗ 10−6

‍) and olfactory cortex (‍p = 4 ∗ 10−8
‍). All pairwise comparisons in 

Supplementary file 3. (C) First principal component value cells from all regions. (D) As in (C), for value-like cells. (E) Accuracy of decoded cue value 
(mean ± SD across 1000 bootstrapped iterations) as in Figure 3I, using five (with replacement) value cells from each region (left) and 25 value cells 
from each region group (right) using cue-evoked (blue) and baseline (black) activity. No regions or region groups significantly differed from each other 
(‍p > 0.46‍, Bonferroni corrected). All pairwise comparisons in Supplementary file 3.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Relative proportions of value and value-like cells across regions.

Figure supplement 2. Value coding as a proportion of cue cells.

Figure supplement 3. Comparing prefrontal cortex (PFC) and striatum.

https://doi.org/10.7554/eLife.84604
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Figure 5 continued on next page
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imaged neurons (Figure 7D). In fact, neurons were much more correlated with their own activity on 
the subsequent day than would be expected by chance (Figure 7E, Figure 7—figure supplement 
1A). To further quantify coding stability, we fit our kernel regression to the activity of each neurons 
on session A3 (Figure 7F) and then used these models to predict activity in early, middle, and late 
trials on sessions A1-3. Session A3 model predictions were most highly correlated with true activity 
during A3, but they outperformed shuffle controls at all time points, demonstrating preservation of a 
learned coding scheme (Figure 7G, Figure 7—figure supplement 1B). We then asked more specifi-
cally whether cells coding cues, licks, and both maintained their coding preferences across days. For 
each group of cells, we calculated their unique cue, lick, and reward variance at each time point. The 
preferred coding of each group, as defined in session A3, was preserved in earlier days (Figure 7H). 
Thus, cue and lick coding are stable properties of PFC neurons across multiple days of behavioral 
training.

A subset of mice (‍n = 5‍) also learned a second odor set (odor set B), presented on separate days. 
Activity was very similar for both odor sets, evident across the entire imaging plane (Figure 8A), for 
individual tracked neurons (‍n = 594‍, 81-153 per mouse) (Figure 1—figure supplement 2B), and for 
kernel regression classification of these neurons (Figure 8B). Notably, odor set A models performed 
similarly well at predicting both odors set A and odor set B activity (Figure 8C). Moreover, cue, lick, 
and both neurons maintained their unique variance preference across odor sets (Figure 8D). Finally, 
to investigate the presence of value coding across odor sets over separate days, we fit tracked cue 
neurons with the value model and its shuffles. Even with odor sets imaged on separate days (days 
5 and 6 of training, A3 and B3), we again found that the value and value-like models were the best 
models for sizable fractions (9% and 47%, respectively) of cue neurons, demonstrating that value 
coding is conserved across stimulus sets on consecutive days (Figure 8E–G). Given the prominence 
of value-like signals in this imaged population, we then assessed the stability of cue cells with prefer-
ential CS+ responses across the tracked A1-3 sessions and found conservation of a value-like coding 
pattern (Figure 8H) and, as with the whole population (Figure 7G), greater correlation in activity 
across days than expected by chance (Figure 8I).

Discussion
Our experiments assessed how coding for reward-predicting cues and reward-seeking actions differed 
across brain regions and across multiple days of training. We found coding for cues and licks in all 
regions we sampled, but their proportions varied in a graded way across those regions. In contrast to 
regional differences in the proportion of cue-responsive neurons, cue-value cells were present in all 
regions and value could be decoded from them with similar accuracy regardless of the region. Coding 
for cue value was greatly overrepresented compared to alternative cue coding schemes and, in a 
subset of neurons, incorporated the recent reward history. Cue coding was established within the first 
day of training and neurons encoding cues or licks maintained their coding preference across multiple 
days of the task; the value characteristics of cue cells were also maintained across days. These results 
demonstrate widespread value coding and stability of cue and lick codes in PFC.

Graded cue and lick coding across regions
We found robust and separable coding for licks and cues (and combined coding of both) in all regions 
using electrophysiology and in PL using calcium imaging. The widespread presence of lick coding 

the trial value model. (C) Normalized activity of an example history value cell with increasing modulation for cues of higher value. (D) For the same 
neuron, model-predicted activity with the original value model (left) and with the history model, which uses trial-by-trial value estimates from the trial 
value model (right). (E) For the same neuron, model-predicted activity using licks. Inset: variance explained using licks versus history for history neurons. 
(F) The activity of all cells in each category projected onto the coding dimension maximally separating CS− and CS+ for trials binned by value estimated 
from the trial value model. (G) The mean (± SD across 5000 bootstrapped selections of neurons) activity (1–2.5s from odor onset) along the coding 
dimension maximally separating CS− and CS+ for trials binned by value estimated from the lick model. (H) The mean (± SD across 5000 bootstrapped 
selections of neurons) slope of the activity on CS50 trials regressed onto the trial value model estimate for those trials. History and lick cells had greater 
slopes than the other groups (‍p < 0.0003‍, see Supplementary file 4). (I) Fraction of neurons in each region and region group classified as history cells 
(light blue) and other cue neurons (gray), as well as estimated fraction (± 95% CI) with random effect of session (see Methods). Prefrontal cortex (PFC) 
had more history cells than motor (‍p = 0.0016‍) and olfactory (‍p = 0.00053‍) cortex. All pairwise comparisons in Supplementary file 4.

Figure 5 continued
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Figure 6. Acquisition of conditioned behavior and cue encoding in prefrontal cortex (PFC). (A) Training schedule 
for five of the mice in the calcium imaging experiment. An additional three were trained only on odor set A. 
(B) Mean (± SEM) licking on early (first 60) and late (last 60) trials from day 1 of odor set A (‍n = 8‍ mice). (C) Mean 
(± SEM) baseline-subtracted anticipatory licks for early and late trials from each day of odor set A. Thin lines are 
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is consistent with recent reports of distributed movement and action coding (Stringer et al., 2019; 
Musall et al., 2019; Steinmetz et al., 2019); however, we saw sizable differences in the amount of 
lick coding across recorded regions. Notably, ALM had the greatest number of lick neurons, as well 
as the fewest cue neurons, perhaps reflecting its specialized role in the preparation and execution 
of licking behavior (Chen et al., 2017). Conversely, the olfactory cortical regions DP, TTd, and AON 
had the most cue neurons (especially non-value coding cue neurons), suggesting a role in early odor 
identification and processing (Mori and Sakano, 2021). PFC subregions balanced lick and cue coding, 
consistent with their proposed roles as association areas (Miller and Cohen, 2001; Klein-Flügge 
et al., 2022), but there was variability within PFC as well. In particular, ORB had a greater fraction of 
cue cells than any other subregions, consistent with its known dense inputs from the olfactory system 
(Price, 1985; Price et al., 1991; Ekstrand et al., 2001). Thus, our results establish that the neural 
correlates of this Pavlovian conditioned behavior consist of a gradient of cue and response coding 
rather than segmentation of sensory and motor responses.

