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Abstract Making adaptive choices in dynamic environments requires flexible decision policies. 
Previously, we showed how shifts in outcome contingency change the evidence accumulation 
process that determines decision policies. Using in silico experiments to generate predictions, here 
we show how the cortico-basal ganglia-thalamic (CBGT) circuits can feasibly implement shifts in 
decision policies. When action contingencies change, dopaminergic plasticity redirects the balance 
of power, both within and between action representations, to divert the flow of evidence from 
one option to another. When competition between action representations is highest, the rate of 
evidence accumulation is the lowest. This prediction was validated in in vivo experiments on human 
participants, using fMRI, which showed that (1) evoked hemodynamic responses can reliably predict 
trial-wise choices and (2) competition between action representations, measured using a classifier 
model, tracked with changes in the rate of evidence accumulation. These results paint a holistic 
picture of how CBGT circuits manage and adapt the evidence accumulation process in mammals.

Editor's evaluation
This valuable study presents solid evidence for how change in reward contingency in the environ-
ment affects the dynamics of a realistic large-scale neural circuit model, human choice behavior, and 
fMRI responses. This study could be of interest to scientists studying the neural and computational 
bases of adaptive behavior.

Introduction
Choice is fundamentally driven by information. The process of deciding between available actions 
is continually updated using incoming sensory signals, processed at a given accumulation rate, until 
sufficient evidence is reached to trigger one action over another (Gold and Shadlen, 2007; Ratcliff, 
1978). The parameters of this evidence accumulation process are highly plastic, adjusting to both the 
reliability of sensory signals (Nassar et al., 2010; Wilson and Niv, 2011; Nassar et al., 2012; Behrens 
et al., 2007; Bond et al., 2021) and previous choice history (Urai et al., 2019; Ratcliff and Frank, 
2012; Pedersen et al., 2017; Dunovan and Verstynen, 2019; Dunovan et al., 2019; Mendonça 
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et al., 2020), to balance the speed of a given decision with local demands to choose the correct 
action.

We recently showed how environmental changes influence the decision process by periodically 
switching the reward associated with a given action in a two-choice task (Bond et al., 2021). This 
reward contingency change induces competition between old and new action values, leading to a 
shift in preference toward the new most rewarding option. Internal competition prompts humans to 
dynamically reduce the rate at which they accumulate evidence (drift rate in a normative drift diffusion 
model [DDM]; Ratcliff, 1978) and sometimes also increases the threshold of evidence they need to 
trigger an action (boundary height). The result is a change of the decision policy to a slow, exploratory 
state. Over time feedback learning pushes the system back into an exploitative state until the environ-
ment changes again (see also Dunovan and Verstynen, 2019 and Dunovan et al., 2019).

Here we adopt a generative modeling approach to investigate the underlying neural mechanisms 
that drive dynamic decision policies in a changing environment. We start with a set of theoretical 
experiments, using biologically realistic spiking network models, to test how competition within 
the cortico-basal ganglia-thalamic (CBGT) circuits influences the evidence accumulation process 
(Dunovan and Verstynen, 2016; Bariselli et al., 2019; Mikhael and Bogacz, 2016; Rubin et al., 
2021; Yartsev et al., 2018). Our choice of model, over simple abstracted network models (e.g., rate-
based networks), reflects an approach designed to capture both microscale and macroscale dynamics, 
allowing for the same model to bridge observations across multiple levels of analysis (see also Noble 
et al., 2020; Schirner et al., 2018; Franklin and Frank, 2015). These theoretical experiments both 
explain previous results (Bond et  al., 2021) and make specific predictions as to how competition 
between action representations drives changes in the decision policy. We then test these predictions 
in humans using a high-powered, within-participant neuroimaging design, collecting data over thou-
sands of trials where action–outcome contingencies change on a semi-random basis.

Results
CBGT circuits can control decision parameters under uncertainty
Both theoretical (Bogacz and Gurney, 2007; Bogacz et al., 2010; Ratcliff and Frank, 2012; Dunovan 
and Verstynen, 2016; Dunovan et al., 2019; Vich et al., 2022) and experimental (Yartsev et al., 
2018; Thura et al., 2022) evidence suggests that the CBGT circuits play a critical role in the evidence 
accumulation process (for a review, see Gupta et al., 2021). The canonical CBGT circuit (Figure 1A) 
includes two dissociable control pathways: the direct (facilitation) and indirect (suppression) pathways 
(Albin et al., 1995; Friend and Kravitz, 2014). A critical assumption of the canonical model is that 
the basal ganglia are organized into multiple ‘channels,’ mapped to specific action representations 
(Mink, 1996; Alexander et al., 1986), each containing a direct and indirect pathway. It is important 
to note that, for the sake of parsimony, we adopt a simple and canonical model of CBGT pathways, 
with action channels that are agnostic as to the location of representations (e.g., lateralization), simply 
assuming that actions have unique population-level representations. While a strict, segregated action 
channel organization may not accurately reflect the true underlying circuitry, striatal neurons have 
been shown to organize into task-specific spatiotemporal assemblies that qualitatively reflect inde-
pendent action representations (Adler et al., 2013; Klaus et al., 2017; Barbera et al., 2016; Carrillo-
Reid et al., 2011; Badreddine et al., 2022).

Within these action channels, activation of the direct pathway, via cortical excitation of D1-ex-
pressing spiny projection neurons (SPNs) in the striatum, releases GABAergic signals that can suppress 
activity in the CBGT output nucleus (internal segment of the globus pallidus, GPi, in primates or 
substantia nigra pars reticulata, SNr, in rodents) (Kravitz et al., 2012; Gurney et al., 2001; Alexander 
et al., 1986; Mink, 1996). This relieves the thalamus from tonic inhibition, thereby exciting postsyn-
aptic cortical cells and facilitating action execution. Conversely, activation of the indirect pathway via 
D2-expressing SPNs in the striatum controls firing in the external segment of the globus pallidus (GPe) 
and the subthalamic nucleus (STN), resulting in strengthened basal ganglia inhibition of the thalamus. 
This weakens drive to postsynaptic cortical cells and reduces the likelihood that an action is selected 
in cortex.

Critically, the direct and indirect pathways converge in the GPi/SNr (Kitano et al., 1998; Foster 
et al., 2021). This suggests that these pathways compete to control whether each specific action is 

https://doi.org/10.7554/eLife.85223
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Figure 1. Biologically based cortico-basal ganglia-thalamic (CBGT) network dynamics and behavior. (A) Each CBGT nucleus is organized into left and 
right action channels with the exception of a common population of striatal fast spiking interneurons (FSIs) and cortical interneurons (CxI). Values show 
encoded weights for left and right action channels when a left action is made. Network schematic adapted from Figure 1 of Vich et al., 2022. (B) Firing 
rate profiles for dSPNs (left panel) and iSPNs (right panel) prior to stimulus onset (t = 0) for a left choice. SPN activity in left and right action channels 

Figure 1 continued on next page
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selected (Dunovan et al., 2015). The apparent winner-take-all selection policy and action-channel 
like coding (Adler et al., 2013; Klaus et al., 2017; Barbera et al., 2016; Carrillo-Reid et al., 2011; 
Badreddine et  al., 2022) also imply that action representations themselves compete. Altogether, 
this neuroanatomical evidence suggests that competition both between and within CBGT pathways 
control the rate of evidence accumulation during decision-making (Dunovan et al., 2019; Bariselli 
et al., 2019; Vich et al., 2022).

