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Abstract Drug resistance is a known risk factor for poor tuberculosis (TB) treatment outcomes, 
but the contribution of other bacterial factors to poor outcomes in drug- susceptible TB is less well 
understood. Here, we generate a population- based dataset of drug- susceptible Mycobacterium 
tuberculosis (MTB) isolates from China to identify factors associated with poor treatment outcomes. 
We analyzed whole- genome sequencing (WGS) data of MTB strains from 3196 patients, including 
3105 patients with good and 91 patients with poor treatment outcomes, and linked genomes to 
patient epidemiological data. A genome- wide association study (GWAS) was performed to identify 
bacterial genomic variants associated with poor outcomes. Risk factors identified by logistic regres-
sion analysis were used in clinical models to predict treatment outcomes. GWAS identified fourteen 
MTB fixed mutations associated with poor treatment outcomes, but only 24.2% (22/91) of strains 
from patients with poor outcomes carried at least one of these mutations. Isolates from patients 
with poor outcomes showed a higher ratio of reactive oxygen species (ROS)- associated mutations 
compared to isolates from patients with good outcomes (26.3% vs 22.9%, t- test, p=0.027). Patient 
age, sex, and duration of diagnostic delay were also independently associated with poor outcomes. 
Bacterial factors alone had poor power to predict poor outcomes with an AUC of 0.58. The AUC 
with host factors alone was 0.70, but increased significantly to 0.74 (DeLong’s test, p=0.01) when 
bacterial factors were also included. In conclusion, although we identified MTB genomic mutations 
that are significantly associated with poor treatment outcomes in drug- susceptible TB cases, their 
effects appear to be limited.

Editor's evaluation
In this useful study, a Genome Wide Association- type analysis is applied to clinical Mycobacterium 
tuberculosis isolates to discover genetic polymorphisms linked to poor tuberculosis outcomes. The 
evidence for the detected associations is still incomplete, as the corresponding polymorphisms 
are not adequate to power a prediction model for infection outcome, although key host factors – 
including patient age, sex, and duration of diagnostic delay (which have stronger predictive value) – 
appear to enhance predictive capacity. The work will be of interest to clinical microbiologists.
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Introduction
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is responsible for more deaths 
globally than any other single infectious agent, causing nearly 1.5 million deaths and an estimated 
10 million new cases each year (World Health Organization, 2022). Successful treatment of TB not 
only cures the patient but also prevents disease transmission and the development of difficult- to- treat 
drug- resistant strains. Treatment outcomes are therefore important metrics for assessing the effective-
ness of national TB control programs (Dheda et al., 2017; Migliori et al., 2019). While approximately 
86% of patients with drug- susceptible TB are cured with the standard four- drug treatment (World 
Health Organization, 2022), there remains a substantial subset of patients who fail treatment. To 
formulate strategies that will reduce treatment failures, it would be helpful to first define the risk 
factors associated with poor outcomes.

There are host factors that are well known to be associated with treatment failure, including poor 
patient adherence (Alipanah et al., 2018), sex, age (Imperial et al., 2018), diagnostic delay (Lestari 
et  al., 2020), co- infection with the human immunodeficiency virus (HIV) and TB treatment history 
(Bastos et al., 2017; Chenciner et al., 2021), but we wondered whether the genetic composition of 
the infecting strain might also contribute to poor outcomes. While drug resistance is the major bacte-
rial risk factor for TB treatment failure (Lange et al., 2019; Mirzayev et al., 2021), a growing number 
of genomic studies suggest that other bacterial determinants may also be risk factors. For example, 
specific mutations in metabolism- related genes of MTB could lead to drug tolerance (Hicks et al., 
2018; Torrey et al., 2016), thereby increasing the risk of developing resistance and relapsing after 
treatment (Brauner et al., 2016; Liu et al., 2020a). (Liu et al., 2022) recently showed that genetic 
mutations in the gene encoding the transcriptional regulator resR can cause antibiotic resilience and 
are associated with the acquisition of drug resistance and treatment failure. Although these genetic 
polymorphisms in the MTB genome do not directly lead to drug resistance, they are significantly more 
common in drug- resistant bacteria (Hicks et al., 2018; Liu et al., 2022). Because drug resistance is 
such a dominant risk factor for treatment failure, a search for other bacterial genomic determinants 
associated with treatment failure is best performed in drug- susceptible MTB isolates.