Widespread value signaling
Value signals can take on many forms and occur throughout task epochs. In our experiments, we 
focused on the predicted value associated with each conditioned stimulus, which is crucial for under-
standing how predictive stimuli produce motivated behavior (Berridge, 2004). Surveys of value coding 
in primate PFC have found individual neurons correlated with stimulus-predicted value in many subre-
gions, with the strongest representations typically in ORB (Roesch and Olson, 2004; Sallet et al., 
2007; Kennerley et al., 2009; Hunt et al., 2018). In rodents, there is also a rich literature on value 
signaling in ORB (Schoenbaum et al., 2003; van Duuren et al., 2009; Sul et al., 2010; Stalnaker 
et al., 2014; Namboodiri et al., 2019; Kuwabara et al., 2020; Wang et al., 2020a), but there have 
also been many reports of value-like signals in frontal cortical regions beyond ORB (Otis et al., 2017; 
Allen et al., 2019; Wang et al., 2020a; Kondo and Matsuzaki, 2021). In our present experiment, 
we sought to expand upon these rodent results by separating cue activity from licking, which tracks 
the value and may confound interpretation, by including more than two cue types, which provided a 
rich space to assess value coding, and by sampling from many frontal regions in the same experiment.

When considering the number of neurons responsive to cues rather than licks, our data confirmed 
the importance of ORB, which has more cue-responsive neurons than the motor and other prefrontal 
regions, but, beyond cue responsiveness, we were interested in identifying specific cue coding patterns 
pertaining to value. By analyzing the activity of cue-responsive neurons across all six odors predicting 
varying probabilities of reward, we were able to isolate neurons coding value, as well as those with 
value-like signals that could easily be misconstrued as value-coding in a task with fewer cues and value 
levels. Included in the value-like models are coding patterns that bias their activity for higher value 
odors without fitting our strict linear ranked value criteria; for instance, selective firing for one or two 
of the CS+ odors. The enrichment of these models among cue responsive neurons, even in the olfac-
tory cortex, indicates the prevalence of value-biased coding schemes for odor-responsive neurons 
across brain regions. The question remains of where odor information is first shaped according to 
value. There have been multiple reports of some association-related modification of odor representa-
tions as early as the olfactory bulb (Doucette et al., 2011; Li et al., 2015; Chu et al., 2016; Koldaeva 
et al., 2019). Considering we detected value and especially value-like coding in AON, DP, and TTd, 
perhaps these regions are a crucial first step in processing and amplifying task-related input from the 

individual mice (‍n = 8‍ mice). (D) Standard deviation of fluorescence from example imaging plane. (E) Normalized 
activity of each pixel following CS+ presentation on early and late trials of session A1. (F) Normalized deconvolved 
spike rate of all individual neurons on early and late trials of session A1. (G) Proportion of neurons classified 
as coding cues, licks, rewards, and all combinations for each third of session A1. (H) Mean(± SEM across mice) 
unique variance explained by cues, licks, and rewards for neurons from each mouse. Thin lines are individual 
mice. Unique variance was significantly different across session thirds for cues (‍F(2, 21) = 3.71‍, ‍p = 0.04‍) but not 
licks (‍F(2, 21) = 0.37‍, ‍p = 0.69‍) or reward (‍F(2, 21) = 0.65‍, ‍p = 0.53‍, ‍n = 8‍ mice, one-way ANOVA). (I) Mean (± 
SEM) normalized deconvolved spike rate for cells coding cues (‍n = 84‍ above, ‍n = 28‍ below), licks (‍n = 91‍ above, 
‍n = 40‍ below), both (‍n = 31‍ above, ‍n = 9‍ below), or neither (‍n = 307‍ above, ‍n = 153‍ below) on early and late 
trials, sorted by whether peak cue activity (0–2.5 s) was above (top) or below (bottom) baseline for late trials.

Figure 6 continued
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Figure 7. Cue and lick coding is stable across days. (A) Standard deviation fluorescence from example imaging 
plane. (B) Masks (randomly colored) for all tracked neurons from this imaging plane. (C) Deconvolved spike rate on 
every CS+ trial from all three sessions of odor set A for an example neuron. Vertical dashed line is reward delivery. 
Color axis as in (D). (D) Normalized deconvolved spike rate for all tracked neurons on all three sessions of odor 
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olfactory bulb. Because they provide input to PFC (Igarashi et al., 2012; Bhattarai et al., 2022), they 
may be an important source of the cue coding we observed there.

The distribution of cue cells with linear coding of value was mostly even across regions, with 
slight enrichment overall in PFC compared to the motor and olfactory cortex, but no subregional 
differences in PFC. Importantly, cue value could be decoded from value cells in each region with 
similar accuracy. One consequence of a widely distributed value signal is that manipulating only one 
subregion would be less likely to fully disrupt value representations, which is consistent with the 
results of studies comparing functional manipulations across PFC (Chudasama and Robbins, 2003; 
St Onge and Floresco, 2010; Dalton et  al., 2016; Verharen et  al., 2020; Wang et  al., 2020a). 
Different subregional impacts on behavior may reveal biases in how the value signal in each region 
contributes to reward-related behaviors, for instance during learning or expression of a reward asso-
ciations (Otis et al., 2017; Namboodiri et al., 2019; Wang et al., 2020a). A related interpretation is 
that, in this task, there may be other properties that correlate with cue value, and the homogeneous 
value representation we observed across regions masks regional differences in tuning to these other 
correlated features, such as motivation (Roesch and Olson, 2004) and a host of related concepts, 
including salience, uncertainty, vigor, and arousal (Stalnaker et al., 2015; Hayden and Niv, 2021; 
Zhou et al., 2021), which can have different contributions to behavior. This interpretation is consistent 
with broader views that observations of ‘value’ signals are often misconstrued (Zhou et al., 2021) and 
that pure abstract value may not be encoded in the brain at all (Hayden and Niv, 2021). Although the 
identification of value in our task was robust to three levels of reward probability across two stimulus 
sets, the fact that this signal was widespread contributes to the case for revisiting the definition and 
interpretation of value to better understand regional specialization.

In our analysis, we uncovered a distinction between neurons encoding the overall value of cues and 
those with value representations that incorporated the recent reward history. Neurons with history 
effects were rare and most frequent in PFC. These neurons may have a more direct impact on behav-
ioral output in this task, because the lick rate also incorporated recent reward history. Notably, the 
impact of reward history on these neurons was noticeable even prior to cue onset, consistent with a 
previously proposed mechanism for persistent value representations encoded in the baseline firing 
rates of PFC neurons (Bari et al., 2019).

