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Abstract In line with the Research Domain Criteria (RDoC) , we set out to investigate the brain 
basis of psychopathology within a transdiagnostic, dimensional framework. We performed an 
integrative structural-functional linked independent component analysis to study the relationship 
between brain measures and a broad set of biobehavioral measures in a sample (n = 295) with 
both mentally healthy participants and patients with diverse non-psychotic psychiatric disorders 
(i.e. mood, anxiety, addiction, and neurodevelopmental disorders). To get a more complete under-
standing of the underlying brain mechanisms, we used gray and white matter measures for brain 
structure and both resting-state and stress scans for brain function. The results emphasize the impor-
tance of the executive control network (ECN) during the functional scans for the understanding of 
transdiagnostic symptom dimensions. The connectivity between the ECN and the frontoparietal 
network in the aftermath of stress was correlated with symptom dimensions across both the cogni-
tive and negative valence domains, and also with various other health-related biological and behav-
ioral measures. Finally, we identified a multimodal component that was specifically associated with 
the diagnosis of autism spectrum disorder (ASD). The involvement of the default mode network, 
precentral gyrus, and thalamus across the different modalities of this component may reflect the 
broad functional domains that may be affected in ASD, like theory of mind, motor problems, and 
sensitivity to sensory stimuli, respectively. Taken together, the findings from our extensive, explor-
atory analyses emphasize the importance of a dimensional and more integrative approach for 
getting a better understanding of the brain basis of psychopathology.

Editor's evaluation
This study presents a valuable method for performing an integrative structural-functional linked ICA 
analysis, investigating the relationship between the brain and a large set of symptoms and other 
biobehavioral measures transdiagnostically. The results show relations between multi-modal and 
unimodal independent components with the presence of autism spectrum disorder and variations in 
cognitive functioning and negative affect across individuals suffering from mood, anxiety, substance 
dependence, autism spectrum, or ADHD. Overall, the results are compelling and interesting to a 
wide readership.
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Introduction
Over the last decades, functional and structural imaging methods have helped to elucidate the brain 
circuits involved in psychiatric disorders. However, a growing number of concerns have been raised 
(Cuthbert and Kozak, 2013). First, the majority of neuroimaging studies in psychiatry have investi-
gated group-level differences between traditional psychiatric diagnoses and healthy controls, often 
limited to one neuroimaging modality. As a consequence, we are confronted with an overwhelming 
amount of isolated findings, often unreplicated and without a clear understanding of how these find-
ings relate to each other (Marquand et al., 2016; Specht, 2019). Second, the identification of valid 
neurobiological mechanisms has been hampered by the somewhat arbitrary boundaries and hetero-
geneity of traditional diagnostic categories, which fail to map unambiguously on core mechanisms of 
psychopathology, and also fail to adequately take comorbidity into account (Kotov et al., 2017). The 
absence of an integrative understanding of transdiagnostic core mechanisms underlying psychopa-
thology may reduce the chance to develop biologically based, personalized forms of treatment.

The Research Domain Criteria (RDoC) have been developed to tackle the abovementioned prob-
lems by facilitating a paradigm shift from a categorical approach to a multilevel, transdiagnostic 
dimensional approach, with brain circuits at the central level (Cuthbert and Insel, 2013; Morris et al., 
2022). Linked independent component analysis (ICA) is an innovative analysis technique, which is 
eminently apt to apply within this framework. Linked ICA performs multiple, simultaneous ICA factor-
izations that share the same unique mixing matrix and has been shown to be a powerful tool for 
identifying independent components (ICs) that reflect patterns of shared variance across multiple 
neuroimaging modalities (Groves et al., 2012, Groves et al., 2011). This allows for a principled inte-
gration of information from these imaging modalities at an early stage in the analysis pipeline, rather 
than a post hoc combination of unimodal results at the stage of final interpretation, and may provide 
a more integrative understanding at the brain level (Groves et al., 2012, Groves et al., 2011). Subse-
quently, relationships can be studied between interindividual differences in the resulting (multimodal) 
imaging components and variation in behavioral dimensions and psychopathology (Llera et al., 2019; 
Wolfers et al., 2017) (i.e. between the brain circuits level and the other units of analysis of the RDoC 
matrix).

Linked ICA has already established relationships of interindividual differences in multimodal brain 
components with behavioral measures and clinical profiles in specific patient groups, such as autism 
spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and Huntington’s disease 
(Garcia-Gorro et al., 2019; Itahashi et al., 2015; Wolfers et al., 2017). While linked ICA has provided 
a more coherent insight into the neural mechanisms within these specific populations, it has not yet 
been used to investigate core mechanisms of psychopathology transdiagnostically. It is important 
to adopt a transdiagnostic approach since the same disturbances in structural and functional brain 
networks may be associated with core symptom domains that transcend traditional disorder catego-
ries (Menon, 2011).

Therefore, in this study, we used linked ICA within a transdiagnostic, dimensional framework, using 
the MIND-Set database (Measuring Integrated Novel Dimensions in Neurodevelopmental and Stress-
related Mental Disorders) (van Eijndhoven et al., 2021). This database provides us with a sample of 
mentally healthy participants and patients with diverse, highly prevalent non-psychotic psychiatric 
disorders (i.e. mood disorders, anxiety disorders, addiction, ASD, ADHD, and their comorbidity). A 
multimodal imaging battery was performed, and all participants were deeply phenotyped. An exten-
sive set of biobehavioral measures was collected, including symptom dimensions, biological/physio-
logical measures (like cortisol and heart rate variability), and also more general measures of physical 
and mental health. Since psychopathology can best be understood on a continuum from health to 
mental illness, we also included mentally healthy participants, which allows us to study the brain and 
biobehavioral dimensions of interest along a wider range from health to psychopathology (Kotov 
et al., 2017; Morris et al., 2022; van Oort et al., 2022).

We investigated the diverse non-psychotic psychiatric disorders (i.e. mood disorders, anxiety disor-
ders, addiction, ASD, and ADHD) together as high levels of comorbidity suggest shared underlying 
mechanisms (van Eijndhoven et  al., 2021). In addition, numerous studies that investigated these 
disorders separately provide converging evidence that symptoms across various major domains cut 
across the diagnostic boundaries of these disorders, with, among others, transdiagnostic symptom 
dimensions related to the negative valence domain (e.g. repetitive negative thinking) and cognitive 
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systems domain (e.g. regarding cognitive control problems) (Kerns et al., 2015; Koob and Schulkin, 
2019; McTeague et al., 2016; Richey et al., 2015; Shaw et al., 2014; van Eijndhoven et al., 2021; 
Woody and Gibb, 2015). Interestingly, disturbances in the same brain networks may underlie these 
core symptom dimensions across these diverse disorders (McTeague et al., 2016; Menon, 2011). 
Therefore, it is crucial to adopt a transdiagnostic approach in order to identify the brain basis for 
symptom dimensions that transcend these diagnostic categories.

In our multimodal neuroimaging battery, we included functional scans under conditions of rest 
as well as under conditions of mild experimentally induced stress. It is clinically well established that 
vulnerability to stress is a common feature across a broad range of psychiatric disorders (Ingram and 
Luxton, 2005). Mood and anxiety disorders are characterized by a maladaptive stress response as 
their central feature (de Kloet et al., 2005; Sharma et al., 2016). Vulnerability to stress also plays a 
key role in addiction disorders, with impaired coping with stress being implicated in the onset, main-
tenance, and relapse in these disorders (Koob, 2003; Koob and Schulkin, 2019). While neurodevel-
opmental disorders have a relatively stable, trait-like course, there are clear indications for increased 
stress sensitivity, as exemplified by arousal and emotion regulation problems, which in turn may lead 
to the development of negative valence symptoms and stress-related comorbidity (Kerns et  al., 
2015; Richey et al., 2015; Rommelse et al., 2011; Shaw et al., 2014; van Eijndhoven et al., 2021). 
We included stress scans within the linked ICA setup as a novel feature of our approach as we hypoth-
esized that shared mechanisms of stress vulnerability would become visible under conditions of stress.

Taken together, we set out to perform a transdiagnostic structural–functional linked ICA analysis 
across the spectrum from health to diverse non-psychotic psychiatric disorders in order to discover 
components with shared variance in brain structure and function. Our extensively phenotyped sample 
made it possible to subsequently perform correlational analyses to investigate how interindividual 
differences in the neuroimaging components relate to a broad set of biobehavioral measures. Together, 
these analyses allow us to identify neuroimaging components that are important for the understanding 
of transdiagnostic biobehavioral dimensions. Because of our primary interest in psychopathology, we 
decided in advance to focus on the neuroimaging components that are associated with measures of 
psychopathology and to focus especially on the transdiagnostic symptom dimensions.

Results
Study population and general results
Of the 295 participants that were included in this study, the median age was 32  years (range: 
18–74 years) and 56.6% of participants were male (see Table 1 for demographic and clinical char-
acteristics). Of these participants, 70 were mentally healthy and 225 were patients with one or more 
psychiatric disorder(s). The patients had diagnoses in the following categories: current mood disorder 
(n = 116), anxiety disorder (n = 63), addiction disorder (n = 59), ASD (n = 63), and ADHD (n = 93) (see 
Figure 1 for a Venn diagram displaying the high rate and diverse patterns of comorbidity).

The analyses confirmed that our experimentally well-controlled stressor induced mild psychological 
stress, with an increase in both subjective stress (median subjective stress score after neutral movie: 3, 
after aversive movie: 5; T = –12.50, p<0.001) and heart rate (median heart rate during neutral movie 
[beats per minute]: 65.59, during aversive movie: 67.10; T = –8.60, p<0.001).

Linked ICA decomposition and correlational results
Linked ICA was used to decompose the MRI data into 50 independent components (ICs) (Figure 2, 
operations A, B, and C). Of these 50 components, 15 were multimodal components, reflecting shared 
variance across modalities (Figure 3). The correlational analysis (Figure 2, operation D) resulted in 87 
significant correlations (false discovery rate [FDR]-corrected q < 0.001) between the components and 
measures of interest (all p-values mentioned below are FDR-corrected values [unless mentioned other-
wise]; see Supplementary file 2a for all significant correlations). Of these 87 correlations, 19 were with 
multimodal components. Most of these correlations were related to age, sex, body mass index (BMI), 
blood pressure, and heart rate variability. Furthermore, we identified a multimodal component that 
was associated with a classification of ASD (IC32) and a multimodal component associated with cogni-
tive symptoms (inhibition and self-monitoring) (IC30). In addition, there were eight more significant 
correlations between the ICs and symptom dimensions, which were all with unimodal components 
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Table 1. Demographics and clinical characteristics.

Total subject group
(n = 295)

Patients
(n = 225)

Healthy controls
(n = 70)

Demographics

Age (years) (median, range) 32 (18–74) 32 (18–74) 32 (20–70)

Sex, % male (M/F) 56.6% (167/128) 59.6% (134/91) 47.1% (33/37)

Level of education
 � No (n = .., (%))
 � Low (n = .., (%))
 � Middle (n = .., (%))
 � High (n = .., (%))

1 (0.0%)
41 (13.9%)
125 (42.4%)
128 (43.4%)

1 (0.0%)
37 (16.4%)
103 (45.8%)
84 (37.3%)

0 (0.0%)
4 (5.7%)

22 (31.4%)
44 (62.9%)

Symptom questionnaires

IDS-SR (median, range)

 � Mood/cognition 13 (0–42) 18 (0–42) 1 (0–15)

 � Anxiety/somatic 4 (0–17) 5 (0–17) 1 (0–5)

 � Sleep 2 (−3–9) 2 (−3–9) 1 (−1–5)

ASI (median, range)

 � Physical concerns 3 (0–23) 4 (0–23) 1 (0–13)

 � Mental incapacitation 
concerns 2 (0–16) 3 (0–16) 0 (0–5)

 � Social concerns 4 (0–12) 5 (0–12) 3 (0–8)

PTQ (median, range)

 � Core characteristics 21 (0–36) 22 (0–36) 12 (0–23)

 � Unproductiveness 6 (0–12) 7 (0–12) 3 (0–8)

 � Capturing mental 
capacity 6 (0–12) 6 (0–12) 2 (0–7)

CAARS (median, range)

 � Inattention/memory 
problems 7 (0–15) 8 (0–15) 2 (0–8)

 � Hyperactivity/restlessness 5 (0–15) 6 (0–15) 2 (0–8)

 � Impulsivity/emotional 
lability 5 (0–15) 6 (0–15) 1 (0–7)

 � Problems with self-
concept 7 (0–15) 8 (0–15) 2 (0–7)

AQ-50 (median, range)

 � Social skill 24 (10–40) 25 (10–40) 17 (11–26)

 � Difficulty with change/
attention switching 25 (12–40) 27 (14–40) 19 (12–28)

 � Communication 22 (11–39) 23 (11–39) 17 (11–24)

 � Imagination 22 (12–37) 22 (12–37) 19.5 (13-28)

 � Attention to detail 23 (10–40) 24 (11–40) 19.5 (10–31)

TAS-20 (median, range)

 � Difficulty describing 
feelings 15 (5–25) 17 (5–25) 11 (5–23)

 � Difficulty identifying 
feelings

16 (7–32) 18 (7–32) 9 (7–18)

Table 1 continued on next page
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(see Appendix 1—figure 1 for scatterplots displaying all 10 significant correlations between ICs and 
symptom dimensions). Interestingly, all symptom correlations were discovered for components that 
were mainly driven by functional scans.

Because of our primary interest in psychopathology, below we further discuss the ICs that have 
both interesting neuroimaging aspects and are also associated with psychopathology. First, we focus 
on the multimodal component associated with ASD, before turning to several components associated 
with symptom dimensions.

Multimodal component associated with ASD
The analysis revealed a multimodal component associated with ASD (IC32). The relative contributions 
from the different modalities to this component were 10.1% for voxel-based morphometry (VBM), 
8.8% fractional anisotropy (FA), 6.1% mean diffusivity (MD), 17.5% default mode network (DMN) (rest), 
11.1% DMN (stress), 17.9% DMN (stress-aftermath), 6.3% frontoparietal network (FPN) (rest), 5.4% 
FPN (stress), 7.8% FPN (stress-aftermath), 3.8% executive control network (ECN) (rest), 1.6% ECN 
(stress), and 3.6% ECN (stress-aftermath) (Figure 4A). Besides the relatively large contributions to this 
component from the DMN modalities themselves, various other modalities also showed the involve-
ment of regions of the DMN, highlighting its centrality within this component. The DMN modalities 
during the different functional scans (i.e. resting-state, stress, and stress-aftermath scan) showed similar 
spatial configurations, meaning that these different functional scans identified the same connectivity 
pattern. The DMN modalities revealed loadings in multiple brain regions that are part of (or commonly 
associated with) the DMN (i.e. the angular gyrus, precuneus, supramarginal gyrus). Thus this reflects 
connectivity of the DMN network template that was applied into dual regression with DMN (associ-
ated) regions (i.e. within DMN connectivity). Furthermore, the VBM, FA, FPN, and ECN spatial maps 

Total subject group
(n = 295)

Patients
(n = 225)

Healthy controls
(n = 70)

 � Externally oriented 
thinking 19 (9–35) 19 (9–35) 19 (11–30)

PID-5 (median, range)

 � Negative affect 7 (0–15) 8 (0–15) 2 (0–8)

 � Detachment 5 (0–15) 6 (0–15) 1 (0–8)

 � Antagonism 2 (0–12) 2 (0–12) 1 (0–7)

 � Disinhibition 3 (0–15) 4 (0–15) 0.5 (0–6)

 � Psychoticism 4 (0–15) 5 (0–15) 0 (0–6)

BRIEF-A (median, range)

 � Inhibition 14 (8–23) 15 (8–23) 10 (8–17)

 � Shift 12 (6–18) 13 (6–18) 7.5 (6-12)

 � Emotional control 17 (10–30) 18 (10–30) 11 (10–19)

 � Self-monitor 9 (6-17) 10 (6–17) 7 (6-14)

 � Initiate 16 (8–24) 17 (8–24) 10 (8–19)

 � Working memory 16 (8–24) 17 (8–24) 10 (8–16)

 � Plan/organize 19 (10–30) 20 (10–30) 12 (10–22)

 � Organization of materials 15 (8–24) 16 (8–24) 12 (8–21)

 � Task monitor 12 (6–18) 12 (6–18) 9 (6-15)

ASI: Anxiety Sensitivity Index, AQ-50: Autism spectrum Quotient-50, BRIEF-A: Behavior Rating Inventory Executive 
Function – Adult, CAARS: Conners’ Adult ADHD Rating Scale, F: female, IDS-SR: Inventory of Depressive 
Symptomatology Self Report, M: male, PID-5: Personality Inventory for DSM-5-Short Form, PTQ: Perseverative 
Thinking Questionnaire, TAS-20: Toronto Alexithymia Scale-20.

Table 1 continued
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all showed loadings on brain regions that are part of the DMN (VBM: angular gyrus, precuneus, 
posterior cingulate cortex, medial prefrontal cortex; FA: angular gyrus; both FPN and ECN: angular 
and supramarginal gyrus, precuneus, medial prefrontal cortex). Additionally, the VBM and MD feature 
showed the involvement of the precentral gyrus and thalamus respectively (Figure 4B). The correla-
tional analysis showed that this component was positively correlated with a classification of ASD (rs 
= 0.19, p=0.044), indicating that ASD is associated with higher subject loadings on this component. 
Hereafter, this component will be called the multimodal ASD component.

While this multimodal ASD component was associated with a classification of ASD, it was not 
correlated with any of the subscales of the Autism spectrum Quotient-50 (AQ-50). To further explore 
these results, we performed post hoc correlations between IC32 and the AQ-50 subscales for the 
patients with a classification of ASD and the participants without ASD separately (uncorrected for 
multiple comparisons). The only significant correlation was found within the ASD group for the ‘social 
skill’-subscale (rs = –0.237, puncorrected = 0.037) (see Appendix 1 for all correlational results).

Correlations between components and symptom dimensions
All 10 correlations between symptom dimensions and ICs were with ICs that were driven by functional 
scans. Moreover, 9 out of 10 correlations were with components that have an important contribution 
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Figure 1. Venn diagram displaying the distribution of the psychiatric patients over the different diagnostic categories: mood disorder, anxiety disorder, 
addiction disorder, attention-deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD). All diagnoses in this Venn diagram represent 
current diagnoses.
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Figure 2. Data processing pipeline. (A). Experimental design: subjects entered the scanner after a 45 min acclimatization period outside the scanner. 
The whole MIND-Set MRI protocol consists of a series of scans, of which we selected the following scans for the present study: two structural scans: 
T1 structural scan and diffusion tensor imaging (DTI) scan. Furthermore, we selected three functional scans, representing a baseline resting-state scan 
(rest), the scan during stress induction with an aversive movie clip (stress scan), and the resting-state scan directly after the stress induction, which will 

Figure 2 continued on next page
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from the ECN. We start by discussing four components (IC7, IC8, IC13, and IC30) that are driven 
by the ECN during different functional scans and show interesting similarities in their connectivity 
profiles, before turning to a component driven by the DMN during the stress scan.

Components reflecting connectivity between the ECN and FPN
Linked ICA resulted in four components that reflect connectivity of the ECN with itself and with the 
FPN (IC7, IC8, IC13, and IC30). Three of these components are unimodal components that are each 
driven by the ECN modality during a distinct functional scan (IC7 by the ECN during the stress-
aftermath scan [99.5% of contribution] [Figure 5], IC8 by the ECN during the stress scan [99.8%], 
and IC13 by the ECN during the resting-state scan [99.9%] [Appendix  1—figure 2]). All three of 
these components reflect the connectivity of the ECN with itself and the right FPN. While there are 
important similarities between these components, there are also differences. Compared to IC7, IC8 

be referred to as the stress-aftermath scan. (B) The relevant features were extracted from the selected scans. From the structural scans: voxel-based 
morphometry (VBM), fractional anisotropy (FA), and mean diffusivity (MD). From each functional scan, we extracted the whole-brain spatial maps of our 
networks of interest: default mode network (DMN), executive control network (ECN), and frontoparietal network (FPN). (C) These features were used as 
input in the linked ICA algorithm. (D) Spearman correlations were performed between the subject loadings of each independent component and all the 
(bio)behavioral measures of interest (i.e. symptom questionnaires, demographics, other biobehavioral measures). (This figure is inspired by the figure of 
Llera et al., 2019.)

Figure 2 continued
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Figure 3. Linked independent component analysis (ICA) decomposition. Linked ICA was used to simultaneously factorize the selected MRI features 
into 50 independent components. The stacked bargraph displays to what extent these independent components are driven by the different imaging 
features. DMN: default mode network; DTI: diffusion tensor imaging scan; ECN: executive control network; FA: fractional anisotropy; FPN: frontoparietal 
network; MD: mean diffusivity; VBM: voxel-based morphometry.
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Figure 4. Multimodal component 32 (IC32). (A) Modality contributions to IC32. The color bar is a graphical representation of the relative contribution 
of the 12 feature modalities to IC32. The numbers below state the exact percentages of the different modality contributions. (B) The subject loadings 
on IC32 have a significant correlation with a psychiatric classification of autism (yes/no). This component is a multimodal component, with contributions 
from all 12 features. From top to bottom, we visualize voxel-based morphometry (VBM), fractional anisotropy (FA), mean diffusivity (MD), and the spatial 

Figure 4 continued on next page
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maps for the following networks: the default mode network (DMN), executive control network (ECN), and frontoparietal network (FPN). Since the three 
functional networks of interest showed similar spatial configurations during the different functional scans (i.e. resting-state, stress, and stress-aftermath 
scan), we only display the spatial maps from one functional scan here (i.e. the stress-aftermath scan). Note: in this figure, the right side of the brain is 
displayed on the right side of the image. R: right.

The online version of this article includes the following source data for figure 4:

Source data 1. Correlation for IC32.

Figure 4 continued
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A. Component 7: Executive Control Network (ECN) during stress-aftermath scan
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Correlations with IC7
Measure r p-value partial r p-value

HRV at rest 0.32 5.7E-06** 0.08 0.240

SF: Physical functioning 0.23 0.006** 0.08 0.240

SF: Experienced health 0.20 0.029* 0.14 0.039*

ASI: Physical concerns -0.20 0.037* -0.18 0.009**

WHODAS: Life Activities -0.20 0.036* -0.15 0.023*

BRIEF-A: Self-Monitoring -0.21 0.021* -0.13 0.046*

WHODAS: Mobility -0.21 0.015* -0.18 0.008**

SF: Physical pain -0.22 0.012* -0.15 0.029*

IDS: Anxiety-somatic -0.23 0.007** -0.17 0.014*

BMI -0.36 4.6E-08** -0.22 0.002**

Age -0.56 9.5E-23** N/A N/A

Correlations with IC15
Measure r p-value partial r p-value

ASI: mental incapacitation
concerns

-0.22 0.012* -0.20 0.003**

z-value
5

2
-2

-3
R

R

Figure 5. ECN-stress aftermath component (IC7) and DMN-stress component (IC15). (A) Independent component 7 (IC7) is driven by the executive 
control network (ECN) during the stress-aftermath scan (99.5%). This component reflects the connectivity of the ECN with itself and with the right 
frontoparietal network (FPN) and has significant (partial) Spearman correlations with several symptoms and other measures of interest. For this 
component, we used the 10th and 90th percentiles for thresholding, for display purposes, since the underlying distribution was not z-distributed. 
(B) Independent component 15 (IC15) is mainly driven by the default mode network (DMN) during the stress scan (88.4%). IC15 negatively correlates with 
the fear of losing control/losing one’s mind under stress (mental incapacitation concerns subscale). In this figure, the right side of the brain is displayed 
on the right side of the image.ASI: Anxiety Sensitivity Index;BRIEF-A: Behavior Rating Inventory Executive Function – Adult; HRV: heart rate variability; 
IDS: Inventory of Depressive Symptomatology Self Report; R: right; SF: Short Form-20; WHODAS: WHO-Disability Assessment Schedule 2.0. Cave: in 
general, a higher score on a questionnaire reflects more severe symptoms/problems, except for the SF subscales ‘experienced health’ and ‘physical 
functioning,’ for which this is reversed.

The online version of this article includes the following source data for figure 5:

Source data 1. Correlations for IC7 and IC15.

https://doi.org/10.7554/eLife.85006
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loaded less on the right posterior parietal cortex (FPN) and IC13 loaded less on the frontal poles and 
thalamus. Finally, IC30 is a multimodal component, mainly driven by the ECN during the resting-state 
scan (42.2%) and stress-aftermath scan (38.3%) (Appendix 1—figure 2). This component loaded on 
the ECN and left FPN (contralateral FPN compared to components described above). Interestingly, 
the spatial maps during both these functional scans are largely the same, suggesting that the same 
variance is picked up in both these functional scans.

All four of these ECN components are negatively correlated with cognitive symptoms, indicating 
that a lower subject loading on these components is associated with more severe symptoms (see 
Appendix 1 for additional information on the symptom dimensions mentioned below). All four of 
these components are negatively correlated with self-monitoring (IC7: rs = –0.21, p=0.021; IC8: rs = 
–0.22, p=0.008; IC13: rs = –0.20, p=0.038; IC30: rs = –0.22, p=0.012). Additionally, IC13 also negatively 
correlated with working memory (rs = –0.22, p=0.012) and IC30 with inhibition (rs = –0.19, p=0.044).

While all four components are negatively correlated with cognitive symptoms, IC7 is the only compo-
nent with a negative correlation with symptoms from the negative valence domain. This component 
negatively correlated with the following symptom dimensions: anxiety/somatic (rs = –0.23, p=0.007) 
and physical concerns (rs = –0.20, p=0.037). In parallel with the correlations with the symptom dimen-
sions, a lower subject loading on the ECN-stress aftermath component (IC7) was also associated 
with various measures that are generally associated with worse health, such as higher age (rs = –0.56, 
p=9.5E-23), higher BMI (rs = –0.36, p=4.6E-8), lower heart rate variability (rs = 0.32, p=5.7E-6), more 
physical pain (rs = –0.22, p=0.012), and worse experienced health (rs = 0.20, p=0.029).

Next, we performed post hoc tests in order to explore whether the correlations between the ECN-
stress aftermath component (IC7) and the negative valence symptoms differed from the correlations 
between the other ECN-FPN components (i.e. IC8, IC13, and IC30) and these same negative valence 
symptoms (using Fisher’s r to z transform; alpha = 0.05). We refer to Appendix 1 for a complete over-
view of these results. Here, we would like to note that the results showed that the correlations did 
not differ between the ECN-stress aftermath component (IC7) and IC13 (ECN during the resting-state 
scan) (IDS anxiety/somatic: IC7 rs = –0.23; IC13: rs = –0.14, z = –1.07, puncorrected = 0.284; ASI physical 
concerns: IC7: rs = –0.20; IC13: rs = –0.10; z = –1.17, puncorrected = 0.242). Based on the results of these 
post hoc analyses, we cannot exclude that it is a threshold effect that we only found these relation-
ships with negative valence symptoms for the ECN-stress aftermath component. At the same time it 
is important to note that in our analyses relatively few results for the symptom questionnaires survived 
multiple comparison correction, and that the ECN-stress aftermath component was the most sensi-
tive component (of these ECN-FPN components) for finding relationships with the negative valence 
symptoms. Thus, the stress induction may have played an important role in revealing these results at 
a statistically significant level.

DMN connectivity during stress scan
IC15 was driven by the DMN during the stress scan (88.4%). This IC showed widespread connectivity 
patterns of the DMN, including within DMN connectivity (medial prefrontal cortex, posterior cingulate 
cortex), and connectivity with the FPN (posterior parietal cortex, dorsolateral prefrontal cortex) and 
with the visual regions (occipital cortex). This component negatively correlated with the fear of losing 
control/one’s mind under stress (mental incapacitation concerns) (rs = –0.22, p=0.012) (Figure 5B). In 
the ‘Discussion’ section, this IC is called the DMN-stress component.

Discussion
In this study, we performed a structural–functional linked ICA analysis to get a more complete under-
standing of psychopathology from a transdiagnostic perspective, investigating a sample with both 
mentally healthy participants and psychiatric patients with diverse non-psychotic disorders. Our 
deeply phenotyped sample allowed us to investigate which brain components may in particular be 
important for the understanding of transdiagnostic mechanisms in psychopathology by performing 
extensive, exploratory correlational analyses. Linked ICA resulted in various multimodal components, 
uncovering shared variance across modalities. While these multimodal components were in particular 
related to age, sex, BMI, blood pressure, and heart rate variability, we also identified multimodal 
components that were associated with cognitive symptoms and a diagnosis of ASD. Interestingly, the 
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transdiagnostic symptom dimensions were most strongly related to components that were driven by 
the large-scale functional networks during the various functional scans.

In line with Llera et al., 2019 and several other linked ICA studies (Garcia-Gorro et al., 2019; 
Itahashi et al., 2015; Wolfers et al., 2017), we chose to not only focus on the multimodal compo-
nents but to perform the correlational analyses for all the components that resulted from the linked 
ICA algorithm. This way, our unbiased analysis was able to identify multimodal components that were 
related to important aspects of psychopathology (like our multimodal ASD component), but also 
unimodal components that correlated with a wide range of biobehavioral measures, like our ECN 
stress-aftermath component. While this ECN-stress aftermath component may contribute less to a 
more integrative understanding at the brain level, it does contribute to a more integrative under-
standing of psychopathology by showing how this component is related to various biobehavioral 
measures at different levels of the RDoC matrix (like physiology and self-reports) and also across 
different domains (i.e. the negative valence and cognitive systems domain) (Cuthbert and Insel, 
2013). Below, we continue with a more in-depth discussion of the components that are most important 
for the understanding of psychopathology. First, we discuss the multimodal ASD component, before 
turning to the components related to the transdiagnostic symptom dimensions across the negative 
valence and cognitive systems domains.

Although set within transdiagnostic research, the linked ICA analysis was sensitive enough to pick 
up a multimodal component that is associated with a traditional, diagnostic classification of ASD. This 
relationship was specifically found for ASD as this component was not associated with the other diag-
nostic groups, nor with the variable that divided our sample in mentally healthy participants versus 
patients. The multimodal ASD component loaded on the DMN, precentral gyrus, and thalamus. Inter-
estingly, these regions have been implicated in ASD by earlier studies and are associated with core 
domains of this disorder, like theory of mind (Murdaugh et  al., 2012), motor problems (Duffield 
et al., 2013; Mahajan et al., 2016), and sensitivity to sensory stimuli, respectively (Ayub et al., 2021). 
While both Itahashi et al., 2015 and Mei et al., 2022 also implicated these regions in ASD in their 
linked ICA analysis, there were also differences with our findings. In the study of Itahashi et al., 2015, 
these regions did not show up together in one component, and the multimodal component of Mei 
et al., 2022 loaded more extensively on the white matter tracts. While the differences with our find-
ings may be related to the differences in study setup and specific sample characteristics (e.g. related 
to the included MRI modalities, patterns of psychiatric comorbidity, IQ, and age range of the partic-
ipants), this may also be related to the heterogeneous nature of psychiatric classifications like ASD 
(Itahashi et al., 2015). Still, these multimodal results may help to get a more coherent understanding 
of the neurobiology of ASD by not only showing which brain regions are involved but also how these 
findings covary across different modalities.

Importantly, this multimodal ASD component was associated with a diagnostic label of ASD, 
but not with the subscales of the AQ-50 across the whole sample. As a diagnosis of ASD reflects a 
complex clinical phenotype that spans several functional domains, a multimodal brain component 
spanning brain regions that are involved in these various functions may be more strongly associ-
ated with such a complex phenotype than with specific symptom dimensions (Mei et al., 2022). 
While the AQ-50 subscales did not show any correlations with this multimodal ASD component 
across the whole sample, the post hoc tests showed that this component was specifically associ-
ated with social skill symptoms within the ASD group. This may be explained by the loading of this 
component in the DMN, which is involved in social functions related to theory of mind (Murdaugh 
et al., 2012). Based on these results, an alternative explanation for not finding correlations for the 
AQ-50 across the whole sample could be related to the limitations regarding the application of 
this questionnaire in our diverse transdiagnostic sample. The AQ-50 may not measure a uniform 
dimension across our participants. Higher scores on this self-report questionnaire may stem from 
ASD, but could also stem from other causes, like social interaction problems due to (social) anxiety, 
or patients may score higher if they have an overly negative judgment of their social skills (e.g. 
in depression). Thus, when investigating brain behavior relationships using the AQ-50, it may be 
important to also take into account the judgment of a trained clinician regarding whether a partic-
ipant has ASD or not. These considerations are important since one of the central goals of RDoC 
is the identification of reliable and valid measures that can be applied in transdiagnostic research 
(Morris et al., 2022).

https://doi.org/10.7554/eLife.85006
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Interestingly, all three functional networks of interest (i.e. DMN, ECN, and FPN) were involved in 
components that showed transdiagnostic associations with cognitive and/or negative valence symp-
toms. While the literature thus far indeed suggests that aberrations in these large-scale networks 
cause major dysfunctions in core cognitive and affective domains across psychiatric disorders, this 
idea was largely based on indirect evidence in separate psychiatric disorders (Menon, 2011; Sanislow 
et al., 2010). We now identified these relationships in a diverse sample spanning the psychopatho-
logical continuum.

The inclusion of a stress challenge is a novel feature in our linked ICA analysis. While several 
components that reflect the connectivity between the ECN and FPN (including the resting-state 
component) were associated with cognitive symptoms, two components that were related to the 
stress induction were most sensitive in revealing relationships with negative valence symptoms (i.e. 
the ECN-stress aftermath component and DMN-stress component). This could indicate that it may 
be especially relevant to include a stress induction paradigm when studying the negative valence 
domain.

Especially the ECN seems to be important in explaining transdiagnostic symptom dimensions. We 
found four different components (IC7, IC8, IC13, and IC30) driven by the ECN during different func-
tional scans that reflected connectivity of the ECN with itself and with the FPN. In line with the known 
role of these networks in a wide range of cognitive tasks (McTeague et al., 2016; Smith et al., 2009), 
all four components showed significant correlations with executive/higher-order cognitive symptoms. 
Below, we further elaborate on our ECN-stress aftermath component (i.e. IC7) as this is the only 
one of these four components that revealed a relationship with both cognitive and negative valence 
symptoms.

The ECN stress-aftermath component reflects connectivity of the ECN with itself and with the right 
FPN in the aftermath of stress. Interestingly, the anterior insula and dorsal anterior cingulate cortex are 
part of as well this component as the ECN template (Smith et al., 2009), and are both considered core 
regions of the salience network (SN) (Hermans et al., 2011; Seeley et al., 2007; Shirer et al., 2012). 
In line with the known role of these regions in the dynamic reallocation of resources under stress 
(Hermans et al., 2014), our results suggest that the ECN engages the right FPN in the aftermath of 
stress for emotion regulation/top-down control (Buhle et al., 2014; Hermans et al., 2014; Hermans 
et al., 2011; Kohn et al., 2014; McTeague et al., 2016). The negative relationship between this 
component and negative valence symptoms suggests that an inadequate engagement of the FPN by 
the ECN can be seen as a crucial transdiagnostic vulnerability factor for the development of negative 
valence symptoms (under stress).

Our extensive, exploratory analyses allowed us to identify not only a relationship of this ECN 
component with symptom dimensions, but also with a broad range of negative health outcomes 
related to physiological/cardiovascular measures, BMI, and also general health/functioning. It is known 
from the literature that there are complex relationships between mental health, physical health, and 
coping with stress (de Kloet et al., 2005; Juster et al., 2010; McEwen, 2003). Physical and mental 
health problems may affect each other and may also result in a maladaptive stress response. Vice versa 
a repeatedly maladaptive stress response, including inadequate recovery in the aftermath of stress, 
may lead to mental and physical wear-and-tear (Juster et al., 2010; McEwen, 2000; McEwen, 2003). 
As the brain is the central organ that coordinates the stress response (Ulrich-Lai and Herman, 2009), 
our results suggest the key importance of the ECN and FPN in this complex web of relationships. 
Together, these results emphasize the importance of an integrative approach to stress, and physical 
and mental health.

The results for our DMN-stress component add to a growing body of evidence on the importance 
of the DMN in the stress response in health and psychopathology (van Oort et al., 2020; van Oort 
et al., 2017; Zhang et al., 2019). This component reflects the connectivity of the DMN with the FPN 
and visual regions during stress induction with a stressful movie clip with an eyewitness instruction. 
The connectivity between the DMN (which is known to be involved in self-referential processing) 
and visual regions may reflect the processing of the stressful movie from a self-referential/eyewit-
ness perspective (Buckner et al., 2008; van Oort et al., 2017). The connectivity with the FPN may 
reflect the role of the FPN in top-down control during stress (Kohn et al., 2014). Interestingly, this 
component is negatively associated with the fear of losing one’s mind under stress. Together, this 
may suggest that stronger connectivity of the DMN with itself, the FPN and visual regions, may be an 
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adaptive response to facilitate the (self-referential) processing of the stressor, while there is top-down 
control of this fear-related symptom.

The main strength of our study is that this is the first study performing an integrative structural–func-
tional linked ICA analysis, investigating the relationship between the brain and broad set of symptoms 
and other (bio)behavioral measures transdiagnostically. However, our study has to be interpreted in 
light of some limitations. First, linked ICA is characterized by sign indeterminacy, which made it neces-
sary to infer the direction of the associations between our components and biobehavioral measures 
of interest, by studying the relationship between global gray matter volume and age. While we think 
that this is a valid way of determining the direction of the relationships for our results, we would like to 
note here that it is a limitation that the direction of the effects is not a mathematical certainty but an 
inference. Future studies should focus on replicating the findings described in this study. Second, our 
results were found in a specific sample of patients with mainly mood, anxiety, addiction, and neuro-
developmental disorders. Future studies should investigate whether our results can be replicated 
in other (transdiagnostic) samples. Third, the cross-sectional nature of our study prevents us from 
making definitive causal inferences about the relationships that were found. Future studies should 
prospectively investigate the relationship between brain structure, function, and psychiatric symp-
toms. Finally, although we did include measures related to psychotropic medication and substance 
use in our correlational analyses, we did not correct for these factors in the analyses. We did not 
include these factors as covariates as these factors are not independent from our other measures of 
interest, like the symptom dimensions and diagnostic labels. Future studies in samples that are well 
matched on these measures of interest and only differ in medication status or substance use could 
help to further disentangle the effects of these factors from other aspects of psychopathology.

Taken together, the structural–functional linked ICA analysis followed by extensive correlational 
analysis revealed several components that are important for the understanding of psychopathology. 
We identified a multimodal component that was specifically associated with ASD. The involvement 
and covariation of the DMN, precentral gyrus, and thalamus across the different modalities of this 
component may reflect the broad functional domains that may be affected in ASD, like theory of mind, 
motor problems, and sensitivity to sensory stimuli, respectively. Furthermore, the results emphasized 
the importance of especially the ECN for the understanding of transdiagnostic symptom dimensions. 
The aftermath of stress revealed that the connectivity between the ECN and FPN was associated with 
symptom dimensions across both the cognitive systems and negative valence domain of the RDoC 
framework, and also with various other health-related (bio)behavioral measures. This suggests a key 
role for these networks in adaptive coping with stress and thereby for mental and physical health.

Our results provide initial insight into the neural mechanisms underlying transdiagnostic (bio)behav-
ioral dimensions and provide avenues for future research. First, further research is necessary into which 
(biobehavioral) dimensions serve as reliable and valid measures for transdiagnostic research and how 
they can be assessed best (Morris et al., 2022). While various dimensions can be measured well with 
a self-report questionnaire, in other cases it may be important to complement these measures with 
more objective measures (e.g. neuropsychological tests or assessments by a trained clinician). In addi-
tion, the field of multimodal imaging is still relatively new. Multimodal imaging techniques have the 
potential to take maximal advantage of the strengths of the different types of imaging data, with each 
data type having a limited but complementary view of the brain (Sui et al., 2012). Since our results 
show the potential of the functional scans for revealing relationships with transdiagnostic symptom 
dimensions, future studies should investigate how multimodal analysis techniques may further capi-
talize on this potential of the functional scans. It should be investigated which structural and functional 
modalities can best be combined and how multimodal analyses techniques can be optimized in order 
to further the integrative understanding of brain function and structure (Sui et al., 2012).

Materials and methods
Participants
This study used the database of the MIND-Set project (van Eijndhoven et al., 2021), which includes 
adult patients with ASD, ADHD, addiction, mood, and/or anxiety disorders. Patients were included 
in this study if they had at least one current diagnosis in one of these categories. A mentally healthy 
control group was also included. Patients were diagnosed and classified by a trained clinician according 
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to the Diagnostic and Statistical Manual of Mental Disorders (DSM) (American Psychiatric Associa-
tion, 2013) using semi-structured interviews (see Appendix 1 and van Eijndhoven et al., 2021).

Procedure
The MIND-Set protocol contains an extensive neuroimaging battery with multiple imaging modalities, 
of which we used the T1 structural scan, DTI, and three functional scans for this study (Figure 2A). We 
selected the following functional scans: (1) a baseline resting-state scan, (2) the functional scan during 
stress induction, which hereafter will be called the ‘stress scan,’ and (3) the resting-state scan, directly 
after the stress induction. Since this last scan reflects a combination of continued stress and recovery 
in the aftermath of acute stress, this scan will be referred to as the ‘stress-aftermath scan’.

Stress was induced with a mild psychological stressor using an experimentally well-controlled para-
digm in the form of an aversive movie clip (Qin et al., 2009; van Oort et al., 2020). A neutral movie 
clip served as the control condition. We used the following two measures to assess stress levels during 
scanning: heart rate (beats per minute) and subjective stress (11-point rating scale: 0 = no stress, 10 = 
maximal stress). The subjective stress level was assessed directly after the aversive and neutral movie, 
and the heart rate was measured during these two movie clips. For these two measures, we assessed 
the effects of stress using a Wilcoxon signed-rank test (non-normal distribution).

Biobehavioral measures of interest
To cover a broad range of clinically relevant dimensions, we included 80 measures for our exploratory 
correlational analyses, including 35 symptom dimensions from validated questionnaires and 45 other 
demographic and biobehavioral measures of interest. We describe these variables shortly below (see 
Appendix 1—tables 1 and 2 and van Eijndhoven et al., 2021 for an elaborate description).

We used questionnaires measuring symptom dimensions that commonly occur across neurodevel-
opmental, mood, anxiety, and addiction disorders. These questionnaires measure symptoms related 
to the following topics (questionnaire between brackets): depressive symptoms (IDS-SR), anxiety 
sensitivity (ASI), ADHD symptoms (CAARS), autistic traits (AQ-50), alexithymia (TAS-20), personality 
traits across different personality domains (PID-5-B-Adult), repetitive negative thinking (PTQ), and 
behavioral regulation (BRIEF-A). For the correlational analyses, we used the scores of the 35 subscales 
of these eight questionnaires (Appendix 1—table 1). These subscales represent clinically relevant 
symptom dimensions across the spectrum of non-psychotic psychiatric disorders. To provide further 
insight into the distribution of the symptom dimensions across broad diagnostic groups in our sample, 
we display these results in dot plots (Appendix 1—figure 3). For this purpose, we divided our sample 
into the following four subgroups: mentally healthy control group, stress-related group, neurodevel-
opmental group, and comorbidity group (see Appendix 1 for a description of these subgroups).

Besides the symptom questionnaires, we included a more extensive set of demographics and (bio)
behavioral measures (Appendix  1—table 2). These measures span different units of analysis and 
broadly include measures from the following topics: demographics (age, sex, and level of educa-
tion), anthropometric (BMI), biological/physiological measurements (e.g. saliva and hair cortisol, 
heart rate variability), traumatic childhood events, psychiatric classifications according to the DSM 
(e.g. ADHD [yes/no]), number of chronic somatic disorders, general health and functioning (i.e. SF-20 
and WHODAS questionnaires), substance use (smoking, alcohol, and cannabis), and medication use 
(e.g. use of an antidepressant [yes/no]). We refer to Appendix 1—table 3 for information regarding 
psychotropic medication use at the time of the MRI scan.

MRI data acquisition
All images were collected using a 3T Siemens Magnetom Prisma MRI scanner (Erlangen, Germany). 
High-resolution structural images (1.0 mm isotropic) were acquired using a T1-weighted MP-RAGE 
sequence (TE/TR = 3.03/2300 ms). In addition, diffusion tensor imaging (DTI) scans were obtained 
using a multi-band 3 protocol (TE/TR = 70.2/2370 ms, voxel size = 2.0 mm isotropic, number of gradi-
ents = 85). For all three functional scans, T2*weighted EPI BOLD-fMRI images were acquired using 
a multi-band 6 protocol (TR = 1000 ms, voxel size = 2.0 mm isotropic). The resting-state and stress-
aftermath scans were both 500 volumes, while the stress scan consisted of 150 volumes (see Appendix 
1 for more details).
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MRI preprocessing and feature extraction
To acquire the input for the linked ICA algorithm, feature extraction operations were performed on 
the selected structural and functional scans (Figure 2B; see Appendix 1 for details regarding prepro-
cessing and feature extraction). The T1 scans were used to estimate gray matter volumes, using VBM 
(Ashburner and Friston, 2000). FA and MD images were acquired from the DTI scan and served 
as measures for white matter integrity (Jenkinson et al., 2012; Smith et al., 2006). Together, this 
resulted in three features from the structural scans.

For all three functional scans (i.e. resting-state, stress, and stress-aftermath), we extracted the 
spatial maps of our three networks of interest (i.e. DMN, ECN, and FPN; with the left and right FPN 
merged into one FPN template). We used the network templates from Smith et al., 2009 to select our 
networks of interest without biasing the results toward one of our functional scans. Dual regression 
was used to acquire spatial maps, which reflect the whole-brain connectivity of the networks during 
the different functional scans. The nine spatial maps that resulted from dual regression (3 scans × 
3 networks) were used as input in the linked ICA algorithm (see Appendix 1 for a more elaborate 
description of the used methods).

fMRI analyses
Linked ICA
Linked ICA was used to simultaneously factorize the 12 MRI features of our N = 295 participants 
into independent sources (or components) of spatial variation (Groves et al., 2011). In general, the 
linked ICA model order is recommended to be less than 25% of the sample size (Groves et al., 2012; 
Groves et al., 2011). In addition, the ‘optimal’ dimensionality depends on the detail desired from the 
decomposition (Groves et al., 2012) as it has been shown that components that are identified with 
linked ICA at a lower dimensionality may split into finer subdivisions at a higher dimensionality (Groves 
et al., 2012). Because of our interest in large-scale networks, we decided a priori to choose a relatively 
low-dimensional decomposition. In line with the lower-dimensionality decomposition performed by 
Groves et al., 2012, we chose a priori to decompose our data into 50 independent components.

In brief, linked ICA is a Bayesian extension of ICA (Choudrey, 2002) to multiple input sets, where 
all individual ICA factorizations are linked through a shared common mixing matrix that reflects the 
subject-wise contribution to each component. Such factorization provided us for each component 
with (1) a set of spatial maps (one per feature), (2) a vector of feature loadings that describes the 
degree to which the component is ‘driven’ by the different modalities, and (3) a subject loading that 
describes how each individual subject contributes to a given component (Figure 2C). Importantly, 
these subject loadings can subsequently be used for the correlational analysis with the symptoms and 
other measures of interest. In addition to the analysis described above, in which we used all 12 MRI 
features together, we also performed linked ICA factorizations for the separate structural and func-
tional imaging modalities as a supplemental analysis (see Appendix 1).

Since the vectors of feature loadings (see point ‘2’ above) describe the degree to which each 
component is ‘driven’ by the different MRI features, these feature loadings can be used to determine 
whether a component is a multimodal component or not. We defined multimodal components as 
components that have a meaningful contribution (>10%) from two or more MRI features and no single 
feature contributing >50% to the total variance of the component. Linked ICA can, however, also 
result in unimodal components, here defined as one feature contributing >80% to the total variance 
and no other feature contributing >10% to the component.

Correlational analysisis
In line with Llera et al., 2019, we performed full correlations between the subject loadings on the 
independent components, obtained by linked ICA, and our measures of interest (symptom question-
naire subscales and other measures of interest). This resulted in 50 × 80 Spearman correlations (non-
normal distribution). We addressed the multiple comparisons by applying FDR correction (p<0.05) 
(Benjamini and Hochberg, 1995; Figure  2D). As a supplementary analysis, we performed partial 
Spearman correlations (correcting for age and sex) for the significant results from this main analysis 
(see Appendix 1). Finally, we performed Spearman correlations (non-normal distribution) between our 
biobehavioral measures of interest to provide further insight into these relationships (see Supplemen-
tary file 1).

https://doi.org/10.7554/eLife.85006
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Direction of correlational results
It should be noted that linked ICA is characterized by sign indeterminacy, meaning that the signs 
(positive or negative) of the component loadings and corresponding components are ambiguous 
(Comon and Jutten, 2010). To understand the direction of the correlations, we inferred the direction 
of the signs by investigating the relationship between global gray matter volume and age since this 
is a well-known and relatively strong relationship in an adult sample with a large age span (Good 
et al., 2001), like our sample. For this purpose, we used IC1, which is driven by the VBM modality 
(contribution: 82.7%). This component covers the whole brain and reflects global gray matter volume 
(Appendix 1—figure 4). Our correlational results (Supplementary file 2a) show that this component 
is negatively correlated with age (rs = –0.50, p<0.001). In line with extensive evidence for a decrease 
in global gray matter volume related to aging (Good et al., 2001), we can infer from this that younger 
age should be related to a higher positive z-stat score on this component, and that the positive signs 
on the components indeed reflect a positive signal.
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Appendix 1

Methods
Subjects
MIND-Set (Measuring Integrated Novel Dimensions in Neurodevelopmental and Stress-related 
Mental Disorders) is an observational cross-sectional study. Inclusion of patients took place at the 
moment of intake at the outpatient clinic of the psychiatry department of the Radboud University 
Medical Center (Radboudumc), Nijmegen, the Netherlands. The MIND-Set study has been approved 
by the Ethical Review Board of the Radboudumc (Nijmegen, the Netherlands), and all participants 
signed an informed consent form before participation (van Eijndhoven et al., 2021). Data for this 
study were collected from June 2016 to July 2020.

Patients were diagnosed and classified by a trained clinician according to the DSM using semi-
structured interviews (see van Eijndhoven et al., 2021 for an extensive description of the diagnostic 
process). Mood and anxiety disorders were diagnosed using the Structured Clinical interview for 
DSM-IV Axis I Disorders (SCID-I) (First et al., 1996), and addiction disorders with the MATE-Crimi 
(Schippers et al., 2010; Schippers and Broekman, 2012). ADHD and ASD were assessed with a two-
step diagnostic procedure. First, screeners were used. We used the World Health Organization Adult 
ADHD Self-Report Scale (ASRS)-short version for ADHD screening (Silverstein et al., 2018; Kessler 
et al., 2005). The ASRS is an ADHD screenings questionnaire consisting of six items (cut-off >3) with 
good psychometric properties (Kim et al., 2013). We screened for ASD by assessing autistic traits 
using the AQ-50 (50 items, cut-off >25) (Baron-Cohen et  al., 2006; Baron-Cohen et  al., 2001). 
Next, semi-structured interviews were performed for these disorders in case of a positive score on 
these screening instruments or if there was a clinical suspicion on one of these disorders during the 
extensive 3-hr clinical evaluation at the psychiatry department. We assessed the presence of ADHD 
with the semi-structured Diagnostic Interview for ADHD in Adults version 2.0 (Dutch: Diagnostisch 
Interview voor ADHD bij volwassenen 2.0 [DIVA 2.0]) (Kooij and Francken, 2010; Ramos-Quiroga 
et al., 2019). For ASD we administered the Dutch Interview for ASD in Adults (Dutch: Nederlands 
Interview ten behoeve van Diagnostiek Autismespectrumstoornissen bij volwassenen [NIDA]) (Vuijk, 
2014). Both the DIVA and NIDA were completed in the presence of a partner and/or family member 
of the patient so that we were able to retrospectively and collaterally ascertain information on a 
broad range of symptoms in childhood and adulthood.

In order to provide more insight into the distribution of the symptom dimensions across broad 
diagnostic groups, we divided our samples into the following four broad subgroups: mentally 
healthy control group, stress-related group, neurodevelopmental group, and comorbidity group. 
The neurodevelopmental disorders (i.e. ASD and ADHD) were grouped together since both are 
lifelong disorders that start in early childhood and have a relatively stable, trait-like course and shared 
heritability (Franke et  al., 2018; Rommelse et  al., 2011). The group of stress-related disorders 
consists of the mood, anxiety, and addiction disorders. The mood and anxiety disorders share a 
common underlying dimension (Kotov et al., 2017), with a maladaptive stress response as a central 
feature in these disorders (de Kloet et al., 2005; Sharma et al., 2016). The addiction disorders 
are for this purpose also included in the stress-related group, given the important role of stress in 
the onset, maintenance, and relapse in these disorders (Koob, 2003; Koob and Schulkin, 2019). 
The comorbidity group consists of patients with both a stress-related and a neurodevelopmental 
disorder.

Measures of interest
For our study, we included measures of interest consisting of symptom questionnaires, demographics, 
and additional biobehavioral measures of interest. In case of missing values, these missings were 
imputed by the median (non-normal distribution) of the available scores.

Symptom questionnaires
Here, we provide additional information on the questionnaire subscales that showed significant 
correlations with the independent components. The anxiety/arousal (IDS-SR) and physical concerns 
(ASI) subscales both measure symptoms within the negative valence domain. More specifically, 
the anxiety/arousal subscale measures anxiety/panic, somatic/physiological arousal, and somatic 
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complaints. The physical concerns subscale measures fear of anxiety-related physical sensations, 
resulting from the belief that these sensations may have harmful consequences.

The subscales of the BRIEF-A pertain to the cognitive systems domain and measure higher-order 
cognitive/executive functions. The self-monitoring subscale (BRIEF-A) assesses the ability to regulate 
and monitor the effects of one’s behavior. The inhibition subscale (BRIEF-A) measures inhibitory 
control and impulsivity. Finally, the working memory subscale (BRIEF-A) assesses the capacity to hold 
information in mind in order to complete a task, encode information, or perform sequential steps to 
achieve goals. Working memory is essential for carrying out multistep activities, the completion of 
mental manipulations (like mental arithmetics), and for following complex instructions.

fMRI data acquisition
All images were collected using a 3T Siemens Magnetom Prisma MRI scanner (Erlangen) with a 
32-channel head coil. For the T1 scan, high-resolution structural images (1.0 × 1.0 × 1.0 mm) were 
acquired using a T1-weighted MP-RAGE sequence (TE/TR = 3.03/2300 ms, flip angle = 8°, FOV = 
256 × 256 × 192 mm, GRAPPA acceleration factor 2). For the DTI scan, a multi-band 3 protocol was 
used (TE/TR = 70.2/2370 ms, flip angle = 90°, slice thickness = 2.0 mm, number of slices = 69, in-
plane resolution = 2.0 mm2, b-values = 0/1,000 s/mm2, number of gradients = 85).

For all three functional scans, T2*-weighted EPI BOLD-fMRI images were acquired using a multi-
band 6 protocol with an interleaved slice acquisition sequence (number of slices = 66, TR = 1000 ms, 
TE = 34 ms, flip angle = 60°, voxel size = 2.0 × 2.0 × 2.0 mm, slice gap = 0 mm, FOV = 210 mm).

MRI preprocessing and feature extraction
Structural scans
VBM was used to extract gray matter densities from the T1 scans. The CAT-12 toolbox was used 
to preprocess the T1 data (‘Computational Analysis Toolbox-12’; http://dbm.neuro.uni-jena.de/​
cat/) Nenadic et al., 2015 in statistical parametric mapping 12 (SPM12) (Wellcome Department of 
Imaging Neuroscience, London, UK) (Ashburner and Friston, 2000). All T1 images were affinely 
aligned, before gray matter volume estimation. Next, images were segmented, normalized, and 
bias-field-corrected (Ashburner and Friston, 2000; Elam and van Essen, 2013). This resulted in 
images containing gray matter segments, white matter segments, and cerebrospinal fluid (CSF). 
Subsequently, DARTEL (Ashburner, 2007) was used to normalize all images to a standard gray 
matter template provided by the CAT-12 toolbox. All gray matter volumes were smoothed with 
a 9.4 mm FWHM Gaussian smoothing kernel (sigma = 4 mm). Quality control was performed for 
all VBM images using the quality measures calculated by the CAT-12 toolbox and expert visual 
inspection. Finally, for computational reasons, we spatially downsampled the VBM images to 2 mm 
isotropic (Groves et al., 2011; Groves et al., 2012).

The DTI scans were used to extract measures of white matter integrity. The DTI data was 
preprocessed using the DTIFIT routine from FSL (Ashburner, 2007; Jenkinson et al., 2012) (https://​
fsl.fmrib.ox.ac.uk/fsl) to create the FA and MD images. Next, these FA and MD images were fed 
into the TBSS pipeline (Smith et al., 2006). The resulting images had a voxel size of 1 mm isotropic. 
Quality control was performed by expert visual inspection of the registration, brain extraction, and 
results of the preprocessing pipeline described above (Ashburner, 2007; Jenkinson et al., 2012).

Functional scans
The functional scans were preprocessed using FSL 5.0.11 (FMRIB, Oxford, UK). These scans were 
preprocessed using the FMRI Expert Analysis Tool (FEAT), which is part of the FMRIB Software Library 
(FSL) (Jenkinson et al., 2012). To allow for T2* equilibration effects, the first five images of each 
resting-state scan were discarded. Furthermore, the preprocessing steps included brain extraction, 
motion correction, bias field correction, high-pass temporal filtering with a cut-off of 100 s, spatial 
smoothing with a 4 mm full width at half maximum (FWHM) Gaussian kernel, and registration of 
functional images to high-resolution T1 using boundary-based registration and nonlinear registration 
to standard space (MNI152) (see also van Oort et al., 2020).

We used dual regression on the preprocessed data to generate subject-wise statistical maps 
(Beckmann et al., 2009; Nickerson et al., 2017), representing the whole brain connectivity of each 
network of interest (i.e. the DMN, ECN, and FPN). We used the network templates from Smith et al., 
2009 to select our networks of interest without biasing the results toward one of our functional 
scans (we merged the left and right FPN into one FPN template). We selected these large-scale 
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networks because they play an important role across broad functional domains, across psychiatric 
disorders. The DMN plays an important role in self-referential processing (Buckner et al., 2008), the 
ECN in emotion and action-inhibition (Smith et al., 2009), and the FPN in higher-order cognitive 
functions and top-down control (Buhle et al., 2014; Corbetta and Shulman, 2002). Aberrations in 
these networks are associated with core symptom domains, like negative valence and the cognitive 
systems, that transcend traditional disorder categories (Menon, 2011).

We applied dual regression on all three functional scans (i.e. resting-state, stress, and stress-
aftermath scan), resulting in nine spatial maps per subject (3 scans × 3 networks of interest). We 
performed the following steps for all three our functional scans separately: we applied all the 
unthresholded network maps from Smith et al., 2009 (i.e. 19 network maps since we merged the 
left and right FPN) as spatial maps into dual regression. Dual regression uses these spatial maps as 
input to generate subject-wise time courses for the networks of interest by correlating the mean 
time course of the network with all the voxels of the brain. Regression of these time courses against 
the data resulted in spatial maps of the 19 networks for each individual subject (Filippini et al., 
2009). Afterward, we selected the outcomes for our three networks of interest (i.e. DMN, ECN, and 
FPN). This resulted for each subject in one spatial map per network. So in total this resulted in nine 
spatial maps per subject (3 scans × 3 networks of interest).

Supplemental analyses
Age and sex across diagnostic subgroups
For our broad diagnostic subgroups (i.e. mentally healthy controls, stress-related, neurodevelopmental, 
and comorbidity group), we tested whether there were any differences between these groups 
related to age (ANOVA) and sex (chi-square test).

Linked ICA for separate MRI scans/modalities
We also performed the linked ICA factorization and full Spearman correlations for the separate MRI 
scans/modalities. For each of the functional scans, we selected the spatial maps of our networks of 
interest (i.e. DMN, ECN, and FPN). We performed the analysis separately for each of the following 
MRI modalities/scans:

1.	 Structural modalities (VBM, FA, and MD)
2.	 Resting-state scan (spatial maps of DMN, ECN, and FPN)
3.	 Stress scan (spatial maps of DMN, ECN, and FPN)
4.	 Stress-aftermath scan (spatial maps of DMN, ECN, and FPN)

Partial correlations
In addition to the full Spearman correlations in the main analysis, we also performed post hoc partial 
Spearman correlations to test to what extent the results from the main analysis are driven by age and 
sex (covariates). We performed these partial Spearman correlations only for the significant results 
from the main analysis and again addressed the multiple comparisons by applying FDR correction 
(p<0.05) (Benjamini and Hochberg, 1995).

Supplemental results
Study population
In total, 258 patients and 80 mentally healthy participants participated in the MRI part of the MIND-
Set study. Of these participants, 33 patients and 10 mentally healthy participants were not eligible for 
our present study and were excluded for the following reasons: not all structural and functional scans 
were available (among others because of early drop out due to excessive anxiety during scanning) 
(8 patients, 1 healthy participant), deviations on the scans (4 patients, 1 healthy participant), scanner 
artifacts (2 patients), excessive motion (14 patients, 6 healthy participants), insufficient quality of the 
T1 or DTI scan (1 patient, 1 healthy participant), and other technical problems (4 patients, 1 healthy 
participant). This resulted in 225 patients and 70 mentally healthy participants being included in our 
study.

In order to get more insight into our sample, the sample was subdivided into the following four 
broad diagnostic subgroups: mentally healthy controls (n = 70; mean age (± standard deviation 
[SD]): 37.4 ± 16.0 years; % male: 47.1%), stress-related (n = 84; mean age [± SD]: 39.9 ± 13.8; % 
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male: 53.6%), neurodevelopmental (n = 55; mean age [± SD]: 33.3 ± 12.2; % male: 69.1%), and 
comorbidity group (n = 86; mean age [± SD]: 33.9 ± 10.7; % male: 59.3%). There were differences 
in age between the four subgroups (F(3,291) = 4.20, p=0.006), with higher age in the stress-related 
group compared to the neurodevelopmental (p=0.004) and comorbidity group (p=0.003). There was 
no significant difference between the subject subgroups with respect to sex (χ2(3) = 6.61, p=0.085).

Correlations between the multimodal ASD component and AQ-50 
subscales:
Post hoc correlations were performed between the multimodal ASD component (IC32) and the AQ-
50 subscales for the patients with ASD and participants without ASD separately. In patients with ASD, 
the following results were found: social skill: rs = –0.237 (puncorrected = 0.037), difficulty with change/
attention switching: rs = –0.179 (puncorrected = 0.117), communication: rs = –0.096 (puncorrected = 0.404), 
imagination rs = –0.052 (puncorrected = 0.652), and attention to detail: rs = –0.122 (puncorrected = 0.287). 
For the participants without ASD, the results showed the following: social skill: rs = –0.017 (puncorrected 
= 0.807), difficulty with change/attention switching: rs = –0.039 (puncorrected = 0.563), communication: 
rs = 0.024 (puncorrected = 0.721), imagination rs = 0.037 (puncorrected = 0.587), and attention to detail: rs = 
–0.035 (puncorrected = 0.605).

Correlations between ECN-FPN components and negative valence 
symptoms
The ECN-stress aftermath component (IC7) was associated with the following symptom dimensions 
in the negative valence domain: anxiety/somatic (rs = –0.23, p=0.007) and physical concerns (rs = 
–0.20, p=0.037). Here, we provide the correlations of the other ECN-FPN components with these 
same symptom dimensions for comparison (NB: p-values are FDR-corrected values): IC8: anxiety/
somatic: rs = –0.14, p=0.286, physical concerns: rs = –0.10, p=0.551; IC13: anxiety/somatic: rs = 
–0.14, p=0.257, physical concerns: rs = –0.10, p=0.548; IC30: anxiety/somatic: rs = –0.02, p=0.964, 
physical concerns: rs = –0.03, p=0.923. Next, we performed post hoc analyses to compare the 
strength of the correlations between the ECN-stress aftermath component (IC7) and the negative 
valence symptoms with the correlations between the other ECN-FPN components and these same 
symptoms (uncorrected for multiple comparisons). These analyses showed the following results 
related to the IDS anxiety/somatic: IC7 versus IC8: z = –1.12, puncorrected = 0.263; IC7 versus IC13: z 
= –1.07, puncorrected = 0.284; IC7 versus IC30: z = –2.60, puncorrected = 0.009. For ASI physical concerns: 
IC7 versus IC8: z = –1.18, puncorrected = 0.237; IC7 versus IC13: z = –1.17, puncorrected = 0.242; IC7 versus 
IC30: z = –2.04, puncorrected = 0.041. Since there is no significant difference between the correlations 
of the ECN stress-aftermath component and the ECN components during the resting-state scan 
(IC13) or stress scan (IC8), we cannot exclude a threshold effect. At the same time, it is important to 
note that the ECN-stress aftermath component was the most sensitive for finding these relationships 
at statistically significant levels. Thus, the stress induction may have played an important role in 
revealing these results (during the stress-aftermath period).

Linked ICA for separate MRI scans/modalities
While we found 87 significant correlations in the main analysis, in which we analyzed all 12 MRI 
modalities together, analyzing the modalities/scans separately resulted in maximally 33 significant 
correlations per analysis. Analyzing the modalities separately confirms that functional scans are more 
sensitive in finding correlations with symptom dimensions since eight out of nine correlations with 
symptoms were with the functional scans (Supplementary file 2b–e).

Partial correlations
The post hoc partial correlations showed that 37 of the correlations from the main analysis remained 
significant (FDR-corrected q < 0.027) when correcting for age and sex (Supplementary file 2a). 
Importantly, 9 out of 10 correlations for the symptoms remained significant, indicating that these 
were in general not driven by age and/or sex. Eight partial correlations remained significant for 
IC7, and these partial correlations spanned different units of analysis (e.g. symptoms, physiological/
cardiovascular measures, BMI, functioning/general health) (Figure 5A).
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Appendix 1—figure 1. Scatterplots displaying the relationships between the symptom dimensions and 
independent components (ICs).
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1. Component 8: Executive Control Network (ECN) during stress scan

2. Component 13: Executive Control Network (ECN) during resting-state scan

3. Component 30: Executive Control Network (ECN) during resting-state and stress-aftermath scan

1. ECN during resting-state scan 2. ECN during stress-aftermath scan 

x = 3 y = 14             z = 6 

x = 46 y = 25               z = 42

x = 3 y = 14             z = 6 

x = 46 y = 25               z = 42

x = -3 y = 14             z = 6 

x = 46 y = 25               z = 42

x = -3 y = 14             z = 6 

x = 46 y = 25               z = 42

Correlations with IC8
Measure r p-value partial r p-value

HRV at rest 0.26 5.3E-04** 0.01 0.929

Number of chronic 

diseases

-0.21 0.021* -0.05 0.433

BRIEF-A: Self-

Monitoring

-0.22 0.008** -0.15 0.021*

BMI -0.35 9.0E-08** -0.21 0.002*

Age -0.57 9.7E-23** N/A N/A

Correlations with IC13
Measure r p-value partial r p-value

HRV at rest 0.23 0.006** -0.04 0.546

BRIEF-A: Self-

Monitoring

-0.20 0.038* -0.12 0.074

Diastolic RR -0.20 0.031* -0.10 0.119

BRIEF-A: Working 

Memory

-0.22 0.012* -0.16 0.016*

SF: Physical pain -0.22 0.009** -0.16 0.019*

Systolic RR -0.25 0.001** -0.14 0.038*

BMI -0.29 4.8E-05** -0.14 0.039*

Age -0.56 9.7E-23** N/A N/A

Correlations with IC30
Measure r p-value partial r p-value

BRIEF-A: Inhibition -0.19 0.044* -0.19 0.001**

BRIEF-A: Self-

Monitoring

-0.22 0.012* -0.19 8.6E-04**

z-value
5

2
-2

-3

z-value
5

2
-2

-4

z-value
6

2
-2

-5

R

R

R

Appendix 1—figure 2. The components displayed here have important similarities with independent component 
7 since all these components reflect connectivity of the executive control network (ECN) with itself and with the 
frontoparietal network (FPN). (1) Independent component 8 is driven by the ECN during the stress scan (99.8%). 
(2) Independent component 13 is driven by the ECN during the resting-state scan (99.9%). (3) Independent 
component 30 is mainly driven by the ECN during the resting-state scan (42.2%) and stress-aftermath scan (38.3%). 
For all components in this figure, we used the 10 and 90 percentiles for thresholding, for display purposes, since 
the underlying distribution was not z-distributed. In this figure, the right side of the brain is displayed on the right 
side of the image. R: right.

The online version of this article includes the following source data for appendix 1—figure 2:

Appendix 1—figure 2—source data 1. Correlations for IC8, IC13, and IC30.
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Appendix 1—figure 3. Dot plots for symptom dimensions across the subgroups. ASI: Anxiety Sensitivity Index; 
AQ-50: Autism spectrum Quotient-50; BRIEF-A: Behavior Rating Inventory Executive Function – Adult; CAARS: 
Conners’ Adult ADHD Rating Scale; CM: comorbidity group; HC: mentally healthy controls; IDS-SR: Inventory of 
Depressive Symptomatology Self Report; ND: neurodevelopmental group; PID-5: Personality Inventory for DSM-
5-Short Form; PTQ: Perseverative Thinking Questionnaire; RNT: repetitive negative thinking; SR: stress-related 
group; TAS-20: Toronto Alexithymia Scale-20.
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2. Correlation between component 1 and age
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Appendix 1—figure 4. Test for direction of correlational results. (1) Independent component 1 (IC1) is driven 
by the voxel-based morphometry (VBM) modality (82.7%) and reflects global gray matter volume.(2) The subject 
loadings on IC1 were negatively correlated with age (rs = –0.50, p=9.7E-18).
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Appendix 1—table 1. Symptom measures.

Topic Questionnaire
Abbreviation 
questionnaire

Questionnaire subscales 
(n = 35)

Reference for 
questionnaire 
subscales

Depressive symptoms Inventory of Depressive
Symptomatology Self 
Report

IDS-SR 1.Mood/cognition
2.Anxiety/somatic
3.Sleep

Wardenaar et al., 
2010

Anxiety sensitivity Anxiety Sensitivity Index ASI 1.Physical concerns
2.Mental incapacitation 
concerns
3.Social concerns

Rodriguez et al., 
2004

Attention-deficit 
hyperactivity disorder 
symptoms

Conners’ Adult ADHD 
Rating Scale

CAARS 1.Inattention/memory 
problems
2.Hyperactivity/
restlessness
3.Impulsivity/emotional 
lability
4.Problems with self-
concept

Conners et al., 
1999

Autistic traits Autism spectrum 
Quotient-50

AQ-50 1.Social skill
2.Difficulty with change/
attention switching
3.Communication
4.Imagination
5.Attention to detail

Hoekstra et al., 
2008

Alexithymia Toronto Alexithymia 
Scale-20

TAS-20 1.Describing feelings
2.Difficulty identifying 
feelings
3.Externally oriented 
thinking

Bagby et al., 1994

Personality traits Personality Inventory for 
DSM-5-Short Form

PID-5-B-Adult 1.Negative affect
2.Detachment
3.Antagonism
4.Disinhibition
5.Psychoticism

Krueger et al., 
2012

Repetitive negative 
thinking (RNT)

Perseverative Thinking 
Questionnaire

PTQ 1.Core characteristics of 
RNT
2.Unproductiveness
3.Capturing mental 
capacity

Ehring et al., 2011

Behavioral regulation Behavior Rating 
Inventory Executive 
Function – Adult

BRIEF-A 1.Inhibition
2.Shift
3.Emotional control
4.Self-monitor
5.Initiate
6.Working memory
7.Plan/organize
8.Organization of 
materials
9.Task monitor

Hocking et al., 
2015
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Appendix 1—table 2 Continued on next page

Appendix 1—table 2. Demographics and biobehavioral measures of interest*.

Topic
Measures for correlational 
analysis (n = 45) Assessment Description of measure

Reference for 
background information

Demographics Age Demographics standard 
questionnaire

Age in years Stronks et al., 2013

Sex Male/female

Level of education 4 levels: no, low, middle, high Ikram et al., 2015, 
Stronks et al., 2013

Anthropometric 
measure

BMI Weight scale and 
stadiometer

BMI = weight/(length^2)
(weight in kilogram, length in meter)

van Eijndhoven et al., 
2021

Biological/ 
physiological measures

Systolic blood pressure Blood pressure band Systolic blood pressure (mmHg) van Eijndhoven et al., 
2021

Diastolic blood pressure Diastolic blood pressure (mmHg)

Heart rate during resting-
state scan

Infrared pulse oximeter in 
MRI scanner

Heart rate in beats per minute (BPM) 
during the resting-state scan Calculated 
using in-house software

van Oort et al., 2020, 
see also Figure 1 
for moment of 
measurements

Stress-induced change in 
heart rate (stress – neutral)

Stress-induced change in heart rate (BPM): 
during stress movie minus during neutral 
movie

Heart rate variability (HRV) 
during resting-state scan

HRV is calculated using the a trimmed 
version (trimming lowest and highest 
10% of values) of the root mean square of 
successive differences (rMSSD)

Shaffer and Ginsberg, 
2017

Stress-induced change in 
HRV

Stress-induced change in trimmed rMSSD 
score (see above): during stress movie 
minus during neutral movie

Baseline cortisol Salivette for saliva cortisol Saliva cortisol level during acclimatization 
period (20 min before scanning)

Kirschbaum and 
Hellhammer, 1994, van 
Oort et al., 2020

Cortisol after stress 
induction

Saliva cortisol level ±25 min after the start 
of the stress induction

Kirschbaum and 
Hellhammer, 1994, van 
Oort et al., 2020

Hair cortisol Hair sample from scalp Hair sample from scalp (>3 cm length) Staufenbiel et al., 2015

Somatic disorders Number of chronic somatic 
disorders

Statistics Netherlands 
questionnaire (CBS)

Number of chronic disorders including 
hypertension, for which a participant is 
under treatment from a doctor and/or for 
which the participant uses medication

Bekhuis et al., 2016

Subjective stress Subjective stress at baseline 
in scanner

In-house questionnaire Subjective stress rating on an eleven-point 
rating scale (0–10) directly after the resting-
state scan

See Figure 1 of van Oort 
et al., 2020

Stress-induced change in 
subjective stress

Subjective stress rating (see above): stress 
minus control condition

Trauma history 1.Emotional neglect
2.Psychological abuse
3.Physical abuse
4.Sexual abuse

NEMESIS-childhood 
trauma questionnaire

NEMESIS-trauma questionnaire: 4 
subscales, one score (0–2) for each domain 
described in column 2

Hovens et al., 2010
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Topic
Measures for correlational 
analysis (n = 45) Assessment Description of measure

Reference for 
background information

Psychiatric classification Current mood disorder (yes/
no)

SCID-I The Structured Clinical interview for 
DSM-IV Axis I Disorders (SCID-I): current 
depression and/or dysthymia (yes/no)

First et al., 1996

Current anxiety disorder 
(yes/no)

SCID-I Current DSM-IV anxiety disorder according 
to SCID-I: panic disorder, agoraphobia, 
social phobia, specific phobia, obsessive 
compulsive disorder, posttraumatic stress 
disorder, generalized anxiety disorder and/
or anxiety disorder not otherwise specified 
(yes/no)

ASD (yes/no) NIDA Dutch Interview for ASD in Adults (NIDA): 
autism spectrum disorder (ASD) (yes/no)

Vuijk, 2014

ADHD (yes/no) DIVA 2.0 Diagnostic Interview for ADHD in Adults 
version 2.0: ADHD (yes/no)

Kooij and Francken, 
2010, Ramos-Quiroga 
et al., 2019

Addiction disorder (yes/no) MATE-Crimi Measurements in the Addictions for Triage 
and Evaluation and Criminality (MATE-
Crimi): addiction disorder (yes/no)

Schippers et al., 
2010; Schippers and 
Broekman, 2012

Psychiatrically healthy (yes/
no)

See diagnostic 
instruments stated above

Psychiatrically healthy control subject 
or psychiatric patient (with one or more 
disorders described above)

See also van Eijndhoven 
et al., 2021 for extensive 
description of the 
diagnostic, classification 
process

Substance use Level of smoking MATE-Crimi Not smoking, light smoker, heavy smoker van Eijndhoven et al., 
2021

Cannabis use (yes/no) In-house questionnaire Used cannabis last 7 d before scanning 
(yes/no)

N/A

Alcohol consumption In-house questionnaire Number of standard units of alcohol used 
in the 7 d before scanning

N/A

Medication Antipsychotic (yes/no) Medication verification: 
anamnesis and 
medication list from 
pharmacy Medication 
grouping based on ATC 
code

Antipsychotics (N05A) (only lithium 
(N05AN) is excluded from this category) 
(yes/no)

https://www.whocc.​
no/atc/structure_and_​
principles/ (last checked 
date June 7, 2021)

Anxiolytic, hyponotic and/or 
sedative (yes/no)

Anxiolytics (N05B), hypnotics and sedatives 
(N05C) and/or promethazine (R06AD02) 
(yes/no)

Antidepressant (yes/no) Antidepressants (N06A) (yes/no)

Central-acting 
sympathicomimetic (yes/no)

Central-acting sympathicomimetics 
(N06BA) (yes/no)

Functional limitations 1.Cognition
2.Mobiity
3.Self-care
4.Getting along
5.Life activities
6.Participation

WHODAS WHO-Disability Assessment Schedule 2.0 
(WHODAS 2.0): 6 existing subscales of this 
questionnaire, covering different domains 
of functioning (see column 2).

Chwastiak and Von 
Korff, 2003

General health 1.Physical functioning
2.Role fulfillment
3.Social functioning
4.Mental health
5.Experienced health
6.Physical pain

SF-20 Short Form-20 (SF-20): 6 existing subscales 
of this questionnaire, covering different 
domains of health (see column 2)

Stewart et al., 1989

ADHD: attention-deficit hyperactivity disorder; BMI: body mass index; N/A: not applicable.
*See also van Eijndhoven et al., 2021 for extensive description of the measures in this table and for the diagnostic, classification process.

Appendix 1—table 2 Continued
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Appendix 1—table 3. Use of psychotropic medication at the time of the MRI scan.

Healthy 
controls
(n = 70)

Combined 
patient 
group*

(n = 225)

Stress-
related 

group (n = 
84)

Neurodevelopmental 
group (n = 55)

Comorbidity 
group (n = 86)

Current medication use†

Antidepressant (n = ..) 0 84 41 9 34

Antipsychotic (n = ..) 0 28 16 2 10

Central-acting 
sympathicomimetic‡ (n = ..) 0 21 2 6 13

Anxiolytic, hyponotic and/or 
sedative (yes/no) (daily use) (n 
= ..) 0 27 12 2 13

Mood stabilizer (n = ..) 0 3 3 0 0

*The combined patient group consists of all patients that were included in this study, and can be subdivided in the 
stress-related, neurodevelopmental and comorbidity group.
†Number of participants using the type of medication stated below. Grouping of medication is based on ATC 
code (see Appendix 1—table 2 for an extensive description of the medication groups). The mood stabilizer 
group is added to this table, but was not used in the correlational analysis, given the low number of patients using 
this type of medication (i.e. valproic acid [n=1] and lithium [n=2]).
‡The central-acting sympathomimetic drugs represent the use of psychostimulants.
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