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Abstract Genetic variants in gene regulatory sequences can modify gene expression and 
mediate the molecular response to environmental stimuli. In addition, genotype–environment inter-
actions (GxE) contribute to complex traits such as cardiovascular disease. Caffeine is the most widely 
consumed stimulant and is known to produce a vascular response. To investigate GxE for caffeine, 
we treated vascular endothelial cells with caffeine and used a massively parallel reporter assay to 
measure allelic effects on gene regulation for over 43,000 genetic variants. We identified 665 vari-
ants with allelic effects on gene regulation and 6 variants that regulate the gene expression response 
to caffeine (GxE, false discovery rate [FDR] < 5%). When overlapping our GxE results with expression 
quantitative trait loci colocalized with coronary artery disease and hypertension, we dissected their 
regulatory mechanisms and showed a modulatory role for caffeine. Our results demonstrate that 
massively parallel reporter assay is a powerful approach to identify and molecularly characterize GxE 
in the specific context of caffeine consumption.

Editor's evaluation
This important study identifies context-specific regulatory variants by an MPRA screen in vascular 
endothelial cells exposed to caffeine. The authors use a compelling and creative approach to 
pinpoint potential molecular mechanisms of gene-by-environment effects on gene regulation. The 
variants they identify are likely linked to complex disease risk.

Introduction
Caffeine is the most widely consumed stimulant in the world (Planning Committee for a Workshop 
on Potential Health Hazards Associated with Consumption of Caffeine in Food and Dietary 
Supplements, Food and Nutrition Board, Board on Health Sciences Policy, Institute of Medicine, 
2014). Caffeine produces a vascular response in the endothelium, causing vasodilation. The vascular 
endothelium, the innermost layer of arteries, is involved in several important functions, including 
regulation of blood flow, angiogenesis, thrombosis, and coagulation (Hadi et  al., 2005; Krüger-
Genge et al., 2019). Endothelial dysfunction occurs in diseases such as atherosclerosis and hyperten-
sion (Xu et al., 2021), eventually leading to coronary artery disease (CAD) (Matsuzawa and Lerman, 
2014). Multiple studies have investigated the role of caffeine in cardiovascular disease (CVD), and 
more broadly, vascular health in general, with conflicting results (Chieng et al., 2022; Ding et al., 
2014; Turnbull et al., 2017) on the role of caffeine in CVD risk. Ding et al., 2014 meta-analyzed 
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36 studies and found no association between heavy coffee consumption and increased risk of CVD 
(Ding et al., 2014). Similarly, Turnbull et al., 2017 observed that moderate caffeine consumption 
was not associated with an increased risk of CVD or other cardiovascular events such as heart failure 
(Turnbull et al., 2017). Multiple studies suggested that caffeine may be beneficial in reducing the risk 
of CAD (Choi et al., 2015; Miranda et al., 2018; Voskoboinik et al., 2019), while others provided 
evidence that caffeine may reduce the risk of heart failure, but had no significant effect on the risk 
of coronary heart disease or CVD (Stevens et al., 2021). Most recently, Chieng et al., 2022 found 
that decaffeinated, ground, and instant coffee significantly decreased CVD risk and mortality (Chieng 
et al., 2022). The conflicting results from these epidemiological studies may have several causes, 
including potential interactions between caffeine consumption and other environmental and genetic 
risk factors. Recent molecular studies investigated the consequences of caffeine exposure on chro-
matin accessibility and gene expression in vascular endothelial cells (Findley et al., 2019). This study 
identified response factor motifs for caffeine, defined as transcription factor motifs that are enriched 
in differentially accessible regions, and demonstrated that caffeine can induce changes in gene regu-
lation in endothelial cells.

Analyzing the changes in gene expression upon exposure to environmental stimuli is a powerful 
approach to discover genotype–environment interactions (GxE). These molecular GxE result in a 
different response depending on genotype (Knowles et al., 2018; Knowles et al., 2017; Moyer-
brailean et al., 2016b), potentially through allele-specific effects (ASE) on response factor binding or 
other environmental-specific gene regulatory mechanisms. Yet regulatory sequences that are differen-
tially bound in response to environmental perturbations are poorly annotated. Single-nucleotide poly-
morphisms (SNPs) within caffeine response factor binding sites were enriched for artery expression 
quantitative trait loci (eQTLs) colocalized with CAD risk variants (Findley et al., 2019). The results of 
this study thus suggested that SNPs within regulatory elements active in the presence of caffeine may 
play a role in CAD risk and pointed to GxE in gene regulation as a potential mechanism underlying 
caffeine modulation of genetic risk for CAD. However, only a limited number of molecular GxE for 
caffeine have been studied so far, thus the transcription factors and regulatory sequences involved 
in caffeine GxE remain uncharacterized. Furthermore, it is important to study GxE in the relevant cell 
type; that is, endothelial cells which constitute the vascular endothelium. For these reasons, it is crucial 
to investigate and validate the mechanisms behind caffeine GxE in vascular endothelial cells.

Massively parallel reporter assays (MPRA) have allowed studies of noncoding genetic variants 
and their role in gene regulation, at unprecedented scale (Arnold et  al., 2013; Gordon et  al., 
2020; Kalita et al., 2018; Melnikov et al., 2012; Patwardhan et al., 2012; Tewhey et al., 2016; 
Ulirsch et  al., 2016; Vockley et  al., 2015; Wang et  al., 2018). Originally developed to study 
the gene regulatory potential of promoters and enhancer sequences, MPRA protocols have been 
further developed to study regulatory genetic variation and fine map association signals (Kalita 
et al., 2018; Tewhey et al., 2016; Ulirsch et al., 2016; Vockley et al., 2015). MPRAs with synthetic 
regulatory sequences can test allelic activity for candidate regulatory variants independently of 
their allele frequency in the population (Kalita et al., 2018; Tewhey et al., 2016; Ulirsch et al., 
2016; Vockley et al., 2015). In MPRAs, DNA sequences containing each allele are transfected into 
cells and RNA-seq is used to quantify the transcripts for each allele. To directly test allelic effects 
of tens of thousands of candidate regulatory sequences predicted to affect transcription factor 
binding (CentiSNPs; Moyerbrailean et  al., 2016a), we used an MPRA called Biallelic Targeted 
STARR-Seq (BiT-STARR-Seq) (Kalita et  al., 2018). Only two previous studies have used MPRAs 
to investigate DNA sequences that regulate the transcriptional response to treatments (Johnson 
et al., 2018; Shlyueva et al., 2014). One study utilized STARR-Seq to characterize enhancer activity 
in Drosophila cells upon treatment with the hormone ecdysone; however, it did not investigate 
GxE (Shlyueva et al., 2014). The other study utilized STARR-Seq to investigate the response to 
glucocorticoid treatment in the human cell line A549 (Johnson et al., 2018). Although this study 
investigated GxE interactions, only a small number of variants were tested as this study was limited 
to preexisting variation within the samples (as opposed to designed target sequences) and only 
two variants had significant GxE (Johnson et al., 2018). We aim to identify and validate the DNA 
sequences that regulate the transcriptional response to caffeine in the vascular endothelium and 
how genetic variation present in these regulatory elements may affect the transcriptional response 
to caffeine (Figure 1A).