Stability of PFC codes
Previous reports have observed drifting representations in PFC across time (Hyman et  al., 2012; 
Malagon-Vina et al., 2018), and there is compelling evidence that odor representations in piriform 
drift over weeks when odors are experienced infrequently (Schoonover et al., 2021). On the other 
hand, it has been shown that coding for odor association is stable in ORB and PL, and that coding for 
odor identity is stable in piriform (Wang et al., 2020a), with similar findings for auditory Pavlovian cue 
encoding in PL (Otis et al., 2017; Grant et al., 2021) and ORB (Namboodiri et al., 2019). We were 
able to expand upon these data in PL by identifying both cue and lick coding and showing separable, 
stable coding of cues and licks across days and across sets of odors trained on separate days. We 

set A. (E) Correlation between the activity of a given neuron in one session and its own activity in the subsequent 
session, quantified as a percentile out of correlations with the activity of all other neurons on the subsequent day. 
Plotted as the median for each subject and the mean (± SEM) across these values. Real data was more correlated 
than shuffled data (‍p = 0.0078‍ for both comparisons, Wilcoxon signed-rank test). (F) Fraction of tracked neurons 
coding cues, licks, rewards, and their combinations on day 3. (G) Model performance when using models from 
session A3 to predict the activity of individual neurons across session thirds of odor set A training, plotted as mean 
(± SEM) correlation between true and predicted activity across mice, normalized to the correlation between model 
and training data. Thin lines are individual mice. Performance was greater than shuffled data at all time points 
(‍p < 0.002‍, Bonferroni-corrected, ‍n = 8‍ mice). Non-normalized data in Figure 7—figure supplement 1. (H) Mean 
(± SEM across mice) unique cue, lick, and reward variance for cells classified as coding cues, licks, both, or neither 
on session A3. A3 cue cells had increased cue variance in A2 (‍p < 10−7‍, see Methods) and A1 (‍p < 0.03‍) relative to 
lick and reward variance. Same pattern for A3 lick cells in A2 (‍p < 0.0001‍) and A1 (‍p < 0.01‍).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Correlation across days in prelimbic area (PL).

Figure 7 continued

https://doi.org/10.7554/eLife.84604
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Figure 8. Stable cue coding across separately trained odor sets. (A) Normalized activity of all pixels in the imaging plane following CS+ presentation 
on the third day of each odor set (A3 and B3, days 5 and 6 of training). (B) Fraction of neurons coding for cues, licks, rewards, and their combinations 
in A3 and B3 (days 5 and 6). (C) Mean (± SEM, across mice) correlation between activity predicted by odor set A3 models and its training data (A3, 
cross-validated) or activity in B3, for true (black) and trial shuffled (gray) activity. Thin lines are individual mice. ‍F(1, 16) = 3.2‍, ‍p = 0.09‍ for main effect 

Figure 8 continued on next page
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were also able to detect value coding common to two stimulus sets presented on separate days, and 
conserved value features across the three training sessions. Notably, the model with responses only 
to CS+ cues best fit a larger fraction of imaged PL neurons than the ranked value model, a departure 
from the electrophysiology results. It would be interesting to know if this is due to a bias introduced by 
the calcium imaging approach, the slightly reduced CS50 licking relative to CS+ licking in the imaging 
cohort, or the shorter imaging experimental timeline.

The consistency in cue and lick representations we observed indicates that PL serves as a reli-
able source of information about cue associations and licking during reward-seeking tasks, perhaps 
contrasting with other representations in PFC (Hyman et  al., 2012; Malagon-Vina et  al., 2018). 
Interestingly, the presence of lick, but not cue coding at the very beginning of the first session of 
training suggests that lick cells in PL are not specific to the task but that cue cells are specific to 
the learned cue-reward associations. Future work could expand upon these findings by examining 
stimulus-independent within session value coding across many consecutive days.

Overall, our work emphasizes the importance of evaluating the regional specialization of neural 
encoding with systematic recordings in many regions using the same task. Future work will clarify 
whether cue value is similarly widely represented in other reward-seeking settings and whether there 
are regional differences in the function of the value signal.

Materials and methods
Subjects
Subjects (‍n = 5‍ for electrophysiology, ‍n = 8‍ for calcium imaging) were male and female C57BL/6 mice 
single-housed on a 12 hr light/dark cycle and aged 12–28 weeks at the time of recordings. Imaging 
experiments were performed during the dark cycle, electrophysiology during the light cycle. Mice 
were given free access to food in their home cages for the duration of the experiment. Mice were 
water restricted for the duration of the experiments and maintained at around 85% of their baseline 
weight (Guo et al., 2014a). All experimental procedures were performed in strict accordance with 
protocols 4450–01 and 4461–01 approved by the Animal Care and Use Committee at the University 
of Washington.

Surgical procedures
Mice were anesthetized with isoflurane (5%) and maintained under anesthesia for the duration of the 
surgery (1–2%). Mice received injections of carprofen (5 mg/kg) prior to incision.

Electrophysiology
A brief (1 hr) initial surgery was performed, as previously described (Guo et al., 2014b; Steinmetz 
et al., 2017; Steinmetz et al., 2019), to implant a steel headbar (approximately 15 × 3 × 0.5 mm, 
1 g) for head fixation and a 3D-printed recording chamber exposing the skull for subsequent crani-
otomies. Briefly, an oval incision was made extending from the interparietal bone to the frontonasal 
suture, skirting the ocular area. The skin and periosteum were removed to expose the entire dorsal 
surface of the skull. Skull yaw, pitch, and roll were leveled, and exposed bone was texturized with a 

of odor set, ‍F(1, 16) = 135‍, ‍p < 10−8‍ for main effect of shuffle, ‍F(1, 16) = 2.2‍, ‍p = 0.16‍ for interaction, ‍n = 5‍ mice, two-way ANOVA. (D) Mean (± 
SEM, across mice) unique cue, lick, and reward variance for cells classified as coding cues, licks, both, or neither for odor set A. For each category, odor 
set A unique variance preference was maintained for odor set B (‍p < 0.04‍) except for both cells, for which lick and reward variance were not different in 
odor set B (‍p = 0.22‍, Bonferroni-corrected, ‍n = 5‍ mice). (E) Distribution of best model fits across all cue cells, with colors from Figure 3C. Dashed line 
is chance proportion when assuming even distribution. (F) Left: normalized activity of every value cell, sorted by mean firing 0–1.5s following odor set A 
CS+ onset. Right: mean normalized activity of all value cells, grouped by whether peak cue activity (0–2.5 s) was above (top) or below (bottom) baseline 
in held out trials. Number of neurons noted for each plot. (G) As in (E), for value-like cells. (H) Mean (± SEM, across neurons) activity of cue cells tracked 
across A1, A2, and A3 with preferential CS+ firing, defined on half of A3 trials and plotted for the other half of A3 trials and all of A1 and A2 trials. (I) For 
neurons in (H), correlation between a neuron’s activity in one session and its own activity in the subsequent session, quantified as a percentile out of 
correlations with the activity of all other neurons on the subsequent day. Plotted as the median for each subject (‍n = 7‍ with CS+ preferring cue cells) 
and the mean (± SEM) across these values. Real data was more correlated than shuffled data (‍p = 0.016‍ A1:A2, ‍p = 0.031‍ A2:A3, Wilcoxon signed-rank 
test).