To study the role of bacterial genomic determinants, other than drug resistance mutations, that 
might be associated with poor treatment outcomes, we analyzed drug- susceptible TB isolates from 
new TB cases collected in population- based cohort studies at three different sites in China. The bacte-
rial determinants we identified and the patient characteristics were then used to build a clinical predic-
tion model to estimate the contribution of bacterial factors to poor TB treatment outcomes.

Results
Characteristics of the study population and MTB isolates
The pooled study population from the three different sites in China consisted of 3496 new cases of 
drug- susceptible TB. The patients were divided into three groups based on their treatment outcomes: 
good outcomes (88.8%, 3105/3496), poor outcomes (2.6%, 91/3496), and other outcomes (8.6%, 
300/3496). To explore the bacterial factors associated with poor TB treatment outcomes, we first 
excluded patients with outcomes unlikely to be associated with bacterial factors, including patients 
lost to follow- up, non- TB deaths, and unknown outcomes. Ultimately, a total of 3196 new cases with 
drug- susceptible TB were included in the study (Figure 1A): 3105 with good outcomes and 91 with 
poor outcomes (failure, 25; TB death, 15; transferred for MDR, 4; and relapse, 47). The study patients 
were recruited from Shanghai (49.1%, 1569/3196), Sichuan (30.6%, 979/3196), and Heilongjiang 
(20.3%, 648/3196) provinces, China (Figure  1A). They had a mean age of 42.1 ± 18.2  years and 
72.4% (2313/3196) were male. WGS was performed on all 3196 isolates, with an average depth of 
100×and average genome coverage of 98%. Phylogenetic analysis of WGS data showed that nearly 
three- quarters of the isolates were lineage 2 (74.2%, 2373/3196), with more than half belonging to the 
modern Beijing sublineage L2.3 (54.9%, 1754/3196) (Figure 1B).

Identification of a functional mutation set for predicting treatment 
outcomes
GWAS of the MTB isolates identified fourteen fixed nonsynonymous variants associated with poor 
treatment outcomes (Figure  2A). These variants were distributed in thirteen genes involved in 

https://doi.org/10.7554/eLife.84815
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intermediary metabolism, and respiration (cobN, dlaT, metA, Rv0648, and Rv1248c), cell wall and 
cell processes (ctpB, Rv2164c, and Rv1717) and virulence (otsB1 and Rv3168), with the otsB1 G559D 
mutation showing the strongest association (p=7.3 × 10–10) (Figure 2—source data 1).

Unfixed mutations are thought to represent adaptive mutations emerging within the host (Nimmo 
et al., 2020). To investigate whether unfixed mutations affect treatment outcomes, we performed a 

Figure 1. Sample origin and genetic structure of Mycobacterium tuberculosis. (A) Geographic location of the samples analyzed and study cohort 
characteristics. (B) The phylogenetic tree of 3196 drug- susceptible tuberculosis strains. The different colors on the branches indicate different lineages 
and sublineages. The outside circle indicates the treatment outcomes of corresponding patients.

https://doi.org/10.7554/eLife.84815
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GWAS analysis of unfixed mutations and found that 237 mutations were associated with poor treat-
ment outcomes (Figure 2—figure supplement 1). The frequency of these mutations was mostly in the 
range of 5–10%, and they were predominantly found in genes whose encoded proteins are involved 
in cell wall and cell processes, intermediary metabolism, and respiration (Figure 2B). When the genes 
carrying unfixed mutations were ranked according to the significance of their associations with poor 
outcomes, the highest ranked gene was gatA, which has been previously associated with rifampicin 
tolerance (Cai et al., 2020; Figure 2C).

Gene expression patterns under stress conditions can provide important insights into the gene’s 
function (Bosch et al., 2021). We, therefore, analyzed the genes containing GWAS- identified fixed 
mutations for changes in expression after exposure to first- line drugs and hypoxic conditions. The 

Figure 2. Generation of the functional mutation set. (A) Manhattan plots of genome- wide association study (GWAS) for fixed single nucleotide 
polymorphisms (SNPs) associated with poor treatment outcomes. The dashed red line highlights the Bonferroni- corrected threshold (p=5.04 × 10–7). 
(B) Distribution of GWAS identified unfixed SNPs across gene functional categories. CWP, cell wall, and cell processes; IMR, intermediary metabolism, 
and respiration; CH, conserved hypotheticals; LM, lipid metabolism; IP, information pathways; RP, regulatory proteins; VDA, virulence, detoxification, 
adaptation; UN, unknown. (C) Gene prioritization strategies (based on p- value rank) for significantly associated unfixed SNPs. (D) Gene expression from 
RNA- seq (log2FPKM) of Rv2164c under drug pressure and hypoxia.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. GWAS identified fixed SNPs.