https://doi.org/10.7554/eLife.85235
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Results
Active regulatory regions in response to caffeine
For this study, we used a library of targets that was designed to capture a large number of predicted 
gene regulatory variants in motifs for hundreds of transcription factor binding sites (Figure 1B). The 
targets in our library consisted of self-transcribing enhancer regions containing a minimal promoter, 
a reporter gene, and the oligonucleotide containing the candidate regulatory SNP. These candidate 
regulatory SNPs belong to multiple categories, including SNPs predicted to alter transcription factor 
binding using a combination of sequence information and experimental data (centiSNPs) (Moyer-
brailean et  al., 2016b), SNPs associated with complex traits (genome-wide association studies 
[GWAS]), and eQTLs in GTEx. In addition, we included 1676 negative control sequences. To test if 
these putative regulatory sequences mediate the response to caffeine, we used DESeq2 to test for 
differential activity of the targets in cells treated with caffeine compared to cells in the control group 
(see ‘Materials and methods’ for the specific model). The library contained motifs in both the forward 

Figure 1. Study design. (A) Genetic variants modulate transcriptional response dependent on environmental conditions. The pink bars represent 
different alleles present in our targets, and the green triangle represents a bound transcription factor. These target sequences are transfected into 
cells, RNA is extracted and sequenced, and then activity is measured for targets for both alleles. (B) Library composition based on annotation category: 
single-nucleotide polymorphisms (SNPs) predicted to alter transcription factor binding using a combination of sequence information and experimental 
data (centiSNPs) (Moyerbrailean et al., 2016b), SNPs associated with complex traits (genome-wide association studies [GWAS]), and expression 
quantitative trait loci (eQTL) in GTEx.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Coverage histograms for all 12 libraries used in this study.

https://doi.org/10.7554/eLife.85235


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Boye et al. eLife 2024;13:e85235. DOI: https://doi.org/10.7554/eLife.85235 � 4 of 22

and reverse orientations within separate targets. Since these motifs may induce direction-specific 
effects, we performed the differential activity analysis per each direction separately (see Figure 2—
figure supplement 1; see also Figure 2—figure supplements 2 and 3), and considered any target 
with false discovery rate (FDR) < 10% in either direction as significant. We observed 772 significantly 
differentially active targets: 546 upregulated targets and 226 downregulated targets (Figure  2A, 
Supplementary file 1), showing that caffeine overall increases the activity of the regulatory elements.

We then focused on differentially active targets containing a known caffeine response factor 
as determined based on chromatin accessibility data from endothelial cells treated with caffeine 
(Findley et al., 2019). We observed that these targets had lower p-values, as observed in the QQ 
plot in Figure 2A (inset). To identify any additional transcription factors that may be important for 
the response to caffeine, we conducted a motif scan for 838 known transcription factor binding 
motifs using the JASPAR CORE Vertebrates 2022 database (Castro-Mondragon et al., 2022; Supple-
mentary file 2). We found 19 motifs that were enriched for being within differentially active targets 
(Figure 2B, Supplementary file 3). We found the motif for ZNF423, one of the caffeine response 
factors, was enriched within the differentially active targets. The three most enriched motifs were 
NFATC1, NFATC4, and NFATC2. The NFAT transcription factor family is known for their involvement 
in the Ca2+/NFAT pathway. This signaling pathway plays an important role in maintaining the homeo-
stasis of vascular endothelial cells (Wang et al., 2020) and contributes to the mediation of prolifera-
tion and migration (Johnson et al., 2003; Wang et al., 2020). Thus, improper signaling of the Ca2+/
NFAT pathway can induce endothelial dysfunction (Garcia-Vaz et al., 2020; Wang et al., 2020). In 
diabetic mice, NFAT expression exacerbated atherosclerosis (Blanco et al., 2018; Zetterqvist et al., 
2014) and increased foam cell formation (Du et al., 2021). In human coronary artery smooth muscle 
cells, NFAT signaling mediates vascular calcification (Goettsch et al., 2011). To better understand the 
regulatory response to caffeine, we then investigated which motifs were enriched for being within 
upregulated or downregulated targets separately (Supplementary file 3). We observed 19 motifs 
enriched for being within upregulated targets (Figure 2C) and 23 motifs enriched for being within 
downregulated targets (Figure 2D). Motifs enriched for being within upregulated targets include the 
previously mentioned NFATC1 and ZNF423. Motifs enriched for being within downregulated targets 
include the previously mentioned NFATC2 and ZNF423. We also observed that the motif for SREBF2, 
also called SREBP2, is enriched for being within downregulated targets. In hepatocytes, caffeine is 
known to suppress SREBF2 activity, which reduces PCSK9 expression, and thus increases LDLR expres-
sion, which could be protective against CVD (Lebeau et al., 2022). The corresponding transcription 
factors for these motifs could also play a role in mediating the response to caffeine in vascular endo-
thelial cells. The motif for TEAD4 was also identified as enriched for being within downregulated 
targets. Interestingly, a CAD GWAS risk variant disrupts binding of TEAD4 in smooth muscle cells, 
causing lower expression of p16, which could potentially contribute to the risk identified at this locus 
(Almontashiri et al., 2015).