Figure 8 continued

https://doi.org/10.7554/eLife.84604
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brief application of green activator (Super-Bond C&B, Sun Medical). The incision was secured to the 
skull with the application of cyanoacrylate (VetBond; World Precision Instruments), and the 3D-printed 
recording chamber was attached to the skull with L-type radiopaque polymer (Super-Bond C&B). A 
thin layer of cyanoacrylate was applied to the skull inside the chamber and allowed to dry. Multiple 
(2-4) thin layers of UV-curing optical glue (Norland Optical Adhesives #81, Norland Products) were 
applied to the skull inside the chamber and cured with UV light to protect the exposed bone. The 
headbar was attached to the skull over the interparietal bone posterior to the chamber with Super-
Bond polymer, and more polymer was applied around the headbar and chamber. Following recovery, 
a second brief (15–30 min) surgery was conducted to perform craniotomies for Neuropixels probe 
insertion. Briefly, following induction of anesthesia a small (2 × 1.5 mm (w × h)) craniotomy was made 
over the frontal cortex (+2.5–1 mm AP, ± 2.5–0.3 mm ML) with a handheld dental drill. The craniotomy 
was covered with a soft silicone gel (DOWSIL 3–4680) and the recording chamber was covered with a 
3D-printed lid sealed with Kwik-Cast elastomer to protects craniotomy from dust.

Calcium imaging
A Gradient-Refractive Index (GRIN) lens and metal headcap were implanted following previously 
described procedures (Namboodiri et al., 2019) with the following modifications. In most mice, once 
the dura was removed from the craniotomy, we performed two injections of 0.5 ‍µL‍ of virus (1 ‍µL‍ total) 
containing the GCaMP gene construct (AAVDJ-CamKIIa-GCaMP6s, ‍5.3 ∗ 1012‍ viral particles/mL from 
UNC Vector core lot AV6364) using a glass pipette microinjector (Nanoject II) at Bregma +1.94 mm 
AP, 0.3, and 1.2 mm ML, –2 mm DV. Ten minutes elapsed before the microinjector withdrawal to allow 
the virus to diffuse away from each infusion site. Then, mice were implanted with a 1 × 4 mm GRIN 
lens (Inscopix) aimed at +1.94 mm AP, 0.6 mm ML, and –1.8 mm DV. A subset of mice did not receive 
viral injections; instead, a lens with the imaging face coated 1 ‍µL‍ of the GCaMP6s virus mixed with 5% 
aqueous silk fibroin solution (Jackman et al., 2018) was implanted at the same coordinate. GCaMP 
expression and transients were similar in both preparations. Mice were allowed to recover for at least 
5 weeks before experiments began.

Behavioral training
Mice were headfixed during training and recording sessions using either a headring (imaging exper-
iments) or headbar (electrophysiology experiments). After initial habituation to head fixation, mice 
were first trained to lick for ‍2.5µL‍ rewards of 10% sucrose solution, delivered every 8–12 s through a 
miniature inert liquid valve (Parker 003-0257-900). After 4–5 days of lick training, mice experienced 
their first odor exposure (without reward delivery). Odors were delivered for a total of 1.5 s using a 
4-channel olfactometer (Aurora 206 A) with 10% odor flow rate and 800 SCCM overall flow rate of 
medical air. Odors were randomly assigned to sets and cue identities, counterbalanced across mice. 
Odors were -carvone, -limonene, alpha-pinene, butanol, benzaldehyde, and geranyl acetate (Sigma 
Aldrich 124931, 218367, 147524, 281549, 418099, 173495, respectively), selected because of they 
are of neutral valence to naive mice (Devore et al., 2013; Saraiva et al., 2016). Odors were diluted 
1:10 in mineral oil and 10 μL was pipetted onto filter paper within the odor delivery vials (Thermo 
Fisher SS246-0040) prior to each session. Airflow was constant onto the mouse’s nose throughout the 
session and switched from clean air to scented air for the 1.5 s duration odor delivery on each trial.

On days 1–2 of Pavlovian conditioning, mice received 50–75 trials each of three odor cues (odor 
set A), followed by reward on 100% (CS+), 50% (CS50), or 0% (CS−) of trials, 2.5 s following the odor 
onset, with 8–12 s between odor presentations. On days 3–4 mice then received training for 2 days 
with a second odor set (odor set B) with three new odors. For electrophysiology experiments, the 
odors were subsequently presented in the same sessions in six blocks of 51 trials. Odor set order 
alternated and was counterbalanced across days. For imaging experiments, mice received the third 
day of odor set A on day 5 and the third day of odor set B on day 6 of conditioning. An additional 
three imaging mice were only trained on one odor set.

Electrophysiological recording and spike sorting
During recording sessions, mice were headfixed. Recordings were made using either Neuropixels 
1.0 or Neuropixels 2.0 electrode arrays (Jun et al., 2017; Steinmetz et al., 2021), which have 384 
selectable recording sites. Recordings were made with either 1.0 (1 shank, 960 sites), 2.1 (1 shank, 

https://doi.org/10.7554/eLife.84604
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1280 sites),, or 2.4 (4 shanks, 5120 sites) probes, depending on the regions of interest. Probes were 
mounted to a dovetail and affixed to a steel rod held by a micromanipulator (uMP-4, Sensapex Inc). 
For later electrode track localization within the brain, probes were coated with a fluorescent dye (DiI, 
ThermoFisher Vybrant V22888) by holding 2 ‍µl‍ in a droplet on the end of a micropipette and painting 
the probe shank. In each session, one or two probes were advanced through the silicone gel covering 
the craniotomy over the frontal cortex, then advanced to their final position at approximately 3 ‍µm‍ s-1. 
Electrodes were allowed to settle for around 15 min before starting recording. Recordings were made 
in internal reference mode using the ‘tip’ reference site, with a 30 kHz sampling rate. Recordings were 
repeated at different locations on each of multiple subsequent days, performing an additional crani-
otomy over the contralateral frontal cortex. The resulting data were automatically spike sorted with 
Kilosort2.5 and Kilosort3 (https://github.com/MouseLand/Kilosort; RRID:SCR_016422; Pachitariu 
et  al., 2023), v2.5 and 3.0. Extracellular voltage traces were preprocessed with common-average 
referencing by subtracting each channel’s median to remove baseline offsets, then subtracting the 
median across all channels at each time point to remove common electrical artifacts. Sorted units 
were curated using automated quality control (Banga, et al., 2022): exclusions were based on spike 
floor violations (the estimated proportion of spikes that were missed because they fell below the 
noise level of the recording, estimated false negative rate), and refractory period violations (the esti-
mated proportion of spikes arising from the non-primary neuron, the estimated false positive rate due 
to contamination, with a 10% cutoff). Quality control accuracy was assessed by manually reviewing 
a subset of the data using the phy GUI (https://github.com/kwikteam/phy; Rossant et  al., 2021). 
Because Kilosort2.5 and Kilosort3 use different clustering algorithms that can be advantageous for 
different types of recordings (stability, region, number of channels), for each session, we used units 
sorted with either Kilosort2.5 or Kilosort3 depending on which yielded the greatest number of high-
quality units for that session. Brain regions were only included for subsequent analysis if there were 
recordings from at least three subjects and a total of over 100 neurons in the region. When we analyzed 
all of the motor cortex together, we included ALM and MOs neurons. When we analyzed all of the 
olfactory cortex, we included DP, TTd, AON, and other neurons in PIR, EPd, and OLF. We relabeled 
PIR and EPd as OLF because there were not enough neurons to analyze them as separate regions.