Figure supplement 1. Manhattan plots of unfixed single nucleotide polymorphisms (SNPs) associated with poor treatment outcomes.

Figure supplement 2. Gene expression (log2FPKM) from RNA- seq after drug exposure and hypoxia.

Figure supplement 3. Within- host frequency distribution of genome- wide association study (GWAS)- identified unfixed mutations.

Figure supplement 4. Manhattan plot of genome- wide association study (GWAS) analysis based on the Malawi dataset.

https://doi.org/10.7554/eLife.84815
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expression of some of the genes increased under these conditions (drug- treated: Rv2164c, cobN, 
Rv0260c; hypoxia: Rv2164c, otsB1, papA1), but only Rv2164c (Figure 2D) contained both GWAS- 
identified fixed (Figure  2A) and unfixed (Figure  2C) mutations. The expression of other genes 
decreased (drug- treated: otsB1, Rv0648, Rv1248c, Rv3168; hypoxia: Rv0648) (Figure 2D; Figure 2—
figure supplement 2), suggesting these genes could be involved in adaptation to drug and hypoxic 
stress.

Ongoing mutational signatures of ROS associated with TB treatment 
outcomes
Previous reports have suggested that poor TB treatment outcomes may be associated with increased 
ROS mutational signatures (C>T/G>A mutations) (Liu et al., 2020b; Moreno- Molina et al., 2021). To 
determine whether the increased ROS signatures were the result of mutations that were fixed before 
the infection or were unfixed because they arose de novo during infection, we compared the distribu-
tion of six mutation types in fixed and unfixed mutations. In the fixed mutations, there was no signif-
icant difference in the proportions of ROS mutational signatures for isolates from patients with good 
or poor outcomes (43.9% vs 44.2%, t- test, p=0.364, Figure 3A). In the unfixed de novo mutations, 

Figure 3. Bacterial whole- genome mutation features between patients with different treatment outcomes. (A) The proportion of six mutation types 
in all fixed and unfixed mutations (t- test, mean range: mean ± SE). (B) Distribution of total unfixed mutations and nonsynonymous unfixed mutations 
across gene functional categories (t- test). VDA, virulence, detoxification, adaptation; LM, lipid metabolism; IP, information pathways; CWP, cell wall, and 
cell processes; ISP, insertion seqs and phages; IMR, intermediary metabolism, and respiration; RP, regulatory proteins; CH, conserved hypotheticals; 
UN, unknown. (C) Comparison of nucleotide genetic diversity between isolated patients with good and poor outcomes (t- test). (D) Distribution of 
Mycobacterium tuberculosi (MTB) lineages and sublineages (chi- square test). p- value <0.05 was considered significant. *, p<0.05, ns, no significant.

https://doi.org/10.7554/eLife.84815
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however, the ROS mutational signatures were significantly more frequent in isolates from patients 
with poor outcomes (26.3% vs 22.9%, t- test, p=0.027, Figure 3A). A further analysis of the distribu-
tion of unfixed mutations across gene functional categories found no difference in the distribution 
of total unfixed mutations between good and poor outcomes (Figure 3B), but isolates from patients 
with poor outcomes showed a higher percentage of nonsynonymous mutations (5.7% vs 3.9%, t- test, 
p=0.048, Figure 3B) in genes belonging to the functional category ‘information pathway’.

Nucleotide diversity and the characteristics of the different lineages of MTB are thought to be 
determinants of virulence and thus may affect TB treatment outcomes. (O’Neill et al., 2015; Tong 
et al., 2022). An analysis of nucleotide diversity revealed no significant differences between isolates 
from patients with good or poor outcomes (2.0 × 10–4 vs 2.6 × 10–4, t- test, p=0.156, Figure 3C). In 
contrast, an analysis of lineage distribution showed that strains belonging to the modern Beijing 
lineage L2.3 were significantly more prevalent in patients with good outcomes (55.5% vs 44.0%, chi- 
square test, p=0.038, Figure 3D). Although lineage L2.3 has been associated with high virulence and 
increased transmission (Tong et al., 2022), lineage was not associated with poor treatment outcomes 
in the populations studied.