Allelic effects on gene regulation within conditions and in response to 
caffeine
To investigate how genetic variation affects regulatory sequences and their function in cells treated 
with caffeine and in the control samples, we tested for ASE. Since the library contained the same 
sequence in both the forward and reverse orientations in independent targets and the regulatory 
effect may be direction-dependent, we tested for ASE in each SNP/direction pair separately (Supple-
mentary file 4; Figure 3—figure supplement 1, see ‘BiT-STARR-Seq Library Design’ section for a 
more detailed description of terminology used). We observed 689 SNP/direction pairs (corresponding 
to 665 SNPs) with significant ASE out of 50,914 SNP/direction pairs (30,680 SNPs) tested (2.2%, 
FDR < 10%) (Figure 3A). Additionally, our library contained negative control sequences that were 
predicted to not have an allelic regulatory effect. These negative control sequences tend to have 
higher p-values than other sequences in our library, as predicted (Figure 3A). These results demon-
strate that genetic variation within regulatory sequences within our library can modulate gene expres-
sion levels in vascular endothelial cells.

To directly test for GxE in the molecular response to caffeine, we tested for conditional allele-specific 
effects (cASE), where ASE is only significant in one condition, or significantly different between the two 
conditions. When testing for cASE, we observed 6 significant SNP/direction pairs (corresponding to 6 

https://doi.org/10.7554/eLife.85235
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Figure 2. Active regulatory regions in caffeine response in vascular endothelial cells. (A) Volcano plot for DESeq2 results showing targets differentially 
active in caffeine. The light red points are significant (false discovery rate [FDR] < 10%) targets containing caffeine response factor binding sites, the 
black points are significant targets not containing a caffeine response factor binding site, and the gray points are nonsignificant targets. The inset 
contains a QQ plot for targets containing a caffeine response factor binding site (red), or no caffeine response factor binding site (black). (B) Motifs 
enriched via test of proportions (p<0.05) within differentially active targets. Names of caffeine response factors are bolded. For B-D panels error bars 
represent the 95% confidence interval (motif occurrence, n >100). (C) Motifs enriched via test of proportions within upregulated targets (p<0.05). 
(D) Motifs enriched via test of proportions within downregulated targets (p<0.05).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Principal component analysis (PCA) plots from read count data in the first (A) and second (B) batch (experiment), annotated by 
direction.

Figure supplement 2. Principal component analysis (PCA) plots from read count data in the first (A) and second (B) batch (experiment), annotated by 
allele.

Figure supplement 3. Heatmap plots from read count data in the first (A) and second (B) batch (experiment).

https://doi.org/10.7554/eLife.85235
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SNPs) out of 23,814 (15,927 SNPs) tested (FDR < 5%) (Figure 3B, Supplementary file 4, Figure 3—
figure supplement 2). Additionally, we annotated which of these cASE targets contains a known 
caffeine response factor as defined in Findley et al., 2019, based on ATAC-seq data. There is an 
enrichment for these targets containing caffeine response factors, as expected (Figure 3B). The size of 
this enrichment may be underestimated due to the relatively small amount of caffeine response factor 
motifs (4) present in the designed library. Importantly, these variants contribute to inter-individual 
variation in response to caffeine. Thus, we sought to further characterize these variants.

To investigate the regulatory architecture underlying these genetic effects on gene expression, 
we asked whether ASE (FDR < 10%) and cASE variants (here defined at a nominal p<0.0215, N = 
569) were enriched in open chromatin regions as annotated in Findley et al., 2019. ASE variants 
were 2.4-fold enriched within open chromatin regions (p<2.2e-16, Figure 3C, green), while a more 
moderate trend was observed for cASE (1.2-fold, p=0.088, Figure  3C, purple). This difference in 
enrichment could be due to the difference between the native chromatin context versus the reporter 
assay context. Environmental effects on gene regulatory sequences may have a more complex regu-
latory architecture influenced by the chromatin context that may explain the difference in the enrich-
ment results between ASE and cASE (Supplementary file 3).

Genetic regulation of gene expression can be context-dependent, with factors such as cell type 
(Donovan et  al., 2020; Kim-Hellmuth et  al., 2020), developmental states (Cuomo et  al., 2020; 
Strober et  al., 2019), and environmental stimuli all contributing to GxE (GxE-eQTLs, also known 
as response eQTLs, dynamic eQTLs, context-eQTLs) (e.g., see Alasoo et al., 2019; Barreiro et al., 
2012; Çalışkan et al., 2015; Findley et al., 2021; Kim-Hellmuth et al., 2017; Maranville et al., 2011; 
Moyerbrailean et al., 2016b). These context-specific effects can be captured without large cohorts 
if the appropriate experimental design is applied (Findley et al., 2021). Allele-specific expression 
experiments in two different conditions can detect GxE in small sample sizes compared to eQTL 
studies (Moyerbrailean et al., 2016b). To investigate the abundance of GxE missing from large data-
bases such as GTEx (Consortium, 2020), we tested if cASE variants were enriched for artery eQTLs. 
Using variants within the open chromatin regions described above, we conducted a Fisher’s exact 
test and found that ASE variants were 1.38 times more likely to be artery eQTLs (p=0.01, Figure 3C, 

Figure 3. Allelic effects on gene regulation within conditions and in response to caffeine. (A) QQ plot depicting the p-values for allele-specific effects 
(ASE), with negative control sequences labeled in lighter red (caffeine) or lighter blue (control). (B) QQ plot depicting the p-values for conditional allele-
specific effects (cASE), with targets containing caffeine response factor motifs annotated in pink and all other sequences in blue. (C) Enrichment via 
Fisher’s exact test (p<0.05) of ASE (green) and cASE (purple) variants in open chromatin regions and targets containing artery expression quantitative 
trait loci (eQTL). Error bars indicate 95% confidence intervals. The sample sizes for each test are reported in Supplementary file 3.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Z-score scatter plot from allele-specific effect (ASE) analysis comparing caffeine and water.

Figure supplement 2. Distribution of ZT-ZC (case_z) scores from conditional allele-specific effect (cASE) analysis.

