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Abstract Staphylococcus aureus infections are associated with high mortality rates. Often consid-
ered an extracellular pathogen, S. aureus can persist and replicate within host cells, evading immune 
responses, and causing host cell death. Classical methods for assessing S. aureus cytotoxicity are 
limited by testing culture supernatants and endpoint measurements that do not capture the pheno-
typic diversity of intracellular bacteria. Using a well-established epithelial cell line model, we have 
developed a platform called InToxSa (intracellular toxicity of S. aureus) to quantify intracellular cyto-
toxic S. aureus phenotypes. Studying a panel of 387 S. aureus bacteraemia isolates, and combined 
with comparative, statistical, and functional genomics, our platform identified mutations in S. aureus 
clinical isolates that reduced bacterial cytotoxicity and promoted intracellular persistence. In addi-
tion to numerous convergent mutations in the Agr quorum sensing system, our approach detected 
mutations in other loci that also impacted cytotoxicity and intracellular persistence. We discov-
ered that clinical mutations in ausA, encoding the aureusimine non-ribosomal peptide synthetase, 
reduced S. aureus cytotoxicity, and increased intracellular persistence. InToxSa is a versatile, high-
throughput cell-based phenomics platform and we showcase its utility by identifying clinically rele-
vant S. aureus pathoadaptive mutations that promote intracellular residency.

Editor's evaluation
This paper describes a new method to investigate Staphylococcus aureus intracellular virulence that 
has produced important insights into the mechanisms of staphylococcal pathogenesis. The results 
are convincing and the methodology is state-of-the-art. The authors have responded to the reviewer 
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comments and resolved the issues identified during the review. This paper will be of interest to 
scientists studying microbial intracellular pathogenesis and cell biology.

Introduction
Staphylococcus aureus is a leading cause of hospital-acquired infections, a problem exacerbated by 
increasing resistance to last-line antibiotics (Murray et  al., 2022; Tong et  al., 2015). S. aureus is 
traditionally considered an extracellular pathogen as it produces many secreted virulence factors, 
including superantigens, degradative enzymes, and cytolytic toxins (Tam and Torres, 2019). The 
potent pore-forming toxins (PFTs), including alpha-hemolysin and leukocidins, are among the major 
virulence determinants of S. aureus (Cheung et al., 2021). These toxins induce rapid host cell death, 
including death of the leukocytes and neutrophils recruited to remove bacteria from infected tissues 
(Surewaard et al., 2016; Thammavongsa et al., 2015).

Long-term asymptomatic S. aureus carriage is common but invasive infection is rare. Thus, under-
standing the changes enabling S. aureus to switch from a common coloniser of the nasal cavity to 
an invasive pathogen is a major research focus. A powerful discovery approach has been used to 
compare the cytolytic activities of secreted S. aureus virulence factors between colonising and bacte-
raemia isolates, followed by genomics to uncover the bacterial genetic loci linked with high/low cyto-
lytic activity (Collins et  al., 2008; Giulieri et  al., 2018; Laabei et  al., 2014; Laabei et  al., 2021; 
McConville et al., 2022). These toxicity analyses use methods that monitor eukaryotic cell viability 
upon exposure to S. aureus culture supernatants (Dankoff et al., 2020; Das et al., 2016; Giulieri 
et al., 2018) and integrate these phenotypes within genome-wide association studies (GWAS) and 
other comparative bacterial population genomics techniques (Giulieri et al., 2018; Recker et al., 
2017). However, such toxicity assays are limited in that they focus on exogenous virulence factors that 
have accumulated in the culture media during bacterial growth. Thus, such methods can be limiting as 
they report phenotypes that are temporally skewed and ignore the host cell-bacterium context under 
which the production of these factors is controlled during infection. When these endpoint toxicity 
assays are conducted at scale with many hundreds of bacterial isolates, additional issues caused by 
filter-sterilisation, freeze-storage, and other manipulations during the preparation of bacterial super-
natants prior to incubation with host cells may increase assay variability (Giulieri et al., 2018; McCo-
nville et al., 2022).

Another restriction of toxicity assays is that they treat S. aureus as an obligate extracellular 
pathogen, whilst the literature has reported its capacity to adopt an intracellular behaviour, readily 
adhering to and invading various eukaryotic cells, including non-professional phagocytes (Flannagan 
et al., 2016; Foster et al., 2014; Soe et al., 2021). Upon internalisation, intracellular S. aureus initially 
reside in phagolysosomes, where low pH is a cue for bacterial replication (Flannagan et al., 2018; 
Lâm et al., 2010). S. aureus uses its arsenal of PFTs to escape from this degradative compartment, 
into the cytosol and cause the death of host cells (Moldovan and Fraunholz, 2019; Siegmund et al., 
2021). This intracellular niche confers protection to S. aureus from antibiotics and immune responses 
(Peyrusson et al., 2020; Strobel et al., 2016). While guarding S. aureus from host attack, intracel-
lular residency also enables the creation of a reservoir for the pathogen to persist in an infected host 
and could lead to bacterial transmigration into distal host tissues, from where the bacteria can cause 
protracted infections and more serious disease (Jorch et al., 2019; Surewaard et al., 2016). Toxicity 
and persistence of S. aureus in an intracellular context are critical pathogenesis traits. However, under-
standing these traits and their microevolution across diverse collections of clinical S. aureus strains, 
and correlating them with specific bacterial genetic variations has been hampered by the lack of a 
high-throughput platform for trait characterisation.

To address these issues, we took advantage of the capacity of S. aureus to invade cultured epithelial 
cell lines and established a 96-well assay format to accurately monitor over time the bacterial toxicity 
exerted from within host cells. HeLa cells are adherent epithelial cells and represent an amenable 
model to study the pathogenesis of most intracellular bacteria causing human disease, including S. 
aureus (Das et al., 2016; Stelzner et al., 2020a; Stelzner et al., 2020b). We modified an antibi-
otic/enzyme protection assay, using a combination of gentamicin and lysostaphin, to kill extracellular 
bacteria while preserving the viability of intracellular bacteria (Kim et al., 2019). Using propidium 
iodide (PI) as a marker of host cell death, the assay measured changes in fluorescence of HeLa cells 

https://doi.org/10.7554/eLife.84778


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Microbiology and Infectious Disease

Hachani, Giulieri, Guérillot et al. eLife 2023;12:e84778. DOI: https://doi.org/10.7554/eLife.84778 � 3 of 27

over time caused by the presence of intracellular S. aureus. Combined with the power of bacterial 
genomics and evolutionary convergence analysis, we used the assay to screen a large collection of S. 
aureus bacteraemia isolates. Our large-scale pheno-genomics approach revealed known and previ-
ously undescribed loss-of-function mutations that were significantly associated with reduced intracel-
lular cytotoxicity and increased intracellular persistence.

Results
InToxSa assay development
We set out to develop a high-throughput and continuous cell death assay that could measure the 
intracellular toxicity of S. aureus in a format we named InToxSa. We used adherent HeLa-CCL2 epithe-
lial cells as an infection model in a 96-well format and infected them with S. aureus at a standardised 
multiplicity of infection (MOI). Following an infection period of 2 hr, infected cells were treated with an 
antibiotic/enzyme combination to specifically kill extracellular bacteria and prevent further reinfection 
by bacteria released by cells dying during the assay. HeLa cell viability was continuously monitored 
by measuring PI fluorescence (see methods). Reduced HeLa cell viability was indicated by increasing 
fluorescence over time (Figure 1A). We used regression to fit standardised curves to the PI uptake 
data and calculated seven kinetic parameters including the area under the curve (AUC) representing 
the total of PI uptake over time, peak PI uptake [μmax], the time to μmax [t(μmax)], the maximum rate in 
PI uptake [rmax], the time to rmax [t(rmax)], trough, and time to trough (Figure 1—figure supplement 1).

We then mapped out a series of experiments to validate InToxSa and explored bacterial genetic 
factors linked to intracellular cytotoxicity (Figure  1B). To demonstrate method performance, we 
measured the intracellular toxicity of the wild-type S. aureus USA300 strain JE2 against an isogenic 
agrA mutant (Nebraska Transposon Library mutant NE1532; Fey et al., 2013), using non-infected 
cells as a baseline (Figure 1C). S. aureus JE2 caused a rapid and substantial increase in PI fluorescence 
over time, reflective of the known high cytotoxicity of this strain (Das et al., 2016; Grosz et al., 2014; 
McConville et al., 2022). Cells infected with the agrA mutant yielded significantly lower PI uptake 
(AUC) and slower (rmax), indicating HeLa cell viability during the infection course and is consistent with 
the reported low cytotoxicity of S. aureus agr mutants (Figure 1C; Laabei et al., 2021; McConville 
et al., 2022).