Imaging and ROI extraction
During imaging sessions, mice were headfixed and positioned under the 2-photon microscope (Bruker 
Ultima2P Plus) using a 20 x air objective (Olympus LCPLN20XIR). A Spectra-Physics InSight X3 tuned 
to 920 nm was used to excite GCaMP6s through the GRIN lens. Synchronization of odor and 10% 
sucrose delivery, lick behavior recordings, and 2-photon recordings were achieved with custom 
Arduino code. After recording, raw TIF files were imported into suite2p (https://github.com/Mouse-
Land/suite2p; RRID:SCR_016434; Stringer et al., 2023), v0.13.0. We used their registration, region-
of-interest (ROI) extraction, and spike deconvolution algorithms, inputting a decay factor of ‍τ = 1.3‍ 
to reflect the dynamics of GCaMP6s, and manually reviewed putative neuron ROIs for appropriate 
morphology and dynamics. To find changes in activity across the entire imaging plane, found the 
mean pixel intensity for frames in the time of interest (2–2.5 s from CS+), subtracted the mean inten-
sity of each pixel prior to cue onset (−2–0 s from all cues), and divided by the standard deviation for 
each pixel across those frames prior to cue onset.

Histology
Animals were anesthetized with pentobarbital or isoflurane. Mice were perfused intracardially with 
0.9% saline followed by 4% paraformaldehyde (PFA).

Electrophysiology
Brains were extracted immediately following perfusion and post-fixed in 4% paraformaldehyde for 
24 h. In preparation for light sheet imaging brains were cleared using organic solvents following the 
3DISCO protocol (Ertürk et al., 2012) (https://idisco.info/), with some modification. Briefly, on day 1 
brains were washed 3 X in PBS and dehydrated in a series of increasing MeOH concentrations (20%, 
40%, 60%, 80%, 100%, 100%; 1 hr each) then incubated overnight for lipid extraction in 66% dichloro-
methane (DCM) in MeOH. On day 2 brains were washed 2 X twice in 100% MeOH for 1 hr each, then 
bleached overnight in 5% H2O2 in MeOH at 4 °C. On day 3 brains were washed 2 X in 100% MeOH, 
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then final lipid extraction was accomplished in a series of DCM incubations (3  hr in 66% DCM in 
MeOH, 2X 100% DCM for 15 min each) before immersion in dibenzyl ether (DBE) for refractive index 
matching. Brains were imaged on a light sheet microscope (LaVIsion Biotec UltraScope II) 2–7 days 
after clearing. Brains were immersed in DBE in the imaging well secured in the horizontal position, 
and illuminated by a single light sheet (100% width, 4 ‍µm‍ thick) from the right. Images were collected 
through the 2 X objective at 1 X magnification, from the dorsal surface of the brain to the ventral 
surface in 10 ‍µm‍ steps in 488 ‍nm‍ (autofluorescence, 30% power) and 594 ‍nm‍ (DiI, 2–10% power) 
excitation channels. The 1000 raw TIF images were compiled into a single multi-image file with 10 

‍µm‍ voxels, then spatially downsampled to 25 ‍µm‍ voxels for transformation to the Allen common-
coordinate framework (CCF) volume (Wang et  al., 2020b) using the Elastix algorithm (Shamonin 
et al., 2013). CCF-transformed volumes were used to generate CCF fluorescent probe tract loca-
tions (pixel coordinates along the probe tract) using Lasagna (https://github.com/SainsburyWellcom​
eCentre/lasagna; Campbell et al., 2020). Probe tract CCF pixel coordinates (origin front, top, left) 
were transformed to bregma coordinates (origin bregma, x==ML, y==AP, and z==DV) in preparation 
for final integration with electrophysiology recordings using the International Brain Lab electrophysi-
ology GUI (Faulkner M, Ephys Atlas GUI; 2020. https://github.com/int-brain-lab/iblapps/tree/master/​
atlaselectrophysiology; Faulkner, 2020). For recording alignment, sorted spikes and RMS voltage on 
each channel were displayed spatially in relation to the estimated channel locations in Atlas space 
from the tracked probe. The recording sites were then aligned to the Atlas by manually identifying a 
warping such that recording sites were best fit to the electrophysiological characteristics of the brain 
regions (e.g. matching location of ventricles or white matter tracts with low firing activity bands). This 
procedure has been estimated to have a 70 µm error (Steinmetz et al., 2019; Liu et al., 2021). Indi-
vidual neuron locations were determined using the recording channel brain coordinates of each unit’s 
maximum-amplitude waveform. We additionally assigned MOs neurons to the anterolateral motor 
cortex (ALM) if they were within a 0.75 mm radius of 2.5 mm AP, and 1.5 mm ML (Chen et al., 2017).

Calcium imaging
Following perfusion, intact heads were left in PFA for an additional week before brain extraction. 
Brains were then sliced on a Leica Vibratome (VT1000S) at 70 ‍µm‍ before mounting and nuclear 
staining via Fluoroshield with DAPI (Sigma-Aldrich F6057-20ML). Slices with GRIN lens tracks were 
then imaged on a Zeiss Axio Imager M2 Upright Trinocular Phase Contrast Fluorescence Microscope 
with ApoTome. The resulting images were manually aligned to the Allen Brain Atlas to reconstruct the 
location of each GRIN lens.

Neuron tracking
To identify the same neurons across imaging sessions, we used two approaches. To track neurons 
across the two odor sets on days 5 and 6, we concatenated the TIF files from each session and 
extracted ROIs simultaneously. To track neurons across training days 1–3 for a single odor set, we 
manually identified ROIs from the ROI masks outputted by suite2p. We linked the ROIs using a custom 
Python script that permitted the selection of the same ROI across the three imaging planes using 
OpenCV and saved the coordinates on each day. The tracking results across days 1–3 from one subject 
is displayed in Figure 7B.