Figure supplement 3. Artery expression quantitative trait loci (eQTL) enrichment via Torus for footprint single-nucleotide polymorphisms (SNPs) 
(control, black) or caffeine response factors (caffeine, red).

https://doi.org/10.7554/eLife.85235
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green) compared to variants that did not show ASE. We observed a more moderate trend for cASE 
variants (1.2 times more likely to be artery eQTLs, p=0.26, Figure 3C, purple, Supplementary file 3).

Characterizing ASE and cASE across transcription factor motifs
We hypothesized that the regulatory context defined by the transcription factor motifs present in each 
target determines the effect of a genetic variant on expression in caffeine treated cells. We conducted 
a motif scan of the library of targets for 838 known transcription factor binding motifs from JASPAR 
(Castro-Mondragon et al., 2022; Supplementary file 2). We then used a test of proportions to iden-
tify any motifs that were disproportionately within targets containing significant ASE or cASE variants. 
For targets containing ASE variants, we observed 44 enriched motifs (Figure 4). For targets containing 
cASE variants, we observed 18 enriched motifs (Figure 4, Supplementary file 3 ). Factors of interest 
for cardiovascular function include NRF1, enriched for targets containing cASE and ASE variants, 
which is known to regulate lipid metabolism (Hirotsu et al., 2012; Huss and Kelly, 2004), and is 
annotated as part of the lipid metabolism pathway in Reactome (Fabregat et al., 2018). KLF15 and 
KLF14 are also enriched in targets with cASE and ASE. KLF15 is involved in cardiac lipid metabolism 
(Prosdocimo et al., 2014; Prosdocimo et al., 2015), and KLF14 has previously been associated with 
CVD (Fryar et al., 2012; Hu et al., 2018). Lastly, SREBF2, which was identified as enriched within our 

Figure 4. Transcription factors contributing to allele-specific effect (ASE) and conditional allele-specific effect (cASE). Motifs enriched via test of 
proportions (p<0.05) for significant ASE (green) or cASE (purple). The dotted lines represent the baseline proportion (mean number of significant 
variants within any motif) for ASE (green) and cASE (purple). Bolded factors are caffeine response factors as defined in Findley et al., 2019. Error bars 
represent the 95% confidence interval, motif occurrence n>100.

https://doi.org/10.7554/eLife.85235
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differential activity results, also has implications for disease as discussed previously. This implies that 
SREBF2 are important both in the interindividual response to caffeine as well as disease state, linking 
our identified GxE with atherosclerotic disease.

We also wanted to investigate if ASE and cASE variants were disproportionately present in caffeine 
response factor binding sites, which may indicate that caffeine response factors’ regulatory function 
may be modified by genetic variation. For this analysis, we used annotations from Findley et  al., 
2019, which defines caffeine response factors as transcription factors with motifs that were signifi-
cantly enriched or depleted in differentially accessible chromatin after treatment with caffeine. Factors 
INSM1 and PLAG1 are caffeine response factors as defined in Findley et al., 2019, confirming that 
genetic variation may modulate the response to caffeine by increasing binding activity of these tran-
scription factors.

Validation of the regulatory mechanism for fine-mapped artery eQTLs
Computational fine-mapping is a commonly used method to identify causal variants, often for complex 
traits; however, further functional validation is usually needed to confirm the regulatory mechanism 
underlying fine-mapped causal variants. We previously showed that artery eQTLs are enriched in 
caffeine response factor motifs (also see Figure 3—figure supplement 3; Findley et al., 2019). We 
now leverage this finding to fine-map artery eQTLs using DAP-G and the caffeine response factor 
annotation from Findley et al., 2019. In our library, we tested 187 fine-mapped variants. We identified 
significant ASE for six SNPs (six SNP/direction pairs), thus validating the regulatory function of these 
fine-mapped causal eQTLs (Supplementary file 5). We also identified two fine-mapped artery eQTLs 
with significant cASE (p<0.0215; 2 SNP/direction; Supplementary file 5), which may represent hidden 
GxE in GTEx.

We then investigated if the genes shown to be linked to CAD and hypertension risk using both 
TWAS and colocalization analysis (INTACT, Okamoto et al., 2023) can be further modulated by GxE 

Figure 5. Example genetic variant with GxE with caffeine where caffeine may increase genetic risk of CAD. (A) Potential mechanism for rs4938344. 
(B) Transcription factors containing rs4938344 in a binding site are upregulated (via DESeq2) upon caffeine exposure (error bars are +/- standard error, 
FDR<10%, n=14). (C) Logos of transcription factor motifs with rs4938344 highlighted. (D) GTEx violin plot for AP000892.6. (E) Effect size from the BiT-
STARR-Seq assay for this single-nucleotide polymorphism (SNP) within each condition (error bars are +/- standard error, n=4 replicates per condition, 
cASE p<0.0215, see ‘cASE Analysis’ section of methods). (F) Locus zoom plots showing genome-wide association studies (GWAS) and expression 
quantitative trait loci (eQTL) data for hypertension (left) and coronary artery disease (CAD) (right) in tibial artery tissue.

https://doi.org/10.7554/eLife.85235
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with caffeine. INTACT combines TWAS and colocalization approaches, thus overcoming the TWAS 
inherent linkage disequilibrium limitations. We identified eight cASE variants that regulate the expres-
sion of genes associated with CAD and hypertension (<10%  FDR for INTACT analysis, p<0.0215 
for cASE analysis, Supplementary file 6). We used available experimental data and computational 
predictions to dissect the regulatory mechanisms underlying context-specific allelic effects for two of 
these SNPs and their impact on CAD risk (Figures 5 and 6). We considered allelic effects on transcrip-
tion factor binding, expression of the transcription factors, and disease risk. Specifically, we consid-
ered (i) predicted effects on transcription factor binding from CentiSNP, which uses a combination 
of sequence information and chromatin accessibility data to predict alleles that increase binding of 
specific transcription factors (Moyerbrailean et al., 2016a); (ii) changes in the expression of the genes 
encoding for the relevant transcription factors and changes in chromatin accessibility (Findley et al., 
2019); and (iii) allelic effect on the target genes (this study and GTEx).

