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Abstract Morphogen gradients can instruct cells about their position in a patterned tissue. Non- 
linear morphogen decay has been suggested to increase gradient precision by reducing the sensi-
tivity to variability in the morphogen source. Here, we use cell- based simulations to quantitatively 
compare the positional error of gradients for linear and non- linear morphogen decay. While we 
confirm that non- linear decay reduces the positional error close to the source, the reduction is very 
small for physiological noise levels. Far from the source, the positional error is much larger for non- 
linear decay in tissues that pose a flux barrier to the morphogen at the boundary. In light of this new 
data, a physiological role of morphogen decay dynamics in patterning precision appears unlikely.

Editor's evaluation
The authors use analytic calculations and numerical simulations to convincingly show that the 
purported benefits of nonlinear decay in morphogen gradients may be marginal in some cases 
and completely reversed in others (far from the concentration source). This is a valuable contribu-
tion to the field, as it questions common assumptions about the biological function of non- linear 
morphogen decays during development.

Introduction
According to Wolpert’s famous French flag model (Wolpert, 1969), morphogen gradients encode 
readout positions  xθ  via concentration thresholds  Cθ = C(xθ) , and differentiating cells base their 
fate decisions on whether the local morphogen concentration lies above or below such thresholds 
(Figure 1A). Thus, these readout positions mark the boundary locations between domains of different 
cell fates. Variations in the morphogen profile result in variations in the readout positions. The accu-
racy of the spatial information carried by morphogen gradients can be quantified with the positional 
error, which is defined as the standard deviation of the readout positions over different gradient real-
izations (Vetter and Iber, 2022):

 σx = stddev
[
xθ
]

.  (1)

How the observed precision of tissue patterns arising from this principle is achieved, in spite of natural 
molecular noise in morphogen production, transport, decay, internalization, turnover and other 
sources of variability, is a key question in developmental biology (Lander, 2011; Vetter and Iber, 
2022; Iber and Vetter, 2022).

Morphogen dynamics are often described by reaction- diffusion equations of the form (Lander 
et al., 2009).

 
∂C
∂t

= D∆C − dCn/Cn−1
ref   

(2)
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Figure 1. Comparison of linear and non- linear morphogen gradients. (A) According to the French flag model, 
morphogen gradients provide the spatial information required for tissue patterning via concentration thresholds 

 Cθ , numbered by  θ = 1, 2, 3  etc. If a cell lies above or below a certain threshold  Cθ , it switches fate, resulting in 
domain boundaries forming at the respective cell borders at  x = xθ  (blue and red lines). The morphogen source 
is located at  x = x0 = 0 . (B) Linear decay leads to exponential gradients. Changes in the gradient amplitude C0 
(different colours) lead to a shift  ∆x  that is independent of the amplitude. (C) Non- linear decay ( n = 2 ) leads to 
power- law gradients. The shift  ∆x  due to a change of C0 is amplitude- dependent. (D, E) Noisy example gradients 
obtained numerically. Cell boundaries are denoted by black ticks along the patterning axis. Molecular kinetic 
noise and cell area variability leads to noisy gradients. For a fixed readout threshold  Cθ , variable gradients result 
in different readout positions  xθ,j  (inset plots). Non- linear decay (E) leads to shallower gradients further in the 
patterning domain compared to linear decay (D).

https://doi.org/10.7554/eLife.84757
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with morphogen concentration  C , diffusion coefficient  D , and decay rate  d .  Cref   is a constant refer-
ence concentration that we introduce to make all units independent of  n . The exponent  n  models 
linear ( n = 1 ) or non- linear ( n > 1 ) decay of the morphogen. Linear decay leads to exponential gradient 
profiles (Figure 1B) of the form (Lander et al., 2002).

 
C(x) = C0e−x/λ, λ =

√
D
d   

(3)

with an amplitude C0 at the source at  x = 0 , and a characteristic decay length  λ , set by the diffusion 
coefficient  D  and the degradation rate  d . Non- linear decay, on the other hand, results in shifted 
power- law gradients (Figure 1C; Eldar et al., 2003)

 
C(x) = C0

(
1 + x

mλm

)−m
, m = 2

n − 1  
(4)

where  λm  is a gradient length scale that depends on  D/d ,  n  and  C0/Cref   (see Appendix 1). Non- linear 
decay would for instance arise in case of cell lineage transport, when ligands interact with receptor 
clusters, or if ligand binding results in receptor upregulation, as is the case for several morphogens, 
most prominently for Hedgehog (Hh) (Eldar et al., 2003; Nahmad and Stathopoulos, 2009; Wartlick 
et al., 2009; Balaskas et al., 2012). Most reported morphogen gradient profiles have been fitted 
assuming linear decay ( n = 1 ) (Gregor et al., 2007; Gregor et al., 2008; Kicheva et al., 2007; Wartlick 
et al., 2011; Wartlick et al., 2014; Cohen et al., 2015; Zagorski et al., 2017; Mateus et al., 2020). 
For the FGF8 gradient in the developing mouse brain,  n ≈ 4  has been reported (Chan et al., 2017).