Behavioral analysis
For electrophysiology experiments, the subject was illuminated with infrared light (850 nm, CMVision 
IR30) and eye and face movements were monitored. The right eye was monitored with a camera 
(FLIR CM3-U3-13Y3M-CS) fitted with a zoom lens (Thorlabs MVL7000) and long-pass filter (Thorlabs 
FEL0750), recording at 70 fps. Face movements were monitored with another camera (FLIR CM3-U3-
13Y3M-CS, zoom lens Thorlabs MVL16M23, long-pass filter Thorlabs FEL0750) directed at a 2 × 3 cm 
mirror reflecting the left side of the face, recording at 70 fps. Licks were detected from the face video 
by thresholding the average intensity of an ROI centered between the lips and the lick spout, calcu-
lated for every frame. Interlick intervals were thresholded at 0.083 s for a maximum lick rate of 12 licks 
s-1. For calcium imaging experiments, eye and face movements were not monitored, and licks were 
detected with a capacitance sensor (MPR121, Adafruit Industries) connected to an Arduino board. 
To determine the impact of cues and previous outcomes on anticipatory licking, we fit a linear model 
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on all electrophysiology sessions simultaneously (and for each mouse). We predicted the number of 
licks 0–2.5 s from odor onset using cue identity, outcomes on the previous 10 trials, outcomes on the 
previous 10 of that cue type, and the total number of presentations of that cue type so far (to account 
for cue-specific satiety) using ‘fitlm’ in MATLAB. When dividing sessions into ‘early’ and ‘late,’ we used 
the first 60 and last 60 trials of the session. When dividing sessions into thirds for the GLM (‘early,’ 
‘middle,’ ‘late’), we used even splits of trials into thirds.

PSTH creation
Peri-stimulus time histograms (PSTHs) were constructed using 0.1 s bins surrounding cue onset.

Electrophysiology
Neuron spike times were first binned into 0.02 s bins and smoothed with a half-normal causal filter 
(‍σ = 300‍ ms) across 50 bins. PSTHs were then constructed in 0.1 s bins surrounding each cue onset. 
Each bin of the PSTH was z-scored by subtracting the mean firing rate and dividing the standard 
deviation across the 0.1 s bins in the 2 s before all trials. When splitting responses by polarity (above/
below baseline, Figures 2B, 3E–F and 8H, Figure 2—figure supplement 2B), we used even trials to 
determine polarity and plotted the mean across odd trials for cross-validation.

Calcium imaging
Frames were collected at 30 Hz with 2-frame averaging, so the fluorescence for each neuron and the 
estimated deconvolved spiking was collected at 15 Hz. We interpolated the smoothing filter from the 
electrophysiology analysis (which was calculated at 50 Hz) and applied it to the deconvolved spiking 
traces. We then constructed PSTHs in 0.1 s bins surrounding each cue onset and z-scored (same as 
electrophysiology).

Licks
Licking PSTHS were constructed in 0.1 s bins surrounding cue onset. Each trial was then smoothed 
with a half-normal causal filter (‍σ = 800‍ ms). For the GLM, the lick rate was calculated across the whole 
session by first counting licks in either the 0.02 s (electrophysiology) or 15 Hz (imaging) bins, smoothed 
with a half-normal causal filter over 25 bins, and then converted to 0.1 s bins relative to each cue.

Kernel regression
To identify coding for cues, licks, and rewards in individual neurons, we fit reduced rank kernel-based 
linear model (Steinmetz et al., 2019).

Data preparation
The discretized firing rates ‍fn(t)‍ for each neuron ‍n‍ were calculated as described above for PSTH 
creation. We used the activity –1–6.5 s from each cue onset on every trial for our GLM analysis.

Predictor matrix
The model included predictor kernels for cues (CS+, CS50, and CS− for each odor set, as relevant), 
licks (individual licks, lick bout start, and lick rate), and reward (initiation of consummatory bout). The 
cue kernels were supported over the window 0–5 s relative to the stimulus onset. The lick predictor 
kernels were supported from –0.3–0.3 s relative to each lick, from –0.3–2 s relative to lick bout start, 
and lick rate was shifted from –0.4–0.6 s in 0.2 s increments from original rate. The reward kernel was 
supported 0–4 s relative to first lick following reward delivery. For electrophysiology experiments, the 
model also included six constants that identified the block number, accounting for tonic changes in 
firing rate across blocks. Because not all cues were present in every block, this strategy prevented the 
cue kernels from being used to explain the baseline changes across blocks. For each kernel to be fit 
we constructed a Toeplitz predictor matrix of size ‍T × l‍, in which ‍T ‍ is the total number of time bins and 
‍l‍ is the number of lags required for the kernel. The predictor matrix contains diagonal stripes starting 
each time an event occurs and 0 otherwise. The predictor matrices were horizontally concatenated to 
yield a global prediction matrix ‍P‍ of size ‍T × L‍ containing all predictor kernels. Rate vectors of all ‍N ‍ 
neurons were horizontally concatenated to form ‍F‍, a ‍T × N ‍ matrix.

https://doi.org/10.7554/eLife.84604


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Ottenheimer, Hjort, Bowen et al. eLife 2023;12:RP84604. DOI: https://​doi.​org/​10.​7554/​eLife.​84604 � 22 of 30

Reduced-rank regression
To prevent noisy and overfit kernels we implemented reduced-rank regression (Steinmetz et  al., 
2019), which allows regularized estimation by factorizing the kernel matrix ‍K‍ into the product 
of a ‍L × r‍ matrix ‍B‍ and a ‍r × N ‍ matrix ‍W‍, minimizing the total error: ‍E = ∥F − PBW∥2

‍. The ‍T × r‍ 
matrix ‍PB‍ consists of a set of ordered temporal basis functions that can be linearly combined to 
estimate the neuron’s firing rate over the whole training set and which results in the best possible 
prediction from any rank ‍r‍ matrix. To estimate each neuron’s kernel functions we generated the 
reduced rank predictor matrix ‍PB‍ for ‍r = 20‍, and estimated the weights ‍wn‍ to minimize the squared 
error ‍En = |fn − PBwn|2‍ with elastic net regularization (using the MATLAB function ‘lassoglm’) with 
parameters ‍α = 0.5‍ and ‍λ = [0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]‍ , using fourfold cross-validations 
to determine the optimal value for ‍λ‍ for each neuron. The kernel functions for neuron ‍n‍ was then 
unpacked from the L-length vector obtained by multiplying the first ‍r = 20‍ columns of ‍B‍ by ‍wn‍ (i.e. 