rs4938344 is an eQTL regulating the long noncoding RNA AP000892.6. The reference allele 
at this locus, G, results in decreased expression of AP000892.6 (as measured in GTEx and in the 
caffeine condition of our assay, Figure 5D and E, respectively). INTACT associated high expression 
of AP000892.6 with decreased risk of hypertension and CAD (Figure 5F). This SNP is predicted to 
modulate binding of GABP (a known repressor of transcription; Genuario and Perry, 1996) and ETV1 
at this site (Figure 5C). These transcription factors are upregulated in caffeine-exposed endothelial 
cells (Findley et al., 2019; Figure 5B). This increase in expression uncovers allelic differences in gene 
regulation which are not detected in the absence of caffeine, likely because of the low expression of 
the repressor. The allelic differences in binding of these factors should lead to allelic differences in the 
expression of AP000892.6. Accordingly, the reference allele for this variant exhibited lower activity 
in response to caffeine in our BiT-STARR-Seq experiments (Figure 5E). This effect is consistent with 
the GTEx artery eQTL for AP000892.6 (Figure 5D). In summary, caffeine induces higher expression 
of the ETV1 and GABP transcription factors, which then bind preferentially to the reference allele at 

Figure 6. Example genetic variant with GxE with caffeine where caffeine may decrease genetic risk of CAD. (A) Potential mechanism for rs4527034. 
(B) TERF2IP is upregulated (via DESeq2) upon caffeine exposure (error bars are +/- standard error, FDR<10%, n = 14). (C) Logos of TERF2IP motif with 
rs4527034 highlighted. (D) GTEx violin plot for KAT8. (E) Effect size from the BiT-STARR-Seq assay for this single-nucleotide polymorphism (SNP) within 
each condition (error bars are +/- standard error, n=4 replicates per condition, cASE p<0.0215, see ‘cASE Analysis’ section of methods). (F) Locus zoom 
plots showing genome-wide association studies (GWAS) and expression quantitative trait loci (eQTL) data for hypertension in coronary artery tissue.

https://doi.org/10.7554/eLife.85235
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rs4938344; this results in lower expression of AP000892.6 and increased risk for CAD and hyperten-
sion (Figure 5A). AP000892.6 interacts with the RB1CC1 RNA (Gong et al., 2018), which may play a 
role in atherosclerosis via its function in forming the autophagosome (Chen et al., 2021).

rs4527034 is an eQTL regulating the KAT8 gene. The reference allele at this locus, A, results 
in decreased expression of KAT8 (as measured in GTEx and in the control condition of our assay, 
Figure 6D and E, respectively). INTACT associated high expression of KAT8 with increased risk of 
hypertension (Figure 6F). This SNP is predicted to modulate binding of the TERF2IP transcription 
factor at this site (Figure 6C). TERF2IP is upregulated in caffeine-exposed endothelial cells (Findley 
et  al., 2019; Figure 6B). This increase in expression may saturate all binding sites in the caffeine 
condition, while the transcription factor may only bind to the preferential allele in the control condi-
tion. The allelic differences in binding of these factors should lead to allelic differences in expression 
of KAT8 in the control condition, which is what we observe both in our BiT-STARR-Seq experiments 
(Figure 6E) and in GTEx artery eQTL for KAT8 (Figure 6D). In summary, in the absence of caffeine, 
TERF2IP binds preferentially to the reference allele at rs4527034, which results in lower expression 
of KAT8 and reduced risk for hypertension. In the presence of caffeine, TERF2IP is upregulated, 
resulting in increased binding and lower expression of KAT8, independently of the genotype, with an 
expected overall protective effect on hypertension. Confirming this potential mechanism for disease 
risk, TERF2IP expression levels were found to affect plaque formation in a mouse model (Kotla et al., 
2019). High expression of KAT8, a histone acetyltransferase, also coincides with atherosclerotic 
progression, and histone acetylation increases in plaques within vascular endothelial cells (Greißel 
et al., 2016; Zhang et al., 2018).

Discussion
This study utilized the MPRA BiT-STARR-Seq to identify gene regulatory activity in vascular endothelial 
cells exposed to caffeine. By utilizing BiT-STARR-Seq, we were able to identify a molecular response 
to caffeine, ASE, and cASE. By combining our results with preexisting annotations, we were able to 
characterize variants exhibiting cASE and identify potential mechanisms for some of these variants.

Heart disease is one of the leading causes of death in the United States according to the CDC 
(http://wonder.cdc.gov/ucd-icd10.html). The most common type of heart disease is CAD, which 
affects over 18 million adults over the age of 20 y (Fryar et al., 2012). The common risk factors of 
CAD include hypertension, high cholesterol levels, and family history (Brown et  al., 2022; Hajar, 
2017). CAD occurs when plaques form in the arteries (atherosclerosis), causing a narrowing of the 
artery, which reduces blood flow to the heart. The innermost layer of the artery is composed of endo-
thelial cells. The endothelium is involved in several important functions, including regulation of blood 
flow, angiogenesis, thrombosis, and coagulation (Hadi et  al., 2005; Krüger-Genge et  al., 2019). 
Endothelial dysfunction occurs in diseases such as atherosclerosis and hypertension (Xu et al., 2021), 
eventually leading to CAD (Matsuzawa and Lerman, 2014). The molecular mechanisms behind endo-
thelial dysfunction and the resulting diseases are largely unknown. Characterizing these molecular 
mechanisms is crucial in order to gain a more complete understanding of these disease phenotypes. 
Additionally, although caffeine is known to produce a vascular response, the current literature does 
not come to a consensus on the role of caffeine in CAD risk. Here, we characterized the regulatory 
response of noncoding variants to caffeine in vascular endothelial cells using an MPRA.