To simulate this process, we designed a spiking neural network model of the CBGT circuits, shown 
in Figure  1A, with dopamine-dependent plasticity occurring at the corticostriatal synapses (Vich 
et al., 2020; Rubin et al., 2021). Critically, although this model simulates dynamics that happen on a 
microscale, it can be mapped upward to infer macroscale properties, like inter-region dynamics and 
complex behavior, making it a useful theoretical tool for bridging across levels of analysis. The network 
performed a probabilistic two-arm bandit task with switching reward contingencies (see Figure 3—
figure supplement 1) that followed the same general structure as our prior work (Bond et al., 2021), 
with the exception that block switches were deterministic for the model, happening every 10 trials, 
whereas in actual experiments they are generated probabilistically so as to increase the uncertainty 
of participant expectations of the timing of outcome switches. In brief, the network selected one of 
two targets, each of which returned a reward according to a specific probability distribution. The rela-
tive reward probabilities for each target were held constant at 75 and 25% and the action–outcome 
contingency was changed every 10 trials, on average. For the purpose of this study, we focus primarily 
on the neural and behavioral effects associated with a switch in the identity of the optimal target. We 
used four different network instances (see Supp. Methods) as a proxy for simulating individual differ-
ences over human participants.

Figure 1B shows the firing rates of dSPNs and iSPNs in the left action channel, time-locked to 
selection onset (when thalamic units exceed 30 Hz, t = 0), for both fast (<196 ms) and slow (>314.5 
ms) decisions (see Figure 1—figure supplement 1 for node-by-node firing-rates). As expected, the 
dSPNs show a ramping of activity as decision onset is approached and the slope of this ramp scales 
with response speed. In contrast, we see that iSPN firing is sustained during slow movements and 
weakly ramps during fast movements. However, iSPN firing was relatively insensitive to left versus 
right decisions. This is consistent with our previous work showing that differences in direct path-
ways track primarily with choice while indirect pathway activity modulates overall response speeds 
(Dunovan et al., 2019; Vich et al., 2022) as supported by experimental studies (Yttri and Dudman, 
2016; Forstmann et al., 2010; Maia and Frank, 2011).

We then modeled the behavior of the CBGT network using a hierarchical version of the DDM 
(Wiecki et al., 2013), a canonical formalism for the process of evidence accumulation during decision-
making (Ratcliff, 1978; Figure 2A). This model returns four key parameters with distinct influences on 
evidence accumulation. The drift rate (‍v‍) represents the rate of evidence accumulation, the boundary 
height (‍a‍) represents the amount of evidence required to cross the decision threshold, nondecision 
time (‍t‍) is the delay in the onset of the accumulation process, and starting bias (‍z‍) is a bias to begin 
accumulating evidence for one choice over another (see ‘Materials and methods’ section).

We tracked internal estimates of action-value and environmental change using trial-by-trial estimates 
of two ideal observer parameters, the belief in the value of the optimal choice (‍∆B‍) and change point 
probability (‍Ω‍), respectively (see Bond et al., 2021; Nassar et al., 2010 and ‘Materials and methods’ 
for details). Using these estimates, we evaluated how a suspected change in the environment and 
the belief in optimal choice value influenced underlying decision parameters. Consistent with prior 

is shown in red and blue, respectively. Slow and fast decisions are shown with dashed and solid lines, respectively. (C) Choice probability for the CBGT 
network model. The reward for left and right actions changed every 10 trials, marked by vertical dashed lines. The horizontal dashed line represents 
chance performance.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Simulated cortico-basal ganglia-thalamic (CBGT) nuclei firing rates for a left decision.

Figure supplement 2. Distributions of cortico-basal ganglia-thalamic (CBGT) nuclei firing rates for slow, intermediate, and fast networks.

Figure supplement 3. Mean reaction time and accuracy for slow, intermediate, and fast networks.

Figure supplement 4. Simulated and human behavior.

Figure 1 continued

https://doi.org/10.7554/eLife.85223


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience

Bond et al. eLife 2023;0:e85223. DOI: https://​doi.​org/​10.​7554/​eLife.​85223 � 5 of 21

observations in humans (Bond et al., 2021), we found that both ‍v‍ and ‍a‍ were the most pliable param-
eters across experimental conditions for the network. Specifically, we found that the model mapping 
‍∆B‍ to drift rate and ‍Ω‍ to boundary height and the model relating ‍∆B‍ to drift rate provided equivocal 
best fits to the data over human participants (‍∆DICnull = −29.85 ± 12.76‍ and ‍∆DICnull = −22.60 ± 7.28‍, 
respectively; see Burnham and Anderson, 1998 and ‘Materials and methods’ for guidelines on model 
fit interpretation). All other models failed to provide a better fit than the null model (Supplementary 
file 1). Consistent with prior work (Bond et al., 2021), we found that the relationship between ‍Ω‍ and 
the boundary height was unreliable (mean ‍βa∼Ω = 0.069 ± 0.152‍; mean ‍p=0.232 ± 0.366‍). However, 
drift rate reliably increased with ‍∆B‍ in three of four participants (mean ‍βv∼∆B = 0.934 ± 0.386‍; mean 
p<0.001 participants p<0.001; Supplementary file 2).

These effects reflect a stereotyped trajectory around a change point, whereby ‍v‍ immediately plum-
mets and ‍a‍ briefly increases, with ‍a‍ quickly recovering and ‍v‍ slowly growing as reward feedback 
reinforces the new optimal target (Bond et al., 2021). Because prior work has shown that the change 
in ‍v‍ is more reliable than changes in ‍a‍ (Bond et al., 2021) and because ‍v‍ determines the direction of 
choice, we focus the remainder of our analysis on the control of ‍v‍.