We then assessed the reproducibility and repeatability of InToxSa across five experimental repli-
cates, each time using both biologically independent HeLa cell culture passages and independent S. 
aureus cultures with the same two comparator strains (JE2 wild type and the isogenic agrA transposon 
mutant) (Figure 1C). We measured seven PI uptake curve kinetic parameters (Figure 1C, Figure 1—
figure supplement 1). We observed that the PI uptake AUC, peak PI uptake [μmax], and maximum 
PI uptake rate [rmax] for S. aureus JE2 compared to the agrA mutant and non-infected cells were 
significantly different, had very low intra-assay variation, and were among the most discriminatory and 
reproducible PI uptake curve parameters (Figure 1D, Table 1, Figure 1—figure supplement 1). At 
experimental endpoints, the acidity of the culture media had not changed, and no bacterial growth 
was observed after plating the media from infected 96-well plates, indicating that InToxSa assessed 
the cytotoxicity caused only by intracellular S. aureus (data not shown).

Confirmation of S. aureus internalisation in HeLa cells
We used confocal microscopy to confirm the presence of intracellular S. aureus (Figure 2A). HeLa cells 
grown on coverslips were infected with the same conditions used for InToxSa and analysed at 3, 8, 
and 24 hr post-infection. These timepoints were selected to reflect the key InToxSa timepoints high-
lighted during JE2 infection (start of PI uptake measurement, peak PI uptake [μmax], and experimental 
endpoint, respectively). We observed that at each timepoint, both JE2 and the agrA mutant co-local-
ised with the lysosomal marker LAMP-1. However, the agrA mutant was detected in higher numbers 
within cells compared to wild type (Figure 2A, B). At later timepoints (8 and 24 hr) the number of JE2-
infected cells decreased, with fewer detectable intracellular bacteria, suggesting that JE2-infected 
cells had died, consistent with bacterial cytotoxicity. In contrast, the number of cells infected with 
the agrA mutant did not vary significantly, indicating cell survival during the infection time course 
(Figure 2B). It also appeared that the number of intracellular bacteria increased for cells infected with 
the agrA mutant, suggesting bacterial replication over time. This latter observation was explored in 
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more depth using high-content/high-throughput imaging (see later section). The microscopy results 
support the InToxSa assay outputs and indicate that non-cytotoxic S. aureus, such as the agrA mutant, 
can persist within cells without affecting cell viability.

InToxSa benchmarking against trypan blue exclusion assay
In a previous study, we used a trypan blue exclusion assay with THP1 human macrophages exposed 
to culture supernatants to test within-host cytotoxicity variations from 51 clinical S. aureus isolated 
from 20 patients with bacteraemia (Giulieri et al., 2018). These 51 S. aureus isolates were originally 
selected because they were associated with phenotypic changes occurring during bacteraemia, such 
as infection relapse, antibiotic treatment failure, longer duration of bacteraemia, and augmented 
vancomycin MIC; phenotypes likely resulting from within-host evolution (Giulieri et al., 2018). Thus, 
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Figure 1. Establishing the intracellular toxicity of S. aureus (InToxSa) assay. (A) Overview of InToxSa assay. (B) Flow chart of the analytical pathway. 
(C) Plot of propidium iodide (PI) fluorescence uptake over 20 hr as a measure of S. aureus intracellular cytotoxicity in HeLa cells. Depicted curves are 
wild-type S. aureus JE2 (blue), the isogenic S. aureus JE2 agrA transposon mutant (red), and uninfected cells (yellow). The PI uptake curve for JE2 is 
annotated with five kinetic parameters. For each curve, the thick line represents the mean and the shading, the standard deviation. Curves are fitted with 
cubic smooth splines (see methods). To minimise batch effect, all kinetics data have been transformed using proportion of maximum scoring (POMS) 
using JE2 controls as reference minimum and maximum values (Little, 2013). x-axis is time and y-axis is PI uptake, represented as a proportion of 
maximal fluorescence in JE2-infected cells, where for every measured plate, a PI uptake value of 1 represents the maximum of JE2 PI uptake and zero its 
minimum. (D) Summary of five independent InToxSa experiments to assess assay and parameter variation. Violin plots represent the density distribution 
of all five replicates (based on Gaussian kernel density estimation) and the nested box plots (boxes represent median, first and third quartiles, whiskers 
represent are based on ×1.5 interquartile range) show the distribution of within plate replicates (3–5 technical replicates per plate replicate) for the three 
most discriminatory of seven parameters inferred from the PI uptake data (Figure 1—figure supplement 1).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Propidium iodide (PI) uptake curve parameters.

https://doi.org/10.7554/eLife.84778
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the isolates were categorised by patient and by their sequential isolation, with the first isolate consid-
ered as ‘baseline’ and the subsequent isolates designated as ‘evolved’.

All 51 isolates were screened with InToxSa and compared with the original trypan blue assay data 
(Figure 3). Using trypan blue exclusion, only the evolved isolate from patient 50 (P_50) showed a 
significant phenotypic difference in cytotoxicity (Figure 3A). This difference was attributed to a loss-
of-function mutation in agrA (T88M). InToxSa also identified a significant cytotoxicity difference for 
the P_50 isolate pair, validating the previous observation, despite the methodological and host cell 
type differences. However, InToxSa detected significantly reduced cytotoxicity for the evolved isolates 
from five more patient pairs compared to the original trypan blue screen (Figure 3B). These results 
support the higher sensitivity of InToxSa in uncovering S. aureus cytotoxicity variations resulting from 
the evolution of the bacterial population during bloodstream infection.

Screening a large collection of clinical S. aureus to evaluate intracellular 
cytotoxicity
A major motivation for developing the InToxSa assay was to develop a pheno-genomics platform 
to efficiently measure the intracellular cytotoxicity profiles of a large collection of clinical S. aureus 
isolates and then use the power of comparative and statistical genomics to find bacterial genetic 
loci associated with intracellular cytotoxicity. To this end, we analysed 387 clinical S. aureus isolates, 
obtained from 298 episodes of bacteraemia and for which genome sequences were available (Giulieri 
et al., 2018; Holmes et al., 2011; Holmes et al., 2014; Holmes et al., 2018). A 164,449 single nucle-
otide polymorphism (SNP) core-genome phylogeny was inferred for this collection. The 387 isolates 
spanned 32 sequence types (STs) and were dominated by ST239, accounting for 30% of isolates 
(n:117), followed by ST22 (n:32, 8%), ST5 (n:34, 8%), ST45 (n:28, 7%), and ST1 (n:18, 5%). Fifty-three 
percent of the isolates were mecA positive (Figure 4A; Supplementary file 3).

We assessed each of the 387 isolates by InToxSa, with the cytotoxicity phenotype for each isolate 
represented by mean PI uptake (AUC) and displayed as a heatmap, aligned with the core-genome 
phylogeny (Figure 4A). Several patterns were readily seen in the data. There was a wide range of cyto-
toxicity profiles across the 387 isolates, with notable variations within each ST suggesting frequent 
adaptation events affecting intracellular cytotoxicity levels. Two STs (ST239 and ST22) strongly associ-
ated with lower cytotoxicity. These variations are consistent with previous observations (Laabei et al., 
2021).

To select the most suitable InToxSa parameters for our statistical genomics approach, we assessed 
their relative importance by fitting the data using unsupervised random forest (RF) machine learning 
(Mantero and Ishwaran, 2021). In this model, ‘observations’ were each of the PI uptake values for the 
387 isolates and controls and ‘features’ were the seven PI uptake curve parameters (Supplementary 
file 4). We then tested RF feature importance and showed with variable importance plots that the PI 
uptake parameters, AUC, μmax, and rmax were the most informative features for the model (Figure 4B), 
consistent with our initial InToxSa assessment using JE2 and the agrA mutant (Figure 1C, D). Using 
the proximity matrix from the unsupervised RF model, we defined three main PI uptake clusters, 
corresponding with low, moderate, and high intracellular cytotoxicity categories. We labelled each 
of the 387 PI uptake data points with these three (low, moderate, and high) cytotoxicity categories 
and plotted the AUC and rmax values against each other (Figure 4C). As expected, these parameters 
were strongly, positively correlated, suggesting that the AUC alone is sufficient to capture intracellular 

Table 1. Summary of intracellular toxicity of S. aureus (InToxSa) assay performance.

Strain No. biological replicates Area under the curve [AUC]

Peak uptake Max uptake

[μmax] [rmax]

Mean Std. dev. CoV Mean Std. dev. CoV Mean Std. dev. CoV

S. aureus JE2 wild type 25 162 14.6 0.09 1 0.09 0.09 0.003 0.0004 0.13

S. aureus JE2 agrA mutant 11 30.9 14 0.45 0.17 0.06 0.35 0.0004 0.0002 0.52

Non-infected 15 5.3 18.3 3.46 0.07 0.07 1.02 0.0001 0.00005 0.32

Note: Std. dev. = standard deviation; CoV = coefficient of variation.

https://doi.org/10.7554/eLife.84778
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Figure 2. Fluorescence confocal microscopy of intracellular S. aureus. (A) HeLa cells were infected with S. aureus (wild-type JE2 or isogenic agrA 
mutant) and imaged at 3, 8, and 24 hr post-infection. Fixed cells were labelled with LAMP-1, S. aureus antibodies and 4′,6-diamidino-2-phenylindole 
(DAPI). (B) Manual quantification of confocal microscopy. Graph shows the percentage of cells infected with S. aureus at each of the three timepoints. 
At least 50 cells (n cells = 51–112) were counted in 3–5 fields of view, with at least 12 cells counted per field (n field = 12–40). Shown are all data points, 

Figure 2 continued on next page
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cytotoxicity differences between S. aureus isolates. We used principal component analysis of the 
PI uptake data as an alternative unsupervised learning approach (Figure 4—figure supplement 1). 
When considering the first two components (67% of the variance explained), we observed a similar 
pattern where the same toxicity groups could be recognised within a cytotoxicity continuum among 
clinical isolates (Figure 4—figure supplement 1).