Embryos are subject to molecular noise, which can cause fluctuations in morphogen produc-
tion and transport rates, and consequently, in the gradient amplitudes and morphogen fluxes from 
the source to the patterned cells. This results in shifts  ∆x  between different gradient realisations 
(Figure 1B and C). In the case of linear decay, the shift is only related to the relative morphogen influx 
or amplitude and not to the absolute morphogen levels (Appendix 1, Equation 11). However, with 
non- linear decay, the shift depends on the absolute levels, with higher influxes resulting in smaller 
shifts (Appendix 1, Equation 12). Previous research (Eldar et al., 2003) suggested that the circum-
stance that this shift vanishes for power- law gradients at sufficiently large morphogen influx values 
leads to more robust patterning, because the readout position becomes independent of the influx 
in this limit when the morphogen decay is non- linear (Appendix 1). In other words, if two tissues are 
patterned by two different noise- free power- law gradients, both with high (but different) morphogen 
influxes from the source, the resulting gradients will be nearly identical, resulting in a reproducible 
pattern. For exponential gradients, the shift will not disappear, and the gradients will thus differ. 
However, the gradients that result from non- linear decay also possess significantly shallower tails, 
relative to the higher concentration (Figure 1C). Their usefulness for patterning has therefore been 
questioned (Lander et al., 2009), and it has remained unclear whether nonlinearity in the morphogen 
decay would in fact help achieving higher positional accuracy. Indeed, to first order, the positional 
error of variable gradients is inversely proportional to the magnitude of their slope (Gregor et al., 
2007; Vetter and Iber, 2022) according to

 
σx ≈

∣∣∣∣
∂C
∂x

∣∣∣∣
−1

σC,
  

(5)

where  σC  is the standard deviation of local morphogen concentration and  x  denotes the patterning 
axis. This suggests that for patterning precision, the benefit of a smaller positional shift of gradients 
with  n > 1  might be offset or even overcompensated by their flatter shape further from the source.

In the previous analysis (Eldar et al., 2003), molecular noise was considered only in the form of a 
fold- change in the morphogen amplitude or influx between different gradient realisations, resulting 
in shifted deterministic gradients, as shown in Figure 1B and C. To account for the intrinsic stochas-
ticity of biological systems, we now extend this deterministic view by incorporating kinetic variability 
into the model, as depicted in Figure 1D and E. This is achieved by introducing randomness into all 
kinetic parameters of the reaction- diffusion equation. Our model is cell- based, meaning that each cell 
in the tissue is assigned its own specific variable kinetic parameters, emulating inter- cellular variability 
(Methods). With this quantitative statistical tool, we demonstrate numerically that the positional error 

https://doi.org/10.7554/eLife.84757
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of noisy morphogen gradients does not significantly improve with non- linear decay. In the contrary, 
if the morphogen cannot leave the patterned tissue opposite of the source, the power- law gradients 
become shallow in a substantial part of the domain, leading to reduced positional accuracy with non- 
linear decay.

Results
Noisy gradient model
We simulated steady- state diffusion to study the impact of non- linear decay on the precision of noisy 
morphogen gradients. Our model uses a one- dimensional cellular domain composed of a source of 
length  Ls  and a patterning region of length  Lp  (Figure 1D and E). To represent morphogen- secreting 
source cells explicitly, the diffusion equation (Equation 2) was extended by a morphogen production 
term, resulting in

 
0 = D∂2C

∂x2 − dCn/Cn−1
ref + pH(−x).

  
(6)

Here,  H(x)  is the Heaviside function, ensuring that production at rate  p  only occurs in the source ( x < 0 ). 
Zero- flux boundary conditions were used at both outer ends of the tissue, mimicking a situation in 
which morphogen molecules are restricted to the patterned tissue by an impermeable boundary:

 
∂C
∂x

(−Ls) = 0 = ∂C
∂x

(Lp).
  