To test whether these shifts in ‍v‍ are driven by competition within and between action channels, we 
predicted the network’s decision on each trial using a LASSO-PCR trained on the pre-decision firing 
rates of the network (see ‘Measuring neural action representations’). The choice of LASSO-PCR was 
based on prior work building reliable classifiers from whole-brain-evoked responses that maximize 
inferential utility (see Meissner et al., 2011). The method is used when models are over-parameterized, 

Figure 2. Competition between action plans should drive evidence accumulation. (A) Decision parameters were estimated by modeling the joint 
distribution of reaction times and responses within a drift diffusion framework. (B) Classification performance for single-trial left and right actions shown 
as an Receiver Operating Characteristic (ROC) curve. The gray dashed line represents chance performance. (C) Predicted left and right responses. The 
distance of the predicted response from the optimal choice represents uncertainty for each trial. For example, here the predicted probability of a left 
response on the first trial ‍̂yt1‍ is 0.8. The distance from the optimal choice on this trial and, thereby, the uncertainty ‍ut1‍, is 0.2. (D) Change point-evoked 
uncertainty (lavender) and drift rate (green). The change point is marked by a dashed line. (E) Bootstrapped estimates of the association between 
uncertainty and drift rate. Results for individual participants are presented along with aggregated results.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Competition between action plans drives evidence accumulation for fast, intermediate, and slow networks.

https://doi.org/10.7554/eLife.85223
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as when there are more voxels than observations, relying on a combination of dimensionality reduc-
tion and sparsity constraints to find the true, effective complexity of a given model. While these are 
not considerations with our network model, they are with the human validation experiment that we 
describe next. Thus, we used the same classifier on our model as on our human participants to directly 
compare theoretical predictions and empirical observations. Model performance was cross-validated 
at the run level using a leave-one-run-out procedure, resulting in 45 folds per subject (five runs for 
each of the nine sessions). We then classified all trials in the hold-out set to evaluate prediction accu-
racy. The cross-validated accuracy for the four models, simulating individual participants, is shown 
in Figure 2B as ROC curves. The classifier was able to predict the chosen action with approximately 
75% accuracy (72–80%) for each simulated participant, with an average area under the curve (AUC) of 
approximately 0.75, ranging from 0.71 to 0.77.

Examining the encoding pattern in the simulated network, we see lateralized activation over left 
and right action channels (Figure 1A), with opposing weights in GPi and thalamus, and, to a lesser 
degree, contralateral encoding in STN and in both indirect and direct SPNs in striatum. We do not 
observe contralateral encoding in cortex, which likely reflects the emphasis on basal ganglia structures 
and lumped representation of cortex in the model design.

To quantify the competition between action channels, we took the unthresholded prediction from 
the LASSO-PCR classifier, ‍̂yt‍, and calculated its distance from the optimal target (i.e., target with 
the highest reward probability) on each trial (Figure 2C). This provided an estimate of the uncer-
tainty driven by the separability of pre-decision activity across action channels. In other words, the 
distance from the optimal target should increase with increased co-activation of circuits that represent 
opposing actions. The decision to model aggregate trial dynamics with a classifier stems from the 
limitations of the hemodynamic response that we will use next to vet the model predictions in humans. 
The low temporal resolution of the evoked BOLD signal makes finer-grained temporal analysis for the 
human data impossible as the signal is a low-pass filtered version of the aggregate response over the 
entire trial. So, we chose to represent the macroscopic network dynamics as classifier uncertainty, 
which cleanly links the cognitive model results to both behavior and neural dynamics at the trial-by-
trial level using only two variables (drift rate and classifier uncertainty). This approach allows us to 
directly compare model and human results.

If the competition in action channels is also driving ‍v‍, then there should be a negative correlation 
between the classifier’s uncertainty and ‍v‍, particularly around a change point. Indeed, this is exactly 
what we see (Figure 2D). In fact, the uncertainty and ‍v‍ are consistently negatively correlated across 
all trials in every simulated participant and in aggregate (Figure 2E). Thus, in our model of the CBGT 
pathways, competition between action representations drives changes in ‍v‍ in response to environ-
mental change.

Next, in order to rule out the possibility that these adaptive network effects emerged due 
to the specific parameter scheme that we used for the simulations, we re-ran our simulations 
using different parameter schemes. For this, we used a constrained sampling procedure (see Vich 
et al., 2022) to sample a range of different networks with varying degrees of speed and accuracy. 
This parameter search was constrained to permit regimes that result in biologically realistic firing 
rates (Figure 1—figure supplement 1). The simulations above arose from a parameter scheme 
lying in the middle of this response speed distribution (intermediate). We then chose two param-
eter regimes, one that produces response speeds in the upper quartile of the distribution (slow) 
and one that produces response speeds in the lower quartile (fast; Figure 1—figure supplement 
2A and B). We repeated the simulation experiments with these new more ‘extreme’ networks. 
As expected, our general classifier accuracy held across the range of regimes, with comparable 
performance across all three model types (Figure  1—figure supplement 2C). In addition, the 
reciprocal relationship between classifier uncertainty and ‍v‍ were replicated in the fast and slow 
networks (Figure  2—figure supplement 1A), with the fast network showing a more expansive 
dynamic range of drift rates than the intermediate or slow networks. When we look at the correla-
tion between classifier uncertainty and ‍v‍, we again see a consistent negative association across 
parameter regimes (Figure 2—figure supplement 1B). The variability of this effect increases when 
networks have faster response times, suggesting that certain parameter regimes increase overall 
behavioral variability. Despite this, our key simulation effects appear to be robust to variation in 
parameter scheme.

https://doi.org/10.7554/eLife.85223
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Humans adapt decision policies in response to change
To test the predictions of our model, a sample of humans (N = 4) played a dynamic two-armed bandit 
task under experimental conditions similar to those used for the simulated CBGT network and prior 
behavioral work (Bond et al., 2021) as whole brain hemophysiological signals were recorded using 
functional magnetic resonance imaging (fMRI) (Figure 3—figure supplement 1). On each trial, partic-
ipants were presented with a male and female Greeble (Gauthier and Tarr, 1997). The goal was to 
select the Greeble most likely to give a reward. Selections were made by pressing a button with their 
left or right hand to indicate the left or right Greeble on the screen.

Crucially, we designed this experiment such that each participant acted as an out-of-set replica-
tion test, having performed thousands of trials individually. Specifically, to ensure we had the statis-
tical power to detect effects on a participant-by-participant basis, we collected an extensive data set 
comprising 2700 trials over 45 runs from nine separate imaging sessions for each of four participants. 
Consequently, we amassed a grand total of 36 hr of imaging data over all participants, which was 
used to evaluate the replicability of our findings at the participant-by-participant level. Therefore, our 
statistical analyses were able to estimate effects on a single-participant basis.

Behaviorally, human performance in the task replicated our prior work (Bond et al., 2021). Both 
response speed and accuracy changed across conditions in a way that matched what we observed in 
Experiment 2 in Bond et al., 2021. Specifically, we see a consistent effect of change point on both RT 
and accuracy that matches the behavior of our network (Figure 3—figure supplement 2). To address 
how a change in the environment shifted underlying decision dynamics, we used a hierarchical DDM 
modeling approach (Wiecki et al., 2013) as we did with the network behavior (see ‘Materials and 
methods’ for details). Given previous empirical work (Bond et al., 2021) and the results from our 
CBGT network model showing that only ‍v‍ and, less reliably, ‍a‍ respond to a shift in the environment, 
we focused our subsequent analysis on these two parameters. We compared models where single 
parameters changed in response to a switch, pairwise models where both parameters changed, and a 
null model that predicts no change in decision policy (Supplementary files 1 and 2). Consistent with 
the predictions from our CBGT model, we found equivocal fits for the model mapping both ‍∆B‍ to ‍v‍ 
and ‍Ω‍ to ‍a‍ and a simpler model mapping ‍∆B‍ to ‍v‍ (see Supplementary file 1 for average results). This 
pattern was fairly consistent at the participant level, with 3/4 participants showing ‍∆B‍ modulating 
‍v‍ (Supplementary file 2). These results suggest that as the belief in the value of the optimal choice 
approaches the reward value for the optimal choice, the rate of evidence accumulation increases.