GWAS analysis using InToxSa outputs to identify S. aureus genes linked 
to intracellular cytotoxicity
We next used GWAS to identify genetic correlates of strain-level cytotoxicity, expressed as mean 
PI uptake AUC. The fraction of cytotoxicity variation explained by genetic variation (heritability: h2) 
was 49%, a figure lower than the ones obtained for other phenotypes such as vancomycin resistance 
(Giulieri et al., 2022b). A lower heritability could be resulting from the InToxSa assay variability or 
caused by differences in gene expression levels or due to epigenetic changes.

To assess the contribution of lineage effects relative to locus effects, we defined lineages using 
multidimensional scaling (MDS) of a pairwise genetic distance matrix generated by Mash, a tool that 
reduces genome content to a set of ‘sketches’ (hashed k-mers) (Ondov et al., 2016). Major MDS axes 
correlated with the most prevalent STs, for example ST239 was mainly defined by MDS1 (negative 

mean, and standard deviation. Significance was assessed using two-way analysis of variance (ANOVA). Null hypothesis (no difference between means) 
rejected for adj p < 0.05. *p = 0.04, ***p = 0.007, ****p = <0.0001.
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Figure 3. Performance of intracellular toxicity of S. aureus (InToxSa) against trypan blue exclusion assay. Comparative evaluation of S. aureus intracellular 
cytotoxicity with bacterial supernatants for 51 paired isolates from 20 patients with S. aureus bacteraemia. (A) Supernatant-based cytotoxicity on 
THP1 cells. Episode with significant difference in THP1 survival between baseline and evolved isolates is boxed in blue (p < 0.05). Assay performed in 
biological and technical duplicates. Bars represent mean percentage of dead cells; error bars show range between duplicates. Toxicity within isolate 
groups was compared using analysis of variance (ANOVA) with Bonferroni correction (B) propidium iodide (PI) uptake of infected HeLa cells. Values are 
mean area under the curve (AUC) and standard deviation. Episodes exhibiting significant phenotypic differences between baseline and evolved isolates 
are boxed in red (p < 0.05). Assay performed in biological and technical triplicates. PI uptake AUC within isolate groups was compared using ANOVA 
with Bonferroni correction.
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correlation) and MDS2 (positive correlation) (Figure 4—figure supplement 3). We then tested the 
association between the first 10 MDS axes (90% of the genetic variance explained) and the PI uptake 
phenotype in Pyseer (Earle et al., 2016; Giulieri et al., 2022b; Lees et al., 2018). In agreement with 
the initial observations based on the phylogeny and cytotoxicity heatmap (Figure 4A), we observed 
significant cytotoxicity-lineage associations represented by MDS3 and MDS4 (Figure 4D, Figure 4—
figure supplement 2). Because of the ST-MDS lineages correlation, this is consistent with differences 
in cytotoxicity between clones (Figure 4—figure supplement 3B). Using the three cytotoxicity clus-
ters defined by RF as categorical labels (Figure 4C), we plotted the 387 genomes along these two 
dimensions. While intracellular cytotoxicity was strongly associated with some S. aureus lineages, this 
analysis showed that lineage alone does not completely explain the phenotype, as indicated by the 
significant overlap between the three cytotoxicity clusters across MDS3 and MDS4 (Figure 4D). This 
pattern is consistent with other adaptive phenotypes (Earle et al., 2016; Giulieri et al., 2022b; Su 
et al., 2021) and suggests that locus effects from specific microevolutionary events modulate cytotox-
icity, supporting the use of GWAS and convergent evolution approaches to identify these mutations.
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the model. (C) Scatter plot of the two most discriminatory PI uptake kinetic metrics (AUC and maximum PI uptake rate). Dots are coloured based on the 
clustering obtained from the proximity matrix of the RF model. (D) Scatter plot showing the two principal components with the strongest association 
with PI uptake (lineage effect as measured using pyseer). Dots and ellipses are coloured based on the clustering obtained from the proximity matrix of 
the unsupervised machine learning model. (E) Manhattan plot of gene-burden genome-wide association study (GWAS) of cytotoxicity (PI uptake AUC) 
of 387 clinical isolates.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Principal component analysis of mean value of propidium iodide (PI) uptake parameters.

Figure supplement 2. Lineage effects of cytotoxicity (area under the curve [AUC] of propidium iodide [PI] uptake).

Figure supplement 3. Interplay between multidimensional scaling (MDS) axes, sequence types (STs), and propidium iodide (PI) uptake.

Figure supplement 4. Genome-wide association study (GWAS) power calculation according to the number of isolates and number of variants for a 
phenotype with 50% heritability.

https://doi.org/10.7554/eLife.84778
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Correcting for the observed population structure, we then used gene-burden GWAS to try and 
identify S. aureus loci significantly associated with intracellular cytotoxicity (PI uptake AUC) as a 
continuous variable. After correcting for multiple testing, only agrA reached the p < 0.05 significance 
threshold, supporting the important contribution of this locus to strain-level cytotoxicity (Figure 4E, 
Supplementary file 5). We also considered the highest ranking loci that did not reach genome-wide 
statistical significance. The second most significant gene, secA2 (p = 1.5 × 10−4) encodes the acces-
sory ATPase to the Sec protein export system and is essential for the transport of SraP, a surface 
exposed and serine-rich staphylococcal protein which is associated with adhesion to, and invasion 
of epithelial cells and binding to human platelets (Siboo et al., 2005; Yang et al., 2014). Another 
high-ranking GWAS locus was ileS (p = 9.9 × 10−4), encoding an isoleucyl-tRNA synthetase linked with 
mupirocin resistance, and previously associated with S. aureus cytotoxicity (Yokoyama et al., 2018).

Identification of convergent mutations in genetic pairs with divergent 
InToxSa cytotoxicity profiles
Despite the relatively small sample size for this kind of analysis, the gene-burden GWAS detected the 
agrA locus with a high significance, but it did not have sufficient power to detect mutations other than 
those occurring in agr genes. This was expected with our sample size as demonstrated by our GWAS 
power calculations (Figure 4—figure supplement 4). Our power calculations have also showed that 
reducing the number of variants could substantially increase the yield of the analysis. This can be 
achieved by limiting the analysis to closely related isolates, with the added advantage of eliminating 
the bias related to the population structure. Therefore, we sought to identify rare mutations that might 
alter the intracellular cytotoxicity using comparative genomics approaches, a complementary strategy 
to microbial GWAS (Chen and Shapiro, 2021; Giulieri et al., 2022b; Saund and Snitkin, 2020). We 
used evolutionary convergence analysis to identify additional loci associated with intracellular cyto-
toxicity among the 387 S. aureus isolates. Our approach was to identify genetically related pairs of 
isolates with contrasting PI uptake AUC values from independent clades across the phylogeny and 
then search for homoplasic mutations between the pairs. We calculated genetic distances between 
all 387 genome-pairwise comparisons (149,769 combinations) and calculated a delta-PI uptake AUC 
value for each pair. We selected 28 phylogenetically independent S. aureus pairs (56 unique isolates) 
with a genetic distance <200 core-genome SNPs and a significant decrease in PI uptake AUC between 
reference (isolate-1) and control (isolate-2) (Wilcoxon rank-sum test) (Figure 5A). Variants within each 
pair (i.e., found in isolate-2 but not in isolate-1) were identified and annotated using a strategy that 
we have developed for S. aureus within-host evolution analysis (Giulieri et  al., 2022a). We have 
previously shown that an SNP-calling approach using de novo assembly of one genome in a pair as 
a reference provided the most accurate estimate of the genetic distance (Higgs et al., 2022). There 
were between 0 and 206 mutations within the 28 pairs (Figure 5B). Mapping the genes in which 
these mutations were found back to a core-genome phylogeny constructed from the 56 paired S. 
aureus genomes showed convergent (homoplasic) mutations in agrA, supporting the GWAS findings. 
In addition, our analysis identified potentially convergent mutations in several other genes (6 with 
three independent mutations and 35 with two independent mutations) (Figure 5C–E, Supplementary 
file 6). However, because of the strong lineage effect and the paucity of representation for some S. 
aureus lineages (clonal complexes [CC] and STs), half of these mutations were only found in ST239, 
a well-represented lineage in our collection. In addition to target loci dedicated to the regulation of 
virulence factors such as the agr locus or involved in adhesion to host extracellular matrix proteins 
such as fibronectin and elastin (fnbA and ebpS), some of the convergent mutations were found in 
genes involved in metabolic processes (ribA, purF, sbnF, ilvB, lysA, and araB), associated with the cell 
wall (fmtB), devoted to the last step of the cell wall teichoic acid biosynthesis (tarL’), implicated in DNA 
repair (mfd), in protein transport (secA2), in solute transport (glcA, opp-3A, and thiW), in respiration 
(cydA) and found in a phage-associated locus (SAUSA300_1930). Aside from agrA and agrC genes 
(Giulieri et al., 2018; Laabei et al., 2014; Laabei et al., 2015; Mairpady Shambat et al., 2016), and 
those found in the promoter of the tar locus (Brignoli et al., 2022; Laabei et al., 2014), mutations in 
the other loci have not been associated with the reduction of cytotoxicity in clinical S. aureus isolates. 
Interestingly, homoplasic mutations were also found in the gene ausA, known to be involved in S. 
aureus escape from epithelial cell endosomes and the phagosome of phagocytic cells (Blättner et al., 
2016).