We generated variable morphogen gradients by numerically solving Equation 6 with kinetic 
parameters pi, di and  Di , and cell areas  Ai  independently drawn from log- normal distributions for 
each cell  i = 1, ..., N   in the domain (Vetter and Iber, 2022; Adelmann et  al., 2022; Figure 2, for 
details see Methods). The individual gradient realisations  Cj(x)  can be thought of as representing 
different embryos, denoted by the index  j . They exhibit inter- and intra- tissue variability due to the 
stochastic nature of the three kinetic parameters that vary from cell to cell. Cells have to convert the 

Figure 2. Numerical model to simulate noisy gradients. A 1D cellular domain is constructed by drawing cell areas from log- normal distributions with 
mean cell area  µA  and standard deviation  σA . Cell areas are then converted to diameters ( δi ). This procedure is repeated  N   times until source and 
patterning domains of length  Ls  and  Lp  are filled with cells. Kinetic parameters  k = p, d, D  are drawn independently from log- normal distributions 
with a mean  µk  and standard deviation  σk  for each cell. Production only takes place in the source (blue cells). Then, the reaction- diffusion equation 
(Equation 6) is solved on the cellular domain, generating one noisy gradient  Cj(x) . To determine a unique readout concentration of a cell, the average 
concentration along the cell boundary is computed for each cell in the patterning domain. Based on these concentrations the readout position  xθ,j  
where  Cj(xθ,j) = Cθ  is recorded for each gradient. This step is repeated 1000 times. Lastly, the average readout position  µx  and the positional error  σx  
is calculated based on the 1000 noisy gradients. PDF denotes the probability density function.

https://doi.org/10.7554/eLife.84757
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spatial morphogen distribution they are exposed to into a single concentration value, which deter-
mines their fate in the tissue according to the French flag model. There are several ways cells may 
achieve this, such as averaging the morphogen signal over their entire cell surface, beyond their cell 
surface via a cilium, or reading out the signal at a single point. In a recent study, we found that the 
readout mechanism has little impact on the gradient precision perceived by the cells (Adelmann 
et al., 2022). We therefore only analysed the case where cells average the morphogen signal over 
their cell surface, or over their diameter in the 1D model here, respectively. The concentration in each 
cell is then compared to the threshold concentration  Cθ  and the location  xθ,j  of the first cell whose 
sensed concentration subceeds this threshold is recorded. This process is repeated for all gradients  j , 
allowing to compute the positional error according to its definition (Equation 1),  σx = stddevj{xθ,j}  to 
quantify the precision of the positional information conveyed by the morphogen gradients.

Model parameters
To define the stochastic nature of the morphogen kinetics involved in the formation of the gradi-
ents, we express the mean value and standard deviation of a parameter  q  by  µq  and  σq , respectively 
(Figure 2). Based on measurements of the Hedgehog morphogen gradient in the Drosophila wing 
disc and mouse neural tube (Kicheva et al., 2007; Cohen et al., 2015; Vetter and Iber, 2022), we 
used a mean diffusivity of  µD = 0.033  µm2/s and a mean gradient length  µλ = 20  µm. We furthermore 
set the average degradation rate to  µd = µD/µ2

λ , and the average production rate to  µp = µdCref  , 
where  Cref = 1  arb. units to normalise the concentrations. Other specific values of gradient parame-
ters would not change the results reported here, which are for the steady state, but would only alter 
the timescale it takes for the steady state to be reached. The noise- to- signal ratio in each quantity 

 q  is given by the corresponding coefficient of variation,  CVq = σq/µq . Reported physiological noise 
levels in morphogen production, decay, and transport differ between morphogens and tissues, but 
are around  CVp,d,D ≈ 0.3  (Vetter and Iber, 2022), which we use to define the distribution widths of 
the kinetic parameters.

In addition to the morphogen kinetics, our simulations also include cell- to- cell variability in the cell 
areas. The widths and cross- sectional areas of cells vary in all layers along the apical- basal axis (Gómez 
et al., 2021). Most quantifications have been carried out on the apical surface. One of the highest 
reported values for the apical area CV is found in the vertebrate neural tube ( CVA ≈ 0.9 ) (Escudero 
et al., 2011; Guerrero et al., 2019; Bocanegra- Moreno et al., 2022), but most values are consid-
erably lower (Kokic et  al., 2019). We therefore used  CVA = 0.5  in all simulations unless specified 
otherwise.

The diffusion coefficient,  D , and the degradation rate,  d , set the steady- state patterning length 
scale,  λ =

√
D/d . Thus, our results are independent of the absolute values chosen for  D  and  d , and 

only depend on their ratio. Positional quantities, such as the positional error, are reported relative to 
the average cell diameter, which in turn was chosen to be a fixed multiple of the average gradient 
decay length. We fixed the average cell diameter at a fourth of the exponential gradient length, 

 µδ /µλ = 1/4 , as found in the developing mouse neural tube (Kicheva et al., 2014; Cohen et al., 2015).

Impact of non-linear decay on gradient precision
We previously showed that in case of linear decay, there is a negligible impact of cell area variability 
as long as  CVA < 1  (Adelmann et al., 2022). We now find that this holds similarly for non- linear decay 
(Figure 3A), justifying the use of a fixed  CVA = 0.5  in the remainder of our analysis.