Taken altogether, we confirm that humans rapidly shift how quickly they accumulate evidence (and, 
to some degree, how much evidence they need to make a decision) in response to a change in 
action–outcome contingencies. This mirrors the decision parameter dynamics predicted by the CBGT 
model. We next evaluated how this change in decision policy tracks with competition in neural action 
representations.

Measuring action representations in the brain
To measure competition in action representations, we first needed to determine how individual 
regions (i.e., voxels) contribute to single decisions. For each participant, trial-wise responses at every 
voxel were estimated by means of a general linear model (GLM), with trial modeled as a separate 
condition in the design matrix. Therefore, the ‍̂βt,v‍ estimated at voxel ‍v‍ reflected the magnitude of the 
evoked response on trial ‍t‍. As in the CBGT model analysis, these whole-brain, single-trial responses 
were then submitted to a LASSO-PCR classifier to predict left/right response choices (Figure 3—
figure supplement 3). The performance of the classifier for each participant was evaluated with a 
45-fold cross-validation, iterating through all runs so that each one corresponded to the hold-out test 
set for one fold.

Our classifier was able to predict single-trial responses well above chance for each of the four partic-
ipants (Figure 3A and B), with mean prediction accuracy ranging from 65 to 83% (AUCs from 0.72 to 
0.92). Thus, as with the CBGT network model, we were able to reliably predict trial-wise responses for 
each participant. Figure 3C shows the average encoding map for our model as an illustration of the 
influence of each voxel on our model predictions (Figure 3—figure supplement 4 displays individual 
participant maps). These maps effectively show voxel-tuning toward rightward (blue) or leftward (red) 
responses. Qualitatively, we see that cortex, striatum, and thalamus all exhibit strongly lateralized 
influences on contralateral response prediction. Indeed, when we average the encoding weights in 

https://doi.org/10.7554/eLife.85223
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Figure 3. Single-trial prediction of action plan competition in humans. (A) Overall classification accuracy for single-trial actions for each participant. 
Each point corresponds to the performance for each of the 45 folds in our leave-one-run-out cross-validation procedure. (B) Classification performance 
for single-trial actions shown as an ROC curve. The gray dashed line represents chance performance. (C) Participant-averaged encoding weight maps 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.85223
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terms of principal CBGT nuclei (Figure 3D), we confirm that these three regions largely predict contra-
lateral responses. See Figure 3—figure supplement 4 for a more detailed summary of the encoding 
weights across multiple cortical and subcortical regions.

These results show that we can reliably predict single-trial choices from whole-brain hemodynamic 
responses for individual participants. Further, key regions of the CBGT pathway contribute to these 
predictions. Next, we set out to determine whether competition between these representations for 
left and right actions correlates with changes in the drift rate, as predicted by the CBGT network 
model (Figure 2C).

Competition between action representations may drive drift rate
To evaluate whether competition between action channels correlates with the magnitude of ‍v‍ on each 
trial, as the CBGT network predicts (Figure 2C), we focused our analysis on trials surrounding the 
change point, following analytical methods identical to those described in the previous section and 
shown in Figure 2C.

Consistent with the CBGT network model predictions, following a change point, ‍v‍ shows a stereo-
typed drop and recovery as observed in the CBGT network (Figure 2C) and prior behavioral work 
(Bond et al., 2021; Figure 4A). This drop in ‍v‍ tracked with a relative increase in classifier uncertainty, 
and subsequent recovery, in response to a change in action–outcome contingencies (mean boot-
strapped ‍β : −0.021‍ to ‍−0.001; t‍ range: ‍−3.996‍ to ‍−1.326; ps1 = 0.057‍, ‍pS2 < 0.001‍, ‍pAll < 0.001‍). As 
with the CBGT network simulations (Figure 2D), we also observe a consistent negative correlation 
between ‍v‍ and classifier uncertainty over all trials, irrespective of their position to a change point, in 
each participant and in aggregate (Figure 4B; Spearman’s ‍ρ‍ range: ‍−0.08‍ to ‍−0.04; p‍ range: ‍< 0.001‍ 
to 0.043, see Figure 4—figure supplement 1 for null effect on ‍a‍).

Figure 4. Competition between action plans drives evidence accumulation in humans. (A) Classifier uncertainty (lavender) and estimated drift rate (‍̂v‍; 
green) dynamics. (B) Bootstrapped estimate of the association between classifier uncertainty and drift rate by participant and in aggregate.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Competition between action plans and boundary height.

in standard space for both hemispheres. (D) The mean encoding weights within each cortico-basal ganglia-thalamic (CBGT) node in both hemispheres. 
See encoding weight scale above for reference.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Experimental design.

Figure supplement 2. Analysis method.

Figure supplement 3. Encoding maps in standardized space for each participant.

Figure supplement 4. Encoding patterns by CBGT node.

Figure 3 continued
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These results clearly suggest that, as predicted by our CBGT network simulations and prior work 
(Dunovan et al., 2019; Vich et al., 2022; Rubin et al., 2021), competition between action represen-
tations drives changes in the rate of evidence accumulation during decision-making in humans.

Discussion
Here we investigated the underlying mechanisms that drive shifts in decision policies when the rules 
of the environment change. We first tested an implementation-level theory of how CBGT networks 
contribute to changes in decision policy parameters using a modeling approach that allows us to 
bridge across levels of analysis. This theory predicted that the rate of evidence accumulation is driven 
by competition across action representations. Using a high-powered, within-participants fMRI design, 
where each participant served as an independent replication test, we found evidence consistent 
with our CBGT network simulations. Specifically, as action–outcome contingencies change, thereby 
increasing uncertainty in the optimal choice, decision policies shift with a rapid decrease in the rate 
of evidence accumulation, followed by a gradual recovery to baseline rates as new contingencies are 
learned (see also Bond et al., 2021). These results empirically validate prior theoretical and computa-
tional work predicting that competition between neural populations encoding distinct actions modu-
lates how information is used to drive a decision (Bogacz and Gurney, 2007; Bogacz et al., 2010; 
Ratcliff and Frank, 2012; Dunovan and Verstynen, 2016; Dunovan et al., 2019).

Our findings here align with prior work on the role of competition in the regulation of evidence 
accumulation. In the decision-making context, the ratio of dSPN to iSPN activation within an action 
channel has been linked to the drift rate of single-action decisions (Dunovan et al., 2015; Dunovan 
and Verstynen, 2016; Bariselli et al., 2019; Mikhael and Bogacz, 2016). In the motor control context, 
this competition manifests as movement vigor (Yttri and Dudman, 2016; Dudman and Krakauer, 
2016; Turner and Desmurget, 2010). Yet, our results show how competition across channels drives 
drift rate dynamics. So how do we reconcile these two effects? Mechanistically, the strength of each 
action channel is defined by the relative difference between dSPN and iSPN influence. In this way, 
competition across action channels is defined by the relative balance of direct and indirect pathway 
activation within each channel. Greater within-channel competition, relative to the competition in 
other channels, makes that action decision relatively slow and reduces the overall likelihood that it is 
selected. This mechanism is consistent with prior theoretical (Dunovan et al., 2019; Vich et al., 2022) 
and empirical work (Yartsev et al., 2018).