https://doi.org/10.7554/eLife.84778
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We focussed our analysis on genetic pairs with loss of cytotoxicity, to be consistent with the 
hypothesis that adaptive mutations arising during infection would promote a low-toxicity phenotype 
as previously shown (Giulieri et al., 2018; Laabei et al., 2014). This hypothesis is supported by our 
gene-burden GWAS, where 10 out of 10 most significant hits are associated with loss of cytotoxicity 
(mean normalised PI AUC decrease = −0.8, Supplementary file 5 and Figure 4E). To explore whether 
including pairs with toxicity gain would alter the analysis, we selected four additional phylogenetically 
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Figure 5. Evolutionary convergence analysis to identify S.aureus genes linked with intracellular cytotoxicity. (A) Distribution of genetic distance 
determined by pairwise comparisons using MASH distances among the 387 S. aureus genomes, against the difference in propidium iodide (PI) uptake 
area under the curve (AUC) between each pair. The shaded circles denote the 95% multivariate t-distribution (blue: pairs included in the convergence 
analysis; red: pairs excluded from the analysis). (B) Ranked distribution of the difference in PI uptake AUC between the 28 pairs. Heatmap shows 
reduction in AUC values. (C) Core-genome phylogeny for the 28 pairs of isolates. Tree tips are coloured by PI uptake AUC. Aligned with the phylogeny, 
the 10 first genes targeted by convergent mutations are shown. (D) Number of mutations detected for each of the 20 genes, coloured by S. aureus 
ST. (E) Location of convergent mutations in each gene (non-synonymous in orange, truncating in maroon), purple triangles indicate the position 
of transposon inserted in tested transposon mutant. (F) Effect of loss of function for each of the 20 genes on intracellular cytotoxicity measured by 
intracellular toxicity of S. aureus (InToxSa), using mutants from the Nebraska transposon library. Dotted line shows mean PI uptake AUC of positive 
control strain JE2. Depicted are mean (dot) and standard deviation (SD; bar) of biological triplicates. Mutants causing significantly lower PI uptake AUC 
to JE2 are depicted in light blue, non-significant changes are in dark blue (Wilcoxon rank-sum test, corrected for multiple testing). (G, H) Operetta 
high-content imaging analysis for each of the 20 Nebraska transposon mutants and JE2 positive control. Heatmaps show the percentage of HeLa cells 
infected with each transposon mutant (blue) and the number of bacteria per infected cells at 3 and 24 hr post-infection (red).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Identification of convergent mutations associated with intracellular toxicity and persistence.

Figure supplement 2. Automated genetic pairs analysis (100 replicated sets of phylogenetically independent genetic pairs).

Figure supplement 3. Scatter plots showing the statistically significant inverse Pearson correlations of (A) propidium iodide (PI) area under the curve 
(AUC) with the percentage of infected cells; and (B) PI AUC with the number of S. aureus per infected cells at 24 hr post-infection.

https://doi.org/10.7554/eLife.84778
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independent pairs with gain of toxicity. Adding these pairs did not reveal new genes with convergent 
mutations, however, this analysis revealed an additional homoplasic mutation in ausA (Figure 5—
figure supplement 1).

To further confirm the roles of genes bearing homoplasic mutations in pairs with discordant pheno-
type, we compared PI uptake between pairs with and without homoplasic mutations. We ran the 
analysis in 100 replicates of independent pairs combinations and assessed the associations between 
within-pairs mutations (aggregated at the gene level) and PI uptake difference within the pair using 
linear regression. For 6 out of the 20 genes originally identified in the genetic pairs analysis (including 
agrA, glcA, ribA, fmtB, sbnF, and tarL’), this analysis showed that for >95% of replicates, the regres-
sion coefficient was above 0, thus providing a robust statistical support for our findings (Figure 5—
figure supplement 2). For the gene ausA, 86% of replicates had a beta value above 0, however 78% 
of agrC regression replicates had a beta value below 0.

Functional assessment of genes with convergent mutations
To assess the functional consequences of the convergent mutations (caused by at least two homoplasic 
mutations per gene), we again turned to the Nebraska transposon library and selected transposon 
mutants for 20 genes we had identified (Figure 5D). We used InToxSa to assess the effect of gene 
disruption on the intracellular cytotoxicity phenotype for each mutant compared to the JE2 wild type 
(Figure 5F). Over the 20 transposon mutants tested, six showed a statistically significant reduction in 
cytotoxicity, namely NE1532 (agrA), NE119 (ausA), NE188 (mfd), NE873 (agrC), NE1140 (lysA), and 
NE117 (cydA). Strains with transposon insertions in agrA, agrC, and ausA showed a highly significant 
reduction in PI uptake AUC (adjusted p = 5.4 × 10−4, Wilcoxon rank-sum test), confirming their reported 
roles in affecting bacterial cytotoxicity and validating our convergence analysis (Figure 5F; Blättner 
et al., 2016; Das et al., 2016; Laabei et al., 2021; Mairpady Shambat et al., 2016). We extended 
this analysis and used high-content, high-throughput microscopy to observe and quantify in an unbi-
ased manner the impact of each mutation on the S. aureus infectivity and intracellular persistence 
(see methods). There was an inverse relationship between InToxSa and high-content imaging outputs, 
with the three mutants most reduced in cytotoxicity showing both a higher percentage of infected 
cells recovered after 24 hr of infection, and a high number of bacteria per infected cell at 24 hr post-
infection as compared to the wild-type control JE2 (Figure 5G, H – Figure 5—figure supplement 3).

Functional assessment of specific convergent mutations
To further assess the impact of specific convergent mutations on intracellular cytotoxicity, we used 
site-directed mutagenesis in S. aureus BPH3370 (ST239) to recreate a subset of the convergent muta-
tions. We selected isolate BPH3370 for these experiments as it displayed high InToxSa PI uptake AUC 
(comparable to JE2, Figure 4C) cytotoxicity without bearing any of the convergent mutations we 
intended to introduce. We focussed our attention on mutations likely to affect protein function and 
based on the attenuation in cytotoxicity of the cognate transposon mutants. We selected six muta-
tions, previously not documented nor characterised, including non-synonymous mutations leading to 
residue substitution (agrA E7K and cydA R390C [a reversion of C390R]), frameshifts leading to trun-
cated proteins (agrC G310 frameshift, ausA K2308 frameshift, and lysA K354 frameshift), and introduc-
tion of a stop codon (mfd W568 stop codon) in the sequences of convergent genes (Figure 6A and 
Figure 6—figure supplement 1). We then used InToxSa to assess the cytotoxicity of each targeted 
mutant, compared to BPH3370 wild type, JE2 and the corresponding JE2 Nebraska transposon 
mutant, for each of the six loci (Figure 6B, Figure 6—figure supplement 1). We observed that recre-
ation of the E7K agrA mutation, the agrC G310 frameshift mutation and the ausA K2308 frameshift 
mutations lead to a significant reduction in intracellular cytotoxicity in BPH3370 (Figure 6B). However, 
the W568 stop codon mfd mutation, the K354 frameshift lysA mutation, and the cydA R390C mutation 
had no significant effect on the cytotoxicity of the BPH3370 strain (Figure 6—figure supplement 1). 
It is noteworthy that transposon insertions in these three genes also had a less pronounced effect on 
the phenotype of JE2 strain as compared to the agr and ausA loci (Figure 5F).