‍kn = B1:L,1:20wn‍). Predictor unique contributions. To assess the importance of each group of kernels 
for predicting a neuron’s activity we first fit the activity of each neuron using the full reduced-rank 
regression procedure, then fit a reduced model (with fourfold cross-validation), holding out the 
kernels of the predictor to be tested (cues, licks, or rewards). If the difference in variance explained 
between the full and held-out model was ‍> 2%‍, and the total variance explained by the full model 
was ‍> 2%‍, the neuron was deemed selective for those predictors (Steinmetz et al., 2019). We vali-
dated this cutoff by comparing our results when adjusting the cutoff from 0.5–0.5% (Figure 2—figure 
supplement 3). The pattern of results was similar regardless of the cutoff. When we refit the reduced 
ranks to neural activity with the onset time of each trial shuffled, the 2% cutoff was the smallest that 
allowed no false positive identification of any neurons uniquely coding any variable (Figure 2—figure 
supplement 3B). Using a higher cutoff led to mislabeling neurons with clear cue responses as non-
coding (Figure 2—figure supplement 3E).

Cue coding models
To assess cue coding schemes, we fit a new set of models focusing on a more restricted time window 
(−1–2.5 s from cue onset) using only cues and licks as predictors. Cue and lick neurons were identified 
as before, and subsequent cue characterization was performed on neurons with only a unique contri-
bution of cues. To identify value coding among cue neurons, we fit a new kernel models with a single 
cue kernel that scaled according to the cue as well as six block constants (as above) with full rank. We 
inputted cue values as 1, 0.5, and 0 for each CS+, CS50, and CS−, respectively, ranked according to 
their reward probability. We fit 152 additional models with alternative configurations of cue value: all 
permutations of 1, 1, 0.5, 0.5, 0, 0 across the six cues, as well as all permutations of high responses (1) 
for 6 (we call this the ‘untuned’ model), 5, 4, 3, 2, or 1 cues, with other cues set to 0. Among the 153 
total models, some were more similar to the ranked value model, which we quantified by correlating 
the six cue values of each alternative model with the ranked model. We termed all models with a 
correlation greater than 0.5 as ‘value-like.’ For each neuron, we found the model that best explained 
its activity. The models, their correlation with value, and the proportion of cue neurons best fit by each 
model are illustrated in Figure 3—figure supplement 1. To verify the robustness of value coding in 
the neurons best fit by the ranked value model, we fit each of those neurons with 1000 iterations of 
the cue value model with shuffled cue order to create a null distribution. The fits of the original value 
model exceeded the 98th percentile of the null for all value neurons.

History model
For a more nuanced estimation of the value of the cue on each trial, we generated per trial value 
predictions using the lick linear model (described in section ‘Behavioral analysis’) with cue type, 10 
previous outcomes, and 10 previous cue outcomes as predictors. These values were used to scale 
the height of cue kernel on each trial and were, on average, 0.05, 0.35, and 0.5 for CS−, CS50, and 
CS+, respectively, but varied on each trial according to the specific reward history. We compared the 
performance of this model to all the other cue coding models for value and value-like neurons to find 
neurons better explained by the history model. For neurons better fit by the history model, we also 
fit 1000 additional models with shuffled trial values within each cue (disrupting the trial history effect). 
Neurons exceeding the 95th percentile of this null distribution were deemed history neurons.

https://doi.org/10.7554/eLife.84604
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Coding stability
In the calcium imaging experiments, we used a number of approaches to assess the stability of neural 
codings. First, for neurons tracked across the first three sessions of odor set A, we took the trial-
averaged activity of a given neuron for CS+, CS50, and CS− trials in one session and correlated it with 
the same neuron’s trial-averaged activity from the subsequent session. We quantified the strength 
of the correlation as its percentile among correlations between that neuron in the first sessions and 
every other neuron on the subsequent session and compared this value to shuffle control (neuron 
identity shuffled) (Figure  7E and Figure  7—figure supplement 1A). To assess coding stability of 
these neurons, we used the kernels resulting from fitting the full model on day 3 and the predictors 
from each session third to predict neural activity at those time points. We assessed the accuracy of 
the prediction by correlating it with the true activity versus the correlation with the trial-shuffled data 
and present this data in original form (Figure 7—figure supplement 1B) and normalize to model 
performance when predicting the (cross-validated) data from the entire training session (Figure 7G). 
This shuffle maintains the temporal dynamics of each trial but shuffles the link between predictors 
on a given trial and the neural activity for that trial; correlation of predictors (like licks) across trials 
preserves some prediction accuracy even with this shuffle. We also trained models with data from 
the third day of odor set A training (A3, day 5) and tested on training days A3 and B3 (days 5 and 
6). To determine how unique variable contributions (cues, licks, rewards) evolved over times, we fit 
our kernel regression model independently to each session third (early, middle, late) of sessions 1–3 
for neurons tracked across the three odor set A sessions (Figure 7H). To assess value coding across 
the third sessions of odor set A and B (A3 and B3, days 5 and 6) we fit the 153 cues coding models 
described in Cue coding models to the neurons imaged on separate days (Figure 8E), concatenating 
the data from each odor set and adding a constant for each day to account for day differences found 
the model with the best fit for each neuron. We also looked at the stability of value-like signals across 
the three days of odor set A training by identifying CS+− preferring cue cells using half of the trials in 
session A3 and plotting the activity of those neurons for the remaining A3 trials and all trials from A1 
and A2 (Figure 8H).

Principal component analysis
To visualize the dominant firing pattern of PL neurons (Figure 1—figure supplement 2), and of value 
and value-like cells (Figure 4), irrespective of direction (excitation or inhibition), we performed prin-
cipal component analysis (‘PCA’ in MATLAB) on the concatenated PSTHs across all six cues for the 
neurons of interest, with each neuron’s activity normalized by peak modulation so that each neuron’s 
concatenated PSTH peaked at –1 or 1. We then plotted the score of the top components.

Decoding cue identity
We adapted the approach in Ottenheimer et  al., 2018 to use single units as well as random 
selections of pseudo ensembles to decode cue identity (out of six options) (Figure 3G). First, we 
binned the activity of each neuron into 0.25 s bins spanning –0.5–2.5 s from the onset of every 
cue in the sessions. These bins were labeled as 1–6 corresponding to the 6 different cues. For all 
decoding, we randomly selected 50 trials of each cue to use (most sessions had 51 of each cue, 
but a few had only 50). For single unit decoding of cue identity, we used fivefold cross-validation 
to train a linear discriminant model (’fitcdiscr’ in MATLAB) on 80% of the data and tested correct 
classification of the six cues on the remaining 20%. We plotted the mean ± SEM performance 
over time for value, value-like, and untuned neurons, and compared their performance using an 
ANOVA with fixed effects of neuron type and time point and random effect of the session, making 
pairwise comparisons with Bonferroni correction. For population decoding, we pooled the activity 
between 1 and 2.5 s from cue onset (a period with stable decoding in the single unit analysis) and 
randomly selected groups of 1, 5, 10, 25, 50, 75, 100, or 200 value, value-like, or untuned neurons 
from all regions. We used the same linear discriminant model (with regularization ‍γ = 1‍ in ’fitcdiscr’) 
and fivefold cross-validations. We performed 1000 selections of neurons at each level, plotted the 
mean and standard deviations of classification accuracy across these iterations, and made pairwise 
comparisons across groups by calculating the number of iterations where the second group was 
greater or equal to the first; we repeated this one-way test for both directions of all pairs of groups 

https://doi.org/10.7554/eLife.84604
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and used a Bonferroni corrected ‍α‍. Pattern of results was unchanged when population activity was 
standardized with PCA. Pattern of results was also unchanged when we trained on one odor set 
and tested on the other.