While our current work postulates a mechanism by which changes in action–outcome contingen-
cies drive changes in evidence accumulation through plasticity within the CBGT circuits, the results 
presented here are far from conclusive. For example, our model of the underlying neural dynamics 
predicts that the certainty of individual action representations is encoded by the competition between 
direct and indirect pathways (see also Dunovan et al., 2019; Vich et al., 2020; Vich et al., 2022). 
Thus, external perturbation of dSPN (or iSPN) firing during decision-making, say using optogenetic 
stimulation, should causally impact the evidence accumulation rate and, subsequently, the speed at 
which the new action–outcome contingencies are learned. Indeed, there is already some evidence 
for this outcome (see Yartsev et al., 2018, but also Ding and Gold, 2010 for contrastive evidence).

Our model, however, has very specific predictions with regards to disruptions of each pathway 
within an action representation. Disrupting the balance of dSPN and iSPN efficacy should selectively 
impact the drift rate (and, to a degree, onset bias; see Vich et al., 2022), while non-specific disruption 
of global iSPN efficacy across action representations should selectively disrupt boundary height (and, 
to a degree, accumulation onset time; see again Vich et al., 2022). These are specific predictions that 
can be tested in follow-up studies.

Careful attention to the effect size of our correlations between channel competition and drift rate 
shows that the effect is substantially smaller in humans than in the model. This is not surprising due to 
several factors. Firstly, the simulated data is not affected by the same sources of noise as the hemo-
dynamic signal, whose responses can be greatly influenced by factors such as the heterogeneity of 
cell populations and the properties of underlying neurovascular coupling. Additionally, our model is 
not susceptible to non-task-related variance, such as fatigue or lapses of attention, which the humans 
likely experienced. While we could have fine-tuned the model results based on the empirical human 
data, that would contaminate the independence of our predictions and defeat the purpose of using 
a generative model. With this in mind, we opted to focus on comparing the overall pattern of human 
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and simulated results. Finally, our simulations only used a single experimental condition, whereas 
human experiments varied the relative value of options and the volatility of their value, which led to 
more variance in human responses. Nevertheless, despite these differences, we see qualitative simi-
larities in both the model and human results, providing confirmation of a key aspect of our theory.

Looking at the overall pattern of results, we see that increasing the difference between dSPN and 
iSPN firing in the channel representing the new optimal-action should decrease the time needed to 
resolve the credit assignment problem during learning (Rubin et al., 2021). This would result in faster 
and more accurate learning in response to a change in the environment and lead to characteristic 
signatures in the distribution of reaction times, as well as choice probabilities, reflective of a shift in 
evidence accumulation rate. Of course, testing these predictions is left to future work.

It is important to point out that there are critical assumptions in our model that might impact how 
the results can be interpreted. For example, we are assuming a strict action channel organization of 
CBGT pathways (Mink, 1996). Realistically action representations in these networks are not as rigid, 
and there may be overlaps in these representations (see Klaus et al., 2017). However, by restricting 
our responses to fingers on opposite hands, it is reasonable to assume that the underlying CBGT 
networks that regulate selecting the two actions are largely independent. Another critical assumption 
of our model is the simple gating mechanism from the thalamus, where actions get triggered once 
thalamic firing crosses a specified threshold. In reality, the dynamics of thalamic gating are likely more 
complicated (Logiaco et al., 2021) and the nuance of this process could impact network behavior and 
subsequent predictions. Until the field has a better understanding of the process of gating actions, 
our simple threshold model, although incomplete, remains useful for generating simple behavioral 
predictions. These assumptions may limit some of the nuance of the predicted brain–behavior associ-
ations; however, they likely have little impact on the main prediction that competition in action repre-
sentations tracks with the rate of evidence accumulation during decision-making.

Conclusion
As the world changes and certain actions become less optimal, successful behavioral adaptation 
requires flexibly changing how sensory evidence drives decisions. Our simulations and hemophysio-
logical experiments in humans show how this process can occur within the CBGT circuits. Here, a shift 
in action–outcome contingencies induces competition between encoded action plans by modifying 
the relative balance of direct and indirect pathway activity in CBGT circuits, both within and between 
action channels, slowing the rate of evidence accumulation to promote adaptive exploration.

If the environment subsequently remains stable, then this learning process accelerates the rate of 
evidence accumulation for the optimal decision by increasing the strength of action representations 
for the new optimal choice. This highlights how these macroscopic systems promote flexible, effective 
decision-making under dynamic environmental conditions.

Materials and methods
Simulations
We simulated neural dynamics and behavior using a biologically based, spiking CBGT network model 
(Dunovan and Verstynen, 2019; Vich et al., 2022). The network representing the CBGT circuit is 
composed of nine neural populations: cortical interneurons (CxI), excitatory cortical neurons (Cx), stri-
atal D1/D2-spiny projection neurons (dSPNs/iSPNs), striatal fast-spiking interneurons (FSI), the internal 
(GPi) and external globus pallidus (GPe), the subthalamic nucleus (STN), and the thalamus (Th). All the 
neuronal populations are segregated into two action channels with the exception of cortical (CxI) 
and striatal interneurons (FSIs). Each neuron in the population was modeled with an integrate-fire-or-
burst-model (Wei et al., 2015), and a conductance-based synapse model was used for NMDA, AMPA, 
and GABA receptors. The neuronal and network parameters (inter-nuclei connectivity and synaptic 
strengths) were tuned to obtain realistic baseline firing rates for all the nuclei. The details of the model 
are described in our previous work (Vich et al., 2022) as well as in the ‘Neuron model’ section below 
for the sake of completeness.

Corticostriatal weights for D1 and D2 neurons in striatum were modulated by phasic dopamine 
to model the influence of reinforcement learning on network dynamics. The details of STDP learning 
are described in detail in previous work (Vich et al., 2020), but key details are shown below. As a 
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result of these features of the CBGT network, it was capable of learning under realistic experimental 
paradigms with probabilistic reinforcement schemes (i.e., under reward probabilities and unstable 
action–outcome values).

Threshold for CBGT network decisions
A decision between the two competing actions (‘left’ and ‘right’) was considered to be made when 
either of the thalamic subpopulations reached a threshold of 30 Hz. This threshold was set based on 
the network dynamics for the chosen parameters with the aim of obtaining realistic reaction times. 
The maximum time allowed to reach a decision was 1000 ms. If none of the thalamic subpopulations 
reached the threshold of 30 Hz, no action was considered to be taken. Such trials were dropped 
from further analysis. Reaction times were calculated as time from stimulus onset to decision (either 
subpopulation reaches the threshold). The ‘slow’ and ‘fast’ trials were categorized as reaction times 
≥75th percentile (314.5 ms) and reactions time <50 th percentile (196.0 ms), respectively, of the reac-
tion time distributions. The firing rates of the CBGT nuclei during the reaction times were used for 
prediction analysis as discussed in our description of single-trial response estimation below.

