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Abstract Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens 
are key properties underlying effective immune responses. Here we propose diffRBM, an approach 
based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predic-
tive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid 
composition that, on the one hand, underlie the antigen’s probability of triggering a response, and 
on the other hand the T-cell receptor’s ability to bind to a given antigen. We show that the patterns 
learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also 
discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, 
reaching performances that compare favorably to existing sequence-based predictors of antigen 
immunogenicity and T-cell receptor specificity.

Editor's evaluation
In this important work, the authors present a sequence-based approach using transfer learning and 
Restricted Boltzmann Machines to predict antigen immunogenicity and specificity. The evidence and 
methodology are compelling. This work should be of interest to immunologists, computational biol-
ogists, and biophysicists.

Introduction
T cells play an essential role in the immune response to pathogens and malignancies. Killer T cells are 
activated following the binding of their surface receptors (T-cell receptors or TCRs) to short portions 
of pathogen-related proteins (peptide antigens) that are presented by class I major histocompatibility 
complexes (MHCs) forming the peptide-MHC epitope (pMHC).

Only a fraction of peptides presented by the MHC are immunogenic, meaning that they possess 
biochemical properties that can promote a T-cell response (Sette et al., 1994). Accurate prediction 
of immunogenicity is crucial to the successful identification of microbial antigens and cancer neoan-
tigens (antigens carrying cancer-related mutations) that help develop vaccines and immune-based 
cancer therapies. A very recent systematic assessment Buckley et al., 2022 of the available models to 
identify immunogenic targets from pathogens and cancers reports suboptimal overall performances, 
with none of the models able to substantially improve beyond pure MHC-presentation prediction 
when evaluated on immunogenic peptides from a new virus (SARS-CoV-2). The largest-scale valida-
tion Wells et al., 2020 of existing computational pipelines for neoantigen discovery has highlighted 
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a general lack of consensus among their predictions and a rather low average success rate, with only 
6% of the predicted neoantigens validated as truly immunogenic.

We also know that a given pMHC epitope elicits the response of only specific small subsets of 
the human T-cell repertoire. Predicting the molecular composition of TCRs that have the potential 
to be reactive to a given epitope is a difficult computational problem that is yet not fully solved 
despite numerous recent advances (Gielis et al., 2019; Jokinen et al., 2019; Springer et al., 2020; 
Montemurro et  al., 2021; Weber et  al., 2021). Improvements in predicting immunogenicity and 
TCR specificity would have direct consequences for medical applications, including the study of an 
individual’s infection history from their T-cell repertoire and personalized adoptive T-cell therapy for 
cancer treatment.

A few approaches have been proposed to predict antigen immunogenicity (Calis et  al., 2013; 
Trolle and Nielsen, 2014; Chowell et al., 2015; Ogishi and Yotsuyanagi, 2019; Gao et al., 2020; 
Schmidt et al., 2021; Lin et al., 2021; Buckley et al., 2022), some of them specifically developed 
for computational pipelines of neoantigen discovery (Łuksza et al., 2017; Smith et al., 2019; Riley 
et al., 2019; Schenck et al., 2019; Schaap-Johansen et al., 2021). The model by Calis et al., 2013 is 
currently the most used resource for MHC class I immunogenicity prediction, being both implemented 
by the IEDB tool (http://tools.iedb.org/immunogenicity/) for immunogenicity predictions and inte-
grated in the T cell-antigen interaction prediction by the NetTepi server (Trolle and Nielsen, 2014). It 
relies on measuring the enrichment in amino-acid usage between immunogenic and non-immunogenic 
peptides, assuming position independence of the main biophysical properties underlying immunoge-
nicity. Some of these approaches are based on a preliminary choice of peptide positions (Schmidt 
et al., 2021) or properties (such as hydrophobicity Chowell et al., 2015), assumed to be important 
for recognition by TCRs.

Conversely, the computational prediction of the epitope specificity of a given TCR is extremely 
relevant for therapeutic design, and has been done so far through a variety of machine-learning 
methods (Cinelli et  al., 2017; Gielis et  al., 2019; Jokinen et  al., 2019; Davidsen et  al., 2019; 
Springer et al., 2020; Luu et al., 2021; Sidhom et al., 2021; Chronister et al., 2021; Weber et al., 
2021; Lin et al., 2021; Montemurro et al., 2021; Zhang et al., 2021). These models are typically 
calibrated towards achieving high predictive power as classifiers of TCR specificity, while less attention 
is paid to the interpretability of their predictions in terms of molecular properties determining binding 
specificity, apart from a few exceptions relying on model-agnostic interpretability pipelines (Papado-
poulou et al., 2022).

Both antigen immunogenicity and epitope-specificity of T-cell receptors have a molecular-level 
component. They result from specific physico-chemical constraints on the sequence composition 
of antigens and T-cell receptors. Immunogenic antigens and epitope-specific receptors display an 
enrichment in specific patterns of amino acid composition. For example, several works have shown 
enrichment in hydrophobic (Chowell et al., 2015; Riley et al., 2019) and aromatic (Schmidt et al., 
2021) residues in immunogenic peptides, compared to all presented peptides (which are predomi-
nantly non-binders of TCRs). TCRs specifically responding to the same peptide are also characterized 
by convergent amino-acid motifs (Cinelli et  al., 2017; Dash et  al., 2017; Glanville et  al., 2017; 
Pogorelyy et al., 2019a, Huang et al., 2020; Shomuradova et al., 2020; Mayer-Blackwell et al., 
2021; Minervina et al., 2021; Goncharov et al., 2022), whose retrieval is the focus of several clus-
tering approaches (Dash et  al., 2017; Glanville et  al., 2017; Meysman et  al., 2019; Pogorelyy 
and Shugay, 2019b; Thakkar and Bailey-Kellogg, 2019; Mayer-Blackwell et  al., 2021; Valkiers 
et al., 2021). Such specific patterns are observed in addition to others, broadly shared across antigens 
and TCRs. These shared patterns reflect baseline constraints ensuring viability and function (ensuring 
that TCRs are structurally stable and have the basic binding properties allowing them to pass thymic 
selection, or ensuring that antigens have high binding affinity to the presenting HLA protein). An 
outstanding question is how to disentangle sequence pattern enrichment underlying immunogenicity 
and TCR epitope specificity from the stronger statistical signatures stemming from these baseline 
constraints. This separation could generate insight into the molecular basis of antigen immunogenicity 
and epitope specificity and could enable their prediction from sequence alone.

To tackle this question, we here introduce a strategy of ‘differential learning’ within the architecture 
of Restricted Boltzmann Machines (Hinton, 2002; Hinton and Salakhutdinov, 2006), which we call 
diffRBM (differential Restricted Boltzmann Machine). DiffRBM relies on a transfer learning procedure, 
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where we first learn general background distributions of antigen or TCR sequences, exploiting the 
large availability of such data. We then refine these models to learn, typically from small amounts of 
sequence data, the distinctive features that confer immunogenicity or epitope specificity. We first 
inspect and extract biologically interpretable features from the trained parameters. We then assess 
diffRBM performance at predicting antigen immunogenicity and TCR specificity compared to existing 
computational tools.

Overview of diffRBM
In this paper, we develop the diffRBM approach to build models of peptide immunogenicity and T-cell 
binding to specific peptides. The basic transfer-learning idea of diffRBM is in principle applicable 
to any data that have some distinctive features compared to a much larger pool of data endowed 
with the baseline properties. This is the reason why we will refer to these two different sets of data 
generically as ‘selected’ and ‘background’ datasets (Figure 1A–B). Here, these two sets correspond 
to, respectively, immunogenic and presented only antigens in the case of the model of immunoge-
nicity, or antigen-specific and bulk-repertoire TCRs in the case of the model of TCR epitope specificity 
(Figure 1C–D).

The portion of the machine learnt from the background dataset specifies what we call ‘background 
RBM’ (Figure 1A), while we call ‘differential’ the hidden units learnt from the selected dataset, since 
they focus the learning on its distinctive features (Figure  1B). We will call diffRBM (standing for 
‘differential RBM’) the full model architecture comprising background RBM and the diffRBM units 
(Figure 1B, Figure 1—figure supplement 1).

Our differential approach is akin to the machine-learning technique known as transfer learning, 
whereby a model learnt for one task is transferred to the second task in such a way that the information 
embedded in the first model facilitates the learning of the second model. Deep learning approaches 
like (Wu et al., 2021; Akbar et al., 2022; Leem et al., 2022) pre-train on large sets of unannotated 
antibody sequences to learn the general structure of the space before fine tuning the parameters 

Figure 1. Cartoon of the differential RBM (diffRBM) learning approach. (A) The parameters of background RBM (gray) are learnt from the ‘background’ 
sequence dataset. (B) The diffRBM units (gold) are learnt from a small subset of ‘selected’ sequences. (C) We consider the application of diffRBM to 
modeling peptide immunogenicity or T-cell receptor (TCR) antigen specificity, whereby the background dataset consists, respectively, of all antigens 
presented by a given Human Leukocyte Antigen class I complex (HLA) or of generic TCRs from the bulk repertoire. (D) The selected sequences 
correspond to HLA-specific antigens validated to be immunogenic or to TCRs that are antigen-specific responders. The inferred parameters associated 
to the diffRBM units allow one to identify putative contact positions in the peptide-HLA-TCR structure (E) and more generally to assign scores that 
distinguish the selected from the background sequences (F). E is an example of a peptide-HLA-TCR structure for the CMV peptide NLVPMVATV (PDB-
ID:3GSN), where the contact points along the peptide and the TCR are highlighted in different colors (image obtained with Mol* Sehnal et al., 2018).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. DiffRBM architecture recapitulating the mathematical notation used in Materials and methods.

https://doi.org/10.7554/eLife.85126
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on sequences with a defined epitope specificity. Similarly, transfer-learning approaches aimed at the 
prediction of TCR-antigen binding take advantage of pre-training on larger amounts of data, either 
describing general protein-protein interactions (Weber et al., 2021) or sets of TCRs and epitopes 
without a specific pairing (Lu et al., 2021). The SONIA method (Elhanati et al., 2014; Sethna et al., 
2020) (and its deep-learning version soNNia Isacchini et al., 2021) quantifies thymic selection on 
top of the distribution of receptor generation via V(D)J recombination. Contrary to SONIA, diffRBM 
predicts also antigen immunogenicity. The diffRBM units focus on the differences relative to the back-
ground, disentangling in this way the data features that make them a selected subset with distinctive 
properties. As a result, scores based on the diffRBM units distinguish the selected data from the back-
ground data (Figure 1F), performing better than RBM models learnt without a transfer-learning step. 
As a consequence, diffRBM units and their parameters support the discovery of salient amino acid 
patterns underlying TCR-antigen binding, for instance they can identify antigen-TCR contact points in 
the three-dimensional molecular structure (Figure 1E).

Results
DiffRBM model of antigen immunogenicity
We collected from the Immune Epitope Database (IEDB; Vita et al., 2019) sets of peptides that elic-
ited a T-cell reaction in T cell assays (referred to as ‘immunogenic’) and sets of peptides that were not 
T-cell-reactive (‘non-immunogenic’). The peptide-presenting MHCs are specialized proteins coded 
by highly polymorphic human genes called Human Leukocyte Antigen (HLA) gene. We selected only 
peptides presented by 3 HLA-I alleles (HLA-A*02:01, HLA-B*35:01, HLA-B*07:02). We chose these 
HLA-I alleles since they are associated to at least 200 immunogenic peptides in IEDB and at least 
one TCR-pMHC structure in the Protein Data Bank (Materials and methods). We trained diffRBM for 
each set of HLA-restricted immunogenic peptides in two steps, by training first a background RBM on 
samples of antigens presented by one specific HLA via the RBM-based algorithm RBM-MHC (Bravi 
et al., 2021b), and next by training the diffRBM units on the set of immunogenic antigens of the 
same HLA type (Figure 2A, Figure 2—figure supplement 1). Background RBM can predict scores 
of presentation on the specific HLA under consideration, while the diffRBM units predict scores of 
immunogenicity.

Differently from some existing approaches to modeling immunogenicity (Calis et  al., 2013; 
Chowell et al., 2015; Schmidt et al., 2021), we train HLA-specific models. Preliminary inspection of 
the datasets revealed that patterns of amino acid enrichment differ between immunogenic peptides 
presented by different HLAs, apart from some general trend in terms of dominant amino acid proper-
ties (Calis et al., 2013; Chowell et al., 2015; Riley et al., 2019; Schmidt et al., 2021; Łuksza et al., 
2022). This is true also when we restrict to the peptide positions known to be relevant for immunoge-
nicity (Schmidt et al., 2021; Rudolph et al., 2006; Calis et al., 2012; Łuksza et al., 2022; Figure 3A). 
For instance, the extent to which enrichment in hydrophobicity can discriminate immunogenic from 
non-immunogenic peptides was observed to vary across HLAs (Buckley et  al., 2022), supporting 
HLA-specific strategies to model immunogenicity. On the practical side, cross-HLA imbalances in the 
size of training sets were found to skew predictions toward the most characterized HLAs, in particular 
toward HLA-A*02:01 (Buckley et al., 2022).

Equipped with these single-alleles models of immunogenicity, we can perform two tasks, the 
prediction of peptide sites in contact with the TCR (Figure 1E) and the classification of immunogenic 
peptides against non-immunogenic ones (Figure 1F).