BiT-STARR-Seq, the MPRA used in this study, has several advantages over other methods used 
to detect GxE. One common method of detecting GxE is response eQTL mapping, which includes 
collecting samples from large cohorts and exposing those cells to environmental perturbations (e.g., 
see Alasoo et al., 2019; Alasoo et al., 2018; Barreiro et al., 2012; Çalışkan et al., 2015; Fairfax 
et al., 2014; Huang et al., 2020; Kim-Hellmuth et al., 2017; Knowles et al., 2018; Lee et al., 2014; 
Mangravite et al., 2013; Manry et al., 2017; Maranville et al., 2011; Nédélec et al., 2016; Quach 
et  al., 2016). This method has several disadvantages as it cannot easily interrogate rare variants, 
relies on variation existing in a cohort (instead of investigating variants of interest), and requires larger 
cohort sizes to have enough power to detect GxE. In contrast, because our method uses a designed 
library of targets (Kalita et al., 2018), we are able to interrogate rare variants easily as our targets 
are synthesized. Similarly, we can design a library of specific variants to investigate (such as candidate 
regulatory variants) instead of relying on variation within a cohort (Kalita et al., 2018). BiT-STARR-Seq 
also allows us to directly compare two alleles within the same sequence context without requiring a 

https://doi.org/10.7554/eLife.85235
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large cohort. Despite the advantages of BiT-STARR-Seq, unlike response eQTL mapping, we are not 
interrogating these SNPs in their native chromatin context. Future work may include using genome-
editing tools such as CRISPR to directly insert the desired variants in their endogenous locations in the 
genome. For our study, we determined BiT-STARR-Seq to be the ideal assay to determine GxE for a 
large number of SNPs.

We observed a regulatory response to caffeine treatment, consistent with previous studies in the 
same cell type (Findley et al., 2019; Moyerbrailean et al., 2016b). These results suggest that caffeine 
exposure significantly changes the regulatory activity of vascular endothelial cells, which may have 
important implications regarding the impact of lifestyle in CAD. As caffeine may modulate gene regu-
latory activity, the resulting impact on gene expression may increase or decrease CAD risk. In addition, 
we identified novel transcription factors contributing to the regulatory response to caffeine including 
several NFAT transcription factors, and SREBF2. NFAT transcription factors are largely known for their 
role in the Ca2+/NFAT signaling pathway, where Ca2+ binds to calmodulin, stimulating calcineurin, which 
then causes NFAT factors to localize in the nucleus (Crabtree and Olson, 2002; Klee et al., 1998). 
Caffeine is known to cause an increase in Ca2+ in human aortic endothelial cells (Corda et al., 1995), so 
it is understandable that we find these factors enriched for being within targets that respond to caffeine 
exposure. SREBF2, also known as SREBP2, is involved in sterol homeostasis (Horton et al., 2003). 
This result implies these novel transcription factors important for the regulatory response to caffeine 
may also contribute to understanding the role of caffeine in CAD risk. This coincides with findings that 
caffeine exposure can alter expression of genes, including those for transcription factors in mouse 
cardiomyocytes (Fang et al., 2014). Another study aimed to uncover mechanisms relevant to CVD 
upon caffeine exposure and found that caffeine inhibits the transcription factor SREBP2, which causes 
an overall protective effect against CVD (Lebeau et al., 2022). These results coincide with our findings.

Noncoding regions of the genome contain regulatory variants that modulate gene expression. In 
this study, we identify and characterize over 600 variants exhibiting ASE. Numerous noncoding vari-
ants have been implicated in CAD risk via GWAS (Hartmann et al., 2022; Kessler and Schunkert, 
2021; Koyama et al., 2020; Nikpay et al., 2015; Temprano‐Sagrera et al., 2022; van der Harst 
and Verweij, 2018), but they are generally uncharacterized. Few lead noncoding variants have been 
thoroughly investigated. One of these led the authors to propose and validate a molecular mechanism 
connecting expression of the EDN1 gene to the phenotypic outcome (Gupta et al., 2017; Wang and 
Musunuru, 2018). The specific mechanisms that detail how noncoding variants contribute to CAD 
will be critical in understanding CAD risk and ultimately developing clinical treatments. While under-
standing various genetic risk factors for CAD is important, GxE for these variants also have an impact 
on phenotype and have not been widely studied.

Since previous studies have shown that GxE-eQTL can modulate complex disease risk, we expect 
that GxE detected in our assay may be relevant to CAD (Alasoo et al., 2019; Alasoo et al., 2018; 
Barreiro et al., 2012; Çalışkan et al., 2015; Fairfax et al., 2014; Findley et al., 2021; Huang et al., 
2020; Kim-Hellmuth et al., 2017; Knowles et al., 2018; Lee et al., 2014; Mangravite et al., 2013; 
Manry et al., 2017; Maranville et al., 2011; Nédélec et al., 2016; Quach et al., 2016). We tested for 
cASE, which occurs when ASE are only significant in one condition, or significantly different between 
the two conditions. This analysis identifies GxE which are important in understanding disease risk 
while accounting for genetic and environmental context. We identified 6 variants that regulate the 
gene expression response to caffeine and demonstrated that context-aware MPRAs can be used to 
dissect molecular mechanisms underlying cardiovascular health.

By fine-mapping artery eQTLs and combining the data collected from our assay with preexisting 
annotations, we produced potential mechanisms for two cASE variants through altered transcrip-
tion factor expression and binding in response to caffeine. Our results indicated that both genetic 
and environmental factors are important in determining risk, and that the interaction between these 
factors can be informative to mechanisms and phenotypic consequences. Importantly, by utilizing 
multiple functional annotations, we are able to identify variants that may be relevant to disease but 
did not reach genome-wide significance in GWAS, possibly because of their context-specific effects. 
By studying different environmental contexts, we can identify that, in these instances, the presence 
of caffeine can impact the risk of poor cardiovascular health outcomes. If environmental context was 
not considered and this work was conducted solely in the control condition, the caffeine modulatory 
effect on risk would have been missed.

https://doi.org/10.7554/eLife.85235
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Although we investigate GxE for caffeine in vascular endothelial cells, our experimental approach can 
be applied to various different complex diseases and their relevant cell types and treatments. To further 
validate our work, genome-editing tools could be used to investigate the effect of these variants in their 
native chromatin context. Additional validation could include allele-specific and condition-specific tran-
scription factor binding assays (such as electrophoretic mobility shift assays) for the fine-mapped variants.

Our study demonstrates the importance of considering environmental contexts when investigating 
gene regulatory activity as we identify several thousand instances of GxE in our library of candidate 
regulatory variants. Our data, combined with preexisting annotations, allowed us to identify transcrip-
tion factors involved in GxE in caffeine and describe specific potential molecular mechanisms for some 
of these GxE. Our results provide important insights into the molecular regulatory effect of caffeine 
exposure and GxE for caffeine in vascular endothelial cells.