Corticostriatal weight plasticity
The corticostriatal weights are modified by a dopamine-mediated STDP rule, where the phasic dopa-
mine is modulated by reward prediction error. The internal estimate of the reward is calculated at 
every trial by a Q-learning algorithm and is subtracted from the reward associated with the experi-
mental paradigm to yield a trial-by-trial estimate of the reward prediction error. The effect of dopa-
minergic release is receptor dependent; a rise in dopamine promotes potentiation for dSPNs and 
depression for iSPNs. The degree of change in the weights is dependent on an eligibility trace, which 
is proportional to the coincidental presynaptic (cortical) and postsynaptic (striatal) firing rates. The 
STDP rule is described in detail in Vich et al., 2020 as well as in the appendix.

In silico experimental design
We follow the paradigm of a two-arm bandit task, where the CBGT network learns to consistently 
choose the rewarded action until the block changes (i.e., the reward contingencies switch), at which 
point the CBGT network relearns the rewarded action (reversal learning). Each session consists of 40 
trials with a block change every 10 trials. The reward probabilities represent a conflict of (75%, 25%); 
that is, in a left block, 75% of the left actions are rewarded, whereas 25% of the right actions are 
rewarded. The inter-trial-interval in network time is fixed to 600 ms.

To maximize the similarity between the CBGT network simulations and our human data, we 
randomly varied the initialization of the network such that neurons with a specific connection proba-
bility were randomly chosen for each simulated subject, with the background input to the nuclei for 
each simulated subject as a mean-reverting random walk (noise was drawn from the normal distribu-
tion ‍N (0, 1)‍). These means are listed in Supplementary file 6.

Participants
Four neurologically healthy adult humans (two female, all right-handed, 29–34  years old) were 
recruited and paid $30 per session, in addition to a performance bonus and a bonus for completing 
all nine sessions. These participants were recruited from the local university population.

All procedures were approved by the Carnegie Mellon University Institutional Review Board 
(Approval Code: ‍2018_00000195‍). All research participants provided informed consent to participate 
in the study and consent to publish any research findings based on their provided data.

Experimental design
The experiment used male and female Greebles (Gauthier and Tarr, 1997) as selection targets. 
Participants were first trained to discriminate between male and female Greebles to prevent errors in 
perceptual discrimination from interfering with selection on the basis of value. Using a two-alternative 
forced choice task, participants were presented with a male and female Greeble and asked to select 
the female, with the male and female Greeble identities resampled on each trial. Participants received 
binary feedback regarding their selection (correct or incorrect). This criterion task ended after partici-
pants reached 95% accuracy. After reaching perceptual discrimination criterion for each session, each 
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participant was tested under nine reinforcement learning conditions composed of 300 trials each, 
generating 2700 trials per participant in total. Data were collected from four participants in accor-
dance with a replication-based design, with each participant serving as a replication experiment. 
Participants completed these sessions in randomized order. Each learning trial presented a male and 
female Greeble (Gauthier and Tarr, 1997), with the goal of selecting the gender identity of the 
Greeble that was most rewarding. Because individual Greeble identities were resampled on each trial, 
the task of the participant was to choose the gender identity rather than the individual identity of the 
Greeble, which was most rewarding.

Probabilistic reward feedback was given in the form of points drawn from the normal distribution 

‍N (µ = 3,σ = 1)‍ and converted to an integer. These points were displayed at the center of the screen. 
For each run, participants began with 60 points and lost one point for each incorrect decision. To 
promote incentive compatibility (Rosenzweig and Evenson, 1977), participants earned a cent for 
every point earned. Reaction time was constrained such that participants were required to respond 
within between 0.1 s and 0.75 s from stimulus presentation. If participants responded in ‍≤ 0.1‍ s, ‍≥ 0.75‍ 
s, or failed to respond altogether, the point total turned red and decreased by 5 points. Each trial 
lasted 1.5 s and reward feedback for a given trial was displayed from the time of the participant’s 
response to the end of the trial. To manipulate change point probability, the gender identity of the 
most rewarding Greeble was switched probabilistically, with a change occurring every 10, 20, or 30 
trials, on average. To manipulate the belief in the value of the optimal target, the probability of reward 
for the optimal target was manipulated, with p set to 0.65, 0.75, or 0.85. Each session combined one 
value of p with one level of volatility, such that all combinations of change point frequency and reward 
probability were imposed across the nine sessions. Finally, the position of the high-value target was 
pseudo-randomized on each trial to prevent prepotent response selections on the basis of location.

Behavioral analysis
Statistical analyses and data visualization were conducted using custom scripts written in R (R Founda-
tion for Statistical Computing, version 3.4.3) and Python (Python Software Foundation, version 3.5.5). 
Scripts are publicly available (Bond et al., 2023).

Binary accuracy data were submitted to a mixed effects logistic regression analysis with either the 
degree of conflict (the probability of reward for the optimal target) or the degree of volatility (mean 
change point frequency) as predictors. The resulting log-likelihood estimates were transformed to 
likelihood for interpretability. RT data were log-transformed and submitted to a mixed effects linear 
regression analysis with the same predictors as in the previous analysis. To determine if participants 
used ideal observer estimates to update their behavior, two more mixed effects regression analyses 
were performed. Estimates of change point probability and the belief in the value of the optimal 
target served as predictors of reaction time and accuracy across groups. As before, we used a mixed 
logistic regression for accuracy data and a mixed linear regression for reaction time data.

Estimating evidence accumulation using drift diffusion modeling
To assess whether and how much the ideal observer estimates of change point probability (‍Ω‍) and the 
belief in the value of the optimal target (‍∆B‍) (Nassar et al., 2010; Bond et al., 2021) updated the 
rate of evidence accumulation (‍v‍), we regressed the change point-evoked ideal observer estimates 
onto the decision parameters using hierarchical drift diffusion model (HDDM) regression (Wiecki 
et al., 2013). These ideal observer estimates of environmental uncertainty served as a more direct 
and continuous measure of the uncertainty we sought to induce with our experimental manipulations. 
Using this more direct approach, we pooled change point probability and belief across all conditions 
and used these values as our predictors of drift rate and boundary height. Responses were accuracy-
coded, and the belief in the difference between targets values was transformed to the belief in the 
value of the optimal target (‍∆Boptimal(t) = Boptimal(t) − Bsuboptimal(t )‍). This approach allowed us to esti-
mate trial-by-trial covariation between the ideal observer estimates and the decision parameters.