Decoding cue value
Data were prepared for population decoding of cue identity, but with cues labeled as 0, 0.5, or 1 for 
CS−, CS50, and CS+ trials, respectively. Instead of a linear discriminant model, we used a linear model 
(elastic net, ‍α = 0.5‍) to regress cue value onto the activity of pseudo ensembles of neurons. To balance 
our model, we used 50 of each cue type for training and tested on 50 held out trials for a cue never 
seen by the model; this setup thoroughly tested the idea that value is encoded on a linear scale and 
thus should be able to generalize to a new cue in same value domain. For example to predict the 
value of 50 CS+ in odor set B trials, we used for training 50 trials of CS+ A, 0 trials of CS+ B, 25 trials 
of CS50A, 25 trials of CS50B, 25 trials of CS-A, and 25 trials of CS-B, maximizing coverage of the data 
while maintaining a balanced design. These models produced predicted values for each cue. We plot 
the predicted value for CS+ and CS− cues on the left in Figure 3H. To convert these predictions to 
an accuracy score, we labeled values from –0.25–0.25 as CS−, 0.25–0.75 as CS50, and 0.75–1.25 as 
CS+ (values outside this range were automatically labeled incorrect). We performed this analysis on 
random groups of 1, 5, 10, 25, 50, 75, 100, or 200 value, value-like, or untuned neurons (Figure 3H), 
as well as random groups of five neurons (with replacement) from each region and 25 neurons (with 
replacement) from each region group (Figure 4E). We compared region decoding to decoding using 
a baseline window of –0.5–0 s from odor onset using neurons from each region. We performed 1000 
selections of neurons at each level, plotted the mean and standard deviation of classification accuracy 
across these iterations, and made pairwise comparisons for cue identity.

Cue coding dimension
To project population activity onto the coding dimensions separating CS− activity from CS+ and 
CS50 activity, respectively, we adapted an approach from Li et al., 2016. We first max normalized the 
odor set A PSTH activity of each neuron to prevent neurons with particularly large z-score values from 
dominating the dimension. We then defined coding dimensions from the even trials of odor set A. 
To find the ‘consensus’ cue-difference coding dimension across the group defined by each neuron’s 
maximal difference across cue responses, we found the 0.5 s bin in the range 0–2.5 s from cue onset 
with the peak difference between CS− and CS+ activity or CS- and CS50 activity, for each neuron. 
This comprised a difference vector of length ‍N ‍ defining the maximum cue difference coding across 
the neuron group. This difference vector was then multiplied by the original z-score values of each 
neuron’s peak difference bin to find the values of peak CS+ vs CS− coding; these values were used 
to transform the data onto a 0 (CS−) to 1 (CS+) relative cue coding scale. To transform population 
activity onto the CS− to CS+ dimension at each moment in CS+, CS50, and CS− trials, we multiplied 
the activity of all neurons in each 0.1 s bin of remaining odd odor set A trials (z-score) by the differ-
ence vector and used the same 0–1 scale conversion (‘same odor set’). We also multiplied the activity 
of neurons for cues in odor set B by the difference vector (‘other odor set’). We repeated the same 
process for CS− and CS50 activity. To find the angle between the CS+ and CS50 projections, we boot-
strapped the vectors that connected baseline activity to peak activity of CS50 and CS+ along the CS-/
CS+ and CS−/CS50 axes and found the angle between these vectors. To find population activity along 
the CS+/CS− dimension at each moment for CS50 trials of various values, we multiplied the activity 
(z-score) of all neurons in each 0.1 s bin of the CS50 PSTHs (grouped by value estimated from the lick 
linear model) by the difference vector and used the same conversion to 0–1 scale. To estimate the 
distribution of values along the CS+/CS− dimension for each CS50 value condition, we bootstrapped 
(5000 iterations, with replacement) the population projection and took the mean 1–2.5 s from odor 
onset. We calculated the slope of the activity on CS50 trials by linearly regressing the estimated posi-
tion of the population on the CS+/CS− dimension against the value from the lick linear model used 
to group those trials (5000 iterations, with replacement). To compare slopes across cell groups, we 
generated a p-value by calculating the number of iterations where the second group was greater or 
equal to the first; we repeated in this one-way test for both directions of all pairs of groups and used 
a Bonferroni corrected ‍α‍.

https://doi.org/10.7554/eLife.84604


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Ottenheimer, Hjort, Bowen et al. eLife 2023;12:RP84604. DOI: https://​doi.​org/​10.​7554/​eLife.​84604 � 25 of 30

Statistics
All statistical tests were performed in MATLAB (MathWorks). To compare the fraction of neurons of 
a specific coding type across regions, we fit a generalized linear mixed-effects model (‘fitglme’ in 
MATLAB) with logit link function and with fixed effects of intercept and region and a random effect 
of the session and then found the estimated mean and 95% confidence interval for each region. For 
pairwise comparisons across regions, we used a specific contrast for each pair of regions (’coefTest’ 
in MATLAB) to find the p-value that these regions differed from each other and used a Bonferroni-
corrected ‍alpha‍ for significance. To compare the number of anticipatory licks on different trial types, 
we found the mean number of anticipatory licks for each cue in each session, and then performed a 
two-way ANOVA with effects of cue and subject and session as our n (Figure 1C). To compare the 
variance explained during each third of the first session, we found the mean value across neurons from 
each mouse and then performed a one-way ANOVA on those means with mouse as our n (Figure 6H). 
To compare day 3 model performance on true and shuffled data across each time point (Figure 7F), 
we found the mean value across neurons from each mouse at each time point and then performed 
a two-way ANOVA with main effects of shuffle and time point, with mouse as our n. We then calcu-
lated pairwise statistics using ‘multcompare’ in MATLAB with Bonferroni correction. To compare cue, 
lick, and reward unique variance at each time point for each cell category (determined on day 3, 
Figure 7G), we found the mean from the cells in that category in each mouse at each time point and 
performed a two-way ANOVA with main effects of variable and day, with mouse as our n. We then 
calculated pairwise statistics using ‘multcompare’ in MATLAB with Bonferroni correction.
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