Materials and methods
Cell culture
Human umbilical vein endothelial cells (HUVECs) were obtained from Lonza (Cat# CC-2517-0000315288). 
Cells were cultured at 37°C with 5% CO2 and seeded at 5000 cells/cm2. EGM-2 growth medium 
(Lonza) was used to culture the cells.

Treatment
Treatment concentration was the same as used in previous studies (Findley et  al., 2019; Moyer-
brailean et al., 2016b). We used a caffeine concentration of 1.16 × 10–3 M. In addition, water was 
used as a vehicle control as that was the solvent used to prepare the caffeine treatment.

BiT-STARR-Seq library design
We designed 43,556 target regulatory regions each containing an SNP in the middle and with a total 
length of 200 nucleotides. This set of targets corresponds to 87,112 constructs each containing only 
one of two alleles at the test SNP. Additionally, each construct can be integrated in the forward or 
reverse orientation, leading to a maximum of 174,224 constructs in either direction. Please also see 
below for a description of how we use library-related terms throughout the article. The library used 
is the same as reported in Kalita et  al., 2018. Briefly, the library of target regulatory sequences 
consisted of several categories of regulatory variants, including eQTLs (Innocenti et al., 2011; Wen 
et  al., 2015), SNPs predicted to disrupt transcription factor binding (centiSNPs) (Moyerbrailean 
et al., 2016a), and SNPs associated with complex traits in GWAS (Pickrell, 2014). Negative controls 
that were not predicted to have a regulatory effect were also included in the library (Moyerbrailean 
et al., 2016a). It is important to note that these negative controls are only predicted not to have a 
regulatory effect via computational annotation (Moyerbrailean et al., 2016a), so they may not be 
representative of true negative controls. This is why we largely do not utilize these SNPs as negative 
controls within our analyses. Our predictions of regulatory activity also did not account for environ-
mental context, thus these sequences are also not suited to annotate our cASE results.

SNP (n = 43,556): Refers to a genetic variant tested for allelic effects on gene regulation.
Target (n = 43,556): 200-nucleotide-long oligonucleotide sequence that contains the test SNP 
in the middle of the target.
Construct (n = 87,112): Synthesized 200-nucleotide-long oligonucleotide sequence that 
contains only one of the two possible alleles at the test SNP. Each target corresponds to two 
constructs.
Direction: Constructs can integrate in either the forward or reverse direction relative to the 
direction of transcription in the BiT-STARR-Seq plasmid. Therefore, two directions are possible 
for each construct.
SNP/direction pair (n = 87,112): An SNP tested for allelic effects on gene regulation contrasting 
the expression of two constructs that are integrated in the same direction. All statistical tests 
are performed at this level, testing in each direction separately.

https://doi.org/10.7554/eLife.85235
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BiT-STARR-Seq experiments
Oligonucleotides were synthesized and used to create a DNA plasmid library, which was sequenced 
and used as a subsequent input for the ASE analysis. The DNA library was transfected into HUVECs 
using the Lonza Nucleofector X platform. Cells were electroporated using the DS-120 setting with 
primary cell solution P5. Caffeine was added at 1.16 × 10–3 M after transfection. Cells were incubated 
for 24 hr and lysed. We completed 6 replicates per treatment condition (caffeine and the water vehicle 
control) or 12 replicates in total.

Library preparation and sequencing
RNA was extracted using the RNeasy Plus Mini kit (QIAGEN, Cat# 74136). A cDNA library was 
prepared using the Superscript III First-Strand Synthesis kit (Invitrogen, Cat# 18080-400). Sequencing 
was completed using the Illumina Nextseq 500 to generate 125 cycles for read 1, 30 cycles for read 2, 
8 cycles for the fixed multiplexing index 2, and 10 cycles for index 1 (variable barcode). The average 
sequencing depth per library was 39,235,611 reads, for a total of 470,827,333 reads (Figure 1—figure 
supplement 1, Supplementary file 7).

Processing sequence data
To analyze the RNA-seq data, we began by demultiplexing our data using the bcl2fastq software to 
create demultiplexed FASTQ files. We then aligned to hg19 using HISAT2. Afterward, we applied a 
filter to ensure the UMIs present match the expected UMI pattern (RDHBVDHBVD). Reads with short 
UMIs or those that do not match the expected sequence were removed. The resulting BAM files were 
then deduplicated using UMItools. We ran samtools mpileup followed by bcftools query to output 
read counts per each allele/direction combination.

Differential activity analysis
To test for a molecular response to caffeine, we used the R package DESeq2 (Love et al., 2014). To 
determine which model would best test for a molecular response to caffeine, we completed principal 
component analysis to identify major sources of variation. We identified that the first PC clearly repre-
sented allelic effects (Figure 2—figure supplement 2, also see Figure 3—figure supplements 1 and 
3), thus we included allele (reference or alternate) as part of our model. Our model tested the effect 
of treatment, correcting for allele (~allele + treatment), as we observed a strong allelic effect. We ran 
DESeq2 for each direction (see Figure 2—figure supplement 1) as the library contained motifs in 
both the forward and reverse orientations within separate target sequences. We considered targets 
as significant with Benjamini–Hochberg FDR <10%.

ASE analysis
To test for ASE, we utilized the R package quantitative allele-specific analysis of reads (QuASAR-
MPRA) (Kalita et al., 2017). QuASAR-MPRA is an extension of the QuASAR package which allows 
for analysis of barcoded MPRA data. QuASAR-MPRA uses a beta-binomial model and accounts for 
uneven initial allelic proportions present in the DNA library. We used the fitQuasarMpra() function to 
test for ASE in each experiment separately, estimating the ASE effect and its standard error. For each 
SNP/direction pair, we meta-analyzed the effect size using a weighted mean utilizing inverse-variance 
weighting for each condition separately. The z-score for each SNP-direction pair is subsequently calcu-
lated as the meta-analyzed effect size minus the DNA proportion, divided by the meta-analyzed stan-
dard error of the effect size. We then required each identifier to be within four or greater replicates 
(out of the six total replicates) and performed multiple test correction using the Benjamini–Hochberg 
procedure. Significant ASE was then defined as having an FDR <10%.

cASE analysis
To test for cASE, we used a method previously developed by our lab called differential allele-specific 
test, or ΔAST. The calculation for this parameter ΔZ is provided in Moyerbrailean et al., 2016a as 
well as below. The QuASAR-MPRA package outputs betas for the treatment (βT) and the control 
(βC), as well as the standard error (se) for both groups, which are used to calculate a Z score for each 
condition independently ‍(

β
se )‍. To contrast ASE between conditions we define the cASE statistic (ΔZ)2 , 

as (ΔZ)2 = (ZT - ZC)2 /2. From this (ΔZ)2 statistic, we used the genomic control procedure (Devlin et al., 
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2001; Devlin and Roeder, 1999) to calibrate the median χ2 to the expected value and we calculated 
the p-values using the χ2 distribution. We then used the p.adjust() function to perform multiple test 
correction using the Benjamini–Hochberg procedure. Significant cASE was then defined as having an 
FDR<5%.