To find the models that best fit the observed data, we conducted a model selection process using 
deviance information criterion (DIC) scores. A lower DIC score indicates a model that loses less infor-
mation. Here, a difference of ≤ 2 points from the lowest-scoring model cannot rule out the higher 
scoring model; a difference of 3–7 points suggests that the higher scoring model has considerably less 
support; and a difference of 10 points suggests essentially no support for the higher scoring model 
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(Spiegelhalter et al., 2002; Burnham and Anderson, 1998). We evaluated the DIC scores for the set 
of fitted models relative to an intercept-only regression model (DICintercept - DICmodeli).

MRI data acquisition
Neurologically healthy human participants (N = 4, two females) were recruited. Each participant was 
tested in nine separate imaging sessions using a 3T Siemens Prisma scanner. Session 1 included a 
set of anatomical and functional localizer sequences (e.g., visual presentation of Greeble stimuli with 
no manual responses, and left vs. right button responses to identify motor networks). Sessions 2–10 
collected five functional runs of the dynamic two-armed bandit task (60 trials per run). Male and female 
‘Greebles’ served as the visual stimuli for the selection targets (Gauthier and Tarr, 1997), with each 
presented on one side of a central fixation cross. Participants were trained to respond within 1.5 s.

To minimize the convolution of the hemodynamic response from trial to trial, inter-trial intervals 
were sampled according to a truncated exponential distribution with a minimum of 4  s between 
trials, a maximum of 16 s, and a rate parameter of 2.8 s. To ensure that head position was stabilized 
and stable over sessions, a CaseForge head case was customized and printed for each participant. 
The task-evoked hemodynamic response was measured using a high spatial (2 mm3 voxels) and high 
temporal (750 ms TR) resolution echo planar imaging approach. This design maximized recovery of 
single-trial evoked BOLD responses in subcortical areas, as well as cortical areas with higher signal-to-
noise ratios. During each functional run, eye-tracking (EyeLink, SR Research Inc), physiological signals 
(ECG, respiration, and pulse oximetry via the Siemens PMU system) were also collected for tracking 
attention and for artifact removal.

Preprocessing
fMRI data were preprocessed using the default fMRIPrep pipeline (Esteban et al., 2019), a standard 
toolbox for fMRI data preprocessing that is robust to variations in scan acquisition protocols and 
minimal user manipulation.

Single-trial response estimation
We used a univariate GLM to estimate within-participant trial-wise responses at the voxel level. 
Specifically, for each fMRI run, preprocessed BOLD time series were regressed onto a design matrix, 
where each task trial corresponded to a different column, and was modeled using a boxcar function 
convolved with the default hemodynamic response function given in SPM12. Thus, each column in 
the design matrix estimated the average BOLD activity within each trial. In order to account for head 
motion, the six realignment parameters (three rotations, three translations) were included as covari-
ates. In addition, a high-pass filter (128 s) was applied to remove low-frequency artifacts. Parameter 
and error variance were estimated using the RobustWLS toolbox, which adjusts for further artifacts 
in the data by inversely weighting each observation according to its spatial noise (Diedrichsen and 
Shadmehr, 2005).

Finally, estimated trial-wise responses were concatenated across runs and sessions and then 
stacked across voxels to give a matrix, ‍̂βt,v‍, of T (trial estimations) × V (voxels) for each participant.

Single-trial response prediction
A machine learning approach was applied to predict left/right Greeble choices from the trial-wise 
responses. First, using the trial-wise hemodynamic responses, we estimated the contrast in neural acti-
vation when the participant made a left versus right selection. A LASSO-PCR classifier (i.e., an L1-con-
strained principal component logistic regression) was estimated for each participant according to the 
below procedure. We should note that the choice of LASSO-PCR was based on prior work building 
reliable classifiers from whole-brain-evoked responses that maximizes inferential utility (see Meissner 
et al., 2011). This approach is used in case of over-parameterization, as when there are more voxels 
than observations, and relies on a combination of dimensionality reduction and sparsity constraints to 
find the effective complexity of a model.

First, a singular value decomposition (SVD) was applied to the input matrix ‍X ‍:

	﻿‍ X = USVT ,‍� (1)
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where the product matrix ‍Z = US‍ represents the principal component scores, that is, the values of ‍X ‍ 
projected into the principal component space, and ‍VT ‍ an orthogonal matrix whose rows are the prin-
cipal directions in feature space. Then the binary response variable ‍y‍ (left/right choice) was regressed 
onto ‍Z ‍, where the estimation of the ‍β‍ coefficients is subject to an L1 penalty term ‍C‍ in the objective 
function:

	﻿‍
β̂ = arg min

β

1
2
βTβ + C

N∑
i=1

log(exp(−yi(ZT
i β)) + 1) ,

‍�
(2)

where ‍β‍ and Z include the intercept term, ‍yi = {−1, 1}‍, and N is the number of observations.
Projection of the estimated ‍̂β‍ coefficients back to the original feature (voxel) space was done to 

yield a weight map ‍̂w = Vβ̂‍, which in turn was used to generate final predictions ‍̂y‍:

	﻿‍
ŷ = 1 − e−x·ŵ

1 + e−x·ŵ ,
‍�

(3)

where ‍x‍ denotes the vector of voxel-wise responses for a given trial (i.e., a given row in the ‍X ‍ matrix). 
When visualizing the resulting weight maps, these were further transformed to encoded brain patterns. 
This step was performed to aid in correct interpretation in terms of the studied brain process because 
doing this directly from the observed weights in multivariate classification (and regression) models can 
be problematic (Winkler et al., 2015).

Here, the competition between left–right neural responses decreases classifier decoding accuracy 
as neural activation associated with these actions becomes less separable. Therefore, classifier predic-
tion serves as a proxy for response competition. To quantify uncertainty from this, we calculated the 
Euclidean distance of these decoded responses ‍̂y‍ from the statistically optimal choice on a given trial, 

‍opt_choice‍. This yielded a trial-wise uncertainty metric derived from the decoded competition between 
neural responses.

	﻿‍ Û = d(ŷ, opt_choice).‍� (4)

The same analytical pipeline was used to calculate single-trial responses for simulated data with a 
difference that trial-wise average firing rates of all nuclei from the simulations were used instead of 
fMRI hemodynamic responses.

Robustness analysis
To test whether our key effects were robust to variation in parameter schemes, 300 networks were 
sampled using Latin Hypercube Sampling (LHS), as also described in Vich et al., 2022. From this, we 
chose two network configurations with biologically plausible parameters, one with slower and faster 
reaction times (‘fast’ and ‘slow’ networks; upper and lower quartile of the reaction time distributions). 
We then repeated our key analyses for these two network configurations as shown in Figure 2—figure 
supplement 1. We show that these adaptive network effects are robust over a range of parameter 
configurations, so long as the network generates firing rates are biologically plausible.