GWAS-identified mutations help predict TB treatment outcomes
To identify the risk factors for poor TB treatment outcomes, we used logistic regression that included 
both the patients’ clinical characteristics and the bacterial factors associated with poor outcomes. We 
found that patient age, sex, duration of diagnostic delay, and the GWAS- identified fixed mutations 
were all independently associated with poor TB outcomes (Figure 4A). We then performed logistic 

Figure 4. Effects of genome- wide association study (GWAS) identified mutations on tuberculosis treatment outcomes. (A) Univariable and multivariable 
logistic regression on the risk factors for poor treatment outcomes. (B) Nomogram for predicting the probability of poor treatment outcomes. (C) ROC 
curves are based on risk factors that may be predictive of tuberculosis treatment outcomes. p- value <0.05 was considered significant. *p<0.05, **p<0.01, 
***p<0.001.

https://doi.org/10.7554/eLife.84815
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regression with the identified risk factors to construct a clinical prediction model that is depicted 
graphically by the nomogram (Figure  4B). For example, in a 65- year- old male TB patient with a 
4 month delay in diagnosis, the risk of poor outcome would increase from 5.4 to 17.4% if his MTB 
isolate contained at least one GWAS- identified mutation.

The ROC curve for the clinical prediction model based only on host risk factors had an AUC of 
0.70, which was significantly higher than the AUC of 0.58 (DeLong’s test, p<0.001) when only GWAS- 
identified bacterial mutations were included (Figure 4C). However, when both host factors and GWAS- 
identified mutations were included in the model, the AUC for predicting poor treatment outcomes 
increased significantly (DeLong’s test, p=0.01) from 0.70 to 0.74, with a sensitivity of 0.85 and speci-
ficity of 0.55 (Figure 4C). Based on this analysis, it appears that genomic variants of the infecting MTB 
strain may be markers for poor tuberculosis treatment outcomes.

Discussion
To our knowledge, this is the first comprehensive evaluation of the contribution of bacterial genetic 
factors to poor treatment outcomes in drug- susceptible TB patients. Although our analysis showed 
that, as expected, patient characteristics of age, sex, and duration of diagnostic delay were associated 
with poor TB treatment outcomes, it also found fourteen bacterial genomic variants that were asso-
ciated with an increased risk of poor treatment outcomes. The best clinical prediction model, with an 
AUC of 0.74, incorporates both host and bacterial risk factors. In a setting where the genomes of all 
MTB isolates are sequenced, these risk factors may provide a rationale for developing personalized 
approaches to tuberculosis treatment.

GWAS has yielded remarkable advances in the understanding of complex traits and has identified 
hundreds of genetic risk variants in humans (Uffelmann et  al., 2021), including genetic polymor-
phisms associated with increased susceptibility to TB (Quistrebert et al., 2021; Zheng et al., 2018). 
With the increasing availability of bacterial WGS data, it is now possible to use GWAS to probe 
the relationship between pathogen genotypes and clinical disease phenotypes. GWAS has identified 
genetic determinants of MTB drug resistance (Coll et al., 2018; Farhat et al., 2013), TB transmission 
(Sobkowiak et al., 2020), virulence (Genestet et al., 2022) and host preference (Luo et al., 2022). 
In this study, GWAS was used to identify bacterial genetic variants associated with poor treatment 
outcomes in patients with drug- susceptible TB and assess their impact on outcomes.

While this study found mutations in the MTB genome that were associated with poor treatment 
outcomes, models that consider only bacterial factors were poor predictors of outcome, with an 
AUC of only 0.58. Furthermore, only 24.2% (22/91) of patients with poor outcomes carried at least 
one of the GWAS- identified fixed mutations (Figure 2—source data 1), and therefore these muta-
tions played no role in the majority of poor outcomes. The 237 GWAS- identified unfixed mutations 
are diverse (Figure 2—figure supplement 1) and have a mutation frequency that is generally only 
5%–10% (Figure 2—figure supplement 3). The low frequency of these diverse unfixed mutations 
suggests they may confer a relatively small selective advantage without any preferential mutation 
types or increasing mutation frequency. In addition, none of the GWAS- identified unfixed mutations 
were among the 14 GWAS- identified fixed mutations, suggesting the unfixed mutations merely reflect 
individual genetic features of the particular MTB isolate with no evidence of homoplastic fixation in 
the bacterial population.

There is evidence, although limited, that genes carrying the fourteen fixed GWAS- identified muta-
tions play a role in the response to first- line drug and hypoxic stress. The otsB1 gene harbors the 
mutation with the strongest association and encodes trehalose- 6- phosphate phosphatase, which has 
been associated with rifampicin tolerance under hypoxic stress (Jakkala and Ajitkumar, 2019). The 
E2 component of pyruvate dehydrogenase, encoded by dlaT, is required for optimal MTB growth and 
resistance to reactive nitrogen intermediates (RNI) and immune killing by host cells (Shi and Ehrt, 
2006; Tian et al., 2005). Most of the genes carrying the fourteen GWAS- identified fixed mutations 
were rarely reported in previous large- scale GWAS of drug- resistant MTB (Coll et al., 2018; Farhat 
et al., 2013; Naz et al., 2023), and none of the fourteen mutations were reported in these studies. 
However, two of the genes in which the mutations were found had been previously identified as 
potentially associated with first- line drug resistance (Farhat et al., 2013): CtpB, a probable cation- 
transporter P- type ATPase B; and MetA, a probable homoserine O- acetyltransferase. Our inference 
that the fourteen fixed mutations had only limited effects on treatment outcome would explain why: 

https://doi.org/10.7554/eLife.84815
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they were not identified in previous studies; isolates from only 24.2% (22/91) of patients carried any of 
these 14 mutations; and none of the mutations were shared amongst all 22 patients.

The mutations may be epistatic adaptations suited to the genomic characteristics of each individual 
strain. The GWAS- identified mutations were also present in some patients with good outcomes but 
were less frequent than in patients with poor outcomes. Although patient information was unavailable 
concerning other known host risk factors such as adherence to the treatment regimen and comorbid-
ities such as HIV co- infection, diabetes, smoking, and low BMI (Kamara et al., 2022; Leung et al., 
2015; Vernon et al., 2019), our clinical prediction model still revealed that host factors are significantly 
more important determinants of poor outcomes than bacterial factors. Nevertheless, we believe that 
our study has shown that bacterial genomic factors can also contribute to poor outcomes.

Sample size and the classification of treatment outcomes are important challenges when exploring 
the association of bacterial factors with poor outcomes. Because standard first- line regimens cure at 
least 85% of drug- susceptible TB patients, this study had to pool data from three sites with a total of 
3496 new cases to obtain 91 patients with poor outcomes. We excluded 300 patients who either died 
from non- TB causes, were lost to follow- up, or had unknown outcomes. We attempted to validate our 
findings with a dataset of 1397 new drug- susceptible TB cases from Malawi (Guerra- Assunção et al., 
2015), but were unable to replicate the GWAS analysis because the only poor treatment outcome in 
the Malawi dataset was death, and it was impossible to distinguish the patients who succumbed to TB 
from those who died from non- TB causes (Figure 2—figure supplement 4).

In conclusion, we found that there are bacterial genomic variants that are significantly associated 
with poor treatment outcomes in drug- susceptible TB patients. Although host factors are clearly more 
important, the most accurate models for predicting poor treatment outcomes with drug- susceptible 
TB incorporate both host and bacterial risk factors. In the future, it may be possible to identify patients 
at high risk for treatment failure by analyzing the characteristics of both the host and the bacterial 
genome of the infecting strain. This could make it possible to identify patients requiring longer or 
individualized treatment regimens and thus improve cure rates for drug- susceptible TB.

Materials and methods
Selection of patients and samples
A strain database search was performed for TB patients treated during 2009–2020 at three study sites 
in Shanghai, Sichuan, and Heilongjiang, China. For each of the 4374 TB patients registered during this 
period, a pretreatment sputum sample was decontaminated and inoculated onto Löwenstein- Jensen 
(LJ) medium (Heilongjiang) or in liquid medium (Shanghai and Sichuan) and observed for 6–8 weeks. 
Culture- positive isolates were re- cultured on LJ medium for 3–4 weeks. Colonies were scraped from 
the surface of the LJ slopes and the DNA was isolated for WGS. WGS data and the patients’ demo-
graphic and clinical features were obtained from a published study (Li et al., 2022). All new cases 
susceptible to first- line drugs (rifampicin, isoniazid, pyrazinamide, ethambutol) by genotypic drug- 
susceptibility testing (gDST), and whose records contained treatment outcomes, were selected for 
the study.

The WHO recommended treatment outcome definitions for TB are cured, treatment completed, 
treatment failed, died, lost to follow- up and not evaluated (Linh et  al., 2021). Of these, patients 
who died were divided into deaths from TB and non- TB, and those not evaluated included cases 
transferred for treatment of multidrug- resistant tuberculosis (MDR- TB) and cases whose treatment 
outcome was unknown. For the current study, TB treatment outcomes were grouped into three cate-
gories: (1) good outcomes -- cured and treatment completed; (2) poor outcomes -- treatment failures, 
deaths from TB, transferred for MDR and relapse; and (3) other -- lost to follow- up, non- TB deaths and 
unknown outcome.

SNPs calling, resistance prediction, and phylogenetic reconstruction
A previously described pipeline was used for calling single nucleotide polymorphisms (SNPs) (Chen 
et al., 2021). Briefly, the Sickle tool was used to trim WGS data to retain reads with a Phred base 
quality above 20 and a length greater than 30 nucleotides. Reads were mapped to the MTB H37Rv 
reference strain (GenBank AL123456) with bowtie2 (v2.2.9), and then SAMtools (v1.3.1) was used 
for SNP- calling with a mapping quality greater than 30. Varscan (v2.3.9) was used to identify fixed 

https://doi.org/10.7554/eLife.84815
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(frequency, ≥75%) and unfixed (<75%) SNPs with at least 5 supporting reads and the strand bias filter 
option on. A previously validated pipeline was used to filter out false positives that may have arisen 
during the in vitro expansion of bacterial colonies or caused by PCR and sequencing errors (Liu et al., 
2022). The drug- resistance profile and lineages were predicted from WGS data using SAM- TB (Yang 
et al., 2022). Phylogenetic trees were constructed using the maximum- likelihood method (RAxML- NG) 
(Kozlov et al., 2019) and visualized on the Interactive Tree of Life platform (https://itol.embl.de/).

Estimates of nucleotide diversity and GWAS analyses
Nucleotide diversity (π) was estimated using the PoPoolation package (Kofler et al., 2011). Following 
O’Neill et al. (O’Neill et al., 2015), we randomly subsampled (n=10) read data from each sample to 
a uniform 50x coverage to limit the effects of differential coverage across samples. Using the subsa-
mpled data with uniform coverage, we then calculated nucleotide diversity in 100 kb sliding windows 
across the genome in 10 kb steps. GWAS analyses were performed using GEMMA software (v0.98.3) 
(Zhou and Stephens, 2012) to identify nonsynonymous variants associated with poor TB treatment 
outcomes. A linear mixed model was used to control for the confounding effects of MTB lineage, 
sublineage, and outbreak- based population structure (Coll et al., 2018). Host risk factors associated 
with poor treatment outcomes such as age, sex, and duration of diagnostic delay were included as 
covariates in the GWAS, and the significance threshold was adjusted with the Bonferroni correction.

RNA-seq data collection and analysis
Raw RNA- Seq read data (GSE165581: INH, GSE166622: RIF, GSE118084: EMB, and GSE116353: 
hypoxia) from MTB laboratory strain H37Rv exposed to first- line drugs and hypoxic conditions was 
downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/ 
geo/). Sequencing reads passing quality control was aligned to the MTB H37Rv reference strain using 
bowtie2. Unique reads were selected and sorted using SAMtools, then quantitated using htseq- count 
(v0.11.3). FPKM values calculated by DESeq2 (v1.26.0) were used as measures of gene expression, 
and genes with |log2(fold change)|≥1 and p- values <0.05 were considered differentially expressed.

Statistical analysis
The t- test was used for comparing the mutations across gene functional categories in TubercuList 
(Kapopoulou et  al., 2011) nucleotide diversity and the ratios of the six mutation types between 
TB patients with good and poor treatment outcomes. The mean was given plus or minus standard 
error (mean ± SE). The chi- square test was used to assess whether the distribution of MTB lineages 
differed between patients with different treatment outcomes. Factors associated with poor treatment 
outcomes were tested with logistic regression in univariate and multivariate analyses. Variables found 
to have a p<0.2 in the univariate analyses were included in the multivariate models. We constructed 
logistic regression models with the selected bacterial and host factors as predictors of TB treatment 
outcome, and the ROC curves of the prediction models were compared using DeLong’s test.
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