Motif enrichment analysis
The motif scan was completed using the PWMScan tool, using all PWMs within the JASPAR (Castro-
Mondragon et al., 2022) 2022 CORE database (838 motifs). A threshold of -t 10 (base 2) was used 
for the motif scan, which was restricted to the regions of our designed targets. Once the scan was 
complete, motifs that were present less than 100 times in the library were removed. For differentially 
active targets in response to caffeine, 222 motifs passed this filter. For motifs containing ASE variants, 
359 motifs passed this filter. For motifs containing cASE variants, 417 motifs passed the filter. A test 
of proportion (​prop.​test() in R) was performed per each transcription factor, where the null propor-
tion was the total number of significant targets/variants containing/within motifs (differentially active 
target, ASE or cASE) divided by the total number of nonsignificant targets/variants containing/within 
motifs. The test was done per motif, where the proportion being tested is the same as the null propor-
tion, but conducted per motif rather than across all motifs. The related calculations are shown below:

Expected null proportion = na/nb

Observed motif proportion = nc/nd

na = number of targets/variants of interest containing/within any motif
nb = number of targets/variants containing/within any motif
nc = number of targets/variants of interest containing/within specific motif
nd = number of targets/variants containing/within specific motif

ASE (FDR <10%) and cASE (p<0.0215) were considered significant. For follow-up analyses of cASE 
features, we relaxed the significance threshold to nominal p-value <0.0215.

Open chromatin region enrichment analysis
To test if certain variants were within open chromatin regions, we obtained the list of differentially 
accessible regions tested in Findley et al., 2019. We considered any accessible region (annotated as 
differentially accessible or not). Bedtools bed intersect tool was used to complete the overlap with the 
appropriate datasets (DESeq2, ASE, or cASE results), resulting in a list of targets or SNPs that were 
within open chromatin regions. This annotation was then used to complete the Fisher’s exact test. 
Enrichments for significant ASE or cASE variants were performed separately.

Artery eQTL enrichment analysis
To determine if certain variants were artery eQTLs, we obtained GTEx v8 (Castro-Mondragon et al., 
2022) data for aorta, coronary, and tibial artery tissues. We then intersected the list of variants of 
interest with the list of artery eQTLs. To determine if artery eQTLs were within differentially active 
targets, bedtools intersect was used, resulting in a list of targets that contained artery eQTLs. We 
further subset this list to variants within open chromatin regions (see previous section). This annotation 
was then used to complete the Fisher’s exact test. Enrichments for significant ASE or cASE variants 
were performed separately.

Fine-mapping analysis with DAP-G
Based on a previous study (Findley et al., 2019), we define caffeine response factors as transcription 
factors with motifs that were significantly enriched or depleted in differentially accessible chromatin 
after treatment with caffeine. We annotated genetic variants into two categories: (1) genetic variants 
in motifs for response factors and (2) genetic variants in motifs for transcription factors that are not 
caffeine response factors. By integration of these genetic variants annotation, we estimated the prob-
ability of each SNP regulating gene expression in a Bayesian hierarchical model using TORUS (Wen, 
2016). These probabilities are then used in DAP-G (Zhang et al., 2020) to fine-map eQTLs from all 
three artery tissues in GTEx V8. A total of 364,427,888 eQTLs were fine-mapped across three artery 
tissues. We filtered for a posterior inclusion probability of >0.9.

https://doi.org/10.7554/eLife.85235
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Identification of putative causal genes
To better understand how cASE variants may impact traits related to cardiovascular health, we 
performed colocalization analysis of the causal GWAS variants with eQTLs using fastENLOC (Wen 
et al., 2017) by integration of fine-mapped eQTLs in the three artery tissues (see above section) and 
fine-mapped GWAS signals for CAD and hypertension. We fine-mapped GWAS using DAP (Wen, 
2016). From fastENLOC, we obtained the gene locus-level colocalization probability for each gene 
which is used to evaluate how the gene is associated with complex traits or diseases. Intuitively, 
colocalization analysis identified the overlap of causal eQTLs and GWAS hits. However, it lacked the 
sensitivity due to the failure in distinguishing between the vertical pleiotropy (genetic effects on traits 
mediated by gene expression) and horizontal pleiotropy (independent effects on gene expression 
and traits) (Okamoto et al., 2023). To overcome the limitations in a single approach, we combined 
the evidence from colocalization and TWAS to estimate the probability of putative causal genes using 
the R package INTACT (Okamoto et al., 2023). Here, the TWAS data we utilized were from PTWAS 
(Zhang et al., 2020). We determined putative causal genes with FDR < 10%. We then identified vari-
ants regulating these putative causal genes using the DAP-G fine-mapping results, requiring a SNP-
level colocalization probability >0.5, with no threshold on PIP (Supplementary file 6).
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Additional files
Supplementary files
•  Supplementary file 1. Differential activity results. Output from DESeq2. Column ‘V1’ is the 
genomic position (hg19) of the SNP within the construct being tested, ‘baseMean’ refers to 
normalized expression, ‘log2FoldChange’ refers to the effect size, ‘lfcSE’ is the standard error of the 
effect size, ‘stat’ is the log2FoldChange divided by lfcSE, ‘pvalue’ is the nominal p-value, and ‘padj’ 
is the adjusted p-value. Please refer to DESeq2 documentation for additional details.

•  Supplementary file 2. PWMScan results. Includes all variants in the designed library that are within 
a motif from the JASPAR 2022 CORE Vertebrates database determined by PWMScan