Neuron model
We used an integrate-and-fire-or-burst model that models the membrane potential ‍V(t)‍ as

	﻿‍
C dV

dt
= −gL(V(t) − VL) − gTh(t)H(V(t) − Vh)(V(t) − VT) − Isyn(t) − Iext(t)‍� (5)

	﻿‍

dh
dt

=





−h(t)/τ−h , when V(t) ≥ Vh

(1 − h(t))/τ+
h , when V(t) < Vh ‍�

where ‍gL‍ represents the leak conductance, ‍VL‍ is the leak reversal potential and the first term 

‍gL(V(t) − VL)‍ is the leak current; the next term is a low threshold ‍Ca2+‍ current with maximum conduc-
tance ‍gT ‍, gating variable ‍h(t)‍, and reversal potential ‍VT ‍, which activates when ‍V(t) > Vh‍ due to the 
Heaviside function ‍H; Isyn‍ is the synaptic current and ‍Iext‍ is the external current. This neuron model is 
capable of producing post-inhibitory bursts, regulated by the gating variable that decays with the time 
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constant ‍τ
−
h ‍, when the membrane potential reaches a certain threshold ‍Vh‍ and rises with time constant 

‍τ
+
h ‍. However, when ‍gT ‍ is set to zero, the model reduces to a leaky integrate and fire neuron. Currently, 

we model GPe and STN neuronal populations with bursty neurons and the remaining neuronal popu-
lations with leaky integrate-and-fire neurons, all with conductance-based synapses.

The synaptic current ‍Isyn(t)‍ consists of three components, two excitatory currents corresponding 
to AMPA and NMDA receptors and one inhibitory current corresponding to GABA receptors, and is 
calculated as below:

	﻿‍
Isyn = gAMPAsAMPA(t)(V(t) − VE) +

gNMDAsNMDA(t)(V(t) − VE)
1 + e−0.062V(t)/3.57 + gGABAsGABA(t)(V(t) − VI)

‍�

where ‍gi‍ represents the maximum conductance corresponding to the receptor ‍i ∈‍ {AMPA, NMDA, 
GABA}, ‍VI ‍ and ‍VE‍ represent the excitatory and inhibitory reversal potentials, and ‍si‍ represents the 
gating variable for each current, with dynamics given by

	﻿‍

dsAMPA
dt

=
∑

j
δ(t − tj) −

sAMPA
τAMPA ‍ �

	﻿‍

dsNMDA
dt

= α(1 − sNMDA)
∑

j
δ(t − tj) −

sNMDA
τNMDA ‍�

	﻿‍

dsGABA
dt

=
∑

j
δ(t − tj) −

sGABA
τGABA ‍�

The gating variables for AMPA and GABA act as leaky integrators that are increased by all incoming 
spikes, with an additional constraint for NMDA that ensures that the maximum value of ‍sNMDA‍ remains 
below 1.

The values of neuronal parameters for all of the nuclei are listed in Supplementary file 3, external 
inputs to the CBGT nuclei are listed in Supplementary file 4, synaptic parameter values are listed in 
Supplementary file 5, connectivity types and probabilities are listed in Supplementary file 6, and the 
number of neurons in each CBGT population is shown in Supplementary file 7.

Spike timing-dependent plasticity rule
The plasticity rule we use is a dopamine-modulated STDP rule also described in Vich et al., 2020. 
All the values of the relevant parameters are listed in Supplementary file 8. The weight update of a 
corticostriatal synapse is controlled by three factors: (1) an eligibility trace, (2) the type of the striatal 
neuron (iSPN/dSPN), and (3) the level of dopamine.

To compute the eligibility ‍(E)‍ for a given synapse, an activity trace of each neuron in the presynaptic 
and postsynaptic populations is tracked via the equations

	﻿‍
τPRE

dAPRE
dt

= ∆PREXPRE(t) − APRE(t)
‍�

	﻿‍
τPOST

dAPOST
dt

= ∆POSTXPOST(t) − APOST(t)
‍ �

where ‍XPRE, XPOST ‍ are spike trains, such that ‍APRE‍ and ‍APOST ‍ maintain a filtered record of synaptic 
spiking of the pre/post neuron, respectively, with spike impact parameters ‍∆PRE,∆POST ‍ and time 
constants ‍τPRE, τPOST ‍.

If the postsynaptic spike follows the spiking activity of the presynaptic population closely enough in 
time, then the eligibility variable ‍E‍ increases and allows for plasticity to occur. On the other hand, if a 
presynaptic spike follows the spiking activity of the postsynaptic population, then ‍E‍ decreases. In the 
absence of any activity and spikes, the eligibility trace decays to zero with a time constant ‍τE‍. Putting 
these effects together, we obtain the equation

	﻿‍
τE

dE
dt

= XPOST(t)APRE(t) − XPRE(t)APOST(t) − E.
‍�

The synaptic weight update depends on the dopamine receptor type of the striatal neuron; that is, 
if the neuron is a dSPN or iSPN. We assume that a phasic dopamine release promotes long-term 

https://doi.org/10.7554/eLife.85223
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potentiation (LTP) in dSPNs and long-term depression (LTD) in iSPNs. This factor is indicated by the 
learning rate parameter ‍αw‍, which is set to a positive value for dSPNs and a negative value for iSPNs. 
The weight update dynamics is given by

	﻿‍
dw
dt

= [αw−XE(t)fX(KDA)(WX
max − w)]+ + [αw−XE(t)fX(KDA)(w − Wmin)]−

‍�
(6)

where ‍X ∈‍ {dSPN, iSPN} with ‍αw−dSPN > 0‍ and ‍αw−iSPN < 0‍. Here, the weights of the corticostriatal 
synapses are bounded between the maximal value ‍WX

max‍, which depends on the SPN type, and a 
minimal value of ‍Wmin = 0.001‍. The precise values used for all relevant parameters are listed in Supple-
mentary file 3.

In the weight update rule (6), ‍KDA‍ represents the dopamine level present. This quantity changes 
as a result of phasic release of dopamine (increments of size ‍DAinc‍), which is correlated to the reward 
prediction error encountered in the environment. We define a parameter ‍Cscale‍ that sets the scaling 
between the reward prediction error and the amount of dopamine released, and ‍KDA‍ obeys the 
equation

	﻿‍
τDOP

KDA
dt

= Cscale(DAinc(t) − KDA)δ(t) − KDA,
‍�

where

	﻿‍ DAinc(t) = r(t) − Qchosen(t)‍�

for reward ‍r(t)‍ and expected value ‍Qchosen(t)‍ of the chosen action. Trial-by-trial estimates of the values 
of the actions (left/right) are maintained by a simple Q-update rule:

	﻿‍ Qa(t + 1) = Qa(t) + αq(r(t) − Qa(t))‍�

where ‍a ∈‍ {left, right} and where ‍αq‍ represents the learning rate of the Q-values.
Finally, the function ‍fX(KDA)‍ converts the level of dopamine into an impact on plasticity in a way 

that depends on the identity ‍X ‍ of the postsynaptic neuron, as follows:

	﻿‍

fX(KDA) =




KDA, X = dSPN,
KDA

c + |KDA| , X = iSPN,
‍�

where ‍c‍ sets the dopamine level at which ‍fiSPN ‍ reaches half-maximum. Supplementary file 8 lists the 
specific parameters used for the STDP rule.
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