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Abstract Natural visual experience involves a continuous series of related images while the 
subject is immobile. How does the cortico- hippocampal circuit process a visual episode? The hippo-
campus is crucial for episodic memory, but most rodent single unit studies require spatial explora-
tion or active engagement. Hence, we investigated neural responses to a silent movie (Allen Brain 
Observatory) in head- fixed mice without any task or locomotion demands, or rewards. Surprisingly, a 
third (33%, 3379/10263) of hippocampal –dentate gyrus, CA3, CA1 and subiculum– neurons showed 
movie- selectivity, with elevated firing in specific movie sub- segments, termed movie- fields, similar 
to the vast majority of thalamo- cortical (LGN, V1, AM- PM) neurons (97%, 6554/6785). Movie- tuning 
remained intact in immobile or spontaneously running mice. Visual neurons had >5 movie- fields per 
cell, but only ~2 in hippocampus. The movie- field durations in all brain regions spanned an unprec-
edented 1000- fold range: from 0.02s to 20s, termed mega- scale coding. Yet, the total duration of 
all the movie- fields of a cell was comparable across neurons and brain regions. The hippocampal 
responses thus showed greater continuous- sequence encoding than visual areas, as evidenced 
by fewer and broader movie- fields than in visual areas. Consistently, repeated presentation of the 
movie images in a fixed, but scrambled sequence virtually abolished hippocampal but not visual- 
cortical selectivity. The preference for continuous, compared to scrambled sequence was eight- fold 
greater in hippocampal than visual areas, further supporting episodic- sequence encoding. Movies 
could thus provide a unified way to probe neural mechanisms of episodic information processing 
and memory, even in immobile subjects, across brain regions, and species.

eLife assessment
This manuscript analyzes large- scale Neuropixels recordings from visual areas and hippocampus of 
mice passively viewing repeated clips of a movie and reports that neurons respond with elevated 
firing activities to specific, continuous sequences of movie frames. The important results support 
a role of rodent hippocampal neurons in general episode encoding and advance understanding of 
visual information processing across different brain regions. The strength of evidence for the primary 
conclusion was found to be convincing.

Introduction
In addition to the position and orientation of simple visual cues, like Gabor patches and drifting grat-
ings (Hubel and Wiesel, 1959), primary visual cortical responses are also direction selective (De Valois 
et al., 1982), and show predictive coding (Xu et al., 2012), suggesting that the temporal sequence of 
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visual cues influences neural firing. Accordingly, these as well as higher visual cortical neurons encode 
a sequence of visual images, i.e., a movie (de Vries et al., 2020; Yen et al., 2007; Herikstad et al., 
2011; Vinje and Gallant, 2000; Froudarakis et al., 2014; Hoseini et al., 2019; Herikstad et al., 
2011; Kampa et al., 2011). The hippocampus is farthest downstream from the retina in the visual 
circuit. The rodent hippocampal place cells encode spatial or temporal sequences (MacDonald et al., 
2011; Mehta et al., 2000; Mehta and Wilson, 2000; Mehta, 2015; Mehta et al., 1997; Buzsáki 
and Moser, 2013; Mau et al., 2018; Kraus et al., 2015; Kraus et al., 2013; O’Keefe and Nadel, 
1978) and episode- like responses (Pastalkova et al., 2008; Moore et al., 2021; Buzsáki and Tingley, 
2018). However, these responses typically require active locomotion (McNaughton et al., 1996), and 
they are thought to be non- sensory responses (O’Keefe and Dostrovsky, 1971). Primate and human 
hippocampal responses are selective to specific sets of visual cues, e.g., the objectplace association 
(Parkinson et al., 1988), their short- term (Scoville and Milber, 1957) and long- term (Quiroga et al., 
2005) memories, cognitive boundaries between episodic movies (Zheng et  al., 2022), and event 
integration for narrative association (Cohn- Sheehy et al., 2021). However, despite strong evidence 
for the role of hippocampus in episodic memory, the hippocampal encoding of a continuous sequence 
of images, i.e., a visual episode, is unknown.

Results
Significant movie tuning across cortico-hippocampal areas
We used a publicly available dataset (Allen Brain Observatory – Neuropixels Visual Coding, 2019 Allen 
Institute). Mice were monocularly shown a 30- s clip of a continuous segment from the movie Touch 
of Evil (Welles, 1958) (Siegle et al., 2021; Figure 1—figure supplement 1 and Figure 1—video 1). 
Mice were head- fixed but were free to run on a circular disk. A total of 17,048 broad spiking, active, 
putatively excitatory neurons were analyzed, recorded using 4–6 Neuropixel probes in 24 sessions 
from 24 mice (see Methods).

The majority of neurons in the visual areas (lateral geniculate nucleus [LGN], primary visual cortex 
[V1], higher visual areas: antero- medial and posterior- medial [AM–PM]) were modulated by the movie, 
consistent with previous reports (Figure 1—figure supplement 2; de Vries et al., 2020; Yen et al., 
2007; Herikstad et al., 2011; Vinje and Gallant, 2000; Froudarakis et al., 2014; Hoseini et al., 
2019; Kampa et al., 2011). Surprisingly, neurons from all parts of the hippocampus (dentate gyrus 
[DG], CA3, CA1, subiculum [SUB]) were also clearly modulated (Figure  1), with reliable, elevated 
spiking across many trials in small movie segments. To quantify selectivity in an identical, firing rate- 
and threshold- independent fashion across brain regions, we computed the z- scored sparsity (Acharya 
et al., 2016; Aghajan et al., 2015; Skaggs et al., 1996; Purandare et al., 2022) of neural selectivity 
(see Methods). Cells with z- scored sparsity >2 were considered significantly (p < 0.03) modulated. 
Other metrics of selectivity, like depth of modulation or mutual information, provided qualitatively 
similar results (Figure 1—figure supplement 3). The areas V1 (97.3%) and AM–PM (97.1%) had the 
largest percentage of movie- tuned cells. Similarly, the majority of neurons in LGN (89.2%) too showed 
significant modulation by the movie. This level of selectivity is much higher than reported earlier (de 
Vries et  al., 2020) (~40%), perhaps because we analyzed extracellular spikes, while the previous 
study used calcium imaging. On the other hand, the movie selectivity was greater than the selectivity 
for classic stimuli, like drifting gratings, in V1, even within calcium imaging data, in agreement of 
reports of better model fit with natural stimuli for primate visual responses (David et al., 2004). Direct 
quantitative comparison across stimuli is difficult and beyond the scope of this study because the 
movie frames appeared every 30 ms, and were preceded by similar images, while classic stimuli were 
presented for 250 ms, in a random order. Thus, the vast majority of thalamo- cortical neurons were 
significantly modulated by the movie.

Movie selectivity was prevalent in the hippocampal regions too, despite head fixation, dissociation 
between self- movements and visual cues as well as the absence of rewards, task, or memory demands 
(Figure 1a–d). Subiculum, the output region of the hippocampus, farthest removed from the retina, 
had the largest fraction (44.6%, Figure 1d) of movie- tuned neurons, followed by the upstream CA1 
(33.6%, Figure 1c) and DG (33.1%, Figure 1a). However, CA3 movie selectivity was nearly half as 
much (17.3%, Figure 1b). This is unlike place cells, where CA3 and CA1 selectivity are comparable 
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Figure 1. Movie frame selectivity in hippocampal neurons. (a) Raster plots of two different dentate gyrus (DG) neurons as a function of the movie frame 
(top) over 60 trials, and the corresponding mean firing rate response (bottom). These two cells had significantly increased activity in specific segments of 
the movie. Z- scored sparsity indicating strength of modulation is indicated above. 33.1% of dentate neurons were significantly modulated by the movie 
(right, green bar), far greater than chance (gray bar). Total active, broad spiking neurons for each brain region indicated at top (Ntuned /Ncells = 506/1531). 
(b) Same as (a), for CA3 (168/969, 17.3%), (c) CA1 (2326/6914, 33.6%), and (d) subiculum (379/849, 44.6%) neurons.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. The movie.

Figure supplement 2. Movie selectivity across brain areas.

Figure supplement 3. Multiple metrics show significant and comparable movie tuning.

Figure supplement 4. Movie tuning is intact during immobility.

Figure 1 continued on next page
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(Jung and McNaughton, 1993; Muller, 1996) and subiculum selectivity is weaker (Sharp and Green, 
1994).

Movie tuning is not an artifact of behavioral or brain state changes
To confirm these findings, we performed several controls. Running alters neural activity in visual areas 
(Niell and Stryker, 2010; Erisken et al., 2014; Christensen and Pillow, 2022; Lee et al., 2014) and 
hippocampus (Góis and Tort, 2018; Wiener et al., 1989; Shan et al., 2016). Hence, we used the data 
from only the stationary epochs (see Methods) and only from sessions with at least 300 s of stationary 
data (17 sessions, 24,906 cells). Movie tuning was unchanged in these data (Figure 1—figure supple-
ment 4). This is unlike place cells where spatial selectivity is greatly reduced during immobility (Chen 
et al., 2013; Foster et al., 1989). Neurons recorded simultaneously from the same brain region also 
showed different selectivity patterns (Figure 1—figure supplement 5). Thus, nonspecific effects such 
as running cannot explain brain- wide movie selectivity. Prolonged immobility could change the brain 
state, e.g., the emergence of sharp- wave ripples (SWRs). Hence, we removed the data around SWRs 
and confirmed that movie tuning was unaffected (Figure 1—figure supplement 6). Strong movie- 
tuned cells were seen in sessions with long bouts of running as well as with predominantly immobile 
behavior (Figure 1—figure supplement 7), unlike responses to auditory tones, which were lost during 
running behavior (Shan et al., 2016). Place cell selectivity of hippocampal neurons is influenced by 
theta rhythm (Foster and Wilson, 2007; Royer et al., 2012; Huxter et al., 2008). We compared the 
movie selectivity during periods of high theta, versus periods of low theta. Significant movie selectivity 
in both cases (Figure 1—figure supplement 7). To further assess the effect of changes in brain state, 
we similarly analyzed movie tuning in two equal subsegments of data, corresponding to epochs with 
high and low pupil dilation, which is a strong correlate of arousal (Vinck et al., 2015; Schröder et al., 
2020; Fekete et al., 2009). Movie tuning was above chance levels in both subsegments (Figure 1—
figure supplement 7). Hence, locomotion, arousal, or changes in brain states cannot explain the 
hippocampal movie tuning.

Similarities and differences between place-fields and movie-fields
Hippocampal neurons have one or two place- fields in typical mazes which take a few seconds to 
traverse (O’Keefe and Burgess, 1996). In larger arenas that take tens of seconds to traverse, the 
number of peaks per cell and the peak duration increases (Eliav et al., 2021; Kjelstrup et al., 2008; 
Harland et al., 2021; Rich et al., 2014). Peak detection for movie tuning is nontrivial because neurons 
have nonzero background firing rates, and the elevated rates cover a wide range (Figure  1). We 
developed a novel algorithm to address this (see Methods). On average, V1 neurons had the largest 
number of movie- fields (Figure 2a, mean ± standard error of the mean [SEM] = 10.4 ± 0.1, here we 
use mean instead of median to gain a better resolution for the small and discrete values of number of 
fields per cell), followed by LGN (8.6 ± 0.3) and AM–PM (6.3 ± 0.07). Hippocampal areas had signifi-
cantly fewer movie- fields per cell: DG (2.1 ± 0.1), CA3 (2.8 ± 0.3), CA1 (2.0 ± 0.02), and subiculum (2.1 
± 0.05). Thus, the number of movie- fields per cell was smaller than the number of place- fields per cell 
in comparably long spatial tracks (Eliav et al., 2021; Kjelstrup et al., 2008; Harland et al., 2021; Rich 
et al., 2014; Fenton et al., 2008; Park et al., 2011), but a handful of hippocampal cells had more 
than five movie- fields (Figure 2—figure supplement 1).

Figure supplement 5. Simultaneously recorded hippocampal cells have different movie tuning.

Figure supplement 6. Movie tuning in unaffected by the removal of sharp- wave ripple (SWR) events.

Figure supplement 7. Movie tuning is comparable across sessions with or without prolonged stationary behavior, high or low pupil dilation or theta 
power.

Figure supplement 8. Movie presentation did not alter hippocampal firing rates and the mega- scale coding was unrelated to cluster quality.

Figure 1—video 1. Sequential movie.

https://elifesciences.org/articles/85069/figures#fig1video1

Figure 1 continued

https://doi.org/10.7554/eLife.85069
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Figure 2. Multi- peaked, mega- scale movie- fields across all brain areas. (a) Distribution of the number of movie- fields per tuned cell (see Methods) in 
different brain regions (shown by different colors, top line inset, arranged in their hierarchical order). Hippocampal regions (blue- green shades) were 
significantly different from each other (KS- test p < 0.04), except DG–CA3. All visual regions were significantly different from each other (KS- test p < 
7.0 × 10−11). All visual–hippocampal region pairwise comparisons were also significantly different (KS- test p < 1.8 × 10−44). CA1 had the lowest number 
of movie- fields per cell (2.0 ± 0.02, mean ± standard error of the mean [SEM]) while V1 had the highest (10.4 ± 0.1). (b) Distribution of the durations of 
movie- fields identified in (a), across all tuned neurons from a given brain region. These were significantly different for all brain region pairs (KS- test p < 
7.3 × 10−3). The longest movie- fields were in subiculum (median ± SEM, here and subsequently, unless otherwise mentioned, 3169.9 ± 169.8 ms), and 
the shortest in V1 (156.6 ± 9.2 ms). (c) Snippets of movie- fields from an example cell from V1, with two of the fields zoomed in, showing 60× difference 
in duration. Black bar at top indicates 50 ms, and gray bar indicates 1 s. Each frame corresponds to 33.3 ms. Average response (solid trace, y- axis on the 
right) is superimposed on the trial wise spiking response (dots, y- axis on the left). Color of dots corresponds to frame numbers as in Figure 1. (d) Same 
as (c), for a CA1 neuron with 54× difference in duration. (e) The ratio of longest to shortest field duration within a single cell, i.e., mega- scale index, was 
largest in V1 (56.7 ± 2.2) and least in subiculum (8.0 ± 9.7). All visual–visual and visual–hippocampal brain region pairs were significantly different on 
this metric (KS- test p < 0.02). Among the hippocampal–hippocampal pairs, only CA3–SUB were significantly different (p = 0.03). (f) For each cell, the 
total duration of all movie- fields, i.e., cumulative duration of significantly elevated activity, was comparable across brain regions. The largest cumulative 
duration (10.2 ± 0.46 s, CA3) was only 1.66× of the smallest (6.2 ± 0.09 s) (V1). Visual–hippocampal and visual–visual brain region pairs’ cumulative 
duration distributions were significantly different (KS- test p < 0.001), but not hippocampal pairs (p > 0.07). (g) Distribution of the firing within fields, 
normalized by that in the shuffle response. All fields from all tuned neurons in a brain region were used. Firing in movie- fields was significantly different 
across all brain region pairs (KS- test, p < 1.0 × 10−7), except DG–CA3. Movie- field firing was largest in V1 (2.9 ± 0.03) and smallest in subiculum (1.14 ± 
0.03). (h) Snippets of movie- fields from representative tuned cells, from lateral geniculate nucleus (LGN) showing a long movie- field (233 frames, or 7.8 s, 
panel 1), and from AM–PM and from hippocampus showing short fields (two frames or 66.6 ms wide or less).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Few hippocampal neurons had greater than five movie- fields.

Figure supplement 2. Mega- scale movie- coding within a single cell is smaller than the ensemble wide mega- scale index in visual, but not hippocampal 
areas.

https://doi.org/10.7554/eLife.85069
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Mega-scale structure of movie-fields
Typical receptive field size increases as one moves away from the retina in the visual hierarchy (Siegle 
et al., 2021). A similar effect was seen for movie- field durations. On average, hippocampal movie- 
fields were longer than visual regions (Figure 2b). But there were many exceptions –movie- fields of 
LGN (median ± SEM, here and subsequently, unless stated otherwise, 308.5 ± 33.9 ms) were twice as 
long as in V1 (156.6 ± 9.2 ms). Movie- fields of subiculum (3169.9 ± 169.8 ms) were significantly longer 
than CA1 (2786.1 ± 77.5 ms) and nearly threefold longer than the upstream CA3 (979.1 ± 241.1 ms). 
However, the dentate movie- fields (2113.2 ± 172.4 ms) were twofold longer than the downstream 
CA3. This is similar to the patterns reported for CA3, CA1, and DG place cells (Park et al., 2011). But 
others have claimed that CA3 place- fields are slightly bigger than CA1 (Roth et al., 2012), whereas 
movie- fields showed the opposite pattern.

The movie- field durations spanned a 500- to 1000- fold range in every brain region investigated 
(Figure 2e). This mega- scale scale is unprecedentedly large, nearly two orders of magnitude greater 
than previous reports in place cells (Eliav et al., 2021; Harland et al., 2021). Even individual neurons 
showed 100- fold mega- scale responses (Figure  2c, d) compared to less than 10- fold scale within 
single place cells (Eliav et al., 2021; Harland et al., 2021). The mega- scale tuning within a neuron was 
largest in V1 and smallest in subiculum (Figure 2e). This is partly because the short- duration movie- 
fields in hippocampal regions were typically neither as narrow nor as prominent as in the visual areas 
(Figure 2—figure supplement 2).

Despite these differences in mega- scale tuning across different brain areas, the total duration of 
elevated activity, i.e., the cumulative sum of movie- field durations within a single cell, was remarkably 
conserved across neurons within and across brain regions (Figure 2f). Unlike movie- field durations, 
which differed by more than tenfold between hippocampal and visual regions, cumulative durations 
were quite comparable, ranging from 6.2 s (V1) to 10.2 s (CA3) (Figure 2f, LGN = 8.8 ± 0.21 s, V1 
= 6.2 ± 0.09, AM–PM = 7.8 ± 0.09, DG = 9.4 ± 0.26, CA3 = 10.2 ± 0.46, CA1 = 9.1 ± 0.12, SUB = 
9.5 ± 0.27). Thus, hippocampal movie- fields are longer and less multi- peaked than visual areas, such 
that the total duration of elevated activity was similar across all areas, spanning about a fourth of 
the movie, comparable to the fraction of large environments in which place cells are active (Harland 
et al., 2021; Fenton et al., 2008; Park et al., 2011). To quantify the net activity in the movie- fields, 
we computed the total firing in the movie- fields (i.e., the area under the curve for the duration of the 
movie- fields), normalized by the expected discharge from the shuffled response. Unlike the tenfold 
variation of movie- field durations, net movie- field discharge was more comparable (<3× variation) 
across brain areas, but maximal in V1 and least in subiculum (Figure 2g).

Many movie- fields showed elevated activity spanning up to several seconds, suggesting rate- code 
like encoding (Figure 2h). However, some cells showed movie- fields with elevated spiking restricted 
to less than 50 ms, similar to responses to briefly flashed stimuli in anesthetized cats (Yen et al., 2007; 
Herikstad et al., 2011; Xia et al., 2021). This is suggestive of a temporal code, characterized by low 
spike timing jitter (Ikegaya et al., 2004). Such short- duration movie- fields were not only common in 
the thalamus (LGN), but also AM–PM, three synapses away from the retina. A small fraction of cells in 
the hippocampal areas, more than five synapses away from the retina, showed such temporally coded 
fields as well (Figure 2h).

To determine the stability and temporal- continuity of movie tuning across the neural ensembles 
we computed the population vector overlap between even and odd trials (Resnik et al., 2012) (see 
Methods). Population response stability was significantly greater for tuned than for untuned neurons 
(Figure 3—figure supplement 1). The population vector overlap around the diagonal was broader 
in hippocampal regions than visual cortical and LGN, indicating longer temporal- continuity, reflective 
of their longer movie- fields. Furthermore, the population vector overlap away from the diagonal was 
larger around frames 400–800 in all brain areas due to the longer movie- fields in that movie segment 
(see below).

Relationship between movie image content and neural movie tuning
Are all movie frames represented equally by all brain areas? The duration and density of movie- 
fields varied as a function of the movie frame and brain region (Figure 3—figure supplement 2). We 
hypothesized that this variation could correspond to the change in visual content from one frame 
to the next. Hence, we quantified the similarity between adjacent movie frames as the correlation 

https://doi.org/10.7554/eLife.85069
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coefficient between corresponding pixels and termed it as frame- to- frame (F2F) image correlation. 
For comparison, we also quantified the similarity between the neural responses to adjacent frames 
(F2F neural correlation), as the correlation coefficient between the firing rate response of neuronal 
ensembles between adjacent frames. For all brain regions, the neural F2F was correlated with image 
F2F, but this correlation was weaker in hippocampal output regions (CA1 and SUB) than visual regions 
like LGN and V1. The majority of brain regions had substantially reduced density of movie- fields 
between the movie frames 400–800, but the movie- fields were longer in this region. This effect as 
well was greater in the visual regions than hippocampal regions. Using significantly tuned neurons, we 
computed the average neural activity in each brain region at each point in the movie (see Methods). 
Although movie- fields (Figure 3a), or just the strongest movie- field per cell (Figure 3b), covered the 
entire movie, the peak normalized, ensemble activity level of all brain regions showed significant 
overrepresentation, i.e., deviation from the uniformity, in certain parts of the movie (Figure 3c, see 
Methods). This was most pronounced in V1 and the higher visual areas AM–PM. The number of movie 
frames with elevated ensemble activity was higher in visual cortical areas than hippocampal regions 
(Figure 3d), and also this modulation (see Methods) was smaller in hippocampus and LGN, compared 
to the visual cortical regions (Figure 3e).

Using the significantly tuned neurons, we also computed the average neural activity in each brain 
region corresponding to each frame in the movie, without peak rate normalization (see Methods). 
The degree of continuity between the movie frames, quantified as above (F2F image correlation), 
was inversely correlated with the ensemble rate modulation in all areas except DG, CA3, and CA1 
(Figure 3f, g). As expected for a continuous movie, this F2F image correlation was close to unity for 
most frames, but highest in the latter part of the movie where the images changed more slowly. The 
population wide elevated firing rates, as well as the smallest movie- fields, occurred during the earlier 
parts (Figure 3—figure supplement 2). Thus, the movie- code was stronger in the segments with 
greatest change across movie frames, in agreement with recent reports of visual cortical encoding of 
flow stimuli (Dyballa et al., 2018). These results show differential population representation of the 
movie across brain regions.

Differential neural encoding of sequential versus scrambled movie in 
visual and hippocampal areas
If these responses were purely visual, a movie made of scrambled sequence of images would generate 
equally strong or even stronger selectivity due to the even larger change across movie frames, despite 
the absence of similarity between adjacent frames. To explore this possibility, we investigated neural 
selectivity when the same movie frames were presented in a fixed but scrambled sequence (scrambled 
movie, Figure 4—video 1). The within frame and the total visual content were identical between the 
continuous and scrambled movies, and the same sequence of images was repeated many times in 
both experiments (see Methods). But there was no correlation between adjacent frames, i.e., visual 
continuity, in the latter (Figure 4a).

For all brain regions investigated, the continuous movie generated significantly greater modulation 
of neural activity than the scrambled sequence (Figure 4b). Middle 20 trials of the continuous movie 
were chosen as the appropriate subset for comparison since they were chronologically closest to the 
scrambled movie presentation. This choice ensured that other long- term effects, such as behavioral 
state change, instability of single- unit measurement and representational (Deitch et  al., 2021) or 
behavioral (Sadeh and Clopath, 2022) drift could not account for the differences in neural responses 
to continuous and scrambled movie presentation. This preference for continuous over scrambled 
movie was the greatest in hippocampal regions where the percentage of significantly tuned neurons 
(4.4%, near chance level of 2.3%) reduced more than fourfold compared to the continuous movie 
(17.8%, after accounting for the lesser number of trials, see Methods). This was unlike visual areas 
where the scrambled (80.4%) and the continuous movie (92.4%) generated similar prevalence levels 
of selectivity (Figure 4b). The few hippocampal cells which had significant selectivity to the scram-
bled sequence, did not have long- duration responses, but only very short, ~50- ms long responses 
(Figure 4d), reminiscent of, but even sharper than human hippocampal responses to flashed images 
(Quiroga et  al., 2005). To estimate the effect of continuous movie compared to the scrambled 
sequence on individual cells, we computed the normalized difference between the continuous and 
scrambled movie selectivity for cells which were selective in either condition (Figure 4c, see Methods). 

https://doi.org/10.7554/eLife.85069
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Figure 3. Population averaged movie tuning varies across brain areas. (a) Stack plot of all the movie- fields detected from all tuned neurons of a brain 
region. Color indicates relative firing rate, normalized by the maximum firing rate in that movie- field. The movie- fields were sorted according to the 
frame with the maximal response. Note accumulation of fields in certain parts of the movie, especially in subiculum and AM–PM. (b) Similar to (a), but 
using only a single, tallest movie- field peak from each neuron showing a similar pattern, with pronounced overrepresentation of some portions of the 
movie in most brain areas. Each neuron’s response was normalized by its maximum firing rate. The average firing rate of non- peak frames, which was 
inversely related to the depth of modulation, was smallest (0.35× of the average peak response across all neurons) for V1, followed by AM–PM 0.37, 
leading to blue shades. Average non- peak responses were higher for other regions (0.57× the peak for LGN, CA3 – 0.61, DG – 0.62, CA1 – 0.64, and 
SUB – 0.76), leading to warmer off- diagonal colors. (c) Multiple single- unit activity (MSUA) in a given brain region, obtained as the average response 
across all tuned cells, by using maxima- normalized response for each cell from (b). Gray lines indicate mean ± 4*std response from the shuffle data 
corresponding to p = 0.025 after Bonferroni correction for multiple comparisons (see Methods). AM–PM had the largest MSUA modulation (sparsity 
= 0.01) and CA1 had the smallest (sparsity = 1.8 × 10−4). The MSUA modulation across several brain region pairs – AM&PM–DG, V1–CA3, DG–CA3, 
CA3–CA1, and CA1–SUB were not significantly correlated (Pearson correlation coefficient p > 0.05). Some brain region pairs, DG–LGN, DG–V1, 
AM&PM–CA3, LGN–CA1, V1–CA1, DG–SUB, and CA3–SUB, were significantly negatively correlated (r < −0.18, p < 4.0 × 10−7). All other brain region 
pairs were significantly positively correlated (r > 0.07, p < 0.03). (d) Number of frames for which the observed MSUA deviates from the z = ±4 range 
from (c), termed significant deviation. V1 and AM–PM had the largest positive deviant frames (289), and CA3 had the least (zero). Unlike CA3, the low 
number of deviant frames for LGN could not be explained by sample size, because there were more tuned cells in LGN than SUB. (e) Firing in deviant 
frames above (or below) chance level, as a percentage of the average response. Above chance level deviation was greater or equal to that below, for 
all brain regions except DG, with the largest positive deviation in AM–PM (9.3%), largest negative deviation in V1 (6.0%), and least in CA3 (zero each). (f) 
Total firing rate response of visual regions across tuned neurons. All regions had significant negative correlation (r < −0.39, p < 3.4 × 10−34) between the 
ensemble response and the frame- to- frame (F2F) image correlation (gray line, y- axis on the left) across movie frames. (g) Similar to (f), for hippocampal 
regions. CA3 response were not significantly correlated with the F2F correlation, dentate gyrus (r = 0.26, p = 4.0 × 10−15) and CA1 (r = 0.21, p = 1.5 × 
10−10) responses were positively correlated, and subiculum response was negatively correlated (r = −0.44, p = 2.2 × 10−43). Note the substantially higher 
mean firing rates of LGN in (f) and subiculum neurons in (g) (colored lines closer to the top) compared to other brain areas.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Population vector overlap is wider in hippocampus than visual areas.

Figure supplement 2. Movie- field properties strongly reflect the frame- to- frame correlation structure of the movie in the visual but not hippocampal 
areas.

https://doi.org/10.7554/eLife.85069
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Figure 4. Larger reduction of selectivity in hippocampal than visual regions due to scrambled presentation. (a) Similarity between the visual content 
of one frame with the subsequent one, quantified as the Pearson correlation coefficient between pixel–pixel across adjacent frames for the continuous 
movie (pink) and the scrambled sequence (lavender), termed F2F image correlation. Similar to Figure 3g. For the scrambled movie, the frame number 
here corresponded to the chronological frame sequence, as presented. (b) Fraction of broad spiking neurons significantly modulated by the continuous 
movie (red) or the scrambled sequence (blue) using z- scored sparsity measures (similar to Figure 1, see Methods). For all brain regions, continuous 
movie generated greater selectivity than scrambled sequence (KS- test p < 7.4 × 10−4). (c) Percentage change in the magnitude of tuning between the 
continuous and scrambled movies for cells significantly modulated by either continuous or scrambled movie, termed visual continuity index. The largest 
drop in selectivity due to scrambled movie occurred in CA1 (90.3 ± 2.0%), and least in V1 (−1.5 ± 0.6%). Visual continuity index was significantly different 
between all brain region pairs (KS- test p < 0.03) and significantly greater for hippocampal areas than visual (8.2- fold, p < 10−100). (d) Raster plots (top) 
and mean rate responses (color, bottom) showing increased spiking responses to only one or two scrambled movie frames, lasting about 50 ms. Tuned 
responses to scrambled movie were found in all brain regions, but these were the least frequent in DG and CA1. (e) One representative cell each from 
V1 (left) and CA1 (right), where the frame rearrangement of scrambled responses resulted in a response with high correlation to the continuous movie 
response for V1, but not CA1. Pearson correlation coefficient values of continuous movie and rearranged scrambled responses are indicated on top. 
(f) Average decoding error for observed data (see Methods), over 60 trials for continuous movie (maroon), was significantly lower than shuffled data 
(gray) (KS- test p < 1.2 × 10−22). Solid line – mean error across 60 trials using all tuned cells from a brain region, shaded box – standard error of the mean 
(SEM), green dots – mean error across all trials using a random subsample of 150 cells from each brain region. Decoding error was lowest for V1 (30.9 
frames) and highest in DG (241.2) and significantly different between all brain regions pairs (p < 1.9 × 10−4), except CA3–CA1, CA3–subiculum, and CA1–
subiculum (p > 0.63). (g) Similar to (f), decoding of scrambled movie was significantly worse than that for the continuous movie (KS- test p < 2.6 × 10−3). 
Scrambled responses, in their ‘as is’, chronological order were used herein. Lateral geniculate nucleus (LGN) decoding error for scrambled presentation 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.85069
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This visual continuity index was more than eightfold higher in hippocampal areas (median values 
across all four hippocampal regions = 87.8%) compared to the visual areas (median = 10.6% across 
visual regions).

The pattern of increasing visual continuity index as we moved up the visual hierarchy, largely paral-
leled the anatomic organization (Felleman and Van Essen, 1991), with the greatest sensitivity to 
visual continuity in the hippocampal output regions, CA1 and subiculum, but there were notable 
exceptions. The primary visual cortical neurons showed the least reduction in selectivity due to the 
loss of temporally contiguous content, whereas LGN neurons, the primary source of input to the visual 
cortex and closer to the periphery, showed far greater sensitivity (Figure 4c).

Many visual cortical neurons were significantly modulated by the scrambled sequence, but their 
number of movie- fields per cell was greater and their duration was shorter than during the continuous 
movie (Figure 4—figure supplements 1 and 2). This could occur due to the loss of F2F correlation 
in the scrambled sequence. The average activity of the neural population in V1 and AM–PM showed 
significant deviation even with the scrambled movie, comparable to the continuous movie, but this 
multi- unit ensemble response was uncorrelated with the F2F correlation in the scrambled sequence 
(Figure 4—figure supplement 3). A substantial fraction of visual cortical and LGN responses to the 
scrambled sequence could be rearranged to resemble continuous movie responses (Figure  4—
figure supplement 4, see Methods). The latency needed to shift the responses was least in LGN 
and largest in AM–PM, as expected from the feed- forward anatomy of visual information processing 
(Siegle et al., 2021; Felleman and Van Essen, 1991; Figure 4—figure supplement 4). Unlike visual 
areas, such rearrangement did not resemble the continuous movie responses in the hippocampal 
regions (example cells in Figure 4e, also see Figure 4—figure supplement 4 for statistics and details). 
Furthermore, even after rearranging the hippocampal responses, their selectivity to the scrambled 
movie presentation remained near chance levels (Figure 4—figure supplement 5).

Population vector decoding of the ensemble of a few hundred place cells is sufficient to decode 
the rat’s position using place cells (Wilson and McNaughton, 1993), and the position of a passively 
moving object (Purandare et al., 2022). Using similar methods, we decoded the movie frame number 
(see Methods). Continuous movie decoding was better than chance in all brain regions analyzed 
(Figure  4f). Upon accounting for the number of tuned neurons from different brain regions, the 
decoding was most accurate in V1, and least in DG. Scrambled movie decoding was significantly 
weaker yet above chance level (based on shuffles, see Methods) in visual areas, but not in CA3 and 
DG. But CA1 and subiculum neuronal ensembles could be used to decode scrambled movie frame 
number slightly above chance levels (Figure 4g). Similarly, the population overlap between even and 
odd trials for the scrambled sequence was strong for visual areas, and weaker in hippocampal regions, 
but significantly greater than untuned neurons in hippocampal regions (Figure 4—figure supplement 
6). Combined with the handful of neurons in hippocampus whose movie selectivity persisted to the 
scrambled presentation, this suggests that loss of correlations between adjacent frames in the scram-
bled sequence abolishes most, but not all of the hippocampal selectivity to visual sequences.

was 6.5× greater than that for continuous movie, whereas the difference in errors was least for V1 (1.04×). Scrambled movie decoding error for all visual 
areas and for CA1 and subiculum was significantly smaller than chance level (KS- test p < 2.6 × 10−3), but not DG and CA3 (p > 0.13). The middle 20 trials 
of the continuous movie were used for comparison with the scrambled movie since the scrambled movie was only presented 20 times. Middle trials of 
the continuous movie were chosen as the appropriate subset since they were chronologically closest to the scrambled movie presentation.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Scrambled movie elicits narrower but more movie- fields per cell than the continuous movie in all the visual regions.

Figure supplement 2. Cell by cell comparison of continuous versus scrambled movie responses.

Figure supplement 3. Multiple single- unit activity (MSUA) across all movie- tuned neurons in a brain region shows greater modulation than chance for 
the scrambled sequence in all visual areas.

Figure supplement 4. Latency of responses to the scrambled- sequence corresponds to the anatomical hierarchy of visual areas.

Figure supplement 5. Movie tuning in hippocampal neurons remains near chance level even after rearranging scrambled movie frames.

Figure supplement 6. Population vector overlap was narrower for the scrambled compared to the continuous movie.

Figure 4—video 1. Scrambled movie.

https://elifesciences.org/articles/85069/figures#fig4video1

Figure 4 continued

https://doi.org/10.7554/eLife.85069
https://elifesciences.org/articles/85069/figures#fig4video1


 Research article      Neuroscience

Purandare and Mehta. eLife 2023;12:RP85069. DOI: https://doi.org/10.7554/eLife.85069  11 of 22

Discussion
Movie tuning in the visual areas
To understand how neurons encode a continuously unfolding visual episode, we investigated the 
neural responses in the head- fixed mouse brain to an isoluminant, black- and- white, silent human 
movie, without any task demands or rewards. As expected, neural activity showed significant modu-
lation in all thalamo- cortical visual areas, with elevated activity in response to specific parts of the 
movie, termed movie- fields. Most (96.6%, 6554/6785) of thalamo- cortical neurons showed significant 
movie tuning. This is nearly double that reported for the classic stimuli such as Gabor patches in the 
same dataset (Siegle et al., 2021), although a direct comparison is difficult due to the differences 
in experimental and analysis methods. For example, the classic stimuli were presented for 250 ms, 
preceded by a blank background whereas the images changed every 30 ms in a movie. On the other 
hand, significant tuning of the vast majority of visual neurons to movies is consistent with other reports 
(de Vries et al., 2020; Yen et al., 2007; Herikstad et al., 2011; Froudarakis et al., 2014; Xia et al., 
2021; Dyballa et al., 2018; Deitch et al., 2021; Sadeh and Clopath, 2022). Thus, movies are a reli-
able method to probe the function of the visual brain and its role in cognition.

Movie tuning in hippocampal areas
Remarkably, a third of hippocampal neurons (32.9%, 3379/10,263) were also movie tuned, compa-
rable to the fraction of neurons with significant spatial selectivity in mice (Jun et al., 2020) and bats 
(Yartsev et al., 2011), and far greater than significant place cells in the primate hippocampus (Rolls 
and O’Mara, 1995; Rolls, 2023; Mao et al., 2021). While the hippocampus is implicated in episodic 
memory (Vargha- Khadem et  al., 1997), rodent hippocampal responses are largely studied in the 
context of spatial maps or place cells (O’Keefe and Nadel, 1978) , and more recently in other tasks 
which requires active locomotion or active engagement (Aronov et al., 2017; Danjo et al., 2018). 
However, unlike place cells (Chen et al., 2013; Foster et al., 1989), movie tuning remained intact 
during immobility in all brain areas studied, which could be because self- motion causes consistent 
changes in multisensory cues during spatial exploration but not during movie presentation. This disso-
ciation of the effect of mobility on spatial and movie selectivity agrees with the recent reports of disso-
ciated mechanisms of episodic encoding and spatial navigation in human amnesia (McAvan et al., 
2022). Our results are broadly consistent with prior studies that found movie selectivity in human 
hippocampal single neurons (Gelbard- Sagiv et al., 2008). However, that study relied on famous, very 
familiar movie clips, similar to the highly familiar image selectivity (Quiroga et al., 2005) to probe 
episodic memory recall. In contrast, mice in our study had seen this black- and- white, human movie clip 
only in two prior habituation sessions and it is very unlikely that they understood the episodic content 
of the movie. Recent studies found human hippocampal activation in response to abrupt changes 
between different movie clips (Zheng et al., 2022; Cohn- Sheehy et al., 2021; Reagh and Ranga-
nath, 2023), which is broadly consistent with our findings. Future studies can investigate the nature of 
hippocampal activation in mice in response to familiar movies to probe episodic memory and recall. 
These observations support the hypothesis that specific visual cues can create reliable representations 
in all parts of hippocampus in rodents (Chen et al., 2013; Acharya et al., 2016; Purandare et al., 
2022), nonhuman primates (Rolls and O’Mara, 1995; Mao et al., 2021), and humans (Jacobs et al., 
2010; Ekstrom et  al., 2003), unlike spatial selectivity which requires consistent information from 
multisensory cues (Moore et al., 2021; Aghajan et al., 2015; Ravassard et al., 2013).

Mega-scale nature of movie-fields
Across all brain regions, neurons showed a mega- scale encoding by movie- fields varying in duration 
by up to 1000- fold, similar to, but far greater than recent reports of 10- fold multi- scale responses in 
the hippocampus (Eliav et al., 2021; Kjelstrup et al., 2008; Harland et al., 2021; Rich et al., 2014; 
Fenton et al., 2008; Park et al., 2011; Harland et al., 2018). While neural selectivity to movies has 
been studied in visual areas, such mega- scale coding has not been reported. Remarkably, mega- scale 
movie- coding was found not only across the population but even individual LGN and V1 neurons 
could show two different movie- fields, one lasting less than 100 ms and other exceeding 10,000 ms. 
The speed at which visual content changed across movie frames could explain a part, but not all of 
this effect. The mechanisms governing the mega- scale encoding would require additional studies. 
For example, the average duration of the movie- field increased along the feed- forward hierarchy, 

https://doi.org/10.7554/eLife.85069
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consistent with the hierarchy of response lags during language processing (Chang et al., 2022). Para-
doxically, the mega- scale coding of movie- field meant the opposite pattern also existed, with 10- s 
long movie- fields in some LGN cells while less than 100 ms long movie- fields in subiculum.

Continuous versus scrambled movie responses
The analysis of scrambled movie- sequence allowed us to compute the neural response latency to 
movie frames. This was highest in AM–PM (91 ms) than V1 (74 ms) and least in LGN (60 ms), thus 
following the visual hierarchy. The pattern of movie tuning properties was also broadly consistent 
between V1 and AM/PM (Figure 2). However, several aspects of movie tuning did not follow the feed- 
forward anatomical hierarchy. For example, all metrics of movie selectivity (Figure 2) to the continuous 
movie showed a pattern that was the inconsistent to the feed- forward anatomical hierarchy: V1 had 
stronger movie tuning, higher number of movie- fields per cell, narrower movie- field widths, larger 
mega- scale structure, and better decoding than LGN. V1 was also more robust to scrambled sequence 
than LGN. One possible explanation is that there are other sources of inputs to V1, beyond LGN, that 
contribute significantly to movie tuning (Spacek et al., 2022). Among the hippocampal regions, the 
tuning properties of CA3 neurons (field durations, mega- chronicity index, visual continuity index, and 
several measures of population modulation) were closest to that of visual regions, even though the 
prevalence of tuning in CA3 was lesser than that in other hippocampal as well as visual areas.

Emergence of episode-like movie code in hippocampus
Temporal integration window (Norman- Haignere et al., 2022; Gauthier et al., 2012; Hasson et al., 
2008) as well as intrinsic timescale of firing (Siegle et al., 2021) increase along the anatomical hier-
archy in the cortex, with the hippocampus being farthest removed from the retina (Felleman and Van 
Essen, 1991). This hierarchical anatomical organization, with visual areas being upstream of hippo-
campus could explain the longer movie- fields, the strength of tuning, number of movie peaks, their 
width, and decoding accuracy in hippocampal regions. This could also explain the several fold greater 
preference for the continuous movie over scrambled sequence in the hippocampus compared to the 
upstream visual areas. But, unlike reports of image- association memory in the inferior temporal cortex 
for unrelated images (Sakai and Miyashita, 1991; Miyashita, 1988), only a handful hippocampal 
neurons showed selective responses to the scrambled sequence. These results, along with the longer 
duration of hippocampal movie- fields could mediate visual- chunking or binding of a sequence of 
events. In fact, evidence for episodic- like chunking of visual information was found in all visual areas 
as well, where the scrambled- sequence not only reduced neural selectivity but caused fragmentation 
of movie- fields (Figure 4—figure supplement 4).

No evidence of nonspecific effects
Could the brain- wide mega- scale tuning be an artifact of poor unit isolation, e.g., due to an erroneous 
mixing of two neurons, one with very short and another with very long movie- fields? This is unlikely 
since the LGN and visual cortical neural selectivity to classic stimuli (Gabor patches, drifting gratings, 
etc.) in the same dataset was similar to that reported in most studies (Siegle et al., 2021) whereas 
poor unit isolation should reduce these selective responses. However, to directly test this possibility, 
we calculated the correlation between the unit isolation index (or fraction of refractory violations) and 
the mega- scale index of the cell, while factoring out the contribution of mean firing rate (Figure 1—
figure supplement 8). This correlation was not significant (p > 0.05) for any brain areas.

Movie-fields versus place-fields
Do the movie- fields arise from the same mechanism as place- fields? Studies have shown that when 
rodents are passively moved along a linear track that they had explored (Foster et al., 1989), or 
when the images of the environment around a linear track was played back to them (Chen et al., 
2013), some hippocampal neurons generated spatially selective activity. Since the movie clip involved 
change of spatial view, one could hypothesize that the movie- fields are just place- fields generated by 
passive viewing. This is unlikely for several reasons. Mega- scale movie- fields were found in the vast 
majority of all visual areas including LGN, far greater than spatially modulated neurons in the visual 
cortex during virtual navigation (Haggerty and Ji, 2015; Saleem et al., 2018). Furthermore, in prior 
passive viewing experiments, the rodents were shown the same narrow linear track, like a tunnel, that 
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they had previously explored actively to get food rewards at specific places. In contrast, in current 
experiments, these mice had never actively explored the space shown in the movie, nor obtained 
any rewards. Active exploration of a maze, combined with spatially localized rewards engages multi-
sensory mechanisms resulting in increased place cell activation (Mehta et al., 1997; Moore et al., 
2021; Mehta and McNaughton, 1997) which are entirely missing in these experiments during passive 
viewing of a movie, presented monocularly, without any other multisensory stimuli and without any 
rewards. Compared to their spontaneous activity, about half of CA1 and CA3 neurons shutdown 
during spatial exploration and this shutdown is even greater in the DG. Furthermore, compared to the 
exploration of a real- world maze, exploration of a visually identical virtual world causes 60% reduction 
in CA1 place cell activation (Ravassard et al., 2013). In contrast, there was no evidence of neural shut-
down during the movie presentation compared to gray screen spontaneous epochs (Figure 1—figure 
supplement 8). Similarly, the number of place- fields (in CA1) per cell on a long track is positively 
correlated with the mean firing rate of the cell (Rich et al., 2014), which was not seen here for CA1 
movie- fields.

A recent study showed that CA1 neurons encode the distance, angle, and movement direction 
of motion of a vertical bar of light (Purandare et al., 2022), consistent with the position of hippo-
campus in the visual circuitry (Felleman and Van Essen, 1991). Do those findings predict the movie 
tuning herein? There are indeed some similarities between the two experimental protocols – purely 
passive optical motion without any self- motion or rewards. However, there are significant differences 
too; similar to place cells in the real and virtual worlds (Aghajan et al., 2015), all the cells tuned to 
the moving bar of light had single receptive fields with elevated responses lasting a few seconds; 
there were neither punctate responses nor even 10- fold variation in neural field durations, let alone 
the 1000- fold change reported here. Finally, those results were reported only in area CA1, while the 
results presented here cover nearly all the major stations of the visual hierarchy.

Notably, hippocampal neurons did not encode Gabor patches or drifting gratings in the same 
dataset, indicating the importance of temporally continuous sequences of images for hippocampal 
activation (Siegle et  al., 2021). This is consistent with the hypothesis that the hippocampus is 
involved in coding spatial sequences (Mehta, 2015; Buzsáki and Tingley, 2018; Foster and Knierim, 
2012). However, unlike place cells that degrade in immobile rats, hippocampal movie tuning was 
unchanged in the immobile mouse. Furthermore, the scrambled sequence too was presented in the 
same sequence many times, yet movie tuning dropped to chance level in the hippocampal areas. 
Unlike visual areas, scrambled sequence response of hippocampal neurons could not be rearranged 
to obtain the continuous movie response. This shows the importance of continuous, episodic content 
instead of mere sequential recurrence of unrelated content for rodent hippocampal activation. We 
hypothesize that similar to place cells, movie- field responses without task demand would play a role, 
to be determined, in episodic memory. Further work involving a behavior report for the episodic 
content can potentially differentiate between the sequence coding described here and the contri-
bution of episodically meaningful content. However, the nature of movie selectivity tested so far in 
humans was different (recall of famous, short movie clips [Gelbard- Sagiv et al., 2008], or at event 
boundaries [Zheng et al., 2022]) than in rodents here (human movie, selectivity to specific movie 
segments).

Broader outlook
Our findings open up the possibility of studying thalamic, cortical, and hippocampal brain regions in a 
simple, passive, and purely visual experimental paradigm and extend comparable convolutional neural 
networks (de Vries et al., 2020) to have the hippocampus at the apex (Felleman and Van Essen, 
1991). Furthermore, our results here bridge the long- standing gap between the hippocampal rodent 
and human studies (Zheng et al., 2022; Rutishauser et al., 2006; Silson et al., 2021; King et al., 
2021), where natural movies can be decoded from fMRI (functional magnetic resonance imaging) 
signals in immobile humans (Nishimoto et  al., 2011). This brain- wide mega- scale encoding of a 
human movie episode and enhanced preference for visual continuity in the hippocampus compared to 
visual areas supports the hypothesis that the rodent hippocampus is involved in non- spatial episodic 
memories, consistent with classic findings in humans (Scoville and Milber, 1957) and in agreement 
with a more generalized, representational framework (Nadel and Peterson, 2013; Nadel and Hardt, 
2011) of episodic memory where it encodes temporal patterns. Similar responses are likely across 
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different species, including primates. Thus, movie- coding can provide a unified platform to investigate 
the neural mechanisms of episodic coding, learning, and memory.

Methods
Experiments
We used the Allen Brain Observatory – Neuropixels Visual Coding dataset (2019 Allen Institute, https:// 
portal.brain-map.org/explore/circuits/visual-coding-neuropixels). This website and related publica-
tion (Siegle et al., 2021) contain detailed experimental protocol, neural recording techniques, spike 
sorting etc. Data from 24 mice (16 males, n = 13 C57BL/6J wild- type, n = 2 Pvalb- IRES- Cre×Ai32, n 
= 6 Sst- IRES- Cre×Ai32, and n = 3 Vip- IRES- Cre×Ai32) from the ‘Functional connectivity’ dataset were 
analyzed herein. Prior to implantation with Neuropixel probes, mice passively viewed the entire range 
of images including drifting gratings, Gabor patches and movies of interest here. Videos of the body 
and eye movements were obtained at 30 Hz and synced to the neural data and stimulus presentation 
using a photodiode. Movies were presented monocularly on an LCD monitor with a refresh rate of 
60 Hz, positioned 15 cm away from the mouse’s right eye and spanned 120o × 95o. Thirty trials of the 
continuous movie presentation were followed by 10 trials of the scrambled movie. Next was a presen-
tation of drifting gratings, followed by a quiet period of 30 min where the screen was blank. Then 
the second block of drifting gratings, scrambled movie and continuous movie was presented. After 
surgery, all mice were single housed and maintained on a reverse 12 hr light cycle in a shared facility 
with room temperatures between 20 and 22°C and humidity between 30% and 70%. All experiments 
were performed during the dark cycle.

Neural spiking data were sampled at 30 kHz with a 500- Hz high pass filter. Spike sorting was auto-
mated using Kilosort2 (Stringer et al., 2019). Output of Kilosort2 was post- processed to remove noise 
units, characterized by unphysiological waveforms. Neuropixel probes were registered to a common 
co- ordinate framework (Wang, 2020). Each recorded unit was assigned to a recording channel corre-
sponding to the maximum spike amplitude and then to the corresponding brain region. Broad spiking 
units identified as those with average spike waveform duration (peak to trough) between 0.45 and 1.5 
ms and those with mean firing rates above 0.5 Hz were analyzed throughout, except Figure 1—figure 
supplement 8.

Movie tuning quantification
The movie consisted of 900 frames: 30 s total, 30 Hz refresh rate, 33.3 ms per frame. At the first level 
of analysis, spike data were split into 900 bins, each 33.3 ms wide (the bin size was later varied system-
atically to detect mega- scale tuning, see below). The resulting tuning curves were smoothed with a 
Gaussian window of σ = 66.6 ms or two frames. The degree of modulation and its significance was 
estimated by the sparsity s as below, and as previously described (Purandare et al., 2022; Ravassard 
et al., 2013).

 
s = 1 − 1

N

(∑
n rn

)2
(∑

n r2
n
)

  

where rn is the firing rate in the nth frame or bin and N = 900 is the total number of bins. This is equiv-
alent to ‘lifetime sparseness’, used previously (de Vries et al., 2020; Vinje and Gallant, 2000), except 
for the normalization factor of (1 − 1/N), which is close to unity, when N is close to 900 as in the case 
of movies. Statistical significance of sparsity was computed using a bootstrapping procedure, which 
does not assume a normal distribution. Briefly, for each cell, the spike train as a function of the frame 
number from each trial was circularly shifted by different amounts and the sparsity of the randomized 
data computed. This procedure was repeated 100 times with different amounts of random shifts. 
The mean value and standard deviation of the sparsity of randomized data were used to compute 
the z- scored sparsity of observed data using the function z- score in MATLAB. The observed sparsity 
was considered statistically significant if the z- scored sparsity of the observed spike train was greater 
2, which corresponds to p < 0.023 in a one- tailed t- test. A similar method was used to quantify 
significance of the scrambled movie tuning, as well as for the subset of data with only stationary 
epochs, or its equivalent subsample (see below). Middle 20 trials of the continuous movie were used in 

https://doi.org/10.7554/eLife.85069
https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels
https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels


 Research article      Neuroscience

Purandare and Mehta. eLife 2023;12:RP85069. DOI: https://doi.org/10.7554/eLife.85069  15 of 22

comparisons with the scrambled movie in Figure 4, to ensure a fair comparison by using same number 
of trials, with similar time delays across measurements.

In addition to sparsity, we quantified movie tuning using two other measures.
Depth of modulation = ( rmax  −  rmin )/( rmax  +  rmin ), where  rmax  and  rmin  are the largest and lowest firing 

rates across movie frames, respectively.
Mutual information
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and  C  is the average spike count in 0.033- s window which corresponds to 1 movie frame.  p
(
framen

)
  is 

1/900, as all frames were presented equal number of times. Statistical significance of these alternative 
measures of selectivity was computed similar to that for sparsity and is detailed in Figure 1—figure 
supplement 3.

Stationary epoch and SWR-free epoch identification
To eliminate the confounding effects of changes in behavioral state associated with running, we 
repeated our analysis in stationary epochs, defined as epochs when the running speed remained less 
than 2 cm/s for this period, as well as for at least 5 s before and after this period. Analysis was further 
restricted to sessions with at least 5 total minutes of these epochs during the 60 trials of continuous 
movie presentation. To account for using lesser data of the stationary epochs, we compared the 
tuning using a random subsample of data, regardless of running or stopping and compared the two 
results for difference in selectivity.

Similarly, to remove epochs of SWRs, we first computed band passed power in the hippocampal 
(CA1) recording sites in the 150–250 Hz range. SWR occurrence was noted if any of the best five sites 
in CA1 (those with highest theta (5–12 Hz) to delta (1–4 Hz) ratio), or the median SWR across all CA1 
sites exceeded their respective 3 standard deviations of power. To remove SWRs, we removed frames 
corresponding to ±0.5- s around the SWR occurrence and recomputed movie tuning in the remaining 
data. Similar to the stationary epoch calculation above, we compared tuning to an equivalent random 
subset to account for loss of data.

Pupil dilation and theta power comparisons
To assess the contribution of arousal state on movie tuning, we re- calculated z- scored sparsity in 
epochs with high versus low pupil dilation. The pupil was tracked at a 30- Hz sampling rate, and the 
height and width of the elliptical fit as provided in the publicly available dataset was used. For each 
session, the pupil area thus calculated was split into two equal halves, by using data above and below 
the 50th percentile. The resultant z- scored sparsity is reported in Figure 1—figure supplement 7.

Similarly, the theta power computed from the band passed local field potential signal in the 5–12 Hz 
range was split into two equal data subsegments. The channel from CA1, with the highest average 
theta to delta (1–4 Hz) power ratio was nominated as the channel to be used for these calculations. 
Movie tuning in data with high and low theta power thus separated is reported in Figure 1—figure 
supplement 7.

Mega-scale movie-field detection in tuned neurons
For neurons with significant movie- sparsity, i.e., movie tuned, the movie response was first recalcu-
lated at a higher resolution of 3.33 ms (10 times the frame rate of 33.3 ms). The findpeaks function 
in MATLAB was used to obtain peaks with prominence larger than 110% (1.1×) the range of firing 
variation obtained by chance, as determined from a sample shuffled response. This calculation was 
repeated at different smoothing values (logarithmically spaced in 10 Gaussian smoothing schemes 
with σ ranging from 6.7 to 3430 ms), to ensure that long as well as short movie- fields were reliably 
detected and treated equally. For frames where overlapping peaks were found at different smoothing 
levels, we employed a comparative algorithm to only select the peak(s) with higher prominence score. 
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This score was obtained as the ratio of the peak’s prominence to the range of fluctuations in the 
correspondingly smoothed shuffle. This procedure was conducted iteratively, in increasing order of 
smoothing. If a broad peak overlapped with multiple narrow ones, the sum of scores of the narrow 
ones was compared with the broad one. To ensure that peaks at the beginning as well as the end of 
the movie frames were reliably detected, we circularly wrapped the movie response, for the observed 
as well as shuffle data.

Identifying frames with significant deviations in multiple single-unit 
activity
First, the average response across tuned neurons for each brain region was computed for each movie 
frame, after normalizing the response of each cell by the peak firing response. This average response 
was used as the observed ‘Multiple single- unit activity (MSUA)’ in Figure 3. To compute chance level, 
individual neuron responses were circularly shifted with respect to the movie frames to break the 
frame to firing rate association but maintain overall firing rate modulation. 100 such shuffles were 
used, and for each shuffle, the shuffled MSUA response was computed by averaging across neurons. 
Across these 100 shuffles, mean and standard deviation was obtained for all frames, and used to 
compute the z- score of the observed MSUA. To obtain significance at p = 0.025 level, Bonferroni 
correction was applied, and the appropriate z- score (4.04) level was chosen. The number of frames 
in the observed MSUA above (and below) this level is further quantified in Figure 3. The firing devi-
ation for these frames was computed as the ratio between the mean observed MSUA and the mean 
shuffled MSUA, reported as a percentage, for frames corresponding to z- score greater than +4 or less 
than −4. To obtain a total firing rate report, where each spike gets equal vote, we computed the total 
firing response by computing the total rate across all tuned neurons (and averaging by the number of 
neurons) in Figure 3 and across all neurons in Figure 3—figure supplement 2.

Population vector overlap
To evaluate the properties of a population of cells, movie presentations were divided into alternate 
trials, yielding even and odd blocks (Resnik et al., 2012). Population vector overlap was computed 
between the movie responses calculated separately for these two blocks of trials. Population vector 
overlap between frames x of the even trials and frame y of the odd trials was defined as the Pearson 
correlation coefficient between the vectors (R1,x, R2,x, … RN,x) and (R1,y, R2,y, … RN,y), where Rn,x is the 
mean firing rate response of the nth neuron to the xth movie frame. N is the total number of neurons 
used, for each brain region. This calculation was done for x and y ranging from 1 to 900, corresponding 
to the 900 movie frames. The same method was used for tuned and untuned neurons in contin-
uous movie responses in Figure 3—figure supplement 1, and for scrambled sequence responses in 
Figure 4—figure supplement 6.

Decoding analysis
Methods similar to those previously described were used (Purandare et  al., 2022; Wilson and 
McNaughton, 1993). For tuned cells, the 60 trials of continuous movie were each decoded using all 
other trials. Mean firing rate responses in the 59 trials for 900 frames were used to compute a ‘look- up’ 
matrix. Each neuron’s response was normalized between 0 and 1. At each frame in the ‘observed’ trial, 
the correlation coefficient was computed between the population vector response in this trial and the 
look- up matrix. The frame corresponding to the maximal correlation was denoted as the decoded 
frame. Decoding error was computed as the average of the absolute difference between actual and 
decoded frames, across the 900 frames of the movie. For comparison, shuffle data were generated 
by randomly shuffling the cell–cell pairing of the look- up matrix and ‘observed response’. To enable 
a fair comparison of decoding accuracy across brain regions, the tuned cells from each brain region 
were subsampled, and a random selection of 150 cells was used. A similar procedure was used for the 
20 trials of the scrambled sequence, and the corresponding middle 20 trials of the continuous movie 
were used here for comparison.

Rearranged scrambled movie analysis
To differentiate the effects of visual content versus visual continuity between consecutive frames, we 
compared the responses of the same neuron to the continuous movie and the scrambled sequence. 
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In the scrambled movie, the same visual frames as the continuous movie were used, but they were 
shuffled in a pseudo random fashion. The same scrambled sequence was repeated for 20 trials. The 
neural response was first computed at each frame of the scrambled sequence, keeping the frames 
in the chronological order of presentation. Then the scrambled sequence of frames was rearranged 
to recreate the continuous movie and the corresponding neural responses computed. To address the 
latency between movie frame presentation and its evoked neural response, which can differ across 
brain regions and neurons, this calculation was repeated for rearranged scrambled sequences with 
variable delays between τ = −500 to +500 ms (i.e., −150 to +150 frames of 3.33 ms resolution, in 
steps of five frames or 16.6 ms). The correlation coefficient was computed between the continuous 
movie response and this variable delayed response at each delay as rmeasured(τ) = corrcoef(Rcontinuous, 
Rscramble- rearranged(τ)). Rcontinuous is the continuous movie response, obtained at 3.33- ms resolution and simi-
larly, Rscramble- rearranged corresponds to the scrambled response after rearrangement, at the latency τ. The 
latency τ yielding the largest correlation between the continuous and rearranged scrambled movie 
was designated as the putative response latency for that neuron. This was used in Figure 4—figure 
supplement 4. The value of rmeasured(τmax) was bootstrapped using 100 randomly generated frame reas-
signments, and this was used to z- score rmeasured(τmax), with z- score >2 as criterion for significance. The 
resultant z- score is reported in Figure 4—figure supplement 4.

The latency τ was rounded off for use with 33 ms bins and used to rearrange actual as well as 
shuffled data to compute the strength of tuning for scrambled presentation. Z- scored sparsity was 
computed as described above. This was compared with the z- scored sparsity of continuous movie 
as well as the scrambled movie data, without the rearrangement, and shown in Figure 4—figure 
supplement 5.

Code availability
All analyses were performed using custom- written code in MATLAB version R2020a. Codes written 
for analysis and visualization are available on GitHub, at https://github.com/cspurandare/ELife_Movi-
eTuning (Purandare, 2023a, copy archived at Purandare, 2023b).

Acknowledgements
We thank the Allen Brain Institute for provision of the dataset, Dr. Josh Siegle for help with the 
dataset, Dr. Krishna Choudhary for proof- reading of the text, and Dr. Massimo Scanziani for input 
and feedback. This work was supported by grants to MRM by the National Institutes of Health NIH 
1U01MH115746.

Additional information

Funding

Funder Grant reference number Author

National Institutes of 
Health

1U01MH115746 Mayank Mehta

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Chinmay Purandare, Conceptualization, Data curation, Formal analysis, Validation, Investigation, Visu-
alization, Writing – original draft, Writing – review and editing; Mayank Mehta, Conceptualization, 
Resources, Supervision, Funding acquisition, Investigation, Methodology, Writing – original draft, 
Project administration, Writing – review and editing

Author ORCIDs
Chinmay Purandare    https://orcid.org/0000-0001-9225-0186
Mayank Mehta    https://orcid.org/0000-0003-2005-2468

https://doi.org/10.7554/eLife.85069
https://github.com/cspurandare/ELife_MovieTuning
https://github.com/cspurandare/ELife_MovieTuning
https://orcid.org/0000-0001-9225-0186
https://orcid.org/0000-0003-2005-2468


 Research article      Neuroscience

Purandare and Mehta. eLife 2023;12:RP85069. DOI: https://doi.org/10.7554/eLife.85069  18 of 22

Ethics
No human subjects involved.

Peer review material
Reviewer #1 (Public Review): https://doi.org/10.7554/eLife.85069.3.sa1
Reviewer #3 (Public Review): https://doi.org/10.7554/eLife.85069.3.sa2
Author Response https://doi.org/10.7554/eLife.85069.3.sa3

Additional files
Supplementary files
•  MDAR checklist 

Data availability
All data are publicly available at the Allen Brain Observatory - Neuropixels Visual Coding dataset 
(2019 Allen Institute, https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels).

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Siegle JH, Jia X, 
Durand S

2020 Neuropixel https:// registry. 
opendata. aws/ allen- 
brain- observatory

Registry of Open Data 
on AWS, allen- brain- 
observatory

References
Acharya L, Aghajan ZM, Vuong C, Moore JJ, Mehta MR. 2016. Causal influence of visual cues on hippocampal 

directional selectivity. Cell 164:197–207. DOI: https://doi.org/10.1016/j.cell.2015.12.015, PMID: 26709045
Aghajan ZM, Acharya L, Moore JJ, Cushman JD, Vuong C, Mehta MR. 2015. Impaired spatial selectivity and 

intact phase precession in two- dimensional virtual reality. Nature Neuroscience 18:121–128. DOI: https://doi. 
org/10.1038/nn.3884, PMID: 25420065

Aronov D, Nevers R, Tank DW. 2017. Mapping of a non- spatial dimension by the hippocampal- entorhinal circuit. 
Nature 543:719–722. DOI: https://doi.org/10.1038/nature21692, PMID: 28358077

Buzsáki G, Moser EI. 2013. Memory, navigation and theta rhythm in the hippocampal- entorhinal system. Nature 
Neuroscience 16:130–138. DOI: https://doi.org/10.1038/nn.3304, PMID: 23354386

Buzsáki G, Tingley D. 2018. Space and time: the hippocampus as a sequence generator. Trends in Cognitive 
Sciences 22:853–869. DOI: https://doi.org/10.1016/j.tics.2018.07.006, PMID: 30266146

Chang CHC, Nastase SA, Hasson U. 2022. Information flow across the cortical timescale hierarchy during 
narrative construction. PNAS 119:e2209307119. DOI: https://doi.org/10.1073/pnas.2209307119, PMID: 
36508677

Chen G, King JA, Burgess N, O’Keefe J. 2013. How vision and movement combine in the hippocampal place 
code. PNAS 110:378–383. DOI: https://doi.org/10.1073/pnas.1215834110, PMID: 23256159

Christensen AJ, Pillow JW. 2022. Reduced neural activity but improved coding in rodent higher- order visual 
cortex during locomotion. Nature Communications 13:1676. DOI: https://doi.org/10.1038/s41467-022-29200- 
z, PMID: 35354804

Cohn- Sheehy BI, Delarazan AI, Reagh ZM, Crivelli- Decker JE, Kim K, Barnett AJ, Zacks JM, Ranganath C. 2021. 
The hippocampus constructs narrative memories across distant events. Current Biology 31:4935–4945. DOI: 
https://doi.org/10.1016/j.cub.2021.09.013, PMID: 34592172

Danjo T, Toyoizumi T, Fujisawa S. 2018. Spatial representations of self and other in the hippocampus. Science 
359:213–218. DOI: https://doi.org/10.1126/science.aao3898, PMID: 29326273

David SV, Vinje WE, Gallant JL. 2004. Natural stimulus statistics alter the receptive field structure of v1 neurons. 
The Journal of Neuroscience 24:6991–7006. DOI: https://doi.org/10.1523/JNEUROSCI.1422-04.2004, PMID: 
15295035

Deitch D, Rubin A, Ziv Y. 2021. Representational drift in the mouse visual cortex. Current Biology 31:4327–4339. 
DOI: https://doi.org/10.1016/j.cub.2021.07.062, PMID: 34433077

De Valois RL, Yund EW, Hepler N. 1982. The orientation and direction selectivity of cells in macaque visual 
cortex. Vision Research 22:531–544. DOI: https://doi.org/10.1016/0042-6989(82)90112-2, PMID: 7112953

de Vries SEJ, Lecoq JA, Buice MA, Groblewski PA, Ocker GK, Oliver M, Feng D, Cain N, Ledochowitsch P, 
Millman D, Roll K, Garrett M, Keenan T, Kuan L, Mihalas S, Olsen S, Thompson C, Wakeman W, Waters J, 
Williams D, et al. 2020. A large- scale standardized physiological survey reveals functional organization of the 
mouse visual cortex. Nature Neuroscience 23:138–151. DOI: https://doi.org/10.1038/s41593-019-0550-9, 
PMID: 31844315

https://doi.org/10.7554/eLife.85069
https://doi.org/10.7554/eLife.85069.3.sa1
https://doi.org/10.7554/eLife.85069.3.sa2
https://doi.org/10.7554/eLife.85069.3.sa3
https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels
https://registry.opendata.aws/allen-brain-observatory
https://registry.opendata.aws/allen-brain-observatory
https://registry.opendata.aws/allen-brain-observatory
https://doi.org/10.1016/j.cell.2015.12.015
http://www.ncbi.nlm.nih.gov/pubmed/26709045
https://doi.org/10.1038/nn.3884
https://doi.org/10.1038/nn.3884
http://www.ncbi.nlm.nih.gov/pubmed/25420065
https://doi.org/10.1038/nature21692
http://www.ncbi.nlm.nih.gov/pubmed/28358077
https://doi.org/10.1038/nn.3304
http://www.ncbi.nlm.nih.gov/pubmed/23354386
https://doi.org/10.1016/j.tics.2018.07.006
http://www.ncbi.nlm.nih.gov/pubmed/30266146
https://doi.org/10.1073/pnas.2209307119
http://www.ncbi.nlm.nih.gov/pubmed/36508677
https://doi.org/10.1073/pnas.1215834110
http://www.ncbi.nlm.nih.gov/pubmed/23256159
https://doi.org/10.1038/s41467-022-29200-z
https://doi.org/10.1038/s41467-022-29200-z
http://www.ncbi.nlm.nih.gov/pubmed/35354804
https://doi.org/10.1016/j.cub.2021.09.013
http://www.ncbi.nlm.nih.gov/pubmed/34592172
https://doi.org/10.1126/science.aao3898
http://www.ncbi.nlm.nih.gov/pubmed/29326273
https://doi.org/10.1523/JNEUROSCI.1422-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15295035
https://doi.org/10.1016/j.cub.2021.07.062
http://www.ncbi.nlm.nih.gov/pubmed/34433077
https://doi.org/10.1016/0042-6989(82)90112-2
http://www.ncbi.nlm.nih.gov/pubmed/7112953
https://doi.org/10.1038/s41593-019-0550-9
http://www.ncbi.nlm.nih.gov/pubmed/31844315


 Research article      Neuroscience

Purandare and Mehta. eLife 2023;12:RP85069. DOI: https://doi.org/10.7554/eLife.85069  19 of 22

Dyballa L, Hoseini MS, Dadarlat MC, Zucker SW, Stryker MP. 2018. Flow stimuli reveal ecologically appropriate 
responses in mouse visual cortex. PNAS 115:11304–11309. DOI: https://doi.org/10.1073/pnas.1811265115, 
PMID: 30327345

Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I. 2003. Cellular networks 
underlying human spatial navigation. Nature 425:184–188. DOI: https://doi.org/10.1038/nature01964, PMID: 
12968182

Eliav T, Maimon SR, Aljadeff J, Tsodyks M, Ginosar G, Las L, Ulanovsky N. 2021. Multiscale representation of very 
large environments in the hippocampus of flying bats. Science 372:eabg4020. DOI: https://doi.org/10.1126/ 
science.abg4020, PMID: 34045327

Erisken S, Vaiceliunaite A, Jurjut O, Fiorini M, Katzner S, Busse L. 2014. Effects of locomotion extend throughout 
the mouse early visual system. Current Biology 24:2899–2907. DOI: https://doi.org/10.1016/j.cub.2014.10.045, 
PMID: 25484299

Fekete T, Pitowsky I, Grinvald A, Omer DB. 2009. Arousal increases the representational capacity of cortical 
tissue. Journal of Computational Neuroscience 27:211–227. DOI: https://doi.org/10.1007/s10827-009-0138-6, 
PMID: 19326198

Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cerebral 
Cortex 1:1–47. DOI: https://doi.org/10.1093/cercor/1.1.1-a, PMID: 1822724

Fenton AA, Kao HY, Neymotin SA, Olypher A, Vayntrub Y, Lytton WW, Ludvig N. 2008. Unmasking the CA1 
ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly 
arranged, and expanded place fields in the larger space. The Journal of Neuroscience 28:11250–11262. DOI: 
https://doi.org/10.1523/JNEUROSCI.2862-08.2008, PMID: 18971467

Foster TC, Castro CA, McNaughton BL. 1989. Spatial selectivity of rat hippocampal neurons: dependence on 
preparedness for movement. Science 244:1580–1582. DOI: https://doi.org/10.1126/science.2740902, PMID: 
2740902

Foster DJ, Wilson MA. 2007. Hippocampal theta sequences. Hippocampus 17:1093–1099. DOI: https://doi.org/ 
10.1002/hipo.20345, PMID: 17663452

Foster DJ, Knierim JJ. 2012. Sequence learning and the role of the hippocampus in rodent navigation. Current 
Opinion in Neurobiology 22:294–300. DOI: https://doi.org/10.1016/j.conb.2011.12.005, PMID: 22226994

Froudarakis E, Berens P, Ecker AS, Cotton RJ, Sinz FH, Yatsenko D, Saggau P, Bethge M, Tolias AS. 2014. 
Population code in mouse V1 facilitates readout of natural scenes through increased sparseness. Nature 
Neuroscience 17:851–857. DOI: https://doi.org/10.1038/nn.3707, PMID: 24747577

Gauthier B, Eger E, Hesselmann G, Giraud AL, Kleinschmidt A. 2012. Temporal tuning properties along the 
human ventral visual stream. The Journal of Neuroscience 32:14433–14441. DOI: https://doi.org/10.1523/ 
JNEUROSCI.2467-12.2012, PMID: 23055513

Gelbard- Sagiv H, Mukamel R, Harel M, Malach R, Fried I. 2008. Internally generated reactivation of single 
neurons in human hippocampus during free recall. Science 322:96–101. DOI: https://doi.org/10.1126/science. 
1164685

Góis ZHTD, Tort ABL. 2018. Characterizing speed cells in the rat hippocampus. Cell Reports 25:1872–1884.. 
DOI: https://doi.org/10.1016/j.celrep.2018.10.054, PMID: 30428354

Haggerty DC, Ji D. 2015. Activities of visual cortical and hippocampal neurons co- fluctuate in freely moving rats 
during spatial behavior. eLife 4:e08902. DOI: https://doi.org/10.7554/eLife.08902, PMID: 26349031

Harland B, Contreras M, Fellous JM. 2018. A role for the longitudinal axis of the hippocampus in multiscale 
representations of large and complex spatial environments and mnemonic hierarchies. The Hippocampus - 
Plasticity and Functions:68877. DOI: https://doi.org/10.5772/intechopen.68877

Harland B, Contreras M, Souder M, Fellous JM. 2021. Dorsal CA1 hippocampal place cells form a multi- scale 
representation of megaspace. Current Biology 31:2178–2190. DOI: https://doi.org/10.1016/j.cub.2021.03.003, 
PMID: 33770492

Hasson U, Yang E, Vallines I, Heeger DJ, Rubin N. 2008. A hierarchy of temporal receptive windows in human 
cortex. The Journal of Neuroscience 28:2539–2550. DOI: https://doi.org/10.1523/JNEUROSCI.5487-07.2008, 
PMID: 18322098

Herikstad R, Baker J, Lachaux JP, Gray CM, Yen SC. 2011. Natural movies evoke spike trains with low spike time 
variability in cat primary visual cortex. The Journal of Neuroscience 31:15844–15860. DOI: https://doi.org/10. 
1523/JNEUROSCI.5153-10.2011, PMID: 22049428

Hill DN, Mehta SB, Kleinfeld D. 2011. Quality metrics to accompany spike sorting of extracellular signals. The 
Journal of Neuroscience 31:8699–8705. DOI: https://doi.org/10.1523/JNEUROSCI.0971-11.2011, PMID: 
21677152

Hoseini MS, Wright NC, Xia J, Clawson W, Shew W, Wessel R. 2019. Dynamics and sources of response 
variability and its coordination in visual cortex. Visual Neuroscience 36:E012. DOI: https://doi.org/10.1017/ 
S0952523819000117, PMID: 31840629

Hubel DH, Wiesel TN. 1959. Receptive fields of single neurones in the cat’s striate cortex. The Journal of 
Physiology 148:574–591. DOI: https://doi.org/10.1113/jphysiol.1959.sp006308, PMID: 14403679

Huxter JR, Senior TJ, Allen K, Csicsvari J. 2008. Theta phase- specific codes for two- dimensional position, 
trajectory and heading in the hippocampus. Nature Neuroscience 11:587–594. DOI: https://doi.org/10.1038/ 
nn.2106, PMID: 18425124

Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R. 2004. Synfire chains and cortical songs: 
temporal modules of cortical activity. Science 304:559–564. DOI: https://doi.org/10.1126/science.1093173, 
PMID: 15105494

https://doi.org/10.7554/eLife.85069
https://doi.org/10.1073/pnas.1811265115
http://www.ncbi.nlm.nih.gov/pubmed/30327345
https://doi.org/10.1038/nature01964
http://www.ncbi.nlm.nih.gov/pubmed/12968182
https://doi.org/10.1126/science.abg4020
https://doi.org/10.1126/science.abg4020
http://www.ncbi.nlm.nih.gov/pubmed/34045327
https://doi.org/10.1016/j.cub.2014.10.045
http://www.ncbi.nlm.nih.gov/pubmed/25484299
https://doi.org/10.1007/s10827-009-0138-6
http://www.ncbi.nlm.nih.gov/pubmed/19326198
https://doi.org/10.1093/cercor/1.1.1-a
http://www.ncbi.nlm.nih.gov/pubmed/1822724
https://doi.org/10.1523/JNEUROSCI.2862-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18971467
https://doi.org/10.1126/science.2740902
http://www.ncbi.nlm.nih.gov/pubmed/2740902
https://doi.org/10.1002/hipo.20345
https://doi.org/10.1002/hipo.20345
http://www.ncbi.nlm.nih.gov/pubmed/17663452
https://doi.org/10.1016/j.conb.2011.12.005
http://www.ncbi.nlm.nih.gov/pubmed/22226994
https://doi.org/10.1038/nn.3707
http://www.ncbi.nlm.nih.gov/pubmed/24747577
https://doi.org/10.1523/JNEUROSCI.2467-12.2012
https://doi.org/10.1523/JNEUROSCI.2467-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23055513
https://doi.org/10.1126/science.1164685
https://doi.org/10.1126/science.1164685
https://doi.org/10.1016/j.celrep.2018.10.054
http://www.ncbi.nlm.nih.gov/pubmed/30428354
https://doi.org/10.7554/eLife.08902
http://www.ncbi.nlm.nih.gov/pubmed/26349031
https://doi.org/10.5772/intechopen.68877
https://doi.org/10.1016/j.cub.2021.03.003
http://www.ncbi.nlm.nih.gov/pubmed/33770492
https://doi.org/10.1523/JNEUROSCI.5487-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18322098
https://doi.org/10.1523/JNEUROSCI.5153-10.2011
https://doi.org/10.1523/JNEUROSCI.5153-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/22049428
https://doi.org/10.1523/JNEUROSCI.0971-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21677152
https://doi.org/10.1017/S0952523819000117
https://doi.org/10.1017/S0952523819000117
http://www.ncbi.nlm.nih.gov/pubmed/31840629
https://doi.org/10.1113/jphysiol.1959.sp006308
http://www.ncbi.nlm.nih.gov/pubmed/14403679
https://doi.org/10.1038/nn.2106
https://doi.org/10.1038/nn.2106
http://www.ncbi.nlm.nih.gov/pubmed/18425124
https://doi.org/10.1126/science.1093173
http://www.ncbi.nlm.nih.gov/pubmed/15105494


 Research article      Neuroscience

Purandare and Mehta. eLife 2023;12:RP85069. DOI: https://doi.org/10.7554/eLife.85069  20 of 22

Jacobs J, Kahana MJ, Ekstrom AD, Mollison MV, Fried I. 2010. A sense of direction in human entorhinal cortex. 
PNAS 107:6487–6492. DOI: https://doi.org/10.1073/pnas.0911213107, PMID: 20308554

Jun H, Bramian A, Soma S, Saito T, Saido TC, Igarashi KM. 2020. Disrupted place cell remapping and impaired 
grid cells in a knockin model of alzheimer’s disease. Neuron 107:1095–1112. DOI: https://doi.org/10.1016/j. 
neuron.2020.06.023, PMID: 32697942

Jung MW, McNaughton BL. 1993. Spatial selectivity of unit activity in the hippocampal granular layer. 
Hippocampus 3:165–182. DOI: https://doi.org/10.1002/hipo.450030209, PMID: 8353604

Kampa BM, Roth MM, Göbel W, Helmchen F. 2011. Representation of visual scenes by local neuronal 
populations in layer 2/3 of mouse visual cortex. Frontiers in Neural Circuits 5:18. DOI: https://doi.org/10.3389/ 
fncir.2011.00018, PMID: 22180739

King JR, Wyart V, King JR. 2021. The Human Brain Encodes a Chronicle of Visual Events at Each Instant of Time 
Through the Multiplexing of Traveling Waves. The Journal of Neuroscience 41:7224–7233. DOI: https://doi. 
org/10.1523/JNEUROSCI.2098-20.2021, PMID: 33811150

Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser MB. 2008. Finite scale of 
spatial representation in the hippocampus. Science 321:140–143. DOI: https://doi.org/10.1126/science. 
1157086, PMID: 18599792

Kraus BJ, Robinson RJ, White JA, Eichenbaum H, Hasselmo ME. 2013. Hippocampal “time cells”: time versus 
path integration. Neuron 78:1090–1101. DOI: https://doi.org/10.1016/j.neuron.2013.04.015, PMID: 23707613

Kraus BJ, Brandon MP, Robinson RJ, Connerney MA, Hasselmo ME, Eichenbaum H. 2015. During running in 
place, grid cells integrate elapsed time and distance run. Neuron 88:578–589. DOI: https://doi.org/10.1016/j. 
neuron.2015.09.031, PMID: 26539893

Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM. 2014. Identification of a brainstem circuit regulating 
visual cortical state in parallel with locomotion. Neuron 83:455–466. DOI: https://doi.org/10.1016/j.neuron. 
2014.06.031, PMID: 25033185

MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H. 2011. Hippocampal “time cells” bridge the gap in memory 
for discontiguous events. Neuron 71:737–749. DOI: https://doi.org/10.1016/j.neuron.2011.07.012, PMID: 
21867888

Mao D, Avila E, Caziot B, Laurens J, Dickman JD, Angelaki DE. 2021. Spatial modulation of hippocampal activity 
in freely moving macaques. Neuron 109:3521–3534. DOI: https://doi.org/10.1016/j.neuron.2021.09.032, PMID: 
34644546

Mau W, Sullivan DW, Kinsky NR, Hasselmo ME, Howard MW, Eichenbaum H. 2018. The Same Hippocampal CA1 
Population Simultaneously Codes Temporal Information over Multiple Timescales. Current Biology 28:1499–
1508. DOI: https://doi.org/10.1016/j.cub.2018.03.051, PMID: 29706516

McAvan AS, Wank AA, Rapcsak SZ, Grilli MD, Ekstrom AD. 2022. Largely intact memory for spatial locations 
during navigation in an individual with dense amnesia. Neuropsychologia 170:108225. DOI: https://doi.org/10. 
1016/j.neuropsychologia.2022.108225, PMID: 35367237

McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, Knierim JJ, Kudrimoti H, Qin Y, Skaggs WE, 
Suster M, Weaver KL. 1996. Deciphering the hippocampal polyglot: the hippocampus as a path integration 
system. The Journal of Experimental Biology 199:173–185. DOI: https://doi.org/10.1242/jeb.199.1.173, PMID: 
8576689

Mehta MR, Barnes CA, McNaughton BL. 1997. Experience- dependent, asymmetric expansion of 
hippocampal place fields. PNAS 94:8918–8921. DOI: https://doi.org/10.1073/pnas.94.16.8918, PMID: 
9238078

Mehta MR, McNaughton BL. 1997. Expansion and shift of hippocampal place fields: evidence for synaptic 
potentiation during behavior. Computational Neuroscience 741–745. DOI: https://doi.org/10.1007/978-1-4757- 
9800-5

Mehta MR, Quirk MC, Wilson MA. 2000. Experience- dependent asymmetric shape of hippocampal receptive 
fields. Neuron 25:707–715. DOI: https://doi.org/10.1016/s0896-6273(00)81072-7, PMID: 10774737

Mehta MR, Wilson MA. 2000. From hippocampus to V1: Effect of LTP on spatio- temporal dynamics of receptive 
fields. Neurocomputing 32–33:905–911. DOI: https://doi.org/10.1016/S0925-2312(00)00259-9

Mehta MR. 2015. From synaptic plasticity to spatial maps and sequence learning. Hippocampus 25:756–762. 
DOI: https://doi.org/10.1002/hipo.22472, PMID: 25929239

Miyashita Y. 1988. Neuronal correlate of visual associative long- term memory in the primate temporal cortex. 
Nature 335:817–820. DOI: https://doi.org/10.1038/335817a0, PMID: 3185711

Moore JJ, Cushman JD, Acharya L, Popeney B, Mehta MR. 2021. Linking hippocampal multiplexed tuning, 
hebbian plasticity and navigation. Nature 599:442–448. DOI: https://doi.org/10.1038/s41586-021-03989-z, 
PMID: 34671157

Muller R. 1996. A quarter of A century of place cells. Neuron 17:813–822. DOI: https://doi.org/10.1016/ 
s0896-6273(00)80214-7, PMID: 8938115

Nadel L, Hardt O. 2011. Update on memory systems and processes. Neuropsychopharmacology 36:251–273. 
DOI: https://doi.org/10.1038/npp.2010.169, PMID: 20861829

Nadel L, Peterson MA. 2013. The hippocampus: part of an interactive posterior representational system 
spanning perceptual and memorial systems. Journal of Experimental Psychology. General 142:1242–1254. 
DOI: https://doi.org/10.1037/a0033690, PMID: 23895347

Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 
65:472–479. DOI: https://doi.org/10.1016/j.neuron.2010.01.033, PMID: 20188652

https://doi.org/10.7554/eLife.85069
https://doi.org/10.1073/pnas.0911213107
http://www.ncbi.nlm.nih.gov/pubmed/20308554
https://doi.org/10.1016/j.neuron.2020.06.023
https://doi.org/10.1016/j.neuron.2020.06.023
http://www.ncbi.nlm.nih.gov/pubmed/32697942
https://doi.org/10.1002/hipo.450030209
http://www.ncbi.nlm.nih.gov/pubmed/8353604
https://doi.org/10.3389/fncir.2011.00018
https://doi.org/10.3389/fncir.2011.00018
http://www.ncbi.nlm.nih.gov/pubmed/22180739
https://doi.org/10.1523/JNEUROSCI.2098-20.2021
https://doi.org/10.1523/JNEUROSCI.2098-20.2021
http://www.ncbi.nlm.nih.gov/pubmed/33811150
https://doi.org/10.1126/science.1157086
https://doi.org/10.1126/science.1157086
http://www.ncbi.nlm.nih.gov/pubmed/18599792
https://doi.org/10.1016/j.neuron.2013.04.015
http://www.ncbi.nlm.nih.gov/pubmed/23707613
https://doi.org/10.1016/j.neuron.2015.09.031
https://doi.org/10.1016/j.neuron.2015.09.031
http://www.ncbi.nlm.nih.gov/pubmed/26539893
https://doi.org/10.1016/j.neuron.2014.06.031
https://doi.org/10.1016/j.neuron.2014.06.031
http://www.ncbi.nlm.nih.gov/pubmed/25033185
https://doi.org/10.1016/j.neuron.2011.07.012
http://www.ncbi.nlm.nih.gov/pubmed/21867888
https://doi.org/10.1016/j.neuron.2021.09.032
http://www.ncbi.nlm.nih.gov/pubmed/34644546
https://doi.org/10.1016/j.cub.2018.03.051
http://www.ncbi.nlm.nih.gov/pubmed/29706516
https://doi.org/10.1016/j.neuropsychologia.2022.108225
https://doi.org/10.1016/j.neuropsychologia.2022.108225
http://www.ncbi.nlm.nih.gov/pubmed/35367237
https://doi.org/10.1242/jeb.199.1.173
http://www.ncbi.nlm.nih.gov/pubmed/8576689
https://doi.org/10.1073/pnas.94.16.8918
http://www.ncbi.nlm.nih.gov/pubmed/9238078
https://doi.org/10.1007/978-1-4757-9800-5
https://doi.org/10.1007/978-1-4757-9800-5
https://doi.org/10.1016/s0896-6273(00)81072-7
http://www.ncbi.nlm.nih.gov/pubmed/10774737
https://doi.org/10.1016/S0925-2312(00)00259-9
https://doi.org/10.1002/hipo.22472
http://www.ncbi.nlm.nih.gov/pubmed/25929239
https://doi.org/10.1038/335817a0
http://www.ncbi.nlm.nih.gov/pubmed/3185711
https://doi.org/10.1038/s41586-021-03989-z
http://www.ncbi.nlm.nih.gov/pubmed/34671157
https://doi.org/10.1016/s0896-6273(00)80214-7
https://doi.org/10.1016/s0896-6273(00)80214-7
http://www.ncbi.nlm.nih.gov/pubmed/8938115
https://doi.org/10.1038/npp.2010.169
http://www.ncbi.nlm.nih.gov/pubmed/20861829
https://doi.org/10.1037/a0033690
http://www.ncbi.nlm.nih.gov/pubmed/23895347
https://doi.org/10.1016/j.neuron.2010.01.033
http://www.ncbi.nlm.nih.gov/pubmed/20188652


 Research article      Neuroscience

Purandare and Mehta. eLife 2023;12:RP85069. DOI: https://doi.org/10.7554/eLife.85069  21 of 22

Nishimoto S, Vu AT, Naselaris T, Benjamini Y, Yu B, Gallant JL. 2011. Reconstructing visual experiences from brain 
activity evoked by natural movies. Current Biology 21:1641–1646. DOI: https://doi.org/10.1016/j.cub.2011.08. 
031

Norman- Haignere SV, Long LK, Devinsky O, Doyle W, Irobunda I, Merricks EM, Feldstein NA, McKhann GM, 
Schevon CA, Flinker A, Mesgarani N. 2022. Multiscale temporal integration organizes hierarchical computation 
in human auditory cortex. Nature Human Behaviour 6:455–469. DOI: https://doi.org/10.1038/s41562-021- 
01261-y, PMID: 35145280

O’Keefe J, Dostrovsky J. 1971. The hippocampus as a spatial map: preliminary evidence from unit activity in the 
freely- moving rat. Brain Research 34:171–175. DOI: https://doi.org/10.1016/0006-8993(71)90358-1, PMID: 
5124915

O’Keefe J, Nadel L. 1978. The hippocampus as a cognitive map Clarendon Press.
O’Keefe J, Burgess N. 1996. Geometric determinants of the place fields of hippocampal neurons. Nature 

381:425–428. DOI: https://doi.org/10.1038/381425a0, PMID: 8632799
Park E, Dvorak D, Fenton AA. 2011. Ensemble place codes in hippocampus: CA1, CA3, and dentate gyrus place 

cells have multiple place fields in large environments. PLOS ONE 6:e22349. DOI: https://doi.org/10.1371/ 
journal.pone.0022349, PMID: 21789250

Parkinson JK, Murray EA, Mishkin M. 1988. A selective mnemonic role for the hippocampus in monkeys: 
memory for the location of objects. The Journal of Neuroscience 8:4159–4167. DOI: https://doi.org/10.1523/ 
JNEUROSCI.08-11-04159.1988, PMID: 3183716

Pastalkova E, Itskov V, Amarasingham A, Buzsáki G. 2008. Internally generated cell assembly sequences in the 
rat hippocampus. Science 321:1322–1327. DOI: https://doi.org/10.1126/science.1159775, PMID: 18772431

Purandare CS, Dhingra S, Rios R, Vuong C, To T, Hachisuka A, Choudhary K, Mehta MR. 2022. Moving bar of 
light evokes vectorial spatial selectivity in the immobile rat hippocampus. Nature 602:461–467. DOI: https:// 
doi.org/10.1038/s41586-022-04404-x, PMID: 35140401

Purandare C. 2023a. Code and Datasets generated and needed to reproduce results in upcoming Elife paper. 
3.0. Github. https://github.com/cspurandare/ELife_MovieTuning

Purandare C. 2023b. Elife_Movietuning. swh:1:rev:2153deb7b9f2fa2b570c4a2264d464c93768516e. Software 
Heritage. https://archive.softwareheritage.org/swh:1:dir:3b56b105f8aafd53a6f1bfb0cdbf1b8b64a48bef;origin= 
https://github.com/cspurandare/ELife_MovieTuning;visit=swh:1:snp:19d64a8daa436a5ae0c2aa4558fe8147 
a847fa6e;anchor=swh:1:rev:2153deb7b9f2fa2b570c4a2264d464c93768516e

Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. 2005. Invariant visual representation by single neurons in the 
human brain. Nature 435:1102–1107. DOI: https://doi.org/10.1038/nature03687, PMID: 15973409

Ravassard P, Kees A, Willers B, Ho D, Aharoni DA, Cushman J, Aghajan ZM, Mehta MR. 2013. Multisensory 
control of hippocampal spatiotemporal selectivity. Science 340:1342–1346. DOI: https://doi.org/10.1126/ 
science.1232655, PMID: 23641063

Reagh ZM, Ranganath C. 2023. Flexible reuse of cortico- hippocampal representations during encoding and 
recall of naturalistic events. Nature Communications 14:1279. DOI: https://doi.org/10.1038/s41467-023-36805- 
5, PMID: 36890146

Resnik E, McFarland JM, Sprengel R, Sakmann B, Mehta MR. 2012. The effects of GluA1 deletion on the 
hippocampal population code for position. The Journal of Neuroscience 32:8952–8968. DOI: https://doi.org/ 
10.1523/JNEUROSCI.6460-11.2012, PMID: 22745495

Rich PD, Liaw HP, Lee AK. 2014. Place cells: large environments reveal the statistical structure governing 
hippocampal representations. Science 345:814–817. DOI: https://doi.org/10.1126/science.1255635, PMID: 
25124440

Rolls ET, O’Mara SM. 1995. View- responsive neurons in the primate hippocampal complex. Hippocampus 
5:409–424. DOI: https://doi.org/10.1002/hipo.450050504, PMID: 8773254

Rolls ET. 2023. Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in 
humans. Hippocampus 33:533–572. DOI: https://doi.org/10.1002/hipo.23467, PMID: 36070199

Roth ED, Yu X, Rao G, Knierim JJ. 2012. Functional differences in the backward shifts of CA1 and CA3 place 
fields in novel and familiar environments. PLOS ONE 7:e36035. DOI: https://doi.org/10.1371/journal.pone. 
0036035, PMID: 22558316

Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsáki G. 2012. Control of timing, rate and 
bursts of hippocampal place cells by dendritic and somatic inhibition. Nature Neuroscience 15:769–775. DOI: 
https://doi.org/10.1038/nn.3077, PMID: 22446878

Rutishauser U, Mamelak AN, Schuman EM. 2006. Single- trial learning of novel stimuli by individual neurons of 
the human hippocampus- amygdala complex. Neuron 49:805–813. DOI: https://doi.org/10.1016/j.neuron.2006. 
02.015, PMID: 16543129

Sadeh S, Clopath C. 2022. Contribution of behavioural variability to representational drift. eLife 11:e77907. DOI: 
https://doi.org/10.7554/eLife.77907, PMID: 36040010

Sakai K, Miyashita Y. 1991. Neural organization for the long- term memory of paired associates. Nature 354:152–
155. DOI: https://doi.org/10.1038/354152a0, PMID: 1944594

Saleem AB, Diamanti EM, Fournier J, Harris KD, Carandini M. 2018. Coherent encoding of subjective spatial 
position in visual cortex and hippocampus. Nature 562:124–127. DOI: https://doi.org/10.1038/s41586-018- 
0516-1, PMID: 30202092

Schmitzer- Torbert N, Jackson J, Henze D, Harris K, Redish AD. 2005. Quantitative measures of cluster quality for 
use in extracellular recordings. Neuroscience 131:1–11. DOI: https://doi.org/10.1016/j.neuroscience.2004.09. 
066, PMID: 15680687

https://doi.org/10.7554/eLife.85069
https://doi.org/10.1016/j.cub.2011.08.031
https://doi.org/10.1016/j.cub.2011.08.031
https://doi.org/10.1038/s41562-021-01261-y
https://doi.org/10.1038/s41562-021-01261-y
http://www.ncbi.nlm.nih.gov/pubmed/35145280
https://doi.org/10.1016/0006-8993(71)90358-1
http://www.ncbi.nlm.nih.gov/pubmed/5124915
https://doi.org/10.1038/381425a0
http://www.ncbi.nlm.nih.gov/pubmed/8632799
https://doi.org/10.1371/journal.pone.0022349
https://doi.org/10.1371/journal.pone.0022349
http://www.ncbi.nlm.nih.gov/pubmed/21789250
https://doi.org/10.1523/JNEUROSCI.08-11-04159.1988
https://doi.org/10.1523/JNEUROSCI.08-11-04159.1988
http://www.ncbi.nlm.nih.gov/pubmed/3183716
https://doi.org/10.1126/science.1159775
http://www.ncbi.nlm.nih.gov/pubmed/18772431
https://doi.org/10.1038/s41586-022-04404-x
https://doi.org/10.1038/s41586-022-04404-x
http://www.ncbi.nlm.nih.gov/pubmed/35140401
https://github.com/cspurandare/ELife_MovieTuning
https://archive.softwareheritage.org/swh:1:dir:3b56b105f8aafd53a6f1bfb0cdbf1b8b64a48bef;origin=https://github.com/cspurandare/ELife_MovieTuning;visit=swh:1:snp:19d64a8daa436a5ae0c2aa4558fe8147a847fa6e;anchor=swh:1:rev:2153deb7b9f2fa2b570c4a2264d464c93768516e
https://archive.softwareheritage.org/swh:1:dir:3b56b105f8aafd53a6f1bfb0cdbf1b8b64a48bef;origin=https://github.com/cspurandare/ELife_MovieTuning;visit=swh:1:snp:19d64a8daa436a5ae0c2aa4558fe8147a847fa6e;anchor=swh:1:rev:2153deb7b9f2fa2b570c4a2264d464c93768516e
https://archive.softwareheritage.org/swh:1:dir:3b56b105f8aafd53a6f1bfb0cdbf1b8b64a48bef;origin=https://github.com/cspurandare/ELife_MovieTuning;visit=swh:1:snp:19d64a8daa436a5ae0c2aa4558fe8147a847fa6e;anchor=swh:1:rev:2153deb7b9f2fa2b570c4a2264d464c93768516e
https://doi.org/10.1038/nature03687
http://www.ncbi.nlm.nih.gov/pubmed/15973409
https://doi.org/10.1126/science.1232655
https://doi.org/10.1126/science.1232655
http://www.ncbi.nlm.nih.gov/pubmed/23641063
https://doi.org/10.1038/s41467-023-36805-5
https://doi.org/10.1038/s41467-023-36805-5
http://www.ncbi.nlm.nih.gov/pubmed/36890146
https://doi.org/10.1523/JNEUROSCI.6460-11.2012
https://doi.org/10.1523/JNEUROSCI.6460-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22745495
https://doi.org/10.1126/science.1255635
http://www.ncbi.nlm.nih.gov/pubmed/25124440
https://doi.org/10.1002/hipo.450050504
http://www.ncbi.nlm.nih.gov/pubmed/8773254
https://doi.org/10.1002/hipo.23467
http://www.ncbi.nlm.nih.gov/pubmed/36070199
https://doi.org/10.1371/journal.pone.0036035
https://doi.org/10.1371/journal.pone.0036035
http://www.ncbi.nlm.nih.gov/pubmed/22558316
https://doi.org/10.1038/nn.3077
http://www.ncbi.nlm.nih.gov/pubmed/22446878
https://doi.org/10.1016/j.neuron.2006.02.015
https://doi.org/10.1016/j.neuron.2006.02.015
http://www.ncbi.nlm.nih.gov/pubmed/16543129
https://doi.org/10.7554/eLife.77907
http://www.ncbi.nlm.nih.gov/pubmed/36040010
https://doi.org/10.1038/354152a0
http://www.ncbi.nlm.nih.gov/pubmed/1944594
https://doi.org/10.1038/s41586-018-0516-1
https://doi.org/10.1038/s41586-018-0516-1
http://www.ncbi.nlm.nih.gov/pubmed/30202092
https://doi.org/10.1016/j.neuroscience.2004.09.066
https://doi.org/10.1016/j.neuroscience.2004.09.066
http://www.ncbi.nlm.nih.gov/pubmed/15680687


 Research article      Neuroscience

Purandare and Mehta. eLife 2023;12:RP85069. DOI: https://doi.org/10.7554/eLife.85069  22 of 22

Schröder S, Steinmetz NA, Krumin M, Pachitariu M, Rizzi M, Lagnado L, Harris KD, Carandini M. 2020. Arousal 
modulates retinal output. Neuron 107:487–495. DOI: https://doi.org/10.1016/j.neuron.2020.04.026, PMID: 
32445624

Scoville WB, Milber B. 1957. Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, 
Neurosurgery, and Psychiatry 20:11–21. DOI: https://doi.org/10.1136/jnnp.20.1.11, PMID: 13406589

Shan KQ, Lubenov EV, Papadopoulou M, Siapas AG. 2016. Spatial tuning and brain state account for dorsal 
hippocampal CA1 activity in a non- spatial learning task. eLife 5:e14321. DOI: https://doi.org/10.7554/eLife. 
14321, PMID: 27487561

Sharp PE, Green C. 1994. Spatial correlates of firing patterns of single cells in the subiculum of the freely moving 
rat. The Journal of Neuroscience 14:2339–2356. DOI: https://doi.org/10.1523/JNEUROSCI.14-04-02339.1994, 
PMID: 8158272

Siegle JH, Jia X, Durand S, Gale S, Bennett C, Graddis N, Heller G, Ramirez TK, Choi H, Luviano JA, 
Groblewski PA, Ahmed R, Arkhipov A, Bernard A, Billeh YN, Brown D, Buice MA, Cain N, Caldejon S, Casal L, 
et al. 2021. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592:86–92. DOI: 
https://doi.org/10.1038/s41586-020-03171-x, PMID: 33473216

Silson EH, Zeidman P, Knapen T, Baker CI. 2021. Representation of contralateral visual space in the human 
hippocampus. The Journal of Neuroscience 41:2382–2392. DOI: https://doi.org/10.1523/JNEUROSCI.1990-20. 
2020, PMID: 33500275

Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. 1996. Theta phase precession in hippocampal neuronal 
populations and the compression of temporal sequences. Hippocampus 6:149–172. DOI: https://doi.org/10. 
1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K, PMID: 8797016

Spacek MA, Crombie D, Bauer Y, Born G, Liu X, Katzner S, Busse L. 2022. Robust effects of corticothalamic 
feedback and behavioral state on movie responses in mouse dLGN. eLife 11:e70469. DOI: https://doi.org/10. 
7554/eLife.70469, PMID: 35315775

Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. 2019. Spontaneous behaviors drive 
multidimensional, brainwide activity. Science 364:255. DOI: https://doi.org/10.1126/science.aav7893, PMID: 
31000656

Vargha- Khadem F, Gadian DG, Watkins KE, Connelly A, Van Paesschen W, Mishkin M. 1997. Differential effects 
of early hippocampal pathology on episodic and semantic memory. Science 277:376–380. DOI: https://doi.org/ 
10.1126/science.277.5324.376, PMID: 9219696

Vinck M, Batista- Brito R, Knoblich U, Cardin JA. 2015. Arousal and locomotion make distinct contributions to 
cortical activity patterns and visual encoding. Neuron 86:740–754. DOI: https://doi.org/10.1016/j.neuron.2015. 
03.028, PMID: 25892300

Vinje WE, Gallant JL. 2000. Sparse coding and decorrelation in primary visual cortex during natural vision. 
Science 287:1273–1276. DOI: https://doi.org/10.1126/science.287.5456.1273, PMID: 10678835

Wang Q. 2020. The Allen Mouse Brain common coordinate framework: A 3D reference atlas. Cell 181:936–953. 
DOI: https://doi.org/10.1016/j.cell.2020.04.007

Wiener SI, Paul CA, Eichenbaum H. 1989. Spatial and behavioral correlates of hippocampal neuronal activity. 
The Journal of Neuroscience 9:2737–2763. DOI: https://doi.org/10.1523/JNEUROSCI.09-08-02737.1989, 
PMID: 2769364

Wilson MA, McNaughton BL. 1993. Dynamics of the hippocampal ensemble code for space. Science 261:1055–
1058. DOI: https://doi.org/10.1126/science.8351520, PMID: 8351520

Xia J, Marks TD, Goard MJ, Wessel R. 2021. Stable representation of a naturalistic movie emerges from episodic 
activity with gain variability. Nature Communications 12:5170. DOI: https://doi.org/10.1038/s41467-021-25437- 
2, PMID: 34453045

Xu S, Jiang W, Poo MM, Dan Y. 2012. Activity recall in a visual cortical ensemble. Nature Neuroscience 15:449–
455. DOI: https://doi.org/10.1038/nn.3036, PMID: 22267160

Yartsev MM, Witter MP, Ulanovsky N. 2011. Grid cells without theta oscillations in the entorhinal cortex of bats. 
Nature 479:103–107. DOI: https://doi.org/10.1038/nature10583, PMID: 22051680

Yen SC, Baker J, Gray CM. 2007. Heterogeneity in the responses of adjacent neurons to natural stimuli in cat 
striate cortex. Journal of Neurophysiology 97:1326–1341. DOI: https://doi.org/10.1152/jn.00747.2006, PMID: 
17079343

Zheng J, Schjetnan AGP, Yebra M, Gomes BA, Mosher CP, Kalia SK, Valiante TA, Mamelak AN, Kreiman G, 
Rutishauser U. 2022. Neurons detect cognitive boundaries to structure episodic memories in humans. Nature 
Neuroscience 25:358–368. DOI: https://doi.org/10.1038/s41593-022-01020-w, PMID: 35260859

https://doi.org/10.7554/eLife.85069
https://doi.org/10.1016/j.neuron.2020.04.026
http://www.ncbi.nlm.nih.gov/pubmed/32445624
https://doi.org/10.1136/jnnp.20.1.11
http://www.ncbi.nlm.nih.gov/pubmed/13406589
https://doi.org/10.7554/eLife.14321
https://doi.org/10.7554/eLife.14321
http://www.ncbi.nlm.nih.gov/pubmed/27487561
https://doi.org/10.1523/JNEUROSCI.14-04-02339.1994
http://www.ncbi.nlm.nih.gov/pubmed/8158272
https://doi.org/10.1038/s41586-020-03171-x
http://www.ncbi.nlm.nih.gov/pubmed/33473216
https://doi.org/10.1523/JNEUROSCI.1990-20.2020
https://doi.org/10.1523/JNEUROSCI.1990-20.2020
http://www.ncbi.nlm.nih.gov/pubmed/33500275
https://doi.org/10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K
http://www.ncbi.nlm.nih.gov/pubmed/8797016
https://doi.org/10.7554/eLife.70469
https://doi.org/10.7554/eLife.70469
http://www.ncbi.nlm.nih.gov/pubmed/35315775
https://doi.org/10.1126/science.aav7893
http://www.ncbi.nlm.nih.gov/pubmed/31000656
https://doi.org/10.1126/science.277.5324.376
https://doi.org/10.1126/science.277.5324.376
http://www.ncbi.nlm.nih.gov/pubmed/9219696
https://doi.org/10.1016/j.neuron.2015.03.028
https://doi.org/10.1016/j.neuron.2015.03.028
http://www.ncbi.nlm.nih.gov/pubmed/25892300
https://doi.org/10.1126/science.287.5456.1273
http://www.ncbi.nlm.nih.gov/pubmed/10678835
https://doi.org/10.1016/j.cell.2020.04.007
https://doi.org/10.1523/JNEUROSCI.09-08-02737.1989
http://www.ncbi.nlm.nih.gov/pubmed/2769364
https://doi.org/10.1126/science.8351520
http://www.ncbi.nlm.nih.gov/pubmed/8351520
https://doi.org/10.1038/s41467-021-25437-2
https://doi.org/10.1038/s41467-021-25437-2
http://www.ncbi.nlm.nih.gov/pubmed/34453045
https://doi.org/10.1038/nn.3036
http://www.ncbi.nlm.nih.gov/pubmed/22267160
https://doi.org/10.1038/nature10583
http://www.ncbi.nlm.nih.gov/pubmed/22051680
https://doi.org/10.1152/jn.00747.2006
http://www.ncbi.nlm.nih.gov/pubmed/17079343
https://doi.org/10.1038/s41593-022-01020-w
http://www.ncbi.nlm.nih.gov/pubmed/35260859

	Mega-scale movie-fields in the mouse visuo-hippocampal network
	eLife assessment
	Introduction
	Results
	Significant movie tuning across cortico-hippocampal areas
	Movie tuning is not an artifact of behavioral or brain state changes
	Similarities and differences between place-fields and movie-fields
	Mega-scale structure of movie-fields
	Relationship between movie image content and neural movie tuning
	Differential neural encoding of sequential versus scrambled movie in visual and hippocampal areas

	Discussion
	Movie tuning in the visual areas
	Movie tuning in hippocampal areas
	Mega-scale nature of movie-fields
	Continuous versus scrambled movie responses
	Emergence of episode-like movie code in hippocampus
	No evidence of nonspecific effects
	Movie-fields versus place-fields
	Broader outlook

	Methods
	Experiments
	Movie tuning quantification
	Stationary epoch and SWR-free epoch identification
	Pupil dilation and theta power comparisons
	Mega-scale movie-field detection in tuned neurons
	Identifying frames with significant deviations in multiple single-unit activity
	Population vector overlap
	Decoding analysis
	Rearranged scrambled movie analysis
	Code availability

	Acknowledgements
	Additional information
	Funding
	Author contributions
	Author ORCIDs
	Ethics
	Peer review material

	Additional files
	Supplementary files

	References