We predicted that the ausA K2308 frameshift causing a 11 base pair deletion mutation in BPH3370 
would lead to a loss of aureusimine biosynthesis. This was because the frameshift occurred within the 
ausA reducing domain and would thus prevent the release of the dipeptide L-Val-L-TyrT2 to form the 
intermediate amino aldehyde, with no cyclisation to form the imine (Figure 6C; Zimmermann and 

https://doi.org/10.7554/eLife.84778
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Figure 6. Introduction of convergent agrA, agrC, and ausA mutations in the clinical isolate BPH3370 reduces its intracellular cytotoxicity while ausA 
mutation affects aureusimine B production. (A) Position and nature of convergent mutations identified in the genes agrA, agrC, and ausA. For each 
gene, the amino acid position affected by mutations is shown on the x-axis for each gene. Convergent mutations causing a significant contrasting 
propidium iodide (PI) uptake phenotype are coloured according to their consequence on protein function: non-synonymous (orange), truncating 
characterised by the introduction of a frameshift (fs) or a stop codon (*) (maroon). (B) Effect of convergent mutations on the intracellular cytotoxicity 
of the clinical isolate BPH3370. The PI uptake area under the curve (AUC) values for JE2, the cognate Nebraska transposon mutants of convergent 
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Figure 6 continued on next page
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Fischbach, 2010). As expected, high-performance liquid chromatography (HPLC) analysis confirmed 
the absence of aureusimines in the BPH3370 K2308 frameshift mutant, similar to the transposon ausA 
mutant (NE119) (Figure 6D).

Discussion
Recurrent and persistent staphylococcal infections have been proposed to result from within-host 
selective pressures leading to the evolution of adaptive traits by the bacteria, a process also observed 
in other human bacterial pathogens (Didelot et al., 2016; Gatt and Margalit, 2021; Giulieri et al., 
2022a). The emergence of mutations affecting regulators controlling toxin production has been 
proposed as a mechanism enabling S. aureus to adapt to its host while evading cellular immune 
responses (Giulieri et al., 2022a; Young et al., 2012; Young et al., 2017). Identifying the molecular 
signatures supporting the pathoadaptation of S. aureus at the host cell interface is important for 
understanding how S. aureus can cause persistent, difficult-to-treat infections lasting many months 
(Gao et al., 2015).

Several studies of S. aureus clinical isolates have attempted to identify such signatures by assessing 
the cytotoxicity of bacterial supernatants applied onto host cells, in an ex-cellulo fashion (Giulieri 
et al., 2018; McConville et al., 2022; Recker et al., 2017). Such assessments would be adequate if 
S. aureus was an extracellular pathogen exerting its cytotoxicity from without host cells (Soe et al., 
2021), but S. aureus is a facultative intracellular pathogen able to invade and persist in a wide range 
of eukaryotic cells (Al Kindi et al., 2019; Krauss et al., 2019; Luqman et al., 2019; Musilova et al., 
2019; Sinha and Fraunholz, 2010). We developed the InToxSa cytotoxicity assay to address this 
shortcoming and to try and identify S. aureus pathoadaptive mutations that support a S. aureus intra-
cellular lifestyle. Moreover, the InToxSa assay provides a maximum throughput of 7× 96-well plates 
per week, thus corresponding to 98 distinct clinical strains testable per week (encompassing 6 indi-
vidual replicates, each tested across 2 different days/plates) which could be upscaled 4-fold with the 
adoption of a 384-well plate format. By harnessing the power of comparative and statistical bacterial 
genomics with InToxSa readouts for a large collection of bacteraemia-associated S. aureus isolates, we 
identified mutations in S. aureus that reduced the intracellular cytotoxicity and increased intracellular 
persistence.

We showed the performance and sensitivity of InToxSa with the identification of cytotoxicity 
differences between S. aureus isolates that had not previously been detected by ex-cellulo methods 
(Figure 3; Giulieri et al., 2018). The difference in phenotypic outputs for both methods may be in 
part explained by the different cell types exploited for the readout (THP1 macrophages for trypan 
blue exclusion assay versus HeLa-CCL2 epithelial cells for InToxSa) and the bacterial fraction exam-
ined (culture supernatants versus bacterial cells) (Figure 3). The capacity of InToxSa to detect subtle 
phenotypes missed by gross cytotoxicity assessments is also conferred by its temporally granular and 
objective measurements of PI uptake as a marker of host cell viability. InToxSa assesses the S. aureus 
toxicity caused by bacterial virulence factors produced in response to the intracellular environment 
and is proportional to a defined bacterial load. This approach contrasts with methods relying on the 
presence of toxins accumulating over time in bacterial supernatants and whose production relies 
almost solely on the functionality of the Agr quorum sensing system (Altman et al., 2018; Giulieri 
et al., 2018; McConville et al., 2022).

We further showed the performance of this analytical pipeline by readily identifying mutations in 
loci such as the Agr quorum sensing system, which is well known to control S. aureus cytolytic activity 
(Giulieri et al., 2018; Giulieri et al., 2022a; Laabei et al., 2021; Mairpady Shambat et al., 2016; 
Recker et al., 2017). However, our approach also enabled discovery of mutations in less characterised 
systems, including changes in ausA, that reduced S. aureus cytotoxicity and increased intracellular 
persistence of clinical isolates. AusA is a non-ribosomal peptide synthetase responsible for production 
of aureusimines, pyrazinone secondary metabolites. Our observations are consistent with previous 

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Introduction of convergent cydA, lysA, and mfd mutations in the clinical isolate BPH3370 and intracellullar cytotoxicity (InToxSa) 
assessment.

Figure 6 continued
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reports showing that aureusimines contribute to the phagosomal escape of S. aureus JE2 to the 
cytosol (Blättner et al., 2016; Wilson et al., 2013).

Interestingly, S. aureus mutants that were most affected in cytotoxicity also had a propensity to 
persist intracellularly (Figure 5). Infected host cells have been proposed as Trojan horses for intracel-
lular S. aureus, increasing the risks of systemic dissemination to organs, such as the liver and kidneys, 
following bacteraemia and contribute to infection persistence (Jorch et al., 2019; Surewaard et al., 
2016; Thwaites and Gant, 2011). Whilst agr-dysfunctional isolates were associated with persistent 
infections (Fowler et al., 2004; Schweizer et al., 2011), intracellular persistence caused by mutations 
in agr loci could possibly constitute a population bottleneck (Pollitt et al., 2018; Spaan et al., 2013). 
However, such population bottlenecks may be transient as it has been suggested that mutations 
arising in agr defective pathoadapted clinical isolates could possibly compensate for the loss of agr 
functionality and restore S. aureus virulence, suggesting a stepwise within-host evolution of clinical 
isolates (Altman et al., 2018; Giulieri et al., 2022a).

Current statistical genomics strategies in human genetics support combining allele-counting 
methods (GWAS), for the detection of common variants, with comparative genomics approaches 
to identify rare variants (Singh et al., 2022; Trubetskoy et al., 2022). In microbial genomics, this 
strategy is best achieved by combining microbial GWAS and convergent evolution studies (Chen and 
Shapiro, 2021; Giulieri et al., 2022b; Giulieri et al., 2018;(Guérillot et al., 2018) Saund and Snitkin, 
2020). Whilst our GWAS approach only identified agrA as significantly associated with low cytotox-
icity (Figure 4E), our evolutionary convergence analysis on genetic pairs among our 387 bacteraemia 
isolates identified mutations in several S. aureus genes that led to reduced cytotoxicity (Figure 5). 
However, only convergent mutations occurring in agrA, agrC, and ausA were confirmed to affect the 
cytotoxicity and intracellular persistence phenotypes when introduced into a clinical isolate (Figure 6). 
This may be due to epistatic effects or combinations of mutations within a specific S. aureus strain may 
be acting in concert to control the expression of the numerous bacterial cytolytic determinants, under-
scoring the need to functionally confirm the findings of the convergence analysis. We acknowledge 
as a limitation of the convergent evolution analysis its reliance on a set of phylogenetic independent 
pairs, selected by the investigator. Thus, the choice of a different set of pairs may lead to a different 
list of homoplasic changes. To overcome this limitation, we have performed a repeated pair sampling 
and assessed the association between homoplasic mutations in PI changes. This approach provided 
robust support to 6 out of 20 findings of the convergent analysis (including agrA and ausA).

Our approach to integrate GWAS with convergence analyses underscores an important point 
regarding the choice of samples in genotype–phenotype studies. For future studies, it would be ideal 
to enrich for genetically related isolates, for example, isolated from the same patient or from a clonal 
outbreak, if logistically feasible. This would reduce the genetic distance and could therefore increase 
the yield of the analysis.

