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Abstract The relationship between obesity and human brain structure is incompletely under-
stood. Using diffusion-weighted MRI from ∼30,000 UK Biobank participants, we test the hypothesis 
that obesity (waist-to-hip ratio, WHR) is associated with regional differences in two micro-structural 
MRI metrics: isotropic volume fraction (ISOVF), an index of free water, and intra-cellular volume 
fraction (ICVF), an index of neurite density. We observed significant associations with obesity in two 
coupled but distinct brain systems: a prefrontal/temporal/striatal system associated with ISOVF and 
a medial temporal/occipital/striatal system associated with ICVF. The ISOVF~WHR system colocated 
with expression of genes enriched for innate immune functions, decreased glial density, and high mu 
opioid (MOR) and other neurotransmitter receptor density. Conversely, the ICVF~WHR system co-lo-
cated with expression of genes enriched for G-protein coupled receptors and decreased density 
of MOR and other receptors. To test whether these distinct brain phenotypes might differ in terms 
of their underlying shared genetics or relationship to maps of the inflammatory marker C-reactive 
Protein (CRP), we estimated the genetic correlations between WHR and ISOVF (rg = 0.026, P = 0.36) 
and ICVF (rg = 0.112, P < 9×10−4) as well as comparing correlations between WHR maps and equiv-
alent CRP maps for ISOVF and ICVF (P<0.05). These correlational results are consistent with a two-
way mechanistic model whereby genetically determined differences in neurite density in the medial 
temporal system may contribute to obesity, whereas water content in the prefrontal system could 
reflect a consequence of obesity mediated by innate immune system activation.

Editor's evaluation
Kitzbichler et al. conducted a valuable large-scale study using the UK Biobank data to explore the 
relationship between brain tissue microstructure and obesity and provided convincing evidence 
for two coupled yet distinct brain systems mediating relationships between free water and neurite 
density as markers of inflammation with the genes enriched for innate immunity and specific 
neurotransmitter receptors. Major strengths include the innovative and expansive approach to 
understanding the genetic factors, neurotransmitters and potential mechanisms underlying observed 
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alterations in cortical thickness and gray matter volume in obesity. The scope of the work goes 
beyond most standard neuroimaging analyses and reveals coherent patterns linking neurite density 
and free water to relevant neuroinflammatory and neurotransmitter pathways.

Introduction
Obesity has long been recognised as a preventable risk factor for cardiovascular and metabolic disor-
ders such as heart disease and type-2 diabetes. More recently, it has also emerged as an important risk 
factor for neurodegenerative disorders, linked to both an increased risk of dementia and accelerated 
age-associated cognitive decline (Sellbom and Gunstad, 2012). Defined as the excessive accumu-
lation of adipose tissue in the body (González-Muniesa et al., 2017), the worldwide prevalence of 
obesity has more than doubled in the last thirty years, making it one of the most important global 
public health challenges (Yatsuya et al., 2014).

To date, cross-sectional and longitudinal studies investigating effects of obesity on the brain have 
focused almost exclusively on macroscopic aspects of brain structure such as total grey matter volume 
and cortical thickness. Results in this field were often contradictory: although studies tended to report 
lower gray matter volume in relation to obesity, some have also observed null or positive associations 
as described in a meta-analysis by García-García et al., 2019, who noted that the likely reasons for 
this were heterogeneities in brain and obesity metrics, a wide variation in sample size, and poor statis-
tical methodology.

However, the emerging consensus indicates that typically studies are reporting negative associa-
tions between obesity (particularly visceral obesity indexed by waist to hip ratio: WHR) and (smaller) 
total grey matter volume (Cox et al., 2019) and (thinner) cortical thickness (Caunca et al., 2019). 
Notably, this negative association between body mass index (BMI) and global grey matter volume has 
been substantiated in a recent large-scale study conducted in the UK Biobank involving 9652 partici-
pants (Hamer and Batty, 2019). Recent meta-analysis of voxel-based morphometry studies, including 
data from 5882 participants and a mega-analysis of 6,420 participants from the ENIGMA MDD working 
group, have also identified a consistent association of obesity with reductions in grey matter volume 
and cortical thickness in the medial prefrontal and orbitofrontal cortex and the temporal pole (García-
García et al., 2022; Opel et al., 2021).

These associations between obesity and macroscopic features of grey matter structure have also 
been supported by longitudinal studies. For example, Franz et al. showed that by the age of 64 years, 
participants whose BMI steadily increased over forty years had thinner cortex in several frontal and 
temporal brain regions compared to those whose BMI was stable (Franz et al., 2019). Other longi-
tudinal studies have shown associations between age-associated increases in BMI and grey matter 
reductions in the medial temporal lobe (entorhinal cortex and hippocampus) and cingulate cortex 
(Arnoldussen et al., 2019; Bobb et al., 2014). Together with the finding (Opel et al., 2021) of a 
significant age-by-obesity interaction on cortical thickness driven by lower thickness in older partici-
pants, this suggests that the negative impact of obesity on the brain accumulates over time.

Together, these studies provide robust evidence for an association between obesity and macro-
structural features of brain anatomy such as grey matter volume and cortical thickness. However, 
changes in grey matter volume and cortical thickness can be driven by multiple different underlying 
processes and our understanding of the microstructural features that underpin this relationship remain 
largely unknown (Westwater et al., 2022). For example, it is currently not known whether obesity-
associated differences in grey matter volume relate to changes in the size, shape or number of neurons 
e.g. neurite density or orientation dispersion within that region or alternately to differences in tissue 
water content. To date, the only studies to have investigated associations of obesity with brain micro-
structure have focused on white matter. Interestingly, these have identified obesity-associated differ-
ences in a number of different microstructural features of white matter including (1) obesity-related 
increases in white matter water content, (2) reduced myelination, and (3) lower fractional anisotropy 
(Zhang et al., 2018; Kullmann et al., 2016). However, whether comparable differences in cortical and 
subcortical grey matter micro-structure can be observed with obesity are yet to be reported.

We hypothesized that obesity would be associated with diffusion-MRI measures of grey matter 
tissue microstructure at 180 cortical regions and 8 subcortical structures (bilaterally) produced 
using neurite orientation dispersion and density imaging (NODDI) modelling of data from ∼30,000 
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participants in the UK Biobank MRI cohort. Unlike conventional diffusion MRI which models data 
acquired at a single diffusion weighting (shell), NODDI requires data collected at multiple different 
diffusion weightings (shells) then exploits the diffusion characteristics that can be observed in different 
tissue compartments to quantify their respective volume fractions. In this model, diffusion is modelled 
as isotropic in free water, restricted within neurites, and hindered in the extracellular space resulting in 
three microstructural metrics: Intracellular Volume Fraction (ICVF), which captures the volume fraction 
occupied by neurites (axons and dendrites) but not cell bodies; Orientation Dispersion Index (OD), 
which captures the spatial distribution of these processes; and isotropic volume fraction (ISOVF), 
which provides a measure of free water index.

Given previous findings of significant association between macroscopic differences in brain struc-
ture and visceral obesity, we elected to report associations with WHR in the main text and report 
complementary results for BMI as a measure of whole body obesity in the SI. Specifically, we tested 
each metric at each region for association with waist-to-hip ratio (WHR), and identified two anatomi-
cally and functionally distinct brain systems associated with obesity, using prior maps of gene expres-
sion, cellular composition and neurotransmitter receptor density to refine functional characterization 
of each obesity-associated system.

Finally, we then completed two further analyses to explore the potential directionality of the rela-
tionship between obesity and brain microstructure. In the first, we we used genome-wide association 
statistics (GWAS) for brain ISOVF and ICVF (Warrier et al., 2022), and for WHR (Pulit et al., 2019), to 
estimate the genetic correlations between each MRI metric and WHR, and test the secondary hypoth-
esis that the WHR would have a tighter genetic correlation with ICVF than ISOVF. In the second, 
we produced brain maps for the association of ISOVF and ICVF with C-reactive protein (CRP), a 
measure of systemic inflammation. Given the pro-inflammatory properties of adipose (particularly 
visceral adipose) tissue we predicted tighter correlations between maps of CRP and ISOVF than maps 
of CRP with ICVF.

eLife digest People with obesity are at greater risk of cardiovascular diseases and metabolic 
conditions such as type 2 diabetes. More recently obesity has also been linked to changes in the brain 
that are associated with age-related dementia and cognitive decline. This includes a thinner cortex 
(the brain’s outer layer) and lower volume of grey matter which is where cognitive processes, such as 
learning, take place.

However, questions remain about how obesity and grey matter are connected. For instance, it is 
unclear whether the change in volume is due to there being fewer cells (and thus more water between 
them) or fewer connections between cells in these brain areas. It is also unknown whether the reduced 
volume of grey matter is a cause or consequence of obesity.

To address these questions, Kitzbichler et al. analysed 30,000 MRI scans of the human brain which 
are stored in the UK Biobank. This revealed two characteristics in grey matter that were linked to 
obesity: higher amounts of water between cells in some areas, and a lower density of connections 
between neurons in others.

The areas with higher levels of free water are known to have more glial cells which provide support 
to neurons. They also have more receptors that bind to fatty acids (which are often raised in people 
with obesity) and more receptors for molecules and cells involved in the immune response. In contrast, 
the areas with a lower density of connections between neurons usually were more closely associated 
with genetic risk factors associated with obesity, and fewer receptors involved in feeding, appetite 
and energy use.

The findings of Kitzblicher et al. suggest that differences in the density of connections between 
neurons may contribute to obesity. High water content in grey matter, on the other hand, may be a 
consequence of obesity that occurs as a result of immune receptors becoming activated. This provides 
new insights in to how obesity and grey matter in the brain are connected.

https://doi.org/10.7554/eLife.85175
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Results
Sample data
We used data provided by the UK Biobank, a population-based cohort of >500,000 subjects aged 
between 39 and 73 years (Sudlow et al., 2015) and focused on a subset of participants for whom 
complete multi-modal MRI data were available. Excluding participants with incomplete MRI data 
resulted in N ∼30,000 participants for each dataset. For further details on participant numbers see 
Appendix 2—table 2.

Association of waist-to-hip ratio with multimodal MRI measures of 
brain structure
Six MRI metrics of brain structure were used for correlational analysis with two measures of obesity 
(WHR and BMI) in N∼30,000 participants from UK Biobank. WHR and BMI were strongly positively 
correlated with each other (‍r = 0.428 ± 0.009‍, ‍P < 2 × 10−16‍) and we therefore focus here on WHR 
although similar results are reported for BMI in Supplemental Information (see comparisons in 
Appendix 2—figures 2 and 3 and Appendix 2—figures 4 and 5 as well as Appendix 2—figure 
9). Of the MRI metrics, there was one macro-structural measure (GM, grey matter volume) and five 
micro-structural measures (MD, mean diffusivity; FA, fractional anisotropy; OD, orientation dispersion; 
ICVF, intra-cellular volume fraction; and ISOVF, isotropic volume fraction). As illustrated in Figure 1a, 
some of these metrics were strongly correlated, indicating that they represented similar aspects of 
the underlying cortical micro-structure or tissue composition. For example, FA, OD, and ICVF metrics 
of neurite density were more strongly correlated with each other than with ISOVF, which is typically 
interpreted as a marker of tissue free water rather than cytoarchitectonics (Kamiya et al., 2020).

To address this potential redundancy, we performed a preliminary correlational analysis of all 6 MRI 
metrics with WHR then focused our subsequent analyses on ICVF and ISOVF, the two complementary 
MRI metrics that were most strongly associated with WHR. Comparable results for the other 4 metrics 
are reported in the Supplemental Information Appendix 2—figure 2.

Tissue free water (ISOVF) was significantly positively correlated with WHR (FDR = 5%) in 136 bilat-
eral regions, concentrated in a prefrontal-temporal-striatal system comprising the prefrontal cortex (37 
regions), superior temporal (primary auditory) cortex (21 regions), basal ganglia (caudate, putamen, 

Figure 1. Micro-structural MRI metrics are associated with waist-to-hip ratio (WHR). (a) Correlation matrix for six macro- and micro/structural MRI metrics 
demonstrating that ISOVF (free-water) is essentially orthogonal to ICVF (neurite density) and OD, which instead form a cluster with FA. (b) Cortical and 
subcortical t-score map (left lateral and medial hemispheres) of ISOVF~WHR, representing the association of regional ISOVF with WHR, thresholded for 
significance at FDR = 5%. Circles indicate regions for which scatterplots are shown on the right. (c) Scatterplot of ISOVF in left inferior premotor region 
6 r (y-axis) versus WHR (x-axis). (d) Cortical and subcortical t-score map of ICVF~WHR, thresholded at FDR = 5%. (e) Scatterplot of ICVF in the right 
hippocampus versus WHR. The maps of ISOVF~WHR and ICVF~WHR were negatively correlated (‍r = −0.366‍, ‍P = 2.3 × 10−13‍). Colors in (b and d) 
refer to t-scores, colors in (c and e) denote normalised density. GM = Grey Matter; MD = Mean Diffusivity; FA = Fractional Anisotropy; OD = Orientation 
Dispersion Index; ISOVF = isotropic volume fraction; ICVF = intra-cellular volume fraction.

https://doi.org/10.7554/eLife.85175
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pallidum, accumbens), hypothalamus and thalamus. Referencing a database of prior task-related fMRI 
studies, this anatomical pattern of fMRI activations has been activated by tasks involving reward, audi-
tory and musical functions (see Appendix 2—figure 3b, c). There were also some areas of significant 
negative correlation between ISOVF and WHR in the lateral and medial secondary visual cortex (see 
Figure 1b).

In contrast, neurite density (ICVF) was significantly positively correlated with WHR (FDR = 5%) in 
152 bilateral regions concentrated in a medial temporal-occipital-striatal system comprising medial 
and lateral occipital cortex (26 regions), medial temporal lobe (hippocampus and amygdala), basal 
ganglia (putamen, pallidum, accumbens), hypothalamus and thalamus (see Figure 1d). This anatom-
ical pattern has previously been activated by fMRI tasks involving episodic memory and navigation 
(see Appendix 2—figure 3d, e).

Maps of ISOVF~WHR and ICVF~WHR were negatively correlated (‍r = −0.366, P = 2.3 × 10−13
‍); see 

Supplemental Information for correlation matrix of all MRI~WHR maps. This suggests that obesity 
is associated with coupled but anatomically distinct changes in measures of brain water and neurite 
density.

Enrichment analysis of genes transcriptionally co-located with brain 
maps of association between obesity and brain water content, ISOVF–
WHR, and between obesity and neurite density, ICVF–WHR
To investigate the basis for these associations of WHR with tissue water content (measured by ISOVF) 
and neurite density (measured by ICVF), we used human brain gene expression data from the Allen 
Brain Atlas to identify the individual gene transcripts that were most strongly co-located with each 
map. To do this, we independently tested 13,561 gene transcripts for significant spatial correlation 
with each map, that is ISOVF~WHR or ICVF~WHR, controlling for multiple comparisons entailed by 
whole genome analysis with FDR = 5% (Figure 2). Similar results were obtained by sensitivity analyses 
of co-location of weighted whole genome expression with maps of the correlations between MRI 
metrics and BMI instead of WHR; see Appendix 2—figure 7.

The tissue water content map (ISOVF~WHR) was significantly positively co-located with 1,031 gene 
transcripts and significantly negatively co-located with 1140 transcripts (FDR = 5%; spin permutation 
corrected). Enrichment analysis of the genes weighted by their spatial co-location with ISOVF~WHR 
identified 15 biological processes that were significantly under-represented, and 1 class that was 
positively enriched, with FDR = 5% to control for 29,687 biological processes and 11,110 molecular 
functions tested for enrichment. The most under-represented process was ‘response to interleukin-6’ 
and the most enriched process was ‘pattern recognition receptor activity’, both processes linked 
to the innate immune system. Other under-represented processes involved ‘protein localisation to 
the Golgi apparatus’, ‘mitochondrial metabolism’, ‘taste receptor activity’, and ‘tau protein kinase 
activity’.

In contrast, the neurite density map (ICVF~WHR) was significantly positively co-located with 1,242 
gene transcripts and significantly negatively co-located with 1354 transcripts (FDR = 5%; spin permuta-
tion corrected). Enrichment analysis of the genes weighted by their spatial co-location with ICVF~WHR 
identified 20 biological processes that were significantly negatively enriched, and 6 classes that were 
positively enriched, with FDR = 5%  to control for 29,687 biological processes and 11,110 molec-
ular functions tested for enrichment. The most negatively enriched process was ‘peptidyl-asparagine 
modification’ and the most positively enriched process was ‘taste receptor activity’. Other negatively 
enriched processes included ‘protein kinase C-activating G-protein-coupled receptor (GPCR) signal-
ling pathway’, ‘fatty acid derivative binding’, and ‘glutamate receptor activity’.

The whole genome weights of association (vectors of correlations per gene) with ISOVF~WHR and 
ICVF~WHR were negatively correlated (‍r = −0.615, P < 2.2 × 10−16

‍). Thus, the gene transcripts 
spatially co-located with ISOVF~WHR  and ICVF~WHR  maps are coupled but biologically distinct. 
The prefrontal-temporal-striatal system where ISOVF was positively correlated with WHR was co-lo-
cated with gene transcripts enriched for innate immune and metabolic processes, whereas the medial 
temporal-occipital-striatal system where ICVF was positively correlated with WHR was co-located with 
transcripts enriched fo ‘G-protein coupled receptor signalling’, ‘fatty acid derivative binding’, and 
‘glutamate receptor activity’.

https://doi.org/10.7554/eLife.85175
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Figure 2. Significantly enriched gene ontology categories according to Webgestalt based on the spatial co-
location of the MRI~WHR maps and whole brain expression maps for each of ∼13,500 genes. (a) Results using 
the ISOVF~WHR maps (free water vs adiposity). Bar graph of significant gene ontologies showing normalized 
enrichment score on the x-axis. (b) Results using the ICVF~WHR maps (neurite density vs adiposity). In both cases, 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.85175
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Co-location of neurotransmitter and cellular atlases with brain maps 
of association between obesity and brain water content, ISOVF–WHR, 
and between obesity and neurite density, ICVF–WHR
To further investigate the brain systems where obesity was strongly associated with brain micro-
structure measured by ISOVF or ICVF, we used prior data on human brain distribution of multiple 
neurotransmitter receptors Hansen et al., 2022. Cortical maps of each of 37 neurotransmitter recep-
tors, for example, mu opioid receptor (MOR), were independently tested for spatial co-location with 
the ISOVF~WHR and ICVF~WHR maps, controlling for multiple comparisons with FDR = 5%.

The prefrontal-temporal-striatal system (ISOVF~WHR) was significantly (positively) co-located with 
the atlas distribution of five neurotransmitter receptors/transporters: 5HTT, serotonin transporter; 
D1, dopamine receptor; H3, histamine receptor; Mu, opioid receptor; and VAChT, acetyl-choline 
transporter.

In contrast, the medial temporal-occipital-striatal system (ICVF~WHR) was significantly (negatively) 
co-located with four neurotransmitter receptors/transporters: H3 histamine receptor; Mu opioid 
receptor; CB1 cannabinoid receptor; and A4B2, α4, β2 nicotinic acetyl-choline receptor.

Interestingly, the mu opioid receptor distribution was the most strongly correlated with both 
ISOVF~WHR and ICVF~WHR, but with opposite signs of association, meaning that regions where 
WHR correlated with neurite density typically expressed low mu opioid receptor density, whereas 
regions showing correlations between WHR and tissue water content typically expressed high mu 
opioid receptor density.

We likewise identified the cell-type distributions that were most strongly co-located with each of 
the ISOVF~WHR or ICVF~WHR maps. We independently tested 31 cell distributions atlases, provided 
by Lake et al., 2018, for significant spatial correlation with each map, controlling for multiple compar-
isons with FDR = 5%. The ISOVF~WHR map was significantly (positively) co-located with the atlas 
distribution of three glial cell classes: astrocytes, oligodendrocyte progenitor cells, and microglia. The 
ICVF~WHR map was not significantly co-located with any specific cell-type distribution.

Genetic correlation analysis of obesity and micro-structural MRI 
phenotypes
The results reported above (and summarised in Table 1) indicate that obesity is associated with 
coupled changes in two anatomically, transcriptionally and neurobiologically differentiated 
brain systems, measured using ISOVF and ICVF micro-structural MRI metrics, respectively. On 
this basis we tested the hypothesis that genome-wide association statistics (GWAS) for normal 

Table 1. Summary of differences between two obesity-associated micro-structural MRI phenotypes 
in terms of their associations with other brain phenotypes (gene ontology, receptor expression, and 
cell types) and their genetic correlations with obesity.

Scaling with 
obesity (WHR) Gene ontology

Neurotransmitter 
receptors or 
transporters Cell types

Genetic 
correlation 
with WHR

ISOVF 
(free 
water)

‍ ‍ prefrontal-
temporo-
striatal system

‍‍ pattern recognition 
receptors (PRR)
‍ ‍ receptors for fatty 
acid derivatives
‍ ‍ IL-6 responses

‍ ‍ H3, Mu, D1 and 
5HTT

‍‍ astrocytes, microglia and 
oligodendrocyte precursor 
cells (not any class of 
neurons)

‍ ‍ not 
significant

ICVF 
(neurite 
density)

‍ ‍ medial 
temporal-
occipito-striatal 
system

‍‍ taste receptor 
activity
‍ ‍ fatty acid receptors, 
glutamate receptor 
activity and GPCR 
signalling

‍ ‍ H3, Mu, CB1 and 
A4B2

‍ ‍ not significant ‍ ‍ significant 
(positive)

p-values for enrichment were tested by permutation taking into account the smoothness of cortical maps (using 
spin permutation correction; see Appendix 2—figure 6).

Figure 2 continued

https://doi.org/10.7554/eLife.85175
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variation in ISOVF or ICVF (Warrier et  al., 2022) were correlated with prior GWAS results 
for obesity (Pulit et  al., 2019), indexed by WHR (see Shungin et  al., 2015). We used linkage 
disequilibrium score (LDSC) analysis to estimate genetic correlations between WHR and ISOVF 
or ICVF. We found a modest, statistically significant positive genetic correlation between ICVF 
and WHR (‍rg = 0.11 ± 0.030, P < 9 × 10−4

‍), but no genetic correlation between ISOVF and WHR 
(‍rg = −0.026 ± 0.03, P = 0.3‍); see Appendix  2—table 2 for details. These results indicate shared 
effects of genetic variation on obesity (WHR) and neurite density (ICVF), but no shared genetic 
effects on obesity and brain water content (ISOVF).

Relationship with peripheral inflammation
In the final analysis we compared the effects on microstructure of three variables of interest at the 
same time, WHR, BMI, and specifically CRP, a measure of systemic inflammation. To this end we looked 
at the pairwise relationships of the maps ISOVF~CRP vs ISOVF~WHR, ICVF~CRP vs ICVF~WHR, etc. 
(see Appendix 2—figure 13). Given the pro-inflammatory properties of adipose (particularly visceral 
adipose) tissue, for CRP we expected tighter correlations between ISOVF maps than ICVF maps. This 
hypothesis is indeed supported by our findings, the correlation is significantly stronger for the ISOVF 
maps than the ICVF maps (CRP-BMI: ‍P < 1.2 × 10−5‍, CRP-WHR: ‍P < 0.024‍, one-tailed). We also find 
that the WHR and BMI maps are different (WHR-BMI: ‍P < 0.05‍, two-tailed).

Discussion
Here, we have reported evidence, consistent with our first hypothesis, that obesity is associated with 
coupled changes in two micro-structural MRI metrics (ISOVF, free water; and ICVF, neurite density) in 
two anatomically, transcriptionally and neurobiologically differentiated brain systems. We have also 
reported genetic correlation analysis that was consistent with our secondary hypothesis, that these 
two distinct brain phenotypes have different genetic relationships with obesity.

Obesity and brain MRI phenotypes
Previous well-powered studies have identified associations between obesity and a pattern of reduced 
grey matter volume or cortical thickness centred on fronto-temporal cortex and sub-cortical struc-
tures. Here, using NODDI modelling of diffusion-weighted MRI data from ∼30,000 participants in the 
UK Biobank we have extended these findings to demonstrate associations between obesity (WHR) 
and two measures of grey matter microstucture, ISOVF (an index of tissue water content) and ICVF an 
index of neurite density (see Table 1 for a summary).

Similar to previously reported associations with brain grey matter macrostructure, positive scaling 
of WHR and tissue water content (i.e. oedema) was most pronounced within frontal and temporal 
cortices and subcortical structures. In contrast, we observed a more anterior-posterior pattern of asso-
ciation between WHR and neurite density, with more obese individuals having higher neurite density 
in posterior compared to anterior brain regions. By relating obesity associated grey matter microstruc-
ture maps to gene expression data from the Allen Brain Atlas, we show that regions where WHR was 
more tightly linked to tissue water content had greater expression of pattern recognition receptors 
(PRR) and receptors for binding fatty acid derivatives, and reduced expression of genes associated 
with biological processes linked to interleukin-6 (IL-6) responses. Interestingly, these regions were also 
richer in astrocytes, microglia and oligodendrocyte precursor cells but not any class of neurons; and 
had high concentrations of some but not all neurotransmitter receptors or transporters tested, for 
example, histamine (H3), mu-opioid, D1, and 5HTT.

In contrast, the medial temporal-occipital-striatal system where obesity was associated with 
increased neurite density was co-located with expression of transcripts positively enriched for 
taste receptor activity and lower fatty acid binding, glutamate receptor activity and other biolog-
ical processes linked to protein kinase C-activating G-protein-coupled receptor signalling. Interest-
ingly, this system was not co-located with any specific cell class but it was co-located with specific 
neurotransmitter receptor maps including H3, Mu, CB1, and A4B2, meaning that regions showing 
the greatest positive scaling between neurite density and WHR showed relatively low expression of 
receptors linked to feeding, appetite, and energy expenditure.

https://doi.org/10.7554/eLife.85175
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What are the potential causal relationships between obesity and brain 
MRI phenotypes?
ISOVF and ICVF are weakly correlated (i.e. independent) markers of free water and neurite density, 
respectively. Both are significantly and mostly positively correlated with WHR in brain systems. 
Obesity-related differences in ISOVF and ICVF were coupled (negatively correlated) but also anatom-
ically, transcriptionally, and neurobiologically differentiated from each other (Table 1). This raises the 
question: Could these two brain phenotypes have a different causal relationship with obesity?

For example, it is conceivable that the changes in brain water associated with obesity could repre-
sent an effect of obesity on the brain, that is WHR→ISOVF, whereas the obesity-related changes in 
neurite density could represent an effect of the brain on obesity, that is ICVF→WHR. Such a bi-di-
rectional mechanistic model of the relationships between obesity and the brain seems somewhat 
plausible. Obesity is usually caused by changes in eating behaviour and physical activity, which are 
controlled by brain systems enriched for opioid, dopamine and cannabinoid receptor-mediated 
signalling. So changes in the brain, indexed by neurite density, could conceivably cause adipogenic 
eating behaviours and thus obesity. Obesity in turn causes a pro-inflammatory state systemically and 
blood concentrations of CRP, IL-6 and other cytokines have previously been associated with changed 
(increased) micro-structural MRI metrics of free water (Kitzbichler et al., 2021). So inflammation could 
potentially mediate effects of obesity on the brain tissue water content (see also Turkheimer et al., 
2022). Our finding that the CRP-WHR map correlation is significantly stronger for the ISOVF maps 
than the ICVF maps would be consistent with this hypothesis.

Using novel techniques for analysis of spatial co-location of whole genome transcript maps and 
MRI phenotypes to optimise subsequent enrichment analysis of strongly co-located gene tran-
scripts, we found that transcripts co-located with ISOVF~WHR were enriched for IL6 and pattern 
recognition receptors (PRRs), both implicated in innate immune signalling; whereas transcripts 
co-located with ICVF~WHR were enriched for taste receptors. This pattern of results is consistent 
with the model that changes in neurite density associated with obesity might reflect primary brain 
changes in taste sensation and reward processing that drive consummatory behaviours leading to 
obesity; whereas changes in brain free water associated with obesity might reflect effects of pro-
inflammatory cytokines produced by adipose tissue that drive extravasation and oedema in some 
brain regions.

One limitation of this study is that data was collected at multiple centres and even though we used 
site as a nuisance regressor there might be unaccounted for non-linear effects. However Duff et al., 
2022 showed that quantities derived from UK Biobank scans at different sites are reliable.

It should also be mentioned that the age range of the AHBA donors (24-57 years) is only partially 
overlapping with the participants in the UK Biobank (44-80 years). Future studies will hopefully 
provide a more comprehensive picture of whole brain gene expression as a function of age so that the 
powerful strategy for linking transcriptional and imaging data that the AHBA dataset has enabled can 
be extended to gene expression datasets more closely aligned demographically with the neuroim-
aging dataset of interest. These and other methodological issues relating to alignment of AHBA gene 
expression data with MRI phenotypes have been rigorously reviewed in detail (Fornito et al., 2019; 
Arnatkeviciute et al., 2023).

Concerning the question whether both brain systems are in operation in the same individual at 
the same time, we are not aware of any currently available tools that would allow us to actually test 
this assumption, but it could be an interesting avenue for future work. Another limitation of our study 
is that it is based on a cross-sectional dataset, and it is therefore impossible to disentangle causally 
directed relationships with certainty from correlations between MRI and transcriptional phenotypes. 
We also approached this question by using GWAS data on obesity and each of the two MRI metrics 
to estimate and test genetic correlations between obesity and ISOVF or ICVF. We found that ICVF 
was genetically correlated with obesity, but not ISOVF. This result is consistent with the bidirectional 
mechanistic model, whereby changes in neurite density (but not brain water) cause obesity, but it 
does not prove it. There are many other possible interpretations of a genetic correlation between 
phenotypes, that is pleiotropic genetic effects on both phenotypes, which do not entail a causal rela-
tionship between phenotypes. Further work will be needed to validate this and other causal models 
of the directional relationships between obesity and the brain, which could be important for future 
prevention, diagnosis, and treatment of obesity.

https://doi.org/10.7554/eLife.85175
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Materials and methods
Data available in UK Biobank
Participants
Data were provided by the UK Biobank (application IDs 20904 & 48943), a population-based cohort of 
>500,000 subjects aged between 39 and 73 years (Sudlow et al., 2015). We focused on a subset of N 
= 40,680 participants for each of whom complete multimodal MRI data were available for download 
(February 2020). We excluded participants with incomplete MRI data resulting in the numbers for each 
dataset shown in Appendix 2—table 2.

Imaging data acquisiton
Minimally processed T1- and T2-FLAIR- weighted MRI data (and DWI data) were downloaded from UK 
Biobank (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). The acquisition of these MRI 
data has been described in detail in Alfaro-Almagro et al., 2018, and is summarised here. MRI data at all 
three sites were collected on a 3T Siemens Skyra scanner (Siemens, Munich, Germany) using a 32-channel 
receive head coil. T1-weighted images were acquired using a 3D MPRAGE sequence with the following 
key parameters; voxel size 1mm × 1mm × 1mm, TI/TR = 880/2000 ms, field-of-view = 208 × 256 × 256 
matrix, scanning duration = 5 min. The diffusion weighted imaging data were acquired using a monopolar 
Steejskal-Tanner pulse sequence and multi-shell acquisition (b=0 s/mm2, b=1.000 s/mm2, b=2.000 s/mm2) 
with the following key parameters; voxel size 2mm × 2mm × 2mm, TE/TR = 92/3600 ms, field-of-view = 
104 × 104 × 72 matrix, and scanning duration = 7 minutes (Alfaro-Almagro et al., 2018).

Imaging pre-processing
Structural MRI
Minimal processing for T1-weighted data included defacing, cutting down the field-of-view and 
gradient distortion correction using Brain Extraction Tool (Smith, 2002) and FLIRT (FMRIB’s Linear 
Image Registration Tool) (Jenkinson et al., 2002). The data were then nonlinearly warped to MNI152 
space using FNIRT (FMRIB’s Nonlinear Image Registration Tool) (Andersson and Sotiropoulos, 2016). 
Next, tissue-type segmentation was done using FAST (FMRIB’s Automated Segmentation Tool) (Zhang 
et al., 2001) and a bias-field-corrected version of the T1 was generated (Alfaro-Almagro et al., 2018).

Further processing
We used these data as input to Freesurfer V6.0.1 (Fischl et al., 2004) using the T2-FLAIR weighted 
images to improve pial surface reconstruction. Following reconstruction, the Human Connectome 
Project (HCP) parcellation (Glasser et al., 2016) was aligned to each individual image and regional 
metrics were estimated for 180 bilateral cortical areas and eight bilateral subcortical structures (giving 
a total of 376 areas).

Diffusion weighted MRI
Minimal processing for diffusion weighted imaging (DWI) data included correction for eddy currents 
(Andersson and Sotiropoulos, 2015; Andersson and Sotiropoulos, 2016), head motion, outlier-
slices removal and gradient distortion correction (Alfaro-Almagro et al., 2018).

Further processing
We then co-registered the DWI data with the T1-aligned parcellation template to estimate fractional 
anisotropy (FA) and mean diffusivity (MD) at each region using DTIFIT [https://fsl.fmrib.ox.ac.uk/fsl/​
fslwiki/FDT/UserGuide#DTIFIT]. For each scan, the first B0 image of the diffusion-sensitive sequence 
was linearly coregistered to the T1 image with FLIRT. The resulting inverse transformation was used to 
map the parcellation into the DWI space. Neurite orientation dispersion and density imaging (NODDI) 
reconstruction was done using the AMICO pipeline (Daducci et al., 2015). Documentation and code 
for these processing pipelines is available on Github (https://github.com/ucam-department-of-psychi-
atry/UKB, copy archived at Romero-Garcia, 2023).

Imaging quality control
We used T1-weighted and T2-weighted scans for the Freesurfer anatomical image reconstruction, 
because this approach improves anatomical reconstruction (Glasser et al., 2013). However, subjects 

https://doi.org/10.7554/eLife.85175
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
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without T2 scans had cortical thickness systematically biased towards lower values compared to 
subjects with both T1 and T2 images. Thus, we excluded participants without T2 scans from all anal-
yses. In order to avoid spurious effects from pathologies causing systemic inflammation, we also 
excluded subjects with high CRP (>). We repeated the analysis without subjects who had reported an 
episode of stroke or diagnosis of dementia, producing identical results.

Analysis pipeline
A detailed description of the full processing pipeline can be found in Supplemental Information 
Appendix 2; briefly, it comprised the following steps: Load and match UKB imaging data with socio-
demographic and health data. Regress imaging modalities from NODDI dataset onto waist-to-hip 
ratio (WHR) with age, sex, scan quality, and scan site as nuisance regressors. This is done for males and 
females at the same time, but including sex as a covariate (for sensitivity analysis separating by sex 
see Appendix 2—figure 3). Adopting the pseudo-code format used by the R statistical language, the 
regression formula was: ‍ISOVF + ICVF ∼ WHR + Age + Sex + Quality + Site‍ where Quality is quantified 
by the Freesurfer Euler number (a higher number means more surface reconstruction errors) and Site 
was one of three sites encoded as categorical variable.

The terms on the left can be represented as matrices having ‍Nsubjects‍ rows and ‍NROIs‍ columns, 
whereas the terms on the right are vectors with ‍Nsubjects‍ entries. Then for each term on the left (ie. 
imaging modality) the result is a matrix of t-statistics or p-values with dimension ‍Ncovariates × NROIs‍. 
The relevant row from this matrix is the one relating to the WHR coefficient which can be plotted as 
a brain map as shown in Figure 1 and Appendix 2—figure 3 for each imaging modality, respectively.

ABAGEN gene expression maps
We then related these maps to anatomically localized gene expression data from the Allen Brain Atlas 
(Hawrylycz et al., 2012) using the ABAGEN package (Markello et al., 2021) to map gene expression 
onto the same parcellation as the imaging data (Glasser HCP). The 43 (predominantly small) regions 
without gene expression data were excluded from analysis and are grayed out on the brain maps. 
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Figure 3. Co-location of neurotransmitter receptor or transporter distributions with obesity-associated micro-structural MRI systems. Left: Correlations 
of cortical neurotransmitter maps with the ISOVF~WHR and ICVF~WHR maps shown above (same color scale as in Figure 1). Significance is indicated 
by shading (based on spin permutation and Bonferroni correction). The Mu and H3 receptors show the maximum (absolute) correlation with the ISOVF 
and ICVF maps of microstructural effect of obesity (top right). Bottom right: scatter plots of raw data.
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Subsequently, we performed a correlation analysis with the ABAGEN maps (∼13,500 maps, one for 
each gene) as predictors and the NODDI-WHR maps as responses. We then repeated this step 1000 
times for spin-permuted versions of the NODDI-WHR maps to generate a set of 1000 surrogate gene 
correlations. This was done separately but in parallel for both ISOVF and ICVF. The resulting real and 
surrogate data loadings were input to the gene enrichment analysis tool Webgestalt (Wang et al., 
2017), which was modified to incorporate the spin permutation process instead the default process 
of random permutations to calculate p-values. This yielded a number of significantly enriched gene 
ontology categories with FDR corrected ‍PFDR < 0.05‍, as shown in Figure 2. Supplemental Information 
Appendix 2—figure 6 contains a schematic of the analysis pipeline.

Neurotransmitter maps
Hansen et al., 2022 compiled 37 neurotransmitter receptor atlases from the literature and provided 
them as 3D volumes in MNI space. These were then parcellated in the same way as the imaging 
data (using the Glasser HCP template). We independently tested the resulting 37 neurotransmitter 
maps (Appendix 2—figure 11) for significant spatial correlation with the MRI~WHR maps, controlling 
for spatial autocorrelation using 10,000 spin permutations and correcting for multiple comparisons 
with FDR = 5%. Maps for the same receptor from different literature sources were correlated inde-
pendently but the results were combined, resulting in the 19 separate receptors shown in Figure 3 
(see Appendix 2—figure 9 for a sensitivity analysis using the original 37 maps individually).

Cell type maps
Lake et al., 2018 provided 31 brain cell distributions atlases based on single-cell DNA transcription 
analysis. These were then parcellated in the same way as the imaging data (using the Glasser HCP 
template). We independently tested the resulting 31 cell-type maps (Appendix  2—figure 12) for 
significant spatial correlation with the MRI~WHR maps, controlling for spatial autocorrelation using 
10,000 spin permutations and for multiple comparisons with FDR = 5%. We concentrated on the 
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Figure 4. Co-location of brain cell distributions with obesity-associated micro-structural MRI systems. Left: Correlations of brain cell type maps for 
seven cell type categories from Lake et al., 2018 with the ISOVF~WHR map shown above (same color scale as in Figure 1). Significance is indicated 
by shading (based on spin permutation and Bonferroni correction). The astrocytes, microglia, and OPC cell type maps show the maximum (absolute) 
correlation with the ISOVF~WHR maps (central panel). Right: scatter plots of raw data. (Results for ICVF were not significant for any category and are 
only shown in the Supplemental Information.).
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seven categories at the highest level (Astro, Endo, Micro, Neuro.Ex, Neuro.In, Oligo, OPC; Figure 4) 
and did not separately analyse the individual excitatory and inhibitory neuronal sub-types (Ex1-8 and 
In1-8).

Genetic correlation analysis
We used genome-wide association statistics for ICVF and ISOVF (Warrier et al., 2022), and for waist-
to-hip ratio (plain and adjusted for BMI; Pulit et al., 2019). Genetic correlations were estimated using 
linkage disequilibrium (LD) score regression (Bulik-Sullivan et  al., 2015) based on LD information 
from North-West European populations.
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Appendix 1
Imaging data acquisiton
MRI data was collected on a 3T Siemens Skyra scanner (Siemens, Munich, Germany) using a 
32-channel receive head coil. T1-weighted images were acquired using a 3D MPRAGE sequence 
with the following key parameters; voxel size 1mm × 1mm × 1mm, TI/TR = 880/2000 ms, Field-of-
view = 208 × 256 × 256 matrix, scanning duration: five minutes. The diffusion weighted imaging data 
was acquired using a monopolar Steejskal-Tanner pulse sequence and multi-shell acquisition (b=0 
s/mm2, b=1.000 s/mm2, b=2.000 s/mm2) with the following key parameters; voxel size 2mm × 2mm 
× 2mm, TE/TR = 92/3600 ms, Field-of-view = 104 × 104 × 72 matrix and scanning duration = seven 
minutes (Alfaro-Almagro et al., 2018).

Imaging preprocessing
We obtained T1 and T2-FLAIR weighted data from the UK Biobank after structural minimal processing. 
Minimal processing for T1 weighted data included defacing, cutting down the field-of-View and 
gradient distortion correction using Brain Extraction Tool (Smith, 2002) and FLIRT (FMRIB’s Linear 
Image Registration Tool; Jenkinson et al., 2002). The data was then nonlinearly warped to MNI152 
space using FNIRT (FMRIB’s Nonlinear Image Registration Tool; Andersson et  al., 2007). Next, 
tissue-type segmentation is applied using FAST (FMRIB’s Automated Segmentation Tool; Zhang 
et al., 2001) and a bias-field-corrected version of the T1 is generated (Alfaro-Almagro et al., 2018). 
Minimal processing for Diffusion MRI data included correction for eddy currents (Andersson and 
Sotiropoulos, 2015; Andersson and Sotiropoulos, 2016), head motion, outlier-slices removal and 
gradient distortion correction (Alfaro-Almagro et al., 2018).

Imaging quality control
We used T1-weighted and T2-weighted scans for the freesurfer anatomical image reconstruction, 
because this approach improves anatomical reconstruction (Glasser et al., 2013). However, subjects 
without T2 scans had cortical thickness systematically biased towards lower values compared to 
subjects with both T1 and T2 images. Thus, we excluded participants without T2 scans from all 
analyses.

Genetic correlation analysis
We conducted genetic correlations using genome-wide summary statistics for ICVF and ISOVF 
(Warrier et al., 2022) as well as waist-to-hip ratio (plain and adjusted for BMI; Pulit et al., 2019). 
Genetic correlations were conducted using LD score regression (Bulik-Sullivan et al., 2015) based 
on LD information from North-West European populations.

https://doi.org/10.7554/eLife.85175
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Appendix 2
Analysis pipeline

•	 load and match UKB imaging data with sociodemographic and health data
•	 regress imaging modalities from NODDI dataset onto WHR with age as nuisance regressor 

and dropping subjects with excessive CRP and no T2. This is done for males and females at 
the same time with sex as nuisance regressor:

	﻿‍ ISOVF + ICVF ∼ WHR + Age + Sex + Euler + Site . . . ∀ CRP ≤ 10 ∧ ∃ T2 scan‍�

•	 the resulting statistics for the WHR coefficient can be plotted as a brain map separately for 
each imaging modality as shown in Figure 1.

•	 add Allen Brain Atlas gene expression data to the mix
•	 use ABAGEN package (Markello et al., 2021) to map gene expression onto same parcellation 

as previous imaging data (Glasser HCP):

■■ after matching samples to regions, only keep regions that have at least one samplefrom at 
least one of the six donors (43 regions did not)

The other parameters used are:

■■ filter out subcortical samples upfront using AHBA annotations of samples
■■ use Arnatkeviciute et al., 2019 for native parcellation images mapped to each of the six 

donor brains
■■ when multiple probes are available for a gene, use them probe with highest differential 

stability (=mean correlation over spatial regions between all pairs of donors)
■■ average samples into regions first within each donor separately, then across donors
■■ normalize all samples to have same mean expression over genes, then normalize genes to 

have same mean expression over samples, both using scaled robust sigmoid method (see 
Arnatkeviciute et al., 2019)

•	 do correlation analysis with the ABAGEN maps (∼13,000 maps, one for each gene) on the right 
(predictors ‍X ‍) and the NODDI-WHR maps on the left (responses ‍Y ‍):

■■ as a sensitivity analysis, the process was repeated for BMI instead of WHR (Appendix 2—
figure 4), and correlation was substituted by PLS regression. Statistical significance was 
tested by performing 1000 spin permutations of the ABAGEN data (‍X ‍) and 1000 boot-
strap resamples of the imaging data (‍Y ‍). The explained variance per component for both 
‍X ‍ (Appendix 2—figure 5e) and ‍Y ‍ (Appendix 2—figure 5f) is significantly higher for the 
empirical dataset (red) compared to the surrogate data distribution (boxes).

•	 feeding the loadings from the correlation analysis into the gene enrichment analysis tool 
Webgestalt (Wang et  al., 2017) yielded a number of significantly enriched gene ontology 
categories (at spin and FDR corrected ‍PFDR < 0.05‍) as shown in Figure 2. The analysis was 
done separately but in parallel for ISOVF and ICVF.

Appendix 2—table 1. UK Biobank data.

Variable N Female Male

Age 34,229 18,143 16,086

Body Mass Index (BMI), kg/m2 33,090 17,501 15,589

Waist to Hip Ratio (WHR) 33,183 17,560 15,623

Visceral Adipose Tissue (VAT) 7539 3957 3582

Extracellular free water (isotropic volume fraction ISOVF) 34,194 18,126 16,068

Intracellular neurite density (intracellular volume fraction ICVF) 34,194 18,126 16,068

Intracellular neurite dispersion (orientation dispersion OD) 34,194 18,126 16,068

Fractional anisotropy (FA) 34,194 18,126 16,068

https://doi.org/10.7554/eLife.85175
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Variable N Female Male

Mean diffusivity (MD) 34,194 18,126 16,068

Gray matter volume (GM) 34,229 18,143 16,086

Appendix 2—table 2. Gene correlation analysis results.

*trait 1 †trait 2 rg std error z-score p-value

WHR ISOVF 0.0259 0.0282 0.9184 0.3584

WHR ICVF 0.1118 0.0337 3.3187 9×10−4 ***

*from Pulit et al., 2019.
†from Warrier et al., 2022.

Appendix 2—figure 1. Internal structure of input data. Waist-to-hip ratio (WHR) in (a) has a much tighter linear 
relationship with relative visceral adipose tissue from MRI scans than BMI in (b). Bottom row: internal correlation in 
adiposity data (c), imaging data (d), and imaging-WHR maps (e). GM = Grey Matter; MD = Mean Diffusivity; FA = 
Fractional Anisotropy; OD = Orientation Dispersion Index; ISOVF = isotropic volume fraction; ICVF = intra-cellular 
volume fraction; BMI = body mass index; WHR = waist-to-hip ratio; CRP = C-reactive protein; VATI = visceral 
adipose tissue index; TOTFVI = total fat volume index.

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 2. Association of various MRI metrics with BMI. (a) Brain maps showing dependence of 
NODDI metrics and gray matter density on body mass index, separately for males and females. Bottom: (b) 
enlarged ISOVF-BMI map and (c) corresponding terms from Neurosynth arranged as a word cloud.

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 3. Association of various MRI metrics with BMI. (a) Brain maps showing dependence of 
NODDI metrics and gray matter density on body mass index, separately for males and females. Bottom: terms 
from Neurosynth arranged as a word cloud corresponding respectively to (b) ISOVF, (c) ISOVF sub-cortical, 
(d) ICVF, and (e) ICVF sub-cortical maps.

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 4. Body mass index. Gene correlational maps of first two X scores (A) and Y scores 
(B). Scatterplot of X vs Y scores across ROIs (C). (D) Cross validation of the PLS analysis. Only the first component 
contributes significantly to reduce the mean square error of the prediction. (E) and (F) Explained variance in X and 
Y respectively per component in real data (red) compared to surrogate data (boxes).

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 5. Waist-to-hip ratio: gene correlational maps of first two X scores (A) and Y scores (B). 
Scatterplot of X vs Y scores across ROIs (C). (D) Cross validation of the PLS analysis. Only the first component 
contributes significantly to reduce the mean square error of the prediction. (E) and (F) Explained variance in X and 
Y respectively per component in real data (red) compared to surrogate data (boxes).

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 6. Schematic of analysis pipeline for gene ontology analysis with Webgestalt based on the 
correlation of NODDI-WHR and gene expression maps. Significance calculation is based on permutations taking 
into account the smoothness of cortical patterns (spin permutations).

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 7. Waist-to-hip ratio: significantly enriched gene ontology categories according to 
Webgestalt based on the correlation of NODDI-WHR and gene expression maps. Left: results using the ISOVF-
WHR maps (free water vs adiposity). (a) bar graph of significant gene ontologies showing normalized enrichment 
score on the x-axis. (b) Directed acyclic hierarchical graph (DAG) of GOs in the Biological Processes category. 
(c) DAG of GOs in the Molecular Function category. Right: (d-f) are exactly the same as (a-c) on the left, using 
instead the ICVF-WHR maps (neurite density vs adiposity). Significance calculation is based on permutations taking 
into account the smoothness of cortical patterns (spin permutations).

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 8. Significantly enriched gene ontology categories according to Webgestalt based on the 
correlation of NODDI-WHR and gene expression maps. (a–b) same results as in Figure 2a but with semantically 
reduced GO categories illustrating hierarchical dependencies. Results are split by category: biological processes 
(a) and molecular function (b). (c–d) same results as in Figure 2b but with semantically reduced GO categories split 
by category: biological processes (c) and molecular function (d).

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 9. Body mass index: correlations of cortical neurotransmitter maps from the literature with 
the NODDI ICVF-BMI maps shown above. Significance after Bonferroni correction is indicated by shading. Left: 
individual studies, right: same neurotransmitters from different studies combined. The CB1 (cannabinoid) receptors 
show the maximum (absolute) correlation with the maps of microstructural effect of obesity.

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 10. Left: Correlations of Brain cell type maps for 31 cell types from Lake et al., 2018 
with the NODDI ISOVF and ICVF-WHR maps shown above. Significance is indicated by shading (based on spin 
permutation and Bonferroni correction). Right: The Astrocytes, Microglia, and OPC cell type maps show the 
maximum (absolute) correlation with the ISOVF maps of microstructural effect of obesity.

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 11. Neurotransmitter maps for 36 neurotransmitters from Hansen et al., 2022.

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 12. Brain cell type maps for 31 cell types from Lake et al., 2018.

https://doi.org/10.7554/eLife.85175
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Appendix 2—figure 13. Scatterplot over 376 regions of pairwise relationships between t-score maps for 
variables WHR, BMI, and CRP respectively. Top: similarity between ISOVF maps, bottom: similarity between ICVF 
maps. Calculating statistics based on Fisher transformed correlation values, for both CRP pairs the correlation is 
significantly stronger for the ISOVF maps than the ICVF maps (CRP-BMI: ‍P < 1.2 × 10−5‍, CRP-WHR: ‍P < 0.024‍, 
one-tailed) and we also find that the BMI and WHR maps are marginally different (BMI-WHR: ‍P < 0.05‍, two-tailed).

https://doi.org/10.7554/eLife.85175

	Two human brain systems micro-­structurally associated with obesity
	Editor's evaluation
	Introduction
	Results
	Sample data
	Association of waist-to-hip ratio with multimodal MRI measures of brain structure
	Enrichment analysis of genes transcriptionally co-located with brain maps of association between obesity and brain water content, ISOVF–WHR, and between obesity and neurite density, ICVF–WHR
	Co-location of neurotransmitter and cellular atlases with brain maps of association between obesity and brain water content, ISOVF–WHR, and between obesity and neurite density, ICVF–WHR
	Genetic correlation analysis of obesity and micro-structural MRI phenotypes
	Relationship with peripheral inflammation

	Discussion
	Obesity and brain MRI phenotypes
	What are the potential causal relationships between obesity and brain MRI phenotypes?

	Materials and methods
	Data available in UK Biobank
	Participants

	Imaging data acquisiton
	Imaging pre-processing
	Structural MRI
	Further processing

	Diffusion weighted MRI
	Further processing


	Imaging quality control
	Analysis pipeline
	ABAGEN gene expression maps

	Neurotransmitter maps
	Cell type maps

	Genetic correlation analysis

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References
	Appendix 1
	Imaging data acquisiton
	Imaging preprocessing
	Imaging quality control
	Genetic correlation analysis

	﻿Appendix 2﻿
	Analysis pipeline