Much as for linear decay (Adelmann et al., 2022), the positional error scales with the square root 
of the mean cell diameter also for non- linear decay (Figure 3B). Small cell diameters, as observed 
in all known tissues that employ gradient- based patterning (Adelmann et al., 2022), are therefore 
important for high spatial precision also in case of non- linear decay.

The positional error increases from less than one cell diameter close to the source to about two cell 
diameters at a distance of 75 cell diameters away from the source (Figure 3C). Close to the distant 
domain boundary opposite of the source, where a no- flux condition was imposed, the positional 
error rapidly increases for non- linear decay, while remaining relatively low for linear decay. If only the 
production in the source is varied ( CVp = 0.3 ,  CVd,D = 0 ), the positional error remains constant as the 
readout distance from the source increases, but increases again sharply close to the distant end in 
case of non- linear decay (Figure 3D). But even for strong non- linearity ( n = 4 ), the positional error 

https://doi.org/10.7554/eLife.84757
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remains in the sub- cellular range when only production noise is considered, as long as the readout 
position is further than about  λ  away from the distal end.

Independent of whether all parameters are varied or only the production rate, the positional error 
drops in close vicinity to the source with stronger non- linearity in the decay (insets of Figure 3C and 
D). However, with less than 20% of a single cell diameter from  n = 1  to  n = 4 , the effect is likely too 
small to be physiologically relevant. Further away from the source, linear decay yields a smaller posi-
tional error than non- linear decay (Figure 3D–E). No matter how long the patterning domain is, non- 
linearity always increases the positional error as the distal tissue boundary is approached (Figure 3F).

What then causes the increased positional errors with non- linear decay near the distal domain 
boundary? A zero- flux boundary condition there implies shallower gradients than on infinite domains: 

 C′(x) → 0  as  x → Lp . This effect occurs irrespective of  n , but the spatial range over which the gradient 
flattens (and thus deviates from the pure exponential and shifted power- law forms for infinite domains, 
Equations 3; 4) increases with  n . By virtue of Equation 5, non- linear decay thus leads to greater posi-
tional errors at readout positions in the vicinity of the distal boundary compared to linear decay.

Figure 3. Impact of non- linear decay on gradient precision. (A) Physiological variability in the cross- sectional cell areas has no significant impact on 
gradient precision. The positional error  σx  is plotted in units of the mean cell diameter  µδ  at different readout positions in the patterning domain 
(symbols), and for different degrees of non- linearity (colours). (B) The positional error increases with the square root of the cell diameter, irrespective 
of  n . Dotted lines show  σx = α

√
µδ   for  α = 2.6, 5.2  for reference, with lengths in units of µm.  Lp = 100µδ . (C) Non- linear decay leads to a marginally 

lower positional error close to the morphogen source. Inset plot shows  σx/µδ  at a distance of two cells from the source as a function of decay non- 
linearity. With a no- flux boundary at  x = Lp , the shallowness of gradients from non- linear decay lets the positional error increase strongly far from the 
source. Colours correspond to different decay exponents  n , as specified in panel D. (D) Variability in the production rate alone has no effect on the 
positional error along the domain for linear decay (blue). The stronger the non- linearity, the smaller the positional error close to the source (inset). Far 
from the source, the positional error increases rapidly with non- linear decay. (E) Difference between the positional error for  n > 1  and for  n = 1  relative 
to the mean cell diameter, at fixed readout positions (colours). (F) Effect of finite patterning domain size. The positional error increases close to the 
distant zero- flux boundary in case of non- linear decay (shades of blue,  n = 2 ). Patterning remains precise across a larger distance in the case of linear 
decay (black,  n = 1 ). In all panels, each data point represents the mean from 103 independent simulations. Error bars represent standard errors.

https://doi.org/10.7554/eLife.84757
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In summary, our computer simulations of noisy morphogen gradients suggest that it is insufficient 
to quantify gradient robustness and patterning precision by considering variability in the morphogen 
production alone. Moreover, if the morphogen cannot exit the patterning domain opposite of the 
source, shifted power- law gradients that result from non- linear morphogen decay flatten over a signifi-
cantly larger range than exponential gradients, leading to increased positional errors. The gain in 
positional accuracy close to the source for non- linear decay is negligible and therefore barely physio-
logically relevant. Overall, exponential gradients lead to more robust patterning.

Impact of boundary condition at the source
Given the impact of the distal domain boundary, we wondered whether the representation of the 
morphogen source by either a spatial production domain (Figure 4A), by a flux boundary condition 

 −DC′(0) = j0  (Figure 4B) as used by Eldar et al., 2003, or by a fixed gradient amplitude  C(0) = C0  

Figure 4. Impact of the boundary condition (BC) at the source. (A–C) Noise- free gradient shapes when the morphogen is either secreted in a source 
domain at rate  p  (Equation 6) (A), with flux BC,  −D∂C/∂x|x=0 = j0  (B), or Dirichlet BC,  C(0) = C0  (C). No- flux BC were imposed at at the far end of the 
tissue (at  x = Lp ). (D–F) Positional error as a function of morphogen abundance variability, at different readout positions (symbols) and degrees of non- 
linearity (colours). Greater variability in the morphogen production rate (D), influx (E), and gradient amplitude (F) leads to a larger positional error above 
a certain threshold variability  CV ⪆ 0.1 − 0.3 . Kinetic variability was fixed at  CVd,D = 0.3  (except for  CVp  in D). Further parameters:  µj0 = µDCref/µλ  
(E),  µC0 = Cref   (F). In panels D–F, each data point represents the mean from 103 independent simulations. Error bars represent standard errors.

https://doi.org/10.7554/eLife.84757
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(Figure 4C) would affect the positional error predicted by the model. While there are small quanti-
tative differences, the gradient shapes (Figure 4A–C) and positional errors (Figure 4D–F) are overall 
very similar.

As we increase the variability in the production rate via  CVp  (Figure 4D), in the influx from the 
source via  CVj0  (Figure 4E), or in the gradient amplitude at the source boundary via  CVC0  (Figure 4F), 
we find the smallest increase in the positional error for the production rate and the largest increase 
for the gradient amplitude. Neumann or Dirichlet boundary conditions thus overestimate the posi-
tional error when the variability in the source is high. Instead of using such boundary conditions, a 
spatial source domain should explicitly be modeled, where applicable. With the physiological values 

 CVp ≈ 0.3  and  CVC0 ⪅ 0.3  (Vetter and Iber, 2022), however, variability in the morphogen production 
plays merely a subordinate to moderate role in the overall gradient variability. Molecular noise in 
morphogen degradation and diffusivity dominates the patterning precision.

Figure 5. Impact of the morphogen source strength. Numerically obtained spatial patterning accuracy in units of average cell diameters  µδ  at different 
positions in the tissue (symbols) and for different degrees of non- linearity (colours). (A–C) Readout close to the source, at  xθ = 5µδ ; (D–F) Readout far 
from the source, at  xθ = 150µδ . Morphogen production scenarios are identical to Figure 4: Production in a source domain with morphogen- secreting 
cells (A,D), with a morphogen influx from the source at the source boundary (B,E), and with a specified morphogen concentration at the source 
boundary (C,F). Very low (high) influxes or amplitudes lead to flat (steep) gradients at strong decay non- linearity, limiting the parameter range over which 
the positional error can be reliably determined for  n = 4  (B,C,E,F). In all panels, each data point represents the mean from 103 independent simulations, 
error bars represent standard errors.

https://doi.org/10.7554/eLife.84757
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Impact of the morphogen source strength
As the gradient amplitude determines the sensitivity of the readout position to amplitude changes 
for non- linear decay (Appendix 1, Equation 12) but not for linear decay (Appendix 1, Equation 11), 
the average morphogen production rate is expected to affect the patterning accuracy in the case of 
non- linear decay, but not for linear decay. We put this theoretical prediction to the test by varying the 
mean relative production rate, the mean influx from the source, and the mean morphogen amplitude 
in the three different simulated morphogen production models. Changes in these parameters have no 
effect on the positional error if morphogen degradation is linear, which is consistent with the theory 
(Figure 5A–F, blue lines). With non- linear decay, on the other hand, we indeed observe the positional 
error to be highly dependent on morphogen abundance. Precision arguments previously brought 
forward for deterministic morphogen gradients (Eldar et al., 2003) do not appear to directly quanti-
tatively translate to the positional error in settings where cell- to- cell variability is included, and where 
morphogen production remains at physiological levels.

For high morphogen supply levels, non- linear decay leads to a smaller positional error close to the 
source (Figure 5A–C). The effect is, however, substantially less pronounced in the model that includes 
a spatial morphogen source domain (Figure 5A) than in those that do not (Figure 5B and C), high-
lighting once again the limitations of the latter. With an explicit source domain, non- linear decay yields 
only marginally more spatial accuracy, when production is high ( p/dCref ⪆ 0.4 ). Lower production levels 
increase the positional error close to the source substantially in all three models, reaching several cell 
diameters, for  n > 1 . The gradients effectively flatten out at low production, reducing their usefulness 
for spatial tissue patterning. The stronger the non- linearity in the degradation, the more pronounced 
this loss of patterning precision.

Further away from the source, the benefit of non- linear decay is lost entirely, and exponential 
gradients remain more precise than shifted power- law gradients also at high morphogen supply levels 
(Figure 5D–F).

In summary, simplified models without explicit representation of morphogen- secreting cells over-
estimate the beneficial impact of non- linear decay on patterning precision. In all models considered 
here, the benefit of non- linear morphogen decay is restricted to a close vicinity of the morphogen 
source, where patterning precision is high anyway (Vetter and Iber, 2022) and may thus not be as 
critical for robust development, and to a regime of very strong morphogen production. Further into 
the tissue, and at moderate morphogen abundance, linear decay yields more accurate patterning.

Discussion
Non- linear morphogen decay was proposed as a potential precision- enhancing mechanism for tissue 
patterning in the seminal theoretical work by Eldar et  al., 2003 in a deterministic setting, where 
morphogen gradients are devoid of noise. Here we have explored this idea with a stochastic model, 
taking noisy gradients into account, as they arise from cell- to- cell variability in morphogen kinetics. The 
surprising outcome of our quantitative analysis is that, while a small advantageous effect indeed exists 
near the morphogen source, this gain is outweighed by a substantial loss of precision in the spatial 
information that signalling gradients provide to cells in the interior and distal parts of a patterned 
tissue when morphogen decay is non- linear. In tissues that pose a diffusion barrier to the signalling 
molecule at their boundary, shifted power- law gradients that emerge with self- enhanced degradation, 
flatten out over a substantial portion of the spatial domain, whereas exponential gradients remain 
more graded (Figure 1). This leads to greater spatial precision with linear decay (Figure 3), and is 
contrary to the original expectation (Eldar et al., 2003).

This long- range boundary effect is not the only reason why linear morphogen decay is favourable 
for precise pattern formation. The positional error, which is the decisive quantity that measures the 
spatial accuracy with which cells can determine their location in the pattern, and ultimately their fate 
in differentiation, is highly sensitive to morphogen supply levels when morphogen decay is non- linear, 
but largely insensitive when decay is linear (Figure 5). This implies that patterning is more robust to 
variations in the size and strength of the morphogen- secreting source, if decay is linear. These results 
challenge the established view that power- law gradients buffer fluctuations in morphogen production 
(Eldar et al., 2003). We find that the positional error behaves in the opposite way, buffering produc-
tion fluctuations only with linear, but not with non- linear decay. From an evolutionary perspective, the 

https://doi.org/10.7554/eLife.84757
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linear case may be favoured, as patterning precision is unaffected by changes in the size and kinetics 
of the morphogen- secreting source only if  n = 1 .

Our study demonstrates that a stochastic approach is required to quantify patterning precision of 
real noisy gradients. Moreover, we find the positional error to be overestimated in simplified models 
that replace the morphogen- secreting cells by a Neumann or Dirichlet boundary condition (Figure 4). 
Based on this, we recommend to include an explicit representation of the source in future theoretical 
or numerical work on the subject, as we did with Equation 6.

Distinguishing exponential gradients from shifted power laws can be very difficult in practice, as 
they can appear similar over the short distances over which they can be reliably measured with clas-
sical imaging techniques. The FGF8 gradient in the developing mouse brain is the only case we are 
aware of where  n > 1  has been reported robustly (Chan et al., 2017), and whether this is linked to 
patterning precision in any way remains unclear. Available gradient data in other systems, such as 
Sonic Hedgehog and Bone Morphogenetic Protein in the neural tube (Zagorski et al., 2017), is too 
variable to confidently reject the hypothesis that  n = 1 . Most further reports of morphogen gradient 
shapes (Gregor et  al., 2007; Gregor et  al., 2008; Kicheva et  al., 2007; Wartlick et  al., 2011; 
Wartlick et al., 2014; Cohen et al., 2015; Zagorski et al., 2017; Mateus et al., 2020) are consistent 
with exponentials within measurement accuracy. New measurement techniques are needed to deter-
mine whether non- linear decay is at work in the formation of known morphogen gradients during 
development. In light of our findings, a physiological role of non- linear ligand decay in patterning 
precision appears implausible. If anything, our data suggest an overall advantage of linear decay, 
also considering the evolutionary aspect of tissue size and protein synthesis rate differences between 
species.

The morphogen concentration declines significantly over several orders of magnitude, indepen-
dent of whether there is linear or non- linear decay. At low morphogen concentrations, thermal fluc-
tuations and stochastic binding kinetics of ligands and receptors will affect gradient and readout 
precision (Berg and Purcell, 1977; Lauffenburger and Linderman, 1996; Lander et al., 2009). Cells 
can, in principle, achieve high readout precision despite such fluctuations via spatial and temporal 
averaging (Lauffenburger and Linderman, 1996). To assess such effects, quantitative measurements 
of morphogen numbers and cellular responses would be required far away from the source. This 
requires the further development of more sensitive measurement technology (Lelek et al., 2021). 
Once the absolute concentration levels of the morphogen gradients can be determined, it can be 
assessed whether the approximation of the gradients by a continuous functions is valid along the 
whole tissue or, whether discrete models have to be considered.

In future work, the simulated gradients can be used as inputs to complex downstream networks, 
and the effect of noise in the readout can be studied. However, these downstream networks would 
not alter the relative precision of gradients generated by linear and non- linear decay. In conclusion, 
non- linear decay may slightly enhance precision close to the source, but it rapidly deteriorates far from 
the source.

Methods
Generation of variable morphogen gradients
To generate noisy morphogen gradients numerically, we constructed the one- dimensional cellular 
domains in an iterative process, cell by cell. For each cell  i , an area  Ai  was drawn from a log- normal 
distribution with specified mean value  µA  and coefficient of variation  CVA  (Adelmann et al., 2022). 
The drawn area was then converted to a cell diameter  δi = 2

√
Ai/π . Using the transformation proper-

ties of log- normal distributions, the cell areas was drawn according to

 µA = π(µδ /2)2(1 + CV2
A)1/4,  

allowing to accurately fix the mean cell diameter  µδ . This procedure was repeated for cells  i = 1, 2, 3...  
until the sum of the diameters equaled the source length  Ls  or the patterning domain length  Lp . The 
spatial axis was then discretized into cellular sub- intervals accordingly (Figure 2). We used a patterning 
domain length of 200 cells ( Lp = 200µδ ) and a source domain length of 5 cells ( Ls = 5µδ ), unless other-
wise stated.

https://doi.org/10.7554/eLife.84757
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Once the patterning axis was constructed, the kinetic parameters  pi, di, Di , were drawn from log- 
normal distributions for each cell  i  independently. For simulations without explicit source domain, 
a random morphogen influx j0 or an amplitude C0 was also drawn from a log- normal distribution. 
We then numerically solved Equation 6 using Matlab’s built- in fourth- order boundary value problem 
solver bvp4c (version R2020b). At cell boundaries, we imposed continuity of both the morphogen 
concentration and flux. Repeating this procedure 103 times using independent random parameters 
and cell areas yielded statistically independent realisations of noisy morphogen gradients. To estimate 
the standard errors of the positional errors as shown in the plots, we used bootstrapping.

Choice of parameter distribution
In this article, we assume log- normally distributed cell areas and kinetic parameters, analogous to 
our previous works (Vetter and Iber, 2022; Adelmann et al., 2022). For the cell areas, this choice is 
rooted in the reported distributions of apical areas in the Drosophila larval and prepupal wing discs, 
and in the mouse neural tube (Sánchez- Gutiérrez et al., 2016; Guerrero et al., 2019). The results 
reported here are, however, largely independent of the probability distribution, as long as it satisfies 
certain physiological criteria:

• The random parameters must be strictly positive. This rules out probability distributions which 
allow for negative values, including for example a normal distribution.

• The probability of drawing a near- zero parameter must vanish quickly. This is because tiny diffu-
sion coefficients, fluxes, or amplitudes do not allow for successful patterning over biologically 
relevant distances or timescales. A normal distribution truncated at zero, for example, is ruled 
out because minuscule diffusion coefficients would occur frequently.

In recent related work (Adelmann et al., 2022), we demonstrated that other distributions which 
fulfill the above criteria yield similar results.

If the morphogen source is not modeled explicitly (omitting the production term in Equation 6), 
the gradient amplitude or morphogen influx levels at the source boundary can serve as a proxy for 
the production of the morphogen. For these simulations, the amplitudes and fluxes were also drawn 
from log- normal distributions. The width of these distributions is controlled via their coefficients of 
variation,  CVC0  or  CVj0  as specified in the respective figures.
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Appendix 1
Qualitative difference between linear and non-linear morphogen decay
In this section we present some theoretical considerations about the consequences of nonlinear 
decay for noise- free morphogen gradients. We consider deterministic steady- state gradients 
obtained by analytically solving

 
∂C
∂t

= 0 = D∆C − dCn/Cn−1
ref .

  
(7)

Solving Equation 7 on an infinite one- dimensional domain for linear morphogen decay ( n = 1 ) with a 
concentration that drops to zero at infinite distance from the source ( C(x) → 0  as  x → ∞ ), results in 
exponential gradient profiles (Figure 1A) of the form

 
C(x) = C0e−x/λ, λ =

√
D
d

,
  

(8)

with an amplitude C0 at the source at  x = 0 . The amplitude can be set by Dirichlet boundary conditions 
or by flux boundary conditions at the source,  −D∂C/∂x

∣∣
x=0 = j0.  Imposing flux boundary conditions 

leads to an amplitude  C0 = j0λ/D . Thus, with linear decay, influx and amplitude are proportional.
Non- linear decay (Equation 7,  n > 1 ), results in shifted power- law gradients (Figure 1A) that can 

be expressed as

 
C(x) = C0

(
1 + x

mλm

)−m
, m = 2

n − 1
,
  

(9)

where

 
λm = λ

√
1 + 1

m

(
Cref
C0

) 1
m

  
(10)

is a length scale determining the shift in the power law, and  C0 = C(0)  is the amplitude analogous to 
Equation 8. As the linear decay is approached ( n → 1 ),  m  diverges ( m → ∞ ), the power- law length 
scale approaches the exponential length scale ( λm → λ ), and the power- law gradients (Equation 
9) become exponential (Equation 8). For a flux boundary condition at the source, the morphogen 
amplitude is

 
C0 = j0λm

D
=

(
λ

√
1 + 1

m
j0
D

C
1
m
ref

) m
m+1

.
  

Amplitude and influx at the source boundary are thus not proportional for non- linear morphogen 
decay, unlike in the linear case. Moreover, power- law gradients do not possess a constant gradient 
decay length  λ  that quantifies a distance over which a fold- change in morphogen concentration 
occurs. Nevertheless, if one were to locally fit an exponential to the power- law gradient (Eldar et al., 
2003),

 x−m ∼ exp[−x/λ(x)],   

one would observe the “gradient decay length”  λ(x)  to increase with the distance from the source 
according to  λ(x) = x/(m ln x)  (Figure 1C).

Morphogen gradients define readout positions  xθ  via concentration thresholds  Cθ = C(xθ)  
(Figure 1A, D and E). For linear decay, the readout position follows from Equation 8 as

 
xθ = λ ln C0

Cθ
,
  

and for non- linear decay from Equation 9 as

 
xθ = mλm

((
C0
Cθ

) 1
m

− 1

)
.
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Due to inevitable molecular noise in morphogen production, transport, and decay, morphogen 
gradients differ between embryos, and hence readout positions  xθ,i  vary between different gradient 
realisations  i  for both linear and non- linear morphogen decay (Vetter and Iber, 2022). In the past, 
the impact of changes in morphogen production on readout precision has been studied for gradients 
that remain otherwise unchanged between embryos (Eldar et  al., 2003). We now revisit this 
scenario. In response to a change in the morphogen amplitude from C0 to  C

∗
0 , the readout position 

shifts along the patterning axis (Figure 1B and C). For linear decay, this shift  ∆x  is independent of 
the absolute gradient amplitude C0 and depends only on the relative amplitude change,  C

∗
0 /C0 , and 

the characteristic gradient length  λ :

 
∆x = x∗θ − xθ = λ ln

C∗
0

C0
.
  

(11)

For non- linear decay, the shift is given by

 
∆x = mλm

(
1 −

(
C0
C∗

0

) 1
m
)

.
  

(12)

According to Equation 12, the shift  ∆x  is proportional to  λm  which in turn is proportional to 

 C
−1/m
0  , implying that the shift increases with decreasing amplitude (Appendix 1, Figure 1A,B). This 

dependency of non- linear decay on the gradient amplitude qualitatively distinguishes linear from 
non- linear decay. Alternatively, the shift may be expressed as a function of a change in morphogen 
influx from the source from j0 to  j

∗
0 . For linear decay, it simply reads

 
∆x = λ ln

j∗0
j0

,
  

because flux and amplitude are proportional, making the shift again independent of absolute 
morphogen levels. For non- linear decay, however, amplitude and influx are related as

 

(
C0
C∗

0

) 1
m

=
(

j0
j∗0

) 1
m+1

.
  

The resulting readout shift is therefore

 
∆x = mλm

(
1 −

(
j0
j∗0

) 1
m+1

)

   

with a power- law length scale  λm  that can be expressed in terms of the influx j0 as

 
λm = λ

(√
1 + 1

m

(
jref
j0

) 1
m
) m

m+1

, jref = DCref
λ

.
  

Therefore, since  ∆x  is proportional to  λm , which is in turn proportional to  j
−1/(m+1)
0  , the shift also 

increases with decreasing influx (Appendix 1 Figure 1A,C), albeit slower than with the amplitude.

https://doi.org/10.7554/eLife.84757
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Appendix 1—figure 1. Shift in morphogen gradients due to changes in morphogen production. (A) Comparison 
of noise- free gradients arising from linear (blue) and non- linear (green) decay. A fold- change in the influx j0 from 
the source shifts the gradients by  ∆x . (B) Positional shift of the morphogen gradient as a function of the amplitude 
and degree of non- linearity, for a fold- change in the amplitude,  C

∗
0 /C0 = e . (C) Positional shift as a function of the 

influx and degree of non- linearity, for a fold- change in the influx,  j
∗
0 /j0 = e .

https://doi.org/10.7554/eLife.84757
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