Our study also shows that intracellular cytotoxicity levels vary between STs. Despite causing bacte-
raemia, the ST22 and ST239 isolates were overall less cytotoxic than the ST8 isolates in our collection 
(as shown on the heatmap in Figure 4A), further corroborated by the direct cytotoxicity comparison 
between strains JE2 (ST8) and BPH3370 (ST239) (Figure 6B). The evolution of reduced Agr function-
ality (and thus cytotoxicity) in hospital-acquired ST239 and ST22 isolates has already been reported 
by our group and others and is confirmed by the InToxSa outputs (Baines et al., 2015; Collins et al., 
2008; Giulieri et al., 2018; Laabei et al., 2021; Li et al., 2016). Consistent with their reduced cyto-
toxicity and with our hypothesis of inverse correlation between toxicity and intracellular replication, 
ST239 isolates caused higher degrees of bacterial persistence in infected animal models (Baines 
et al., 2015; Li et al., 2016) and showed increased intracellular persistence in osteoblasts (Bongiorno 
et al., 2021). Within the limits of our experimental settings, the relatively lower cytotoxicity of ST239 
and ST22 isolates indicates that the amplitude of this phenotype should probably be considered 
within a genetic lineage. The inclusion of representative isolates per lineage, with defined cytotox-
icity levels, would identify cytotoxicity thresholds and perhaps allowing identification of more subtle 
genomic changes affecting phenotypes. Moreover, some of the loci detected by the convergence and 
GWAS analyses may also have more pronounced effects in some lineages than in others. For instance, 
mutations affecting tarL and secA2 may affect the export and secretion of virulence factors that are 
only present in a subset of lineages, thus explaining the absence of effect on cytotoxicity caused by 
the cognate transposon mutants (Figure 5F).

https://doi.org/10.7554/eLife.84778
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We developed InToxSa using HeLa cells, a well-defined, adherent, and non-phagocytic cellular 
model (Das et al., 2016; Stelzner et al., 2020a; Stelzner et al., 2020b). We used adherent epithelial 
cells because they can be maintained for extended infection periods and so allow the acquisition of 
useful kinetic measurements of cytotoxicity. However, we also acknowledge the limitation in using 
these cells in that they do not have the bactericidal modalities of the phagocytes encountered by 
S. aureus in the bloodstream (Brinkmann et  al., 2004; Chow et  al., 2020; Krause et  al., 2019). 
Neutrophils are among the first immune cells to engage S. aureus during bacteraemia (Brinkmann 
et al., 2004). However, neutrophils have a relatively short in vitro lifespan following their purification 
from blood and would not be well suited to an InToxSa-style assay format (Ge et al., 2020; Rosales, 
2020; Tak et al., 2013; Zwack et al., 2022). Polymorphonuclear cell lines such as HL-60, exploited in 
other ex-cellulo assays, may represent an alternative to primary neutrophils (McConville et al., 2022; 
Rose et al., 2015). These cells display some of the same important biological functions as neutrophils, 
including neutrophil extracellular traps (Scieszka et  al., 2020), critical in the clearing of S. aureus 
(Brinkmann et al., 2004; Greenlee-Wacker et al., 2014; Zwack et al., 2022). While PI uptake by 
these cells could be used as a readout of their viability, HL-60 cells also do not cover all the bacteri-
cidal enzymatic activities of primary neutrophils, a potential limitation for their use (Nordenfelt et al., 
2009; Yaseen et al., 2017).

We used InToxSa to identify S. aureus pathoadaptive mutations, enriched in bacterial populations 
that are associated with human disease (e.g., upon transit from colonising to invasive). We hypoth-
esised that these mutations would support an intracellular persistence for S. aureus. Our future 
research will focus on understanding how these genetic changes might be allowing the bacterium 
to avoid cell-intrinsic surveillance systems, such as lytic programmed cell death; the self-destructive 
processes restricting systemic progression of intracellular bacterial pathogens (Wanford et al., 2022). 
Unlike well-described intracellular Gram-negative bacteria, S. aureus does not have effector proteins 
to block lytic programmed cell death (Soe et  al., 2021). Pathoadaptive mutations such as those 
arising in the agr locus might prevent cellular injuries caused by S. aureus toxins under Agr control, 
that would be sensed by cell-intrinsic surveillance platforms such as the inflammasomes and trigger 
cell death (Krause et al., 2019; Soe et al., 2021). Loss-of-function mutations in ausA, preventing 
the biosynthesis of aureusimines might be confining S. aureus to a lysosomal compartment where 
the bacteria have the potential to replicate, and conceivably evade host surveillance mechanisms 
(Blättner et al., 2016; Flannagan et al., 2016; Grosz et al., 2014; Moldovan and Fraunholz, 2019).

Conclusion
Current large-scale comparative genomics of S. aureus bacteraemia isolates can be further refined by 
including underexplored pathogenicity traits such as the capacity of S. aureus to invade and survive 
in host cells. We have addressed this poorly characterised trait of S. aureus pathogenicity by creating 
the InToxSa assay that measures the intracellular cytotoxicity of many hundreds of S. aureus clin-
ical isolates at scale. We showcase the robustness and reproducibility of phenotypic outputs which, 
in combination with comparative and statistical genomics, have confidently identified convergent 
mutations arising in agr and ausA genes that reduced the intracellular cytotoxicity and increased the 
intracellular persistence of bacteraemia isolates during infection. The adoption of the InToxSa meth-
odology in future pheno-genomics studies would improve the detection of pathoadaptive mutations 
supporting the persistence and relapse of S. aureus infections.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Gene (S. aureus) BPH2947 GenBank Accession GCF_900620245.1

Strain, strain background 
(Escherichia coli) E. coli strain IM08B Monk et al., 2015 IM08B Electrocompetent cells

Cell line (Homo sapiens) Epithelial cells ATCC HeLa-CCL2

https://doi.org/10.7554/eLife.84778
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Chemical compound, drug Antibiotic Baxter Gentamicin 80 and 40 mg/ml

Recombinant DNA reagent Antibiotic Ambi Lysostaphin 10 mg/ml

Chemical compound, drug Nucleic marker Sigma Propidium iodide 1 mg/ml

Antibody Anti-S. aureus (Rabbit polyclonal)
WEHI-antibody 
technology platform Customised IF (1:1000)

Antibody

Anti-rabbit
(Donkey polyclonal) coupled to 
Alexa Fluor 488 Thermo Fisher-Invitrogen Cat#: A-21206 IF (1:2000)

Other Phalloidin-TRITC Sigma P1951 IF (1:4000)

Other DAPI Sigma-Merck 10236276001 IF (1:2000)

 Continued

S. aureus isolates
Clinical isolates were selected from a combined collection of 843 clinical isolates of S. aureus bacter-
aemia (Giulieri et al., 2018) that was obtained from the vancomycin substudies of the Australian and 
New Zealand Cooperative on Outcome in Staphylococcal Sepsis (ANZCOSS) study (Holmes et al., 
2011) and the Vancomycin Efficacy in Staphylococcal Sepsis in Australasia (VANESSA) study (Holmes 
et al., 2018). We selected 387 isolates to maximise the likelihood to detect phenotype–genotype 
associations by sampling different lineages and enriching for episodes where multiple isolates per 
patient were available (see Supplementary file 3).

Whole-genome sequencing
After subculturing strains twice from −80°C glycerol stock, DNA was extracted using the Janus auto-
mated workstation (PerkinElmer) or manual extraction kits (Invitrogen PureLink genomic DNA kit 
or the Sigma GenElute kit). Normalised DNA (at a concentration of 0.2 ng/ml) was prepared for 
sequencing using Nextera XT DNA (Illumina) and sequencing was performed on Illumina MiSeq 
and NextSeq platforms. Reads quality was assessed based on mean read depth and percentage 
of S. aureus reads as computed using Kraken2 (Wood et al., 2019). Reads were assembled using 
Shovill, an assembly pipeline that optimises the Spades assembler (https://github.com/tseemann/​
shovill) (Bankevich et al., 2012). Annotation was performed using Prokka, with a minimal contig size 
of 500 bp (Seemann, 2014). Assembly and annotation metrics were used for further quality control 
of the reads. Genetic distance between clinical isolates was calculated using Mash with a sketch size 
of 10,000 (Ondov et al., 2016). We used the distance matrix generated by Mash to perform MDS 
using the function ‘cmdscale()’ in base R. Multi-locus ST were inferred from the assemblies using mlst 
(https://github.com/tseemann/mlst) (Seemann, 2020a). We assessed the correlation between the 
most prevalent ST and the MDS axes using the get_correlations() function in the R package bugwas 
(Earle et al., 2016).

Variants calling: single reference
Clinical isolates’ reads were mapped to internal reference BPH2947 (accession GCF_900620245.1), 
an ST 239 reference genome that was generated from the collection. We used snippy, v4.6.0 for 
mapping and variant calling, with default settings (https://github.com/tseemann/snippy) (Seemann, 
2020b). The core-genome alignment was constructed using Snippy-core. We defined core genome as 
positions where at least 90% of the sequences had a minimum coverage of 10 reads and used Goalign 
v0.3.4 and SNP-sites v2.5.1 to extract core-genome positions. To infer a maximum likelihood phylo-
genetic tree of the clinical isolates collection we ran IQ-TREE v2.0.3 using a GTR-G4 model. We used 
HomoplasyFinder (Crispell et al., 2019) to identify homoplasic sites based on the consistency index. 
The consistency index was calculated with the following formula: (Number of nucleotides at site − 1)/
Minimum number of changes on tree.

https://doi.org/10.7554/eLife.84778
https://github.com/tseemann/shovill
https://github.com/tseemann/shovill
https://github.com/tseemann/mlst
https://github.com/tseemann/snippy
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Construction of mutants by allelic exchange
Engineering of convergent mutations in agrA, agrC, ausA, mfd, lysA, and cydA genes in the strain 
BPH3370 was performed by allelic exchange as described previously (Monk and Stinear, 2021) using 
oligonucleotides described in Brinkmann et  al., 2004; Supplementary file 7 (outlining residues 
modified by convergent mutations). Upstream and downstream regions of each mutation were PCR 
amplified and gel extracted and then a splice by overlap extension PCR was performed to generate 
each insert. Each insert was cloned into linearised pIMAY-Z vector by Seamless Ligation Cloning 
Extract (SLiCE) cloning (Zhang et al., 2012) to generate six plasmids. Each plasmid was separately 
transformed into E. coli strain IM08B (Monk et al., 2015) confirmed by colony PCR, then purified and 
transformed into S. aureus strain BPH3370 by electroporation. Mutant candidates were screened by 
Sanger Sequencing (Australian Genome Research Facility, Melbourne, VIC, AUS) and positive clones 
were validated by whole-genome sequencing on an Illumina Miseq or NextSeq550 platforms (Illumina, 
San Diego, CA, USA) to confirm their genotype. The resultant reads were mapped to the BPH3370 
reference genome and mutations were identified using snippy (v4.6.0, https://github.com/tseemann/​
snippy) (Crispell et al., 2019).

Clinical isolates library preparation
The collection of clinical isolates was prepared to be readily inoculated from 96-well microtitre plates. 
Clinical isolates were grown in 10 ml Brain Heart Infusion (BHI) broth (BD Bacto) from single colonies to 
stationary phase. Briefly, a volume corresponding to 1-unit OD600 for each culture was centrifuged at 
10,000 × g for 5 min. The bacterial pellets were washed once with 500 μl of fresh BHI and centrifuged 
again. The washed bacterial pellets were resuspended in 600 μl of storage media (BHI containing 40% 
glycerol), vortexed briefly and 200 μl were distributed across 96-well microtitre plates. To prevent 
operator and plate effect biases, the 387 isolates were randomly distributed with each plate to include 
29 distinct isolates, represented in non-contiguous technical triplicates. Built-in controls for cytotox-
icity were included in each plate. The wild-type JE2 strain was used as positive cytotoxicity control and 
the BPH3757 strain, an ST239 isolate bearing the T88M agrA mutation described in Giulieri et al., 
2018, as a non-cytotoxic control. Six wells were kept empty to monitor the viability of non-infected 
controls and account for residual PI uptake. Plates were stored at −80°C. Each plate was at least 
tested in three biological replicates.

Tissue culture
HeLa-CCL2 cells (sourced from the ATCC) were maintained and propagated in Dubelcco’s modified 
Eagle medium (DMEM) + GlutaMAX (4.5 g/l D-glucose and 110 mg/l sodium pyruvate) supplemented 
with heat-inactivated 10% foetal bovine serum (Gibco) and in absence of antibiotics. The cells were 
regularly tested for the presence of mycoplasma.

InToxSa assay
S. aureus isolates were inoculated directly from stabbed frozen parsed plates stock into 100 μl of BHI 
broth dispatched in flat bottom 96-well microtitre plates. Inoculated plates were incubated for 16 hr in 
a heat-controlled plate reader (CLARIOstar plate reader, BMG Labtech) set at 37°C. Bacterial growth 
was assessed by OD600 measurement every 10 min. The endpoint optical densities of cultures were 
used to infer bacterial density (1-unit OD600 corresponding to 5 × 108 bacteria/ml). Bacterial cultures 
were standardised and serially diluted in DMEM to reach an MOI 10. 100 μl of bacterial suspension 
were added to infect 40,000 HeLa-CCL2 cells grown (70% confluence per well) in 96-well black plates, 
clear bottom (Sigma). Infection was synchronised by centrifugation at 500 × g for 10 min (Eppendorf 
5810R) at room temperature. Infected plates were incubated 2 hr at 37°C and 5% CO2 to allow for 
S. aureus internalisation. The infective media was then discarded, and cells washed once with sterile 
phosphate-buffered saline (PBS) and further incubated 1 hr with 100 μl DMEM containing cell imper-
meable antibiotics (80 μg/ml gentamicin [Baxter] and 10 μg/ml of lysostaphin [Ambi]) at 37°C and 5% 
CO2 (Kim et al., 2019). This first step of antibiotic-protection assay was followed by another using 
a lower antibiotic concentration (40 μg/ml gentamicin and 10 μg/ml lysostaphin), in media supple-
mented with 5% fetal bovine serum (Gibco), and 1 μg/ml PI, a live cell-impermeant nucleic acid dye 
(Sigma). Plates were then incubated in the CLARIOstar Plus plate reader (BMG Labtech) set at 37°C 
and 5% CO2 throughout the infection (up to 20 hr post-infection). The fluorescence signal emitted by 

https://doi.org/10.7554/eLife.84778
https://github.com/tseemann/snippy
https://github.com/tseemann/snippy
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PI-positive cells was acquired every 6 min from each well (excitation at 535 nm, emission at 617 nm, 
using the spiral well scanning mode with 50 flashes per well). Non-infected control cells were permea-
bilised with 0.1% Triton X-100 to determine the maximum level PI uptake and HeLa cell death.

High-content imaging
The Operetta high-content microscope (PerkinElmer) was employed to accurately quantify and analyse 
intracellular persistence at the single-cell resolution. HeLa-CCL2 cells were seeded in Cell Carrier-96 
black and optically clear bottom plates (PerkinElmer) to reach a density of 15,000 cells per well at the 
day of infection. HeLa cells were infected as described in the above section.

Post-infection, cells were washed twice with sterile PBS and fixed with 40 μl of freshly prepared 4% 
paraformaldehyde (Thermo Fisher Scientific) for 10 min. Fixed cells were further washed five times and 
stored at 4°C in PBS. Fixed cells were first permeabilised with 40 μl of 0.2% Triton X-100 for 3 min, 
washed thrice with PBS, and incubated 1 hr in 40 μl of blocking solution (PBS-bovine serum albumin 
[BSA] 3%). Bacteria were detected with polyclonal antibodies raised in rabbits against whole fixed 
cells of S. aureus USA300 strains, JE2::spa, BPH2919, and BPH3672 (WEHI antibody technology plat-
form, https://www.wehi.edu.au/research/research-technologies/antibody-technologies). Sera were 
used at 1:1000, diluted in PBS-BSA 3%, Tween 0.05% for 5 hr at room temperature. Wells were then 
washed thrice with PBS and incubated 45 min with a secondary antibody (donkey anti-rabbit coupled 
to Alexa 488, 1:2000 dilution, Invitrogen) in PBS-BSA 3% containing 0.05% Tween-20 (Sigma) and 10% 
normal donkey serum (Abcam). Wells were washed thrice with PBS and incubated with Phalloidin-
TRITC (1:4000) and DAPI (1:4000) (Sigma) in PBS for 15 min. Finally, wells were washed five times with 
PBS and covered with 200 μl of PBS. Plates were covered with aluminium foil and stored at 4°C until 
image acquisition on the Operetta microscope.

Confocal microscopy
HeLa-CCL2 grown on coverslips were infected using the same conditions described above. Cover-
slips were treated with PBS supplemented with 1% BSA and 0.2% Triton X-100 for 20 min at room 
temperature to permeabilise cells and incubated overnight in a blocking buffer (PBS supplemented 
with 1% BSA and 0.1% Tween-20). Coverslips were then probed 1 hr at room temperature with an anti-
LAMP1 monoclonal antibody (1:250, clone H4A3 [mouse], Developmental Studies Hybridoma Bank) 
and 1:1000 polyclonal anti-S. aureus diluted in blocking buffer supplemented with 10% normal goat 
serum (Abcam). Coverslips were washed thrice with PBS then incubated overnight at 4°C with 1:2000 
anti-rabbit (488), anti-mouse (647) secondary antibodies diluted in blocking buffer supplemented with 
10% normal goat serum. Coverslips were then incubated 7 min with DAPI (1:5000), washed five times 
and mounted in Prolong Gold antifade (Thermo Fisher Scientific). Samples were imaged on the Zeiss 
LSM780 confocal microscope.

High-content imaging acquisition and analysis
Cells were analysed using the Operetta CLS high-content analysis system (PerkinElmer). For each well, 
images were acquired in a single plane at 11 non-overlapping fields of view (675 × 508 μm/1360 × 
1024 pixels in size) using a ×20 PLAN long working distance objective (NA 0.45). DAPI fluorescence 
(HeLa cell nuclei) was imaged with the filter set: excitation = 360–400 nm, emission: 410–480 nm; 50 
ms exposure. A488 fluorescence (S. aureus) was imaged with the filter set: excitation = 460–490 nm, 
emission = 500–550 nm; exposure = 200 ms. A594 fluorescence (HeLa actin stained by Phalloidin-
TRITC) was imaged with the filter set ‘StdOrange1/Cy3’ filter set (excitation: 520–550 nm, emission: 
560–630 nm; 0.5-s exposure).

Image processing and analysis were performed using the PhenoLOGIC machine-learning option 
in the Harmony software (PerkinElmer, v4.1). Nuclei were segmented from the DAPI channel using 
the ‘Find Nuclei algorithm’ (Method B, Area filter >40 μm2, Common Threshold of 0.4). Cells were 
segmented from the A594 channels using the Find Cells algorithm (Method C, Area filter >100 μm2, 
Common Threshold of 0.5). The A488 signals corresponding to S. aureus were further processed using 
a sliding parabola (curvature, 50 pixels) and Gaussian filter (filter width, 1 pixel) to remove noise and 
improve the signal-to-noise ratio. S. aureus were segmented by applying the Find Spots algorithm 
(Method A, Relative Spot Intensity 0.280, Splitting Coefficient 0.5).

https://doi.org/10.7554/eLife.84778
https://www.wehi.edu.au/research/research-technologies/antibody-technologies
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Processing of PI fluorescence signals
For every 96-well plate, the PI uptake data for each well at each timepoint were standardised to 
the JE2 strain control using proportion of maximum scoring (POMS): (PI uptake − min(Pi uptake 
[JE2]))/range(PI uptake [JE2]). Experiments with less than two JE2 replicates available per plate were 
excluded from our analyses. Standardised data were used to fit a cubic smoothing spline (Little, 2013) 
using the R function ​smooth.​spline(). Technical replicates within each plate were classified as outliers 
and excluded if >10% of their timepoint values differed by more than 1.5 times the interquartile range 
(Tukey method), between the fitted value and the mean for a given isolate. After excluding outlier 
replicates, fitted data were used to calculate the following PI uptake parameters: AUC, maximum PI 
uptake rate (rmax), peak PI uptake (μmax), time to maximum PI uptake rate (t(rmax)), time to peak PI uptake 
(t(μmax)), trough PI uptake, time of trough, and final PI uptake.

Dimensionality reduction of PI uptake data
Principal component analysis was performed using the ‘​dudi.​pca()’ function in the R package 
‘adegenet’ and the randomForest package in R was used for fitting an unsupervised random forest 
model. We used the similarity matrix generated by the model to define similarity cluster of PI uptake. 
We used the output of the RF model to calculate the importance of each PI uptake parameter defined 
as mean decrease in Gini index and mean decrease in accuracy (Breiman, 2001).

PI uptake GWAS
We transformed the mean PI uptake AUC data using the automated normalisation package best-
Normalize in R. A GWAS using the normalised AUC data and the 158,169 core-genome variants (all 
positions where at least 90% of the strains had at least 10 reads coverage, see above) obtained after 
mapping isolates reads to reference genome BPH2947. All 387 isolates were included in the GWAS, 
including serial isolates from the same patient, as this outcome is bacterial and not expected to be 
affected by the host (Tonkin-Hill et al., 2022). To correct for the population structure, we used the 
factored spectrally transformed linear mixed models (FaST-LMM) implemented in pyseer v1.3.6 (Lees 
et al., 2018). Random effects in Fast-LMM were computed from a kinship matrix based on the core-
genome SNPs generated by Gemma v0.98.1 (Zhou and Stephens, 2012). The Bonferroni method 
was used to correct p values for multiple testing. We performed the GWAS using single variants and 
the gene-burden test implemented in pyseer. We excluded synonymous mutations for single variants 
and gene-burden GWAS. For the single variants GWAS, only mutations with a minimum allele fraction 
(MAF) of 0.01 (as suggested in the pyseer documentation [https://pyseer.readthedocs.io/en/master/​
index.html]) were kept and at least two independent acquisitions across the phylogeny. For the gene-
burden GWAS, we aggregated rare mutations (MAF <0.01), with 3072 coding sequences of the refer-
ence and modelled the association of the PI AUC with the presence/absence of any protein-altering 
mutations in each BPH2947 gene. For consistent annotation of mutations, we identified BPH2947 
genes homologs using BLASTP and annotated FPR3757 genes using aureowiki (Fuchs et al., 2018) 
and Microbesonline (Alm et al., 2005). The GWAS analysis was run using a customised in-house pipe-
line (https://github.com/stefanogg/CLOGEN).

GWAS power calculation
We used BacGWASim (Saber and Shapiro, 2020) to simulate a genotype matrix with 1000 and 
150,000 variants for a range of sample size between 300 and 9600. We set mutation rate at 0.06 
and recombination rate at 0.01. We simulated 10 phenotype replicates with 16 true causal variants 
and a heritability of 0.5. We then run pyseer on each replicated simulation using the same pipeline 
described above. As in Denamur et al., 2022, power was calculated as the fraction of identified vari-
ants based on a Bonferroni corrected p value below 0.05.

Determination of genetic pairs with contrasting PI uptake
Isolate pairs for the convergent evolution analysis were identified by screening pairs separated by 
less than 200 mutations distance for statistically significant differences in the PI uptake AUC (Mann–
Whitney test), wherein an isolate causing low PI uptake (isolate-2) was compared to a reference isolate 
causing higher PI uptake (isolate-1). The genetic distance between closely related isolates was calcu-
lated using Snippy and is based on the number of variants identified when mapping the reads of 

https://doi.org/10.7554/eLife.84778
https://pyseer.readthedocs.io/en/master/index.html
https://pyseer.readthedocs.io/en/master/index.html
https://github.com/stefanogg/CLOGEN
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isolate-2 on the draft assembly of isolate-1 (Higgs et al., 2022). To avoid biases related to assembly 
errors and uneven reads coverage between the two isolates, variant calls were filtered as previously 
described (https://github.com/stefanogg/staph_adaptation_paper; Giulieri et  al., 2022a; Giulieri, 
2022). Non-redundant and phylogenetically independent genetic pairs were identified by manual 
inspection of the phylogenetic tree.

Genetic pairs analysis
Mutations identified in genetic pairs and filtered as described above were further characterised using 
a multilayered annotation strategy as previously described (Giulieri et al., 2022a). Firstly, mutated 
coding regions (amino acid sequences) across draft genomes were clustered using CD-HIT. We then 
used BLASTP to identify homologs of each cluster within the S. aureus USA300 FPR3757 reference 
genome that was annotated using the AureoWiki repository (Fuchs et al., 2018), with a 90% identity 
and 50% coverage threshold. As genetic pairs were phylogenetically independent and non-redundant, 
emergence of the same mutation or mutations in the same locus in multiple pairs indicated conver-
gent evolution and was suggestive of positive selection. Based on this, we ranked USA300 FPR3757 
homologs according to the number of pairs with mutations.

Comparison of PI uptake AUC between phylogenetically independent 
pairs with or without homoplasic mutations
A set of phylogenetically independent pairs was sampled from the tree using the R package ggtree. 
The impact of the presence/absence of homoplasic mutations on the PI uptake AUC difference within 
pairs was modelled using linear regression. The sampling and regression were repeated in 100 repli-
cates. As this approach is not suitable for p-value statistical significance, the distribution of the regres-
sion coefficient beta of the replicates was used to infer the statistical support for the associations of 
the homoplasic mutations with the PI uptake phenotype.

Code and data availability
Scripts to process PI uptake data and to perform genomic analyses are available on github at https://​
github.com/stefanogg/InToxSa (copy archived at Giulieri and Guerillot, 2023). The code for genomic 
analyses is available on https://github.com/stefanogg/CLOGEN (copy archived at Giulieri, 2023) 
(GWAS analysis), and on https://github.com/stefanogg/staph_adaptation_paper (Giulieri, 2022) 
(comparative genomics of genetic pairs).

Whole-genome sequences of the 387 clinical strains are available in the European Nucleotide 
Archive under Bioproject accession number PRJEB27932.

Aureusimine B identification
Bacterial extracts were isolated from 30 ml cultures grown in TSB at 37°C overnight under agitation. 
Bacterial cells were pelleted by centrifugation at 4000 × g during 30 min and the culture superna-
tants were sterilised by passage through a 0.22 mM filter. For each strain, 10 ml of supernatant were 
added to an equal volume of ethyl acetate in glass tubes, vortexed and allowed to extract at room 
temperature overnight. Ethyl acetate extracts were dried in vacuo. Dried ethyl acetate extracts were 
resuspended in 100 ml methanol and 2 ml of each sample was analysed by HPLC using the Shimadzu 
Prominence HPLC system coupled to a SPD-M20A diode array detector. The column oven (CTO-
20A) was set to 40°C and aureusimine B was separated on Kinetex C18, 75 × 3 mm, 2.6 μm column 
(Phenomenex). Purified aureusimine B was used as reference standard (Bioaustralis Fine Chemicals). 
All used chemicals were of analytical grade.

Samples were run with water, 0.1% trifluoroacetic acid (solvent A) and acetonitrile (solvent B). The 
gradient elution was performed on the HPLC at a flow rate of 0.5 ml/min as follows: 10% B for 3.5 min, 
10–100% B over 12.5 min, 100–10% B over 1 min, then 10% B for 7 min (total run time, 24 min).

https://doi.org/10.7554/eLife.84778
https://github.com/stefanogg/staph_adaptation_paper
https://github.com/stefanogg/InToxSa
https://github.com/stefanogg/InToxSa
https://github.com/stefanogg/CLOGEN
https://github.com/stefanogg/staph_adaptation_paper
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