Validation of model predictions against TCR-pMHC structures
Since the diffRBM units are inferred to capture the distinctive patterns of peptide immunogenicity, we 
hypothesized that the associated inferred parameters can be informative about the actual structural 
properties of the pMHC-TCR complex. To test this hypothesis, we collected a set of resolved crystal 
structures publicly available in the Protein Data Bank (Berman et  al., 2000) describing peptides 
in complex with the presenting HLA molecule and a cognate TCR. For each of these TCR-pMHC 
complexes, we estimated the peptide positions in contact with the TCR and the HLA (Methods, 
Figure 2—source data 1). Figure 2B–C show the frequency of contacts at each peptide position 
with the HLA (B) and the TCR (C) in peptides presented by HLA-A*02:01 (the HLA allele to which 

https://doi.org/10.7554/eLife.85126
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the large majority of structures is available, 41 over 46 structures, see Materials and methods). These 
contact frequency distributions highlight that positions 2 and 9 (and 1 and 3 to a lower extent) are 
the anchor sites for the binding of the peptide to the HLA-I protein (Figure 2B), while central posi-
tions (4-8) tend to be in contact to the TCR (Figure 2C), consistently with the analyses of structures 
reported in Rudolph et al., 2006; Calis et al., 2012; Schmidt et al., 2021; Milighetti et al., 2021. 
Previous measures of TCR functional avidity with mutant peptides indicate that amino acid changes 
at the peptide central positions impact the most T-cell activation (Hoof et al., 2010; Schmidt et al., 
2021; Łuksza et al., 2022), suggesting that these positions are important for TCR response. Anchor 
sites of peptide-HLA binding can be inferred from the background RBM parameters. We first focus 
on HLA-peptide binding. Anchor sites for the bond with the HLA constrain the amino acid usage at 
those positions across peptides presented by that same HLA, increasing the frequency of the amino 
acids required for binding (e.g. I, L, V at positions 2 and 9 of HLA-A*02:01 ligands). As a result, 

Figure 2. DiffRBM model of immunogenicity and structural interpretation of its parameters. (A) DiffRBM units are learnt from HLA-specific peptides 
annotated as immunogenic. (B) HLA contact frequency for each peptide position across 41 structures (bars, left-axis). On the right-axis, log-frequency of 
amino-acids in the background dataset of HLA-A*02:01-presented antigens (black line), and single-site factor magnitude predicted by the background 
RBM (HLA-A*02:01-specific presentation model, gray line), both averaged over the 41 structures. Right inset: Average Positive Predictive Value (PPV) 
for the prediction of peptide positions in contact with the HLA as a function of the number of ranked positions, averaged over the 41 structures. The 
average PPV over a uniformly random prediction is shown in blue (dotted line, see Materials and methods). (C) Same as B, but for peptide-TCR contacts. 
Single-site factors as calculated from the diffRBM units of the immunogenicity model. Immunogenic to either non-immunogenic or all presented 
peptides’ amino acid frequency ratios are also shown (legend in D). ‍ρ‍ denotes the correlation coefficient between the contact frequency distribution 
and single-site factor magnitudes. Peptide contact positions are those within 3.5 Å (4 Å) to the HLA (TCR) in the crystal structure. (D) Peptide-TCR 
contact prediction PPV for each peptide position, sorted by single-site factor magnitude, and averaged over 46 structures (4 for HLA-B*35:01, 41 for 
HLA-A*02:01, 1 for HLA-B*07:02). Predictions are made using the HLA-specific immunogenicity model for each peptide. Average PPVs are reweighed by 
a sequence similarity between peptide entries, see Materials and methods (Figure 2—figure supplement 3A–B, Figure 2—figure supplement 4A–B).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. List of TCR-pMHC structures from PDB and estimated contact positions at 4Å.

Figure supplement 1. Schematic summary of the construction of a diffRBM model of immunogenicity.

Figure supplement 2. Hyperparametric search for the diffRBM model of immunogenicity.

Figure supplement 3. Prediction of peptide contact positions with the TCR.

Figure supplement 4. Prediction of peptide contact positions with the HLA.

https://doi.org/10.7554/eLife.85126
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Figure 3. DiffRBM units encode molecular features of immunogenicity. (A) Amino-acid usage log-enrichment of immunogenic to non-immunogenic 
peptides, across central positions (4-8) for each HLA type. The color code indicates amino acid properties: negatively charged (red), positively charged 
(blue), polar (purple), aromatic (yellow), aliphatic hydrophobic (black), cysteine (green), tiny (grey). (B) DiffRBM predicts a positive contribution to 
immunogenicity of key residues, in agreement with observations. (Top) DiffRBM single-site factors distribution evaluated across HLA-A*02:01-specific 
immunogenic sequences with W at position 5. (Bottom) The single-site factors given by the immunogenic vs non-immunogenic amino acid frequency 
ratio, which do not include the sequence context (Materials and methods), predict a much lower contribution to immunogenicity, as indicated by the 
p-values of their difference with respect to the average of the diffRBM single-site factors distribution. (C) Illustration of TCR activation curves from 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.85126
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the sites occupied by the high-frequency amino acids at those positions are typically anchor sites 
(Figure 2B). To check whether the background RBM captures this statistical information, we took 
the parameters learnt to reproduce the amino-acid statistics in HLA-A*02:01-presented peptides 
and we used them to define peptide site-specific quantities that we call ‘single-site factors’. These 
correspond essentially to the background RBM log probabilities of a given residue (Materials and 
methods). For each peptide found in the TCR-pMHC-A*02:01 structures, we ranked sequence posi-
tions by single-site factors and we verified this prediction against the true contacts by calculating 
an average Positive Predictive Value (PPV), see the inset of Figure 2B and Materials and methods. 
Large single-site factors (dashed-dotted black line), similarly to the amino acid frequency, detect the 
peptide-HLA binding anchor sites, both when the rest of the sequence is accounted for and when it 
is not (the average PPV of both these predictions is comparable to the amino acid frequency-based 
prediction, see Figure 2B and Figure 2—figure supplement 4A). DiffRBM single-site factors flag up 
peptide positions important for immunogenicity. Also in sets of immunogenic peptides we expect 
the statistics at the contact positions with the TCR to reflect the constraint of being in contact, when 
compared to the statistics of all presented peptides. These constraints are captured by the parame-
ters linked to the diffRBM units. In analogy to the prediction of HLA-peptide binding via background 
RBM, we introduce ‘diffRBM single-site factors’ to predict the single residue potential to establish a 
contact with the TCR. The diffRBM single-site factors give approximately log odds-ratios between 
the full RBM and the background RBM probabilities of a certain residue conditional on the rest of 
the sequence (Equation 11 in Materials and methods). Once evaluated on an amino acid in a given 
peptide position, these model-dependent terms provide a measure of the predicted contribution 
to immunogenicity of the amino acid, while accounting for the sequence context given by all other 
sites. Figure 2C shows the average magnitude of the diffRBM single-site factors evaluated on the 
41 peptides binding to HLA-A*02:01, which identifies positions 4–8 as the most relevant for immu-
nogenicity. The pattern of positional contact frequency with the TCR in the same figure supports 
the structural interpretation of the model’s prediction in terms of binding between peptide and 
TCR. The diffRBM units’ prediction recovers the pattern of positions important for immunogenicity 
without restricting a priori the input sequences to a subset of peptide positions already known or 
assumed to be involved in TCR binding, in contrast with existing approaches (Calis et al., 2013; 
Schmidt et al., 2021) that choose a priori what positions to retain in the formulation of the immu-
nogenicity model. DiffRBM single-site factors predict peptide contact positions with the TCR. We 
ranked sequence positions by the diffRBM single-site factors’ magnitude for each peptide in the 
TCR-pMHC complexes, and we took the highest ranking positions as predicted contact points. The 
peptide-averaged PPV for this prediction as a function of the ranked positions (Figure 2D) indicates 
a model’s predictive power substantially higher than the random expectation (the p-value of this 
difference at the first ranked position is ‍7.7 × 10−5‍, see Materials and methods). We compared the 
prediction by the diffRBM units to predictions based on the enrichment in amino acid usage in immu-
nogenic peptides (Figure 2C–D). In this case, we ranked positions based on the log ratio between 
the position-specific amino acid frequency in immunogenic peptides of a given HLA type and the 
one in the set of either all presented peptides or the non-immunogenic peptides with the same HLA 
type (Materials and methods). The diffRBM units outperform these predictions based on amino acid 
frequency ratios, as quantified by the average PPV (Figure 2D, Figure 2—figure supplement 3). 
For the HLA-A*02:01 peptides, we also found that the magnitude of the diffRBM single-site factors 
across positions correlates with the pattern of contact frequency better than predictions based on 
amino acid frequency ratios (Figure 2C).

Łuksza et al., 2022 for wild-type (‍WT ‍) peptide NLVPMVATV and its point-mutants (‍MT ‍). (D) Total count of lethal mutation costs (214 of 513 TCR-
mutant combinations), plotted per mutated peptide position. (E) DiffRBM units predicted costs of lethal mutations are mostly positive (Materials and 
methods). (F) Non-lethal mutation costs sum (299 of 514 TCR-mutant combinations) per mutated peptide position. (G) Experimental vs background RBM 
predicted costs for non-lethal mutations, for one TCR (TCR1). Spearmann correlation coefficients ‍r ‍ are comparable across all 3 TCRs, with p-values ≤10-6 
(Figure 3—figure supplement 1B).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Prediction of immunogenicity-related residues and mutation costs.

Figure 3 continued

https://doi.org/10.7554/eLife.85126
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DiffRBM encodes molecular features of immunogenicity
Next, we assessed whether our model predictions of the residues’ contribution to immunogenicity, 
based on single-site factors, are consistent with previous findings (Piepenbrink et al., 2013; Chowell 
et al., 2015; Riley et al., 2019; Schmidt et al., 2021; Łuksza et al., 2022). We inspected the amino 
acid enrichment with respect to non-immunogenic antigens at the common peptide-TCR contact 
points (positions 4–8) in Figure 3A. Some of the observed trends resemble the ones found in previous 
studies, for instance: the bias, in immunogenic sequences, towards hydrophobic amino acids (Chowell 
et al., 2015; Riley et al., 2019; Łuksza et al., 2022; Buckley et al., 2022) (especially valine, V); the 
abundance of glutamic acid (E) (Calis et al., 2013) and, to a more moderate extent, of tryptophan (W) 
Schmidt et al., 2021; Łuksza et al., 2022; the depletion of the small polar amino acid serine (S) and 
the positively charged amino acid lysine (K), consistently with the observations respectively in Chowell 
et al., 2015 and Schmidt et al., 2021. We noted also a number of discrepancies, presumably due 
to the use of updated datasets of immunogenic and non-immunogenic peptides and the restriction 
to sequences of only three selected HLA types. The most striking is the under-representation of the 
aromatic amino acids phenylalanine (F) and tyrosine (Y), particularly severe in HLA-A*02:01, in contrast 
with the experiment-based observations in Schmidt et al., 2021; Piepenbrink et al., 2013. Note 
however that also other analyses performed on IEDB data, like Calis et al., 2013; Chowell et al., 
2015, did not flag up a significant enrichment in Y. DiffRBM single-site factors recover the positive 
contribution to immunogenicity of key residues. We considered a few combinations of amino acids and 
positions along the peptide that were suggested to play a crucial role in T-cell reactivity and binding 
(in the context of HLA-A*02:01 epitopes) based on structural or functional analyses. For instance, W 
at position 6 and F at position 7 (Schmidt et al., 2021), as well as Y at position 8 (Piepenbrink et al., 
2013), were observed to form a variety of stabilizing interactions with the TCR. Testing functional 
avidity of TCRs against peptides harbouring single-point mutations, (Schmidt et al., 2021) detected 
that F and W at position 5 triggered the strongest activation signal, while Łuksza et al., 2022 found 
that the substitution of methionine (M) at position 5 systematically abrogated TCR response.

For each of these combinations, we identified the sequences possessing the particular amino acid 
at the combined position and calculated the diffRBM single-site factors for that position (Figure 3B). 
For all amino acid/position pairs, the distribution of these single-site factors is skewed toward positive 
values (Figure 3B, Figure 3—figure supplement 1A), meaning that the diffRBM units predict a posi-
tive contribution to immunogenicity. In contrast, measuring purely the amino acid frequency ratio at 
that position under the independent-site assumption predicts a contribution to immunogenicity that is 
significantly smaller (Figure 3B). In other words, the diffRBM’s ability to capture the sequence context 
reconciles its predictions with previous findings on residues that are key to immunogenicity.

Model predictions are in agreement with data on TCR reactivity to mutant peptides. To further 
corroborate the connection between the model’s predictions and T-cell reactivity assays, we consid-
ered the data from Łuksza et  al., 2022 on the TCR response to one of the highly immunogenic 
peptides to which our HLA-A*02:01-specific diffRBM model of immunogenicity can be applied (NLVP-
MVATV from the human cytomegalovirus). These data measure TCR reactivity to all possible single-
site mutants of NLVPMVATV for 3 TCRs specific to it (Materials and methods, Figure 3C). Some of 
these single-site mutations do not cause a complete loss of TCR response (‘non-lethal’ mutations), 
meaning that TCR reactivity can be recovered by increasing the peptide concentration (Figure 3C). 
We can estimate a ‘cost’ for such mutations in terms of the TCR cross-reactivity between NLVPMVATV 
and its mutants, measured in Łuksza et al., 2022 as the log ratio between the half maximal effective 
concentration for TCR activation after the peptide has been mutated (‍ECMT

50 ‍) and the one before the 
mutation (‍ECWT

50 ‍), see Figure 3C. Other mutations completely destroy peptide-TCR binding, and TCR 
reactivity cannot be restored even at highest peptide concentrations considered (‘lethal’ mutations, 
see Figure 3C).

Lethal mutations tend to occur at the typical TCR-contact positions along the peptide (Figure 3D), 
and we confirmed that the diffRBM single-site factors predict mainly positive costs for these muta-
tions (see Materials and methods), which matches qualitatively the observed loss of immunogenicity 
(Figure 3E).

We observed that the magnitude of non-lethal mutations across all TCR-mutant pairs is concen-
trated at the peptide positions 2 and 9, which are the anchor sites for binding the HLA in HLA-
A*02:01-specific peptides (Figure 3F). We therefore hypothesized that these mutation costs, despite 

https://doi.org/10.7554/eLife.85126
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being measured in terms of loss of TCR reactivity, could reflect a disruption of the peptide presen-
tation on the HLA. We found that the model prediction for HLA-A*02:01 presentation (background 
RBM) correlates in a statistically significant way to the experimental mutation costs, and the degree 
of correlation is consistent across all three TCRs (Figure 3G, Figure 3—figure supplement 1B). In 
contrast, the diffRBM single-site factors cannot predict these mutational effects concentrated at the 
anchor sites for presentation (Figure 3—figure supplement 1B), since its parameters capture the 
distinctive molecular composition of immunogenic peptides at the central positions (Figure 2C).

DiffRBM discriminates immunogenic vs non-immunogenic peptides
The diffRBM units learn distinctive sequence patterns of immunogenicity, having the background RBM 
captured the sequence constraints associated to presentability. Such patterns should contribute to 

Figure 4. Immunogenic vs non-immunogenic peptide discrimination performance. (A) The Area Under the Curve (AUC, see Materials and methods) is 
computed for HLA-specific diffRBM units’ scores of immunogenic and non-immunogenic held-out peptides. (B) Performance of diffRBM units, full RBM, 
background RBM, and other methods, for the HLA-A*02:01 dataset. Semi-supervised methods (red) are trained only on immunogenic (or presented) 
peptides. Supervised methods (green) are trained with immunogenic and non-immunogenic peptides. ‘DiffRBM units (difference)’ is intermediate, 
exploiting the annotation of peptides as immunogenic and non-immunogenic a-posteriori (but it is not trained for the discrimination task). (C–D) Same 
as B, for HLA-B*07:02 (C) and HLA-B*35:01 (D). All AUC values are the averaged over 50 train/test set partitions, and error bars give the corresponding 
standard deviation (Materials and methods).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of performance of differential models of immunogenicity.

Figure supplement 2. Score comparison between immunogenic peptides and peptides from the human proteome.

Figure supplement 3. Leave-one-organism-out cross-validation for HLA-A*02:01-specific model (Materials and methods).

Figure supplement 4. Further comparison of diffRBM and RBM scores.

Figure supplement 5. Hyperparametric search for the classifier of immunogenicity.

Figure supplement 6. Performance of differential models of immunogenicity with sample reweighting.

https://doi.org/10.7554/eLife.85126
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distinguish immunogenic from non-immunogenic peptides. We therefore assigned scores of immuno-
genicity based on the diffRBM units to held-out test sets of peptides (Figure 4A) and we measured 
the score’s ability to discriminate HLA-specific immunogenic peptides from non-immunogenic ones 
sharing the same HLA specificity in terms of the area under the receiver operating characteristic curve 
(AUC), see inset of Figure 4A and Materials and methods.

In Figure  4B, we compare the diffRBM units’ AUC for the HLA-A*02:01-specific model to the 
AUC of the full RBM, that includes the background model in its predictions and hence yields a joint 
representation of the enriched patterns and of the background constraints. The AUC of discrimina-
tion progressively decreases, as expected, from the model part that disentangles enriched patterns 
from the background constraints (diffRBM units), to the full RBM capturing both, to the model fit 
to the background constraints only (background RBM). (In fact, there is no reason why background 
RBM should predict anything at all unless presentability and immunogenicity are correlated). This 
trend indicates that learning the background constraints that are shared by immunogenic and non-
immunogenic peptides along with the sequence pattern enrichment distinctive of immunogenicity 
can act as a confounding factor when we look for the features that characterize and distinguish immu-
nogenic peptides. Also simpler differential models relying on the independent-site assumption, while 
returning lower AUCs than RBM-based models, exhibit a decrease in AUC between the differential part 
and the full model (Figure 4—figure supplement 1). The AUC values and trend remain stable when 
we compare scores assigned to immunogenic peptides and to peptides from the human proteome 
(Figure 4—figure supplement 2A) and when we score immunogenic and non-immunogenic peptides 
from the same organism having trained the models on the immunogenic peptides from all the other 
organisms (Figure 4—figure supplement 3).

Conversely, the diffRBM units are not designed to capture the background constraints (here asso-
ciated to presentability). As a result, they cannot successfully discriminate presentable antigens from 
generic peptides that are predominantly non-presentable (like peptides randomly drawn from the 
human proteome), in contrast to background RBM and the full RBM (Figure 4—figure supplement 
2B). The same trends of discrimination performance are consistently found across the 3 HLA alleles 
considered (Figure 4C–D, Figure 4—figure supplement 1, Figure 4—figure supplement 2).

The prediction by the background model (trained on peptides probed for their binding to a 
given HLA-I) provides no clear signal that already the binding affinity to the HLA can discriminate 
immunogenic peptides (average AUC = 0.55 for HLA-A*02:01, 0.50 for HLA-B*07:02, 0.53 for HLA-
B*35:01, see Figure 4). To further check this prediction, we scored HLA-A*02:01 peptides by their 
binding affinity to the HLA through NetMHCpan4.1 (Reynisson et al., 2020) and found a compa-
rable difference in score distributions between immunogenic and non-immunogenic peptides 
(AUC = 0.54 for HLA-A*02:01, 0.48 for HLA-B*07:02, 0.53 for HLA-B*35:01). Our observation is 
in line with a recent large-scale mapping of killer T-cell recognition of candidate neopeptides 
at high HLA affinity (Kristensen et  al., 2022), which did not find a significantly different distri-
bution of HLA-binding NetMHCpan scores between immunogenic vs non-immunogenic neopep-
tides. Other studies, however, have suggested that immunogenic peptides bind more strongly 
to the HLA compared to non-immunogenic ones, both in the case of viral epitopes (Croft et al., 
2019; Buckley et al., 2022) and neo-epitopes (Bjerregaard et al., 2017; Buckley et al., 2022). 
More work is needed in the future to clarify the link between binding affinity to the HLA and 
immunogenicity.

A deeper classifier reaches optimal performance, but diffRBM stays 
comparable
To perform a task of classification of immunogenic vs non-immunogenic peptides, it is more effective 
to leverage the information in both sets of immunogenic and non-immunogenic peptides. In our 
framework of differential learning, this can be done by training a second set of differential units on the 
non-immunogenic peptides, which learns differences in their amino acid statistics with respect to the 
background. The difference of the scores of the diffRBM units trained on immunogenic peptides and 
the ones trained on non-immunogenic peptides plays as well the role of a score of immunogenicity, 
expected to be positive when evaluated on immunogenic peptides and negative on non-immunogenic 
peptides (Materials and methods). We use it to classify immunogenic vs non-immunogenic peptides, 
resorting to the AUC to measure its classification performance (Figure 4B–D).

https://doi.org/10.7554/eLife.85126
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Exploiting the availability of both immunogenic and non-immunogenic peptides, we also trained 
a deep neural-network-based classifier. The classifier architecture was optimized among several 
ones of different depth and width (Materials and methods, Figure  4—figure supplement 5) and 
reaches a performance quantified by a cross-HLA average AUC = ‍0.71 ± 0.02‍ (see ‘optimal classi-
fier’ in Figure 4B–D; here and in the following uncertainties are estimated over several training-test 
partitions, see Materials and methods), higher than the best linear classifier (AUC = ‍0.66 ± 0.02‍). The 
AUC of the optimal classifier sets the maximal predictive performance that can be achieved, with 
the datasets under consideration, by a supervised method that is trained to discriminate immuno-
genic and non-immunogenic antigens. Its value (AUC = ‍0.71 ± 0.02‍) indicates that the predictability 
of immunogenicity from peptide sequences is limited, both by data availability and by the fact that 
sequence patterns along the peptide are not the only determinant of a positive T-cell response. In 
the future, more exhaustive assessments of peptide immunogenicity should account for the compo-
sition of cognate TCRs, peptide expression levels as well as the regulatory dynamics underlying T-cell 
response in physiological conditions. The performance of the diffRBM units’ scores (AUC = ‍0.69 ± 0.02‍) 
is slightly lower than the one of the optimal classifier but higher than the one of the linear classifier 
(Figure 4B–D). We emphasize that the deep classifier is trained in a supervised way (i.e. using infor-
mation on the two ‘labels’, immunogenic and non-immunogenic) while our RBM-based approach in 
Figure 4 is ‘semi-supervised’ because its training requires knowledge of a portion of the ‘labels’ (the 
antigens labelled as ‘immunogenic’) only.

Finally, we checked that the performance of diffRBM compares favorably to established sequence-
based methods for immunogenicity prediction (Calis et al., 2013; Schmidt et al., 2021; Riley et al., 
2019), for more details see Supporting Information - Appendix 1 - Comparison of performance with 
existing tools.

DiffRBM model for T-cell-specific binding
To train diffRBM models of epitope specificity, we first collected from the VDJdb database (Shugay 
et al., 2018; Bagaev et al., 2020) datasets of TCRs specific to 4 epitopes (Materials and methods): 
the M158 peptide from the influenza virus (with sequence GILGFVFTL), the pp65495 from the human 
cytomegalovirus (CMV, with sequence NLVPMVATV), the BMLF1280 peptide from the Epstein-Barr virus 
(EBV, with sequence GLCTLVAML), the peptide from the Spike protein S269 from Sars-Cov-2 (with 
sequence YLQPRTFLL). We limited the search to sequences of the ‍β‍ chain of the TCR (TCRβ), where 
the sites of binding to the antigen are concentrated in a region called complementarity determining 
region 3 (CDR3β).

The background dataset, in this case, is meant as a typical bulk TCRβ repertoire in normal condi-
tions (Figure 5—figure supplement 1). In particular we take, to train background RBM, the repertoire 
of a hypothetical universal donor that was constructed by Isacchini et al., 2021 from the TCRβ reper-
toires of the large scale study Emerson et al., 2017 (Materials and methods). The sequence features 
captured by background RBM concern germline-encoded amino acid usage related to stability and 
binding constraints (as is the case for the two conserved residues cysteine and phenylalanine delim-
iting the CDR3β region), as well as additional biases in amino acid usage stemming from VDJ recom-
bination and thymic selection.

After having trained the background RBM, we train a set of diffRBM units on each set of epitope-
specific CDR3β (Figure 5A, Figure 5—figure supplement 1). By design, these diffRBM units capture 
antigen-driven convergent sequence features that have been documented in connection to epitope 
specificity (Dash et al., 2017; Glanville et al., 2017; Meysman et al., 2019; Pogorelyy and Shugay, 
2019b; Thakkar and Bailey-Kellogg, 2019; Mayer-Blackwell et al., 2021; Valkiers et al., 2021). 
As such, similarly to the model of antigen immunogenicity, the diffRBM units can predict contact 
sites along the CDR3β (Figure 1E) and classify specific receptor against generic, predominantly non-
specific ones (Figure 1F).

DiffRBM predicts CDR3-β contact positions with the peptide
It has been discussed that convergent features in receptors responding to same antigens have struc-
tural interpretation in terms of interactions across the peptide-TCR interface (Dash et al., 2017; Glan-
ville et  al., 2017) and that the TCR contact regions are dominated by CDR3β residues (Glanville 
et al., 2017; Ostmeyer et al., 2019; Milighetti et al., 2021; see also Figure 1E). Starting from the 

https://doi.org/10.7554/eLife.85126
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available TCR-pMHC structures already analyzed, we looked at the peptide-TCR contacts lying in the 
CDR3β region of the TCR, focusing on the structures involving the four epitopes under consideration 
(12 structures in total, see Materials and methods). Figure 5B shows the distribution of contacts along 
the CDR3β positions, which consists, as already observed in Glanville et al., 2017; Ostmeyer et al., 
2019; Milighetti et al., 2021, of stretches of 3–5 contiguous amino acids in the central part of the 
CDR3 (6–8 positions from the left and right anchor).

We estimated the diffRBM single-site factors for the CDR3β sequences from the available struc-
tures. Their average value across CDR3β sequences concentrates on the CDR3β central positions and 
well correlates with the contact frequency distribution (Figure 5B). We next ranked the positions by 
the single-site factor magnitude and we took top ranking positions as positions of predicted contact. 
Figure 5C shows the PPV averaged over the 12 available structures (Materials and methods). Similarly 
to the predictions for peptides (Figure 2D), the predictive power of the diffRBM units is superior to 
the position-specific amino acid frequency ratio between the antigen-specific and the bulk-repertoire 
set of receptors, and is substantially higher than the random expectation (the p-value of this differ-
ence at the first ranked position is 1.6 × 10-5, see Materials and methods). The PPV trend stays robust 
varying the distance cutoff from 4 up to 5 Å (the value chosen to determine peptide-TCR contacts in 
other work Calis et al., 2012; Glanville et al., 2017; Ostmeyer et al., 2019; Milighetti et al., 2021), 
see Figure 5—figure supplement 3D.

Figure 5. DiffRBM model of TCR epitope specificity and structural interpretation. (A) DiffRBM units are learnt from CDR3β sequences of antigen-
specific TCRs. (B) Contact frequency distribution (bars) with peptide at each CDR3β position, across 12 structures (2 for YLQPRTFLL, 3 for NLVPMVATV, 
1 for GLCTLVAML, 6 for GILGFVFTL). CDR3β positions are given as distances to either the left or right anchor sites. Contacts are sites with distance 
≤4 Å between CDR3β and peptide. Magnitude of single-site factors based on the diffRBM units or the amino acid frequency ratio (of peptide-specific 
sequences relative to bulk-repertoire sequences) averaged over the 12 CDR3β are shown as lines. (C) PPV of CDR3β-peptide contact positions, 
averaged over the 12 structures, using single-site factors from the peptide-specific models (diffRBM or amino-acid frequency ratios). PPVs are reweighed 
by CDR3β sequence similarity (Materials and methods, Figure 5—figure supplement 3A–B).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Schematic summary of the construction of a diffRBM model of TCR epitope-specificity.

Figure supplement 2. Hyperparametric search for the diffRBM model of TCR specificity.

Figure supplement 3. Prediction of CDR3β contact positions with the peptide.

https://doi.org/10.7554/eLife.85126
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DiffRBM discriminates specific receptors
We tested the power to discriminate receptors specific to the 4 epitopes under consideration (GILG-
FVFTL, NLVPMVATV, GLCTLVAML, YLQPRTFLL) from generic sequences drawn from a bulk reper-
toire (background dataset). These can be seen as a proxy for non-specific receptors, since the large 
majority of them is not expected to respond to a specific epitope. We measured the performance 
at discriminating specific from generic receptors by the AUC (Figure 6A) and the results for the 4 
epitope-specific models are reported in Figure 6B–E, Figure 6—figure supplement 1. We observed 
the same trend described for the models of immunogenicity, whereby the AUC of discrimination for 
the diffRBM units is consistently higher than the one for the full RBM. Also in this context, singling 
out the sequence features associated to epitope specificity, as the differential units do, enhances the 
model’s predictive performance compared to the full RBM, where the information on those features 
is added to the background constraints. Any discrimination power is lost when using the background 
RBM, as it should, since it has no information on epitope specificity.

DiffRBM reaches state-of-the-art performance
For the sake of comparison of diffRBM to other tools, we considered another generative model 
of antigen-specific repertoires, SONIA (Elhanati et al., 2014; Sethna et al., 2020), and a series of 
methods trained to discriminate target-specific from unspecific receptors (labeled as ‘supervised’ in 
Figure 6B–E), which include: a baseline method to determine the predictive power achievable from 
TCR sequence similarity alone (a ‍k‍-Nearest Neighbours classifier, ‍k‍-NN, see Supporting Information 

Figure 6. Performance at discriminating antigen-specific from generic T-cell receptors. (A) For a given epitope model (e.g. the Influenza epitope 
GILGFVFTL), we assign diffRBM units’ scores to held-out sets of antigen-specific CDR3β and generic CDR3β from the bulk repertoire, and we measure 
the discrimination performance via the Area Under the Curve (AUC), see Materials and methods. (B) AUC of the diffRBM units, full RBM, background 
RBM and other methods trained and tested on CDR3β sequences specific to the Influenza epitope GILGFVFTL. (C–E) The performance assessment 
illustrated in A–B is repeated for the models of specific response to the CMV epitope NLVPMVATV (C) EBV epitope GLCTLVAML (D), and the Sars-Cov-2 
epitope YLQPRTFLL (E). AUC values shown are the average over 50 partitions into training and test sets and error bars give the corresponding standard 
deviation (Materials and methods).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Comparison of performance of differential models of TCR specificity.

Figure supplement 2. Comparison of performance of differential models of TCR specificity with different background datasets.

Figure supplement 3. Hyperparametric search of the optimal ‍k‍ for the ‍k‍-NN algorithm.

Figure supplement 4. Comparison of performance of models of TCR specificity without V and J type.

https://doi.org/10.7554/eLife.85126
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- Appendix 3 - Alternative approaches tested and Figure 6—figure supplement 3); the state-of-the-art 
supervised predictors of TCR specificity TCRex (Gielis et al., 2019) and NetTCR-2.0 (Montemurro 
et al., 2021). As shown in Figure 6B–E, the performance of the diffRBM units is fully comparable to 
the most performant among the state-of-the-art supervised methods, TCRex (both with an average 
AUC across peptides of ‍0.83 ± 0.01‍), and higher than SONIA, ‍k‍-NN (AUC = ‍0.80 ± 0.01‍ for both), and 
NetTCR-2.0 (AUC = ‍0.73 ± 0.01‍). Similarly, when computing the average precision (AP), diffRBM (with 
AP averaged over the 4 peptides of ‍0.87 ± 0.01‍) works as well or slightly better than TCRex (AP = 
‍0.86 ± 0.01‍) and better than NetTCR2.0 (AP = ‍0.76 ± 0.01‍), see Supporting Information - Appendix 1 - 
Comparison of performance with existing tools.

Discussion
We have introduced a machine-learning framework, diffRBM, based on the probabilistic graphical 
model of Restricted Boltzmann Machines to address two important and complementary issues in 
the context of the immune response, namely the modeling of antigen immunogenicity and epitope-
specific TCRs. Our approach relies on a ‘background’ dataset of large size, on which a background 
RBM model is trained, and a small subset of selected data on which some additional hidden units of 
the RBM, the diffRBM units, are learnt (Figure 1, Figure 1—figure supplement 1).

First, we applied diffRBM to model the ability of an antigen to trigger a positive T-cell response. 
We showed that diffRBM units encode several features relevant to antigen immunogenicity, leading 
to biologically interpretable predictions. For instance, diffRBM allows us to estimate which peptide 
positions are likely to be in contact with the TCR (Figure 2), outperforming immunogenicity predictors 
tools that treat peptide sites as independent of each other (Calis et al., 2013). Our model construction 
does not require an ad hoc selection of residue positions (like in Schmidt et al., 2021) or properties 
(like in Chowell et al., 2015) that are assumed to be predictive of immunogenicity. Rather, the diffRBM 
units directly learn patterns of enrichment in certain biophysical properties, such as aromaticity, across 
peptide positions. As such, diffRBM probabilistic scores can be used to predict mutational costs in 
terms of TCR reactivity (Figure 3) and to distinguish immunogenic from non-immunogenic peptides, 
with performances comparable to supervised classifiers (Figure 4).

Second, we have trained differential models from datasets of epitope-specific T-cell receptors, 
and have successfully tested the models’ power to identify the CDR3β residues that bind to the 
antigen (Figure  5). DiffRBM provides insight into the structural basis of this process, and helps 
discriminate epitope-specific from generic receptors (Figure 6). Our model performs as well as the 
state-of-the-art methods for distinguishing few antigen-specific receptors out of the bulk reper-
toire, both in terms of AUC and of average precision (Figure 6, Section Appendix 1 - ‘Comparison 
of performance with existing tools’). Performing well on this task is important as the fraction of 
the TCR repertoire reactive to a given epitope is expected to range between 10−6 and 10−4 (Yates, 
2014).

Main differences of diffRBM with existing methods
In the following we discuss the main differences of diffRBM with state-of-the-art predictors for peptide 
immunogenicity and the ability of a TCR to bind to a given antigen. Most methods for TCR specificity 
prediction (Gielis et al., 2019; Montemurro et al., 2021; Weber et al., 2021) are classifiers built from 
two sets of labeled data: the positive samples containing the receptors with the given specificity and 
the negative ones containing receptors specific to other antigens. The diffRBM framework is semi-
supervised, as negative samples, whose construction is somewhat arbitrary, are not needed.

In the context of antigen immunogenicity modeling, the diffRBM approach is specific to an HLA 
type, contrary to existing pan-HLA predictors (Schmidt et al., 2021). This choice has the advantage of 
better capturing the HLA-specific amino-acid usage associated with presentation in the background 
model, and of being robust against cross-HLA imbalances in the available data (HLA-A*02:01 is much 
better represented than other alleles). Similarly, our diffRBM models predict TCRs binding to a given 
peptide, while other methods (Springer et al., 2020; Weber et al., 2021; Milighetti et al., 2021) are 
predictive across potentially any peptide.

https://doi.org/10.7554/eLife.85126
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DiffRBM is parsimonious
Even for the HLA alleles and epitopes we considered, available datasets cover only a small fraction of 
HLA-specific peptides that have the potential to be immunogenic and TCR that can recognize given 
peptides, and pool together data obtained through a heterogeneous set of T-cell response assays, a 
source of additional noise in the data (Materials and methods). Such limitations pinpoint the need for 
approaches that are parsimonious in terms of training data. For instance, our search for an optimal 
neural network classifier of immunogenicity returned an architecture with a rather modest depth (only 
one hidden layer, Figure 4—figure supplement 5). DiffRBM is tailored for such data-limited situa-
tions, and, yet, is able to capture interactions between residues that cannot be modeled by simpler 
approaches (Figure 2, Figure 5, Figure 2—figure supplement 3, Figure 4—figure supplement 1, 
Figure 5—figure supplement 3, Figure 6—figure supplement 1).

DiffRBM is a generative model
It can be used to produce new, putative sequences of antigens or TCRs with desired properties, test-
able in experimental setups, with potential applications in vaccine design and TCR engineering for 
therapeutic purposes. The probabilistic distribution encoded by the model allows for estimating the 
diversity of the data space (through its entropy, Appendix 4), and the loss of diversity due to selec-
tion. In the case of epitope-specific repertoires (Appendix 4—figure 1), this reduction appears rather 
modest, consistently with previous analyses on epitope-specific CDR3β data (Sethna et al., 2020), 
with the exception of the YLQPRTFLL-specific repertoire.

DiffRBM is purely sequence-based
The fast growth of peptidomic and immune repertoire sequence data, many of them produced in 
clinical settings for personalized medicine purposes, calls for the development of sequence-based 
modeling approaches. These are computationally faster and more broadly applicable than structure-
informed methods. Structural features, such as the conformational arrangement of the peptide within 
the HLA binding groove and of TCR chains, have been shown to be important to predict a positive 
T-cell response, both at the level of peptide binding to the MHC (Riley et al., 2019) and TCR binding 
to the pMHC complex (Lin et al., 2021). However, these methods are often limited to TCR-peptide 
pairs of known crystal structures, narrowing down the scope of applications. To circumvent this limita-
tion, a peptide-threading procedure into pre-defined template structures was proposed (Riley et al., 
2019). This strategy is made possible by the homogeneity of the backbone conformation across 
nonamer peptides presented by the same HLA-I, but might become problematic with peptides of 
different lengths or for HLA types admitting different binding modes with the peptide (Gfeller et al., 
2018).

There are many transfer-learning approaches in machine learning aimed at obtaining domain-
invariant representations that enable portability across domains. From this point of view, several works 
have considered the RBM architecture, see for instance (Zhang, 2011; Wei and Pal, 2011). Our 
objective here is somewhat different: learning the statistical differences between background and 
selected data allows us not only to reach very good performance when data is scarce, but also to 
capture enriched molecular motifs in the selected data. The model parameters learnt in this way allow 
us to extract biologically interpretable predictions, such as contact sites and mutation costs in terms 
TCR reactivity.

Biomedical applicability of diffRBM
Our computational predictions of antigen immunogenicity can be used to propose candidate anti-
gens for experimental validation and vaccine design. Similarly, they can be used to identify potentially 
immunogenic neoantigens to target in immune-based cancer therapies, or to detect phenomena of 
immunoediting in cancer (Łuksza et al., 2022). To adapt diffRBM to neoantigen modeling, it may 
need to be re-trained on neoantigen-specific training sets (rather than on IEDB as done here), given 
the substantial variation in method performance and in the immunogenicity-related predicted features 
between pathogenic and cancer data (Buckley et al., 2022). As a preliminary assessment of diffRBM 
performance in a cancer setting, we assigned scores to the HLA-A*02:01-presented neoantigens from 
the TESLA dataset (Wells et al., 2020; 11 immunogenic and 227 non-immunogenic peptides). We 
obtained an AUC of immunogenic vs non-immunogenic discrimination, differing significantly from the 
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random expectation (0.6 for the diffRBM units’ scores and 0.69 for the difference of diffRBM units’ 
scores).

Future extensions of diffRBM
This diffRBM model of specific TCR response can be formulated in an equivalent way for the CDR3 
region on the other chain of TCRs (‍α‍ chain). In this case, one uses CDR3α sequences from healthy TCR 
repertoires and samples of antigen-specific CDR3α as respectively the background and the selected 
dataset. DiffRBM models for the ‍α‍ chain reach a discrimination performance comparable to the one 
for the ‍β‍ chain (Meysman et al., 2022). Similarly, with single-cell TCR sequencing data becoming 
increasingly available, our approach could also be extended to model pairs of TCR ‍α‍ and ‍β‍ chains, 
which have been suggested to play a synergistic role in determining antigen specificity (Carter et al., 
2019; Montemurro et  al., 2021; Milighetti et  al., 2021). An important direction for future work 
could be to improve the modeling strategy presented by leveraging structural information on the 
TCR-pMHC complex and its estimated binding energy along with sequences, as investigated by Riley 
et al., 2019; Lin et al., 2021; Milighetti et al., 2021; Karnaukhov et al., 2022, especially given the 
expected increase in the number of available crystallographic structures.

Last of all, diffRBM provides a potentially general and flexible approach, which can be used in 
analyzing directed evolution protocols (Jäckel et al., 2008; Packer and Liu, 2015; Arnold, 2018) and 
SELEX experiments (Ellington and Szostak, 1990; Tuerk and Gold, 1990; Sola et al., 2020), where 
each round performs a selection of a subset of molecules from the previous round (the ‘background’). 
These potential applications require novel efforts of data pre-processing and model training. For 
instance, the present setting, in which the two learning steps are done sequentially, needs to be modi-
fied when the baseline and the specific features are entangled.

Materials and methods
DiffRBM architecture
The core idea of what we refer to as a ‘differential’ probabilistic model is to learn a distribution for 
sequence data ‍σ‍ with the parametric form:

	﻿‍
P(σ) = 1

Z
e−H(σ) H(σ) = Hb(σ) + Hd(σ)

‍�
(1)

where ‍Z ‍ is simply a normalization factor, ‍Z =
∑

σ e−H(σ)
‍. ‍H

b‍ specifies the background distribution 

‍Pb‍, learnt from the background dataset ‍Db‍, through ‍Pb(σ) = 1/Zbe−Hb(σ)
‍, where ‍Z

b =
∑

σ e−Hb(σ)
‍. 

‍Hd‍ contains the parameters learnt on top of the background distribution from the selected data ‍Ds‍. 
Here, we assume that ‍Hb‍ and ‍Hd‍ are parametrized in terms of a Restricted Boltzmann Machine (RBM; 
Hinton, 2002; Hinton and Salakhutdinov, 2006). Hence ‍Pb(σ)‍ can be written as:

	﻿‍

Pb(σ) =
ˆ Mb∏

µ=1
dhb

µPb(σ, hb) Pb(σ, hb) ∼ exp


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


‍�
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that is, in an RBM, the probability of the data ‍Pb(σ)‍ is expressed as the marginal of a joint probability 
over the data ‍σ‍ (the ‘observed’ sequences of length ‍N ‍) and a set of ‍Mb‍ ‘hidden’ units ‍hb‍, playing the 
role of coordinates of low-dimensional representations of the data. Thus, for an RBM as background:

	﻿‍

Hb(σ) = −
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where we have set ‍I
b
µ(σ) =

∑
i wb

iµ(σi)‍ and ‍Γ
b
µ

(
Ib
µ(σ)

)
= log

´
dhb

µ e−Ub
µ(hb

µ)+hb
µIb

µ(σ)
‍. Equations 2 and 3 

contain the following parameters: a set of single-site fields ‍g
b
i (σi)‍, capturing the amino acid usage at 

each sequence position, a potential ‍U
b
µ‍ for each hidden unit ‍h

b
µ‍ and a set of parameters ‍w

b
iµ‍, called 

weights, connecting the sites of observed sequences to each hidden unit. Their values are learnt from 
the background dataset ‍Db‍ by maximizing the log-likelihood:
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	﻿‍
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⟩
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‍�
(4)

After the background distribution has been learnt, we learn the differential units of the diffRBM archi-
tecture, specified by the probability distribution:

	﻿‍

P(σ, hb, hd) ∼ exp
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see also Figure 1—figure supplement 1. Hence:
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‍. The parameters featuring 

in ‍Hd(σ)‍, defining the diffRBM units, are learnt from the dataset ‍Ds‍ by maximizing:

	﻿‍
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In summary, the diffRBM architecture is equivalent to an RBM with ‍Mb + Md‍ hidden units with 
overall observed fields ‍g

b
i + gd

i : gb
i ‍, the weights ‍w

b
iµ‍ and potentials ‍U

b
µ‍ for the first ‍Mb‍ units are learnt 

from the background data, then they are kept fixed, and ‍g
d
i ‍, the weights ‍w

d
iµ′‍ and potentials ‍U

d
µ′‍ for the 

additional ‍Md‍ units are learnt from the selected data (Figure 1—figure supplement 1, Appendix 2).
The predictions of peptide immunogenicity or epitope specificity rely on the assignment to 

sequences ‍σ‍ of scores. Using Equation 1, the score of the full RBM is given by the log-likelihood:

	﻿‍ L(σ) = log P(σ) = −Hb(σ) −Hd(σ) + constant‍� (8)

where the constant stands for a sequence-independent term coming from the partition function. Anal-
ogously, the background RBM score and the diffRBM units’ score are respectively:

	﻿‍ Lb(σ) = −Hb(σ) + constant‍� (9)

	﻿‍ Ld(σ) = −Hd(σ) + constant‍� (10)

Software-wise diffRBM is coded via additional functions to execute a differential learning on top 
of the RBM Python implementation from van der Plas et al., 2023 and is available at https://github.​
com/cossio/diffRBM (copy archived at Fernandez-de-Cossio-Diaz, 2023). The codes used for its 
application to modeling antigen immunogenicity and TCR specificity are downloadable from https://​
github.com/bravib/diffRBM_immunogenicity_TCRspecificity (copy archived at Bravi, 2023).

Data collection
Sequence datasets for the immunogenicity model
Differential models of immunogenicity were trained on sets of immunogenic peptides collected from 
the Immune Epitope Database (IEDB) (Vita et al., 2019), where the database entries were filtered 
through the following steps. Firstly, the curated set of HLA ligands tested in T cell assays was down-
loaded from IEDB (file ​tcell_​full_​v3.​csv from http://www.iedb.org/database_export_v3.php, accessed 
in December 2021). We selected from this file linear, human peptides with a given HLA restriction 
(e.g. HLA-A*02:01), limiting the search to peptides of length 8–11 amino acids like in Bravi et al., 
2021b and presented by HLA of class I (i.e. targeted epitopes of killer T cells). Following Calis et al., 
2013, we required the peptide (and not the full protein or the pathogen) to be the first immunogen 
(by setting the field Antigen Epitope Relation = ‘Epitope’) and we excluded T-cell response experi-
ments with a restimulation step (by discarding ‘Restimulation in vitro’ from the field In Vitro Process 
Type). Immunogenic peptides were finally identified as the peptides for which positive responses by 
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T cells were reported while negative ones were absent (field Qualitative Measure marked as ‘Posi-
tive’ or ‘Positive-High’ and never as ‘Negative’). Equivalently, non-immunogenic peptides were iden-
tified as the peptides for which negative responses by T cells were reported while positive ones were 
absent (field Qualitative Measure set to ‘Negative’ and never to ‘Positive’, ‘Positive-High’, ‘Positive-
Intermediate’ or ‘Positive-Low’). To avoid oversampling, we removed duplicate entries. To check 
whether we needed an additional redundancy filtering, similarly to Calis et al., 2013, we applied a 
reweighting scheme Morcos et al., 2011 that reweighs each sequence by the inverse of the number 
of other sequences that have more than 80% of similarity, and we found that the models’ performance 
(Figure 4—figure supplement 6) is largely unchanged compared to the one without reweighting 
(Figure 4), indicating that there is no substantial need for additional sampling bias mitigation strate-
gies. We choose only the HLA-I alleles for which the filtering steps just described allowed us to recover 
at least 200 immunogenic peptides and for which at least one TCR-pMHC structure was available in 
the Protein Data Bank (resulting in the choice of HLA-A*02:01, HLA-B*07:02 and HLA-B*35:01). The 
size of the final datasets of immunogenic peptides is: ‍|Ds| = 1682‍ for HLA-A*02:01, ‍|Ds| = 258‍ for HLA-
B*07:02, ‍|Ds| = 215‍ for HLA-B*35:01. Sets of non-immunogenic peptides consist of 2301 sequences 
(HLA-A*02:01), 807 (HLA-B*07:02), 166 (HLA-B*35:01).

To train the antigen presentation model (background model), we relied on the sets of 8–11 amino 
acid long peptides extracted from IEDB by the RBM-MHC algorithm as described in Bravi et al., 
2021b, choosing the option of peptides from HLA binding affinity assays rather than mass spectrom-
etry, to avoid biases in the amino acid statistics that might be due to this technique. The resulting 
training dataset sizes are ‍|Db| = 4265‍ for HLA-A*02:01, ‍|Db| = 1006‍ for HLA-B*07:02, ‍|Db| = 1211‍ for 
HLA-B*35:01. For consistency with the type of datasets used in RBM-MHC, scores of presentation 
from the algorithm NetMHCpan4.1 (Reynisson et al., 2020) are obtained with the option -BA (predic-
tions from the training on binding assay data).

Sequence datasets for the T-cell specificity model
Each differential model of specific T-cell binding to a given peptide was trained on TCRs experimen-
tally validated to be specific to the peptide collected from the VDJdb database (Shugay et al., 2018; 
Bagaev et al., 2020) (file ​vdjdb.​txt downloaded from https://vdjdb.cdr3.net in July 2021). We selected 
all the human TCRβ chains fully annotated with their V and J segment and labeled to be specific to 
the given peptide (for example, for the Influenza M158-specific model we set antigen.epitope = ‘GILG-
FVFTL’). We constructed the training sets from the CDR3β sequence and the V/J annotation of these 
entries, removing replicates. Their size is: ‍|Ds| = 3464‍ (for the Influenza M158 model), ‍|Ds| = 4548‍ (for 
the CMV pp65495 model), ‍|Ds| = 993‍ (for the EBV BMLF1280 model), and ‍|Ds| = 315‍ (for the Sars-Cov-2 
S269 model).

For the background model, we considered the dataset assembled by Isacchini et al., 2021 pooling 
together unique TCRβ clones from the 743 donors of the cohort in Emerson et al., 2017, with a 
total of ∼9 × 107 sequences. For training background RBM, we used a smaller, randomly subsam-
pled dataset of 106 sequences that could be more easily handled. We also considered the dataset 
collected by Britanova et al., 2016 to train a second, independent background model. This dataset 
contains about 3×107 CDR3β sequences. We excluded from this dataset any sequence associated to 
non-functional V or J genes, and randomly subsampled the resulting dataset to obtain 106 sequences 
for the training of the background RBM and 104 sequences to test it (with no identical sequences 
between training and test set).

Data pre-processing and formatting
RBM and PWM-based approaches require sequence inputs of fixed length, hence we performed an 
alignment. Background datasets are aligned to obtain same-length sequences, following the align-
ment procedures described in Bravi et al., 2021b for peptides and Bravi et al., 2021a for CDR3β 
amino acid sequences. The length of the alignment is set to 9 (9 being the typical length of HLA-I 
ligands) and to 20 in the case of CDR3β. These alignments serve as seeds to learn Hidden Markov 
Model profiles of length 9 and 20, in such a way that the selected datasets can be aligned against the 
profile built from the corresponding background dataset (see Bravi et al., 2021b for more details). In 
the models for TCR sequences, the input combines the aligned CDR3β amino acid sequence to the V 
segment type and the J segment type, all converted into numerical values varying within an interval 
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of appropriate length (length = 21 for the CDR3β positions, standing for the 20 amino acids + 1 gap; 
length = 48 for the V type, length = 13 for the J type).

Crystallographic structures from PDB
We downloaded, from the Protein Data Bank https://www.rcsb.org/ (Berman et  al., 2000) as of 
February 2022, the TCR-pMHC crystallographic structures with 9 amino acid-long peptides where the 
HLA complex is HLA-B*35:01, HLA-A*02:01, or HLA-B*07:02. We excluded the structures with modi-
fied/non-peptidic epitopes and with incomplete TCR chains. As a result, we obtained 5 structures for 
HLA-B*35:01, 56 for HLA-A*02:01, and 1 for HLA-B*07:02. Some of the 56 HLA-A*02:01 structures 
describe TCRs in contact with the peptides we considered for the differential models of specific TCR 
response (3 for the Sars-Cov-2 epitope YLQPRTFLL, 3 for the CMV epitope NLVPMVATV, 1 for the EBV 
epitope GLCTLVAML, and 8 for the Influenza epitope GILGFVFTL).

For each structure, we estimated the positions along the peptide in contact with the TCR, using 
a standard cutoff at 4 Å (Rossjohn et  al., 2015; Schmidt et  al., 2021; Lu et  al., 2021) between 
heavy atoms. The availability of structures is highly skewed toward the limited set of epitopes that 
have been the focus of several studies, hence our final list of peptides exhibits redundancy, with 
same or similar peptides in complex with different TCRs. If more than 1 structure contain the same 
peptide and have same contact positions, we retain only one of such structures (resulting in 4 struc-
tures for HLA-B*35:01, 41 for HLA-A*02:01, and 1 for HLA-B*07:02). If the same ligand is annotated 
with different contact positions, we keep these as different entries but we re-weight their contribu-
tion to the average PPV and the frequency of contact positions (section ‘Contact prediction’). We 
followed the same steps to estimate CDR3β contacts with the peptide and peptide contacts with the 
HLA complex and to filter out redundant entries, opting for a slightly more restrictive cutoff distance 
(3.5 Å) for peptide-HLA contacts. Since distance cutoffs can vary with the van der Waals’ radii for 
single atoms (Sheriff et al., 1987), we also monitored the robustness of our results to changes in the 
choice of the cutoff (Figure 2—figure supplement 3D, Figure 2—figure supplement 4D, Figure 5—
figure supplement 3D). The list of all structures and corresponding estimated contacts is provided in 
Figure 2—source data 1.

DiffRBM training and model selection
The first step of the diffRBM training consists of training the background model on the background 
dataset. For the model of immunogenicity, we trained allele-specific presentation models with an RBM 
architecture by running the RBM-MHC algorithm (Bravi et al., 2021b) on IEDB-derived peptide data 
(see section ‘Sequence datasets for the immunogenicity model’) with default parameters (10 hidden 
units, ‍λ

1
2 = 0.001‍). The RBM-MHC algorithm internally aligns peptide sequences of its training dataset 

to the reference length of 9 amino acids; we used the same alignment routine to align the immuno-
genic peptides against the seed given by the RBM-MHC training data. The second step is training the 
diffRBM units on the selected datasets ‍Ds‍ (see section ‘Sequence datasets for the immunogenicity 
model’). We divided these datasets into a training set with 80% of the data (used for training and for 
model selection) and a test set with the remaining 20% (used for model validation, see section ‘Clas-
sification performance’), repeating this split 50 times.

Having fixed the background model, we used the largest available dataset of immunogenic 
sequences (the one for HLA-A*02:01) to perform model selection by cross-validation, as follows. We 
further divided randomly each of the 50 training sets into a set actually used for training and a valida-
tion set (with respectively 80% and 20% of the training set). We used this training/validation partitions 
to select optimal hyperparameters for the differential part (the number of hidden units and regular-
ization penalty ‍λ

1
2‍), by training diffRBM models on the training set at varying hyperparameters and 

monitoring the average diffRBM units’ score (Equation 10) on the validation sets (Figure 2—figure 
supplement 2A–B). We also performed additional checks on the diffRBM units’ AUC of immunogenic 
vs non-immunogenic discrimination with different hyperparameters (Figure 2—figure supplement 
2C) and in a control case (Figure 2—figure supplement 2D).

For the model of T-cell specificity, the background is given by an RBM trained on a random subsa-
mple of 106 CDR3β sequences from Emerson et al., 2017 (section ‘Sequence datasets for the T-cell 
specificity model’), choosing the optimal RBM architecture (100 hidden units, ‍λ

1
2 = 0.001‍) by cross-

validation (Figure  5—figure supplement 2A–B). For cross-validation, we used as validation set 
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another subsample of about 105 CDR3β sequences from Emerson et al., 2017, chosen so that no 
overlap with the training set is present. The grid search for optimal hyperparameters for the differ-
ential part was carried out at fixed background model, using the largest dataset of peptide-specific 
receptors (NLVPMVATV) and partitioning it 50 times at random into training and validation sets (with 
respectively 80% and 20% of the data, Figure 5—figure supplement 2C–E).

Classification performance
Having found the optimal diffRBM architecture (section ‘DiffRBM training and model selection’) for the 
immunogenicity model, for each of the 3 HLA types considered we trained 50 HLA-specific models on 
the original training sets (consisting of the 80% of the full datasets available) and we assessed their 
average performance over the corresponding 50 choices of the test set. In particular, we tested the 
ability of the HLA-specific immunogenicity models to identify new immunogenic peptides by the 
Receiver Operating Characteristic curve (ROC). For each of the 50 repetitions, we assigned scores 
of immunogenicity predicted by a given HLA-specific model (given by the diffRBM units’ score ‍Ld‍ of 
Equation 10) to the sequences of the test set of positives (immunogenic peptides with the HLA type 
under consideration) and of negatives (a test set of non-immunogenic peptides presented by the same 
HLA). Varying the threshold score value to discriminate positives from negatives, we obtained the ROC 
curve describing the fraction of immunogenic peptides predicted by the models’ scores, against the 
fraction of predicted non-immunogenic ones. We took the Area Under the Curve (AUC) as a metric of 
the models’ ability to discriminate immunogenic from non-immunogenic peptides. We performed the 
same validation for all the RBM-based approaches (section ‘DiffRBM architecture’, Figure 4), using 
their corresponding output scores (Equation 8 for the full RBM, Equation 9 for background RBM). 
The performance of the full RBM obtained through the score (Equation 8) is by far and large equiva-
lent to the one of an RBM with the same hyperparameters entirely trained, in one step only, from the 
selected dataset (Figure 4—figure supplement 4), showing that there is a gain in performance with 
the differential learning strategy only when we focus on the differential units and their parameters. 
For the diffRBM linear approach (section Appendix 3 - ‘Alternative approaches tested’), the scores 
(Equation 8) and (Equation 10) contain, for the differential part, only fields ‍g

d
i (σi)‍; in the PWM-based 

approach, we used (Equation 18) (see section Appendix 3 - ‘Alternative approaches tested’); results 
from these approaches are reported in Figure 4—figure supplement 1.

We also performed a leave-one-organism-out cross-validation, whereby we divided peptides by 
the organism of origin, we held out as test set only the immunogenic and non-immunogenic peptides 
from the same organism and trained the models on the peptides from all the other organisms 
(Figure 4—figure supplement 3). We considered in the test sets only the organisms for which at least 
15 immunogenic and non-immunogenic peptides could be retrieved from IEDB. HLA-A*02:01 is the 
only allele for which we found sufficient data for this validation.

Also negatives were randomly divided into 50 training and test sets. Training sets of negatives 
were used to train diffRBM units for non-immunogenic peptides (assigning scores that we will denote 
as ‍Ld,neg(σ)‍ to distinguish it from the scores of immunogenicity ‍Ld(σ)‍) and the classifiers of immuno-
genicity (section ‘Classifier of immunogenic peptides’). The classifiers output a probability of being 
immunogenic which is used as the score for calculating the AUC on the 50 test sets of positives and 
negatives. To evaluate the AUC for the approach denoted as ‘diffRBM units (difference)’ (Figure 4, 
Figure 4—figure supplement 6), we considered the score given, for each test sequence ‍σ‍, by the 
difference ‍Ld(σ) − Ld,neg(σ)‍. Given that the background model is the same, it can be seen from Equa-
tions 8 and 10 that the score ‍Ld(σ) − Ld,neg(σ)‍ gives the same result as the difference of the full RBM 
scores ‍L(σ) − Lneg(σ)‍ (Figure 4—figure supplement 4).

We followed the same procedure to train and evaluate the models of T-cell response specificity 
(Figure  6, Figure  6—figure supplement 1, Figure  6—figure supplement 2, Figure  6—figure 
supplement 4). To test the T-cell specificity models’ ability to identify new peptide-specific receptors, 
we performed an AUC-based assessment of predictive performance using, as positives, the receptors 
with the same peptide-specificity from the held-out test sets and, as negatives, a subset of generic 
receptors from the bulk repertoire, randomly drawn at each repetition with the same size as the 
positive test set and with no overlap with the 106 sequences of the training set of the background 
model. To further check the robustness of our results with respect to the choice of the background 
dataset, we repeated the training and testing constructing the background model from a different set 
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of bulk-repertoire TCRβ sequences from healthy donors (the dataset from Britanova et al., 2016). All 
the performance metrics are almost unaffected by this change of the background dataset (Figure 6—
figure supplement 2). The average AUC attained by the diffRBM units across the 4 peptide-specific 
models is ‍0.83 ± 0.01‍ with the background dataset from Emerson et al., 2017 and ‍0.84 ± 0.01‍ with the 
background dataset from Britanova et al., 2016 (uncertainties are estimated over several training-
test partitions). All the approaches (diffRBM and alternatives versions, SONIA, ‍k‍-NN, NetTCR-2.0, 
TCRex) are trained and tested on 50 independent random partitions of both positives and negatives 
into training and test sets, and the performance shown in Figure 6, Figure 6—figure supplement 1, 
Figure 6—figure supplement 2, Figure 6—figure supplement 4 is the average AUC over these 50 
partitions. As negative set to train the supervised approaches (‍k‍-NN, NetTCR-2.0, TCRex) we took, for 
each training repetition, a subset of the bulk-repertoire dataset from Emerson et al., 2017 with the 
same size as the positive training set.

Contact prediction
Definition of single-site factors
Given the TCR-pMHC structures retrieved from PDB and the estimated peptide-TCR and peptide-HLA 
contact sites (section ‘Crystallographic structures from PDB’), we assessed whether differential models 
can predict contact positions. We defined single-site factors ‍Ti‍ from the models’ parameters to be 
evaluated on each sequence ‍σ‍ as:

	﻿‍
Ti(σi) = gd

i (σi) +
Md∑

µ′=1
wd

iµ′ (σi)⟨hd
µ′ |σ⟩

‍�
(11)

where the average over the differential hidden units ‍⟨h
d
µ′ |σ⟩‍ is estimated from a distribution conditional 

on the sequence ‍σ‍ that is 
‍
∼ exp
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∑
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)
‍
. As clear from the definition (Equation 

11), single-site factors measure generally whether the amino acid ‍σi‍ at position ‍i‍, in the sequence 
context provided by ‍σ‍, has high probability to occur among selected sequences, for instance among 
HLA-specific immunogenic peptides, hence we have used them to quantify residue-specific contribu-
tions to immunogenicity (Figure 3).

For the prediction of contacts, the sequence ‍σ‍ in (Equation 11) is represented by either peptides 
or by receptors’ CDR3β sequences when we predict, respectively, the peptide sites in contact with 
the TCR through the models of immunogenicity (Figure 2C–D) and the CDR3β sites in contact with 
peptides through the models of epitope specificity (Figure  5B–C). For each peptide, we use the 
immunogenicity model corresponding to its HLA type and for each CDR3β we use the model corre-
sponding to its epitope specificity. Since we are interested in a prediction at the level of residues, 
the models of epitope specificity used here are defined only on the CDR3β amino acid sequence 
(disregarding the V and J identity). Given the set of ‍Ti(σi)‍ for each sequence position ‍i‍, we rank them 
according to their magnitude and we take the top ranking positions as the model’s prediction on 
contacts for the sequence ‍σ‍. In the case of CDR3β sequences, we consider only non-gap positions 
for such ranking.

Prediction assessment via the Positive Predictive Value
Given the models’ predictions of putative contact sites, we assessed their quality by estimating the 
Positive Predictive Value (PPV, Figure 2D, Figure 5C, Figure 2—figure supplement 3, Figure 2—
figure supplement 4, Figure 5—figure supplement 3). The PPV for sequence ‍σ‍ at the ranked posi-
tion ‍p‍ (‍PPVp

σ‍) is given by the number of top ‍p‍ ranked positions that is included among the contact 
positions of ‍σ‍ (true positives), divided by ‍p‍ or by number of contacts when this is lower than ‍p‍ 
(all the positives). ‍PPVp

σ‍ hence hits 1 when ‍p‍ is equal to the full length of sequence ‍σ‍. For a given 

‍PPVp
σ‍, the associated random expectation corresponds to drawing uniformly at random ‍p‍ positions 

and using them to predict the contact positions of ‍σ‍. The summary values reported in Figure 2D 
and Figure 5C correspond to the average of ‍PPVp

σ‍ over all the sequences ‍σ‍ under consideration 
(respectively, peptides and CDR3β) as a function of the number ‍p‍ of ranked sequence positions. To 
check that the average PPV values obtained are due to the predictive power of the diffRBM model, 
we performed a statistical hypothesis test based on the binomial distribution: we define as ‘success’ 

https://doi.org/10.7554/eLife.85126
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the correct prediction of a contact using the diffRBM top ranked position and, using as null model 
a binomial distribution, we tested the null hypothesis that the probability of a success (‍s‍) is simply 
given by the average fraction of contact positions per sequence. We calculated the p-value of the 
hypothesis test as the probability, under the null model, of obtaining the number of successes corre-
sponding to the diffRBM PPV value for the top ranked position out of a number of trials given by the 
number of sequences tested. We obtain statistically significant p-values for both the immunogenicity 
model (s=0.48, p-value = ‍7.7 × 10−5‍) and the TCR specificity model (s=0.20, p-value = ‍1.6 × 10−5‍). To 
correct for the over-representation among the available resolved structures of certain sequences (the 
same peptide and its one-point mutants in contact with different TCRs, sets of highly similar CDR3βs 
specific to the Influenza peptide GILGFVFTL), we calculate the average ‍PPVp‍ at each position ‍p‍ as a 
weighted average:

	﻿‍
PPVp = 1

Reff

R∑
r=1

1
nσr

PPVp
σr

‍�
(12)

where we reweight the contribution of each sequence to the PPV by a factor ‍1/nσ‍, taking ‍nσ‍ as the 
number of sequences that are equal to or one mutation away from ‍σ‍. In Equation 12 we have denoted 
by ‍R‍ the total number of entries under consideration and by ‍Reff ‍ their effective number obtained 
as ‍Reff =

∑R
r=1 1/nσr‍. Retaining only unique combinations of sequence and contact positions at the 

chosen distance cutoffs (4 Å for peptide-TCR contacts, 3.5 Å for peptide-HLA contacts), the number 
of structures considered for: (i) the prediction of contacts with the TCR along the peptide is ‍R = 46‍ 
(4 for HLA-B*35:01, 41 for HLA-A*02:01, 1 for HLA-B*07:02); (ii) the prediction of contacts with the 
HLA along the peptide is ‍R = 53‍ (5 for HLA-B*35:01, 47 for HLA-A*02:01, 1 for HLA-B*07:02); (iii) the 
prediction of contacts with the peptide along the CDR3β is ‍R = 12‍ (2 for YLQPRTFLL, 3 for NLVPM-
VATV, 1 for GLCTLVAML, 6 for GILGFVFTL). The corresponding effective numbers are ‍Reff = 22.7‍ for (i) 
and (ii), and ‍Reff = 10.3‍ for (iii). In Figure 2—figure supplement 3A–B, Figure 2—figure supplement 
4A–B, Figure 5—figure supplement 3A–B we report the comparison of the average reweighted PPV 
(Equation 12) to the average PPV calculated without reweighting (‍PPVp = 1

R
∑R

r=1 PPVp
σr‍), showing 

that the reweighting does not affect the ranking of performance between different methods.

Mutation costs
The experiments of Łuksza et al., 2022 on how TCRs cross-react between the NLVPMVATV peptide 
and its mutants consisted of the following steps: the wild-type peptide (WT) was mutated to every 
amino acid at every position to obtain 171 mutants (MT); for each MT, its concentration was varied 
across a 10,000-fold range and the degree activation of 3 WT-specific TCRs was monitored as relative 
percentage of CD137 expression to determine the TCR cross-reactivity:

	﻿‍
TCR cross-reactivity = log

ECMT
50

ECWT
50 ‍�

(13)

from the WT and MT half maximal Effective Concentration ‍ECWT
50 ‍ and ‍ECMT

50 ‍ (both measured in ‍µg/ml‍). 
We took these reported values of TCR cross-reactivity as the experimental mutation costs for each 
TCR/mutation pair for non-lethal mutations. We defined ‘lethal’ the mutations that were associated 
to a formally infinite ‍ECMT

50 ‍ in a given TCR context (i.e. TCR response could not be recovered even at 
the highest concentrations).

For a mutation in sequence ‍σ‍ at position ‍i‍ changing ‍σi‍ to ‍σ
′
i ‍, we estimated the model prediction 

of the mutation cost as:

	﻿‍ Predicted mutation cost = Ti(σi) − Ti(σ′
i )‍� (14)

where we took ‍Ti‍ as the single-site factors (Equation 11) for lethal mutations (Figure 3E) and of back-
ground RBM (Equation 22 in Supporting Materials and methods) for non-lethal mutations (Figure 3G).

To assess whether the distribution towards positive values for lethal mutations is significantly higher 
than the expectation for generic, non immunogenicity-impacting mutations, we estimated the muta-
tion cost distribution of a ‘control’ case (see Figure 3E) where we drew at random 3000 HLA-A*02:01-
presented peptides from the background dataset, and we calculated the costs of all possible amino 

https://doi.org/10.7554/eLife.85126
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acid substitutions at each position. The p-value for the difference in these distributions was estimated 
by the Mann-Whitney U test.
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Appendix 1

Comparison of performance with existing tools
DiffRBM model of antigen immunogenicity
We compared the discrimination performance of the diffRBM model of antigen immunogenicity to 
two established methods for immunogenicity prediction, the IEDB immunogenicity tool and PRIME 
(Schmidt et al., 2021). Since these methods are not designed to be re-trained on custom datasets 
such as ours, the comparison cannot be fully consistent in terms of using the same training and 
test sets, as done for all the methods in Figure 4. The IEDB tool for immunogenicity prediction 
is based on the model by Calis et al., 2013 and can be downloaded from http://tools.iedb.org/​
immunogenicity/. By applying it to our set of immunogenic and non-immunogenic peptides, we 
obtained AUC = 0.54 for the HLA-A*02:01-specific peptides, AUC = 0.60 for HLA-B*07:02 and AUC 
= 0.57 for HLA-B*35:01, which are all lower than the diffRBM average AUC values (respectively 0.66, 
0.65, 0.67, see Figure 4).

PRIME (Schmidt et  al., 2021) was downloaded from https://github.com/GfellerLab/PRIME 
(Gfeller, 2022). Since it was not possible to re-train PRIME on our datasets for a fair comparison of 
performance, we simply evaluated it on the set of immunogenic and non-immunogenic peptides we 
collected and we obtained a discrimination performance with AUC = 0.53 for peptides specific to 
HLA-A*02:01, AUC = 0.45 for HLA-B*07:02 and AUC = 0.56 for HLA-B*35:01. Since we set out to 
predict immunogenicity conditioned on binding to a given HLA allele, PRIME was run in the mono-
allelic mode (e.g. with option -a A0201 for the case of HLA-A*02:01); in general, however, different 
results are obtained by adding more alleles, where then the best presenting allele according to the 
predictor is taken. In summary, hence, we found poorer performance compared to the diffRBM units, 
despite not having excluded from our test sets the immunogenic peptides that are either in PRIME’s 
or in the IEDB tool’s training sets. Differences in the peptide datasets used may contribute to explain 
this result. For instance, our dataset consists of epitopes with experimentally validated positive T-cell 
responses from IEDB, mainly of microbial origin, while PRIME’s training set (Schmidt et al., 2021) 
was constructed in such a way as to contain a high proportion of neoantigens.

As an additional point of comparison, (Riley et al., 2019) propose a neural network trained in a 
supervised way to classify immunogenic against non-immunogenic peptides using sequence as well 
as structural features of the peptide/HLA complex. When they check the performance of a peptide 
sequence-only predictor (using nonamer HLA-A*02:01-restricted peptides), they obtain AUC = 0.61 
on the training set and AUC = 0.50 on the test. This further confirms that the performance of our 
diffRBM approach, despite not being directly trained as a discriminator of immunogenic vs non-
immunogenic peptides, compares favorably to existing sequence-based tools of prediction.

 

DiffRBM model of TCR specificity
To compare diffRBM to state-of-the-art predictors, we chose to take into consideration TCRex 
(Gielis et al., 2019) and NetTCR-2.0 (Montemurro et al., 2021), which were found to attain the best 
performance at predicting TCR specificity in a recent benchmark of different methods (Meysman 
et al., 2022). TCRex is a random forest classifier of TCRs by epitope specificity. The most recent 
version is publicly accessible at https://github.com/bittremieux/TCR-classifier (De Neuter and 
Bittremieux, 2020), and can be used as described in De Neuter et al., 2018. As a modification 
to the pipeline described in De Neuter et al., 2018, we decided to skip the feature selection step 
(originally performed through the Boruta algorithm) after checking that the performance of the 
classification task is not affected by this choice in our case. NetTCR belongs to a family of methods 
(Springer et al., 2020; Weber et al., 2021; Milighetti et al., 2021) trained on TCR-antigen pairs to 
predict a score of binding, but can also be applied to the prediction of whether an unseen TCR is 
likely to be specific to a given peptide target. In particular, NetTCR-2.0 (Montemurro et al., 2021) 
is a convolutional neural network method trained from sets of pairs of peptides and cognate TCR 
sequences (β chain only or ‍α + β‍ chains). To make a fair comparison of performance, we re-trained 
these methods on our training sets and evaluated the AUC of discrimination of specific receptors 
on our test sets, considering their version for the β-chain only (section ‘Classification performance’).

To re-train and evaluate NetTCR-2.0 with our datasets, we replaced the sets of CDR3β specific to 
the 4 epitopes of interest with our VDJdb-derived datasets. We kept the other NetTCR training data 

https://doi.org/10.7554/eLife.85126
http://tools.iedb.org/immunogenicity/
http://tools.iedb.org/immunogenicity/
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(3 additional peptides with their specific CDR3β as well as their control data). Re-training NetTCR-2.0 
with only the 4 epitope-specific sets of CDR3β we considered gave AUCs in the same range as for 
the case with 7 peptides. Our training of NetTCR-2.0 uses the same default settings as Montemurro 
et al., 2021. While the performance of TCRex is the same as diffRBM (both with an average AUC 
across peptides of ‍0.83 ± 0.01‍, see Figure 6B–E), we observed a moderately lower performance of 
NetTCR-2.0 (AUC = ‍0.73 ± 0.01‍), which could be partially due to the fact that the CDR3β version of 
NetTCR-2.0 does not take as input the V and J genes. To check the role of including information 
on V and J, we also re-trained diffRBM using only the CDR3β amino acid sequence (Figure 6—
figure supplement 4). The performance of the diffRBM units is reduced (AUC = ‍0.79 ± 0.01‍), but still 
higher than NetTCR-2.0. To test the susceptibility to predict false positives of diffRBM compared to 
state-of-the-art methods, we calculated also the Average Precision score (AP) and we obtained that 
diffRBM performs better or as well as the other methods across the 4 epitopes (GILGFVFTL: diffRBM 
has an average AP = 0.87 across the 50 training/test partitions, TCRex AP = 0.85, NetTCR-2.0 = 
0.77; NLVPMVATV: diffRBM AP = 0.79, TCRex AP = 0.78, NetTCR-2.0 = 0.67; GLCTLVAML: diffRBM 
AP = 0.82, TCRex AP = 0.81, NetTCR-2.0 = 0.70; YLQPRTFLL: diffRBM AP = 0.99, TCRex AP = 0.99, 
NetTCR-2.0 = 0.89). Note it is at the task of distinguishing specific TCRs from background data that 
diffRBM compares in this way to state-of-the-art methods. The performance by diffRBM decreases 
when we consider as negatives receptors with a different antigen specificity (Meysman et  al., 
2022), because the differential units can learn features shared between antigen-specific sequences 
(e.g., being expressed by CD8+T cells). More fine-tuned choices of the background (e.g., with only 
CD8+T cell receptors) would be needed to improve performance for this particular task.

https://doi.org/10.7554/eLife.85126
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Appendix 2
Details on training diffRBM
Let us define a compact notation ‍Ψd‍ for the set of parameters associated to the differential units, 

‍Ψ
d = {gd

i (σi), wd
iµ′ (σi), ξd

µ′}‍, where ‍ξ
d
µ′‍ is a shorthand for the parameters specifying the shape of ‍U

d
µ′‍ 

(see Equation 5 in Materials and methods). In all our implementations, both ‍U
b
µ‍ and ‍U

d
µ′‍ are set to 

dReLU potentials, a choice that has been shown to confer high expressivity (Tubiana et al., 2019). 
The rules to infer ‍Ψd‍ are given by gradient-ascent equations to maximize the likelihood of the post-
selection data ‍Ds‍ under the full RBM model (Equation 1):

	﻿‍

∂

∂Ψd ⟨log P(σ)⟩Ds =
⟨

∂

∂Ψd H(σ)
⟩

m
−

⟨
∂

∂Ψd H(σ)
⟩

Ds‍�
(15)

where ‍⟨⟩m‍ indicates the average under the full RBM model, ‍⟨f⟩m =
∑

σ
1
Z f(σ)e−Hb(σ)−Hd(σ)

‍. Since 
the parameters ‍Ψd‍ to learn appear only in ‍Hd‍, one has ‍∂H(σ)/∂Ψd = ∂Hd(σ)/∂Ψd

‍; the contribution 
of the background ‍Hb‍ enters therefore only in the estimation of the average ‍⟨⟩m‍, which requires, at 
each step of the training, to sample configurations with the probability (Equation 1).

Regularization terms are typically added during the training to control the values of the inferred 
parameters. Here we used a ‍L1‍-type regularization over the weights, which enforces sparsity to 
prevent overfitting (see Tubiana et al., 2019 for details); following the convention in Tubiana et al., 
2019 we denote by ‍λ

1
2‍ the coefficient setting the magnitude of such regularization term. Additional 

‍L2‍ regularization was imposed on the weigths, with amplitude ‍1/|Db|‍ for background models and 
‍1/|Ds|‍ for differential models (Cocco et al., 2018).

https://doi.org/10.7554/eLife.85126
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Appendix 3
Alternative approaches tested
We compared diffRBM performance either to alternative architectures for differential models 
(diffRBM linear, PWM-based approach, SONIA) or to fully supervised, background-free models 
(classifiers).

DiffRBM linear
DiffRBM linear is a diffRBM architecture where the differential part is specified by single-site fields 

‍g
d
i (σi)‍ (without the addition of weights ‍w

d
iµ′ (σi)‍).

PWM-based approach
We considered a differential model based entirely on single-site amino frequency, where both the 
background model and the differential part are specified only by single-site fields (‍g

b
i (σi)‍ and ‍g

d
i (σi)‍ 

respectively). The equations for learning ‍g
b
i (σi)‍ and ‍g

d
i (σi)‍ are:

	﻿‍

egb
i (σi)

∑
σi

egb
i (σi)

+ λ2gb
i (σi) = f b

i (σi)
‍�

(16)

	﻿‍

e(gb
i (σi)+gd

i (σi))
∑

σi
e(gb

i (σi)+gd
i (σi))

+ λ2(gb
i (σi) + gd

i (σi)) = fi(σi)
‍�

(17)

where ‍f
b
i (σi)‍ is the frequency of amino acid ‍σi‍ at position ‍i‍ in the background dataset ‍Db‍, ‍fi(σi)‍ 

is the frequency of amino acid ‍σi‍ at position ‍i‍ in the dataset ‍Ds‍ and ‍i = 1, ..., N ‍. We use the same 
‍L2‍ regularization penalty that we chosen for the RBM fields (‍λ2 = 1/|Db|‍ for background models 
and ‍λ2 = 1/|Ds|‍ for differential part). This approach is equivalent to learning from the background 
and selected datasets Position Weight Matrices (PWMs), probabilistic models of amino acid 

usage that treat all sequence positions as independent. By defining ‍P
b
i (σi) = egb

i (σi)/
∑

σi
egb

i (σi)
‍ and 

‍Pi(σi) = e(gb
i (σi)+gd

i (σi))/
∑

σi
e(gb

i (σi)+gd
i (σi))

‍ and given the independent-site assumption of PWMs, the 
background data PWM probability and the selected data PWM probability are respectively recovered 
as ‍P

b(σ) =
∏

i Pb
i (σi)‍ and ‍P(σ) =

∏
i Pi(σi)‍. Since ‍P

b
i (σi)‍ and ‍Pi(σi)‍ are learnt to closely reproduce the 

frequencies ‍f
b
i (σi)‍ and ‍fi(σi)‍, their predictions are the ones that are inferable from single-site amino 

acid frequency alone in the respective training datasets (hence in Figure 2, Figure 5, Figure 2—
figure supplement 3, Figure 2—figure supplement 4, Figure 5—figure supplement 3 we refer to 
such predictions by ‘Amino-acid frequency’). For a sequence ‍σ‍, the score based on the differential 
part is then simply given by the log-likelihood ratio:

	﻿‍
Ld(σ) =

∑
i

log Pi(σi)
Pb

i (σi)‍�
(18)

measuring the site-specific enrichment in amino-acid usage in selected data compared to the 
background.

SONIA
We implemented a SONIA model using the software package from Isacchini et al., 2021 and setting 
the option deep = False. For consistency with the background of diffRBM, we first learn a background 
model from 106 randomly assembled from the universal donor repertoire from Emerson et al., 2017, 
next we learn a model from epitope-specific repertoires and we take, as SONIA score, the difference 
between the scores assigned by these two models. The ‍L2‍-type regularization strength is set to the 
default value (zero); higher regularizations applied to one of our test sets did not provide visible 
improvement of the log-likelihood.

Classifier of immunogenic peptides
As a term of comparison for the immunogenicity model, we implemented first a linear (logistic) classifier 
(see Model C1 in Figure 4—figure supplement 5C), which we trained by minimization of a binary 
cross-entropy loss. To find an optimal classifier, we also searched among different neural-network 
architectures trained to discriminate the immunogenic and non-immunogenic data retrieved from 

https://doi.org/10.7554/eLife.85126
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IEDB (section ‘Sequence datasets for the immunogenicity model’). We used the same 50 validation 
sets held out from the training set of immunogenic, HLA-A*02:01-presented peptides utilized for 
the model selection of diffRBM (section ‘DiffRBM training and model selection’). In an analogous 
way, we randomly partitioned the set of non-immunogenic, HLA-A*02:01-presented peptides into 
training/test sets (with respectively 80%/20% of the data), repeating the partition 50 times, and 
we further partitioned the training sets to hold out at each repetition a validation set with 20% of 
sequences. We trained the models varying the number and width of hidden layers (Figure 4—figure 
supplement 5C), as well as the weight decay. The ‘optimal classifier’ performance for HLA-A*02:01 
(Figure  4) is obtained by selecting for each partition the best performing architecture on the 
validation set and evaluating its AUC on the test set. Next, we identified the architecture giving the 
maximal average AUC of discrimination between the immunogenic and non-immunogenic peptides 
in the validation sets (Model C8 in Figure 4—figure supplement 5C) and we used it to estimate the 
‘optimal classifier’ average AUC for the HLA-B*07:02 and HLA-B*35:01 models (Figure 4C–D). Our 
numerical implementation is based on the PyTorch library. Training is performed in mini-batches of 
64 sequences, by the AdamW optimizer with weight decay (Loshchilov and Hutter, 2019), learning 
rate 0.001, for 500 epochs.

‍k‍-NN based classifier
In Weber et  al., 2021 a ‍k‍-Nearest Neighbours (‍k‍-NN) classifier served as a baseline method to 
determine the predictive power achievable from TCR sequence similarity alone and, despite its 
simplicity, it was found to outperform some existing methods. Thus, following Weber et al., 2021, 
we built a ‍k‍-Nearest Neighbours (‍k‍-NN) based classifier to distinguish TCRs recognizing a specific 
antigen from generic ones. The method works by computing the Levenshtein distance of the CDR3β 
under analysis with respect to a set of positive examples (training set of antigen-specific CDR3β) 
and to a set of negative examples (training set of bulk repertoire CDR3β). In the computation of the 
Levenshtein distance, the V and J segments are used as well (different V or J segments increase the 
distance by 1). Next the average distances from the ‍k‍ nearest neighbours are computed for both 
the positive and negative examples, and a score is computed as the difference between the two 
average distances.

The only parameter of this model, ‍k‍, has been fixed for the largest dataset of positive examples 
(TCRs reactive to the NLVPMVATV peptide) by cross-validation. We split the positive and negative 
data in 50 independent training and test sets (with respectively 80% and 20% of the sequences); 
from each training set, a portion of 20% of its data is held out as validation set. Next ‍k‍, for each 
partition, is fixed by maximizing the model performance on the validation set, and the model with 
the best ‍k‍ is evaluated on the test set. For the other datasets of positive examples, which are smaller, 
we used ‍k = 26‍, obtained as the ‍k‍ for which the average AUC on the validation set is maximal 
(Figure 6—figure supplement 3). The performance of the ‍k‍-NN based classifier was evaluated as 
described in section ‘Classification performance’.

Single-site factors for the alternative approaches
As a term of comparison of diffRBM single-site factors (Equation 11 in Materials and methods), 
we considered single-site factors from the diffRBM linear model ‍Ti(σi) = gd

i (σi)‍ (Figure 2—figure 
supplement 3A–B, Figure  5—figure supplement 3A–B), and from models which assume all 
positions independent (section ‘PWM-based approach’). Here the single-site factors reduce to the 
log-likelihood ratio:

	﻿‍
Ti(σi) = log Pi(σi)

Pb
i (σi)‍�

(19)

where that ‍Pi(σi)‍ and ‍P
b
i (σi)‍ are given by PWMs (section ‘PWM-based approach’) and hence 

represent position-specific amino acid frequencies. In the case of the immunogenicity model, the 
prediction by Equation 19 simply describes the log ratio between the frequency of amino acids 
in immunogenic peptides relative to the amino acid frequency of all presented peptides from the 
background dataset (we refer to it as ‘AA frequency ratio (to all presented)’, see Figure 2C–D); in the 
case of the TCR specificity model Equation 19 gives the log ratio between the frequency of amino 
acids in peptide-specific CDR3β repertoires relative to the amino acid frequency in bulk repertoire 
(we refer to it as ‘AA frequency ratio (to bulk)’, see Figure  5B–C). In both cases the prediction 
indicated as ‘Amino acid frequency’ is obtained by estimating and ranking the single-site factors:

https://doi.org/10.7554/eLife.85126
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	﻿‍ Ti(σi) = log Pi(σi)‍� (20)

In the case of the immunogenicity model, we have also learnt an independent-site model from 
non-immunogenic data (that we call ‍PNI(σi)‍) and we have looked at the single-site factors:

	﻿‍
Ti(σi) = log Pi(σi)

PNI
i (σi)‍�

(21)

which represents a log ratio of amino acid frequency in immunogenic data relative to non-
immunogenic data (this prediction is labeled ‘AA frequency ratio (to non-immunogenic)’ in 
Figure 2C–D and Figure 3B). To identify the sites of binding to the HLA, we took first single-site 
factors simply capturing amino acid usage in presented peptides defined as:

	﻿‍ Ti(σi) = log Pb
i (σi)‍� (22)

and labeled as ‘Amino Acid Frequency’ in Figure 2B and Figure 2—figure supplement 4. Next 
we looked at the parameters of background RBM by defining single-site factors that correspond 
essentially to the model’s log probability of residue ‍σi‍ conditional on the rest of the residues:

	﻿‍
Ti(σi) = gb

i (σi) +
Mb∑
µ=1

wb
iµ(σi)⟨hµ|σ⟩

‍�
(23)

We also considered a less refined version including only the fields of the background RBM model 
(hence not accounting for the interaction with the rest of the sequence sites):

	﻿‍ Ti(σi) = gb
i (σi)‍� (24)

and we observed that this fields-only prediction performs slightly better at identifying the anchor 
sites of binding to the HLA compared to the full RBM prediction (Figure 2—figure supplement 4A–
B). Indeed, the background RBM weights tend also to capture amino acid differences at the peptide’s 
central positions, which are likely to reflect the existence of variable peptide conformations within 
the binding pocket (Nguyen et al., 2021). A case in point was discussed in Bravi et al., 2021b, 
where we found that the weights of a single-allele RBM presentation model captured different 
modes of binding across peptides of the same HLA specificity. This would help explain why fields 
alone perform slightly better as predictors of the primary anchor sites of binding to the HLA, and 
in Figure 2B we use the single-site factors from a fields-only RBM model as predictors. Anyway 
the prediction by a full RBM model (Figure 2—figure supplement 4A–B) exhibits only a minimal 
decrease in performance compared to the fields-only prediction, due to the weights-related effects 
being mainly second-order ones.

Finally, we have explored an alternative, more general measure of site-specific amino acid 
importance from the differential units:

	﻿‍

�Ti(σi) = Ld(σ) − 1
q

q∑
σ′

i =1

Ld(σ′
i |σ)

‍�
(25)

where ‍L
d(σ′

i |σ)‍ is the differential units’ score of the sequence ‍σ‍ where position ‍i‍ has been mutated 
from ‍σi‍ to ‍σ

′
i ‍, ‍L

d‍ is calculated using Equation 10 in Materials and methods and ‍q‍ is the number of 
values that ‍σ

′
i ‍ can take. ‍̃Ti(σi)‍ can be hence seen as a measure of the importance of amino acid ‍σi‍ at 

position ‍i‍ obtained by comparing its contribution to the likelihood to the one of all other possible ‍q‍ 
amino acids. The diffRBM single-site factors (Equation 11 in Materials and methods) can be derived 
as a small-weight approximation of the more general definition (Equation 25), whose advantage is 
that per se does not depend on the RBM structure of the probability ‍P(σ)‍. Overall, at the numerical 
level, the predictions of contacts obtained by ranking sites by Equation 25 are comparable to the 
ones by Equation 11, see Figure 2—figure supplement 3A–B, Figure 2—figure supplement 4A–
B, Figure 5—figure supplement 3A–B.

https://doi.org/10.7554/eLife.85126
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Appendix 4
Entropy estimation
The entropies of background RBM and full RBM (Appendix 4—figure 1A–B) were estimated as:

	﻿‍
Background RBM: S = −

∑
σ

Pb(σ) log Pb(σ) Full RBM: S = −
∑
σ

P(σ) log P(σ)
‍�

(26)

where ‍Pb(σ)‍ and ‍P(σ)‍ are given respectively by Equations 1 and 2 in Materials and methods. The 
‍log‍ is meant as a natural logarithm, hence the entropy values in Appendix  4—figure 1A–B are 
expressed in nats. To estimate the entropy of PWM-based approaches (Appendix 4—figure 1C), we 
used Equation 26 with PWM probabilities for ‍Pb(σ)‍ and ‍P(σ)‍ (see section ‘PWM-based approach’, 
Appendix 3).

Appendix 4—figure 1. Model-based entropy estimation. (A) Entropy (expressed in nats) of the space of HLA-
specific presented antigens (evaluated by background RBM) and of HLA-specific immunogenic antigens (evaluated 
by the full RBM) for the 3 HLAs. Error bars represent the sampling-related uncertainty on the estimated entropy 
and was calculated as in Marchi et al., 2019. (B) The entropy of the background dataset (CDR3 bulk repertoire) 
obtained from background RBM is compared to the entropy of epitope-specific CDR3 obtained from the full RBM 
models of TCR specificity to GILGFVFTL, NLVPMVATV, GLCTLVAML and YLQPRTFLL. (C) The entropies calculated 
from background RBM and the full RBM plotted in A and B is lower than the one estimated from independent-site 
models of the same data (Entropy PWM), because RBM models can account for correlations between sequence 
sites, hence for additional constraints on sequence diversity. (Colors are the same as in A, B). The entropy values 
from RBM and PWM models show a highly correlated trend across datasets, reflecting their different degree of 
heterogeneity in amino acid composition, as shown by the sequence logos of peptide (D) and CDR3 (E) data we 
considered.

https://doi.org/10.7554/eLife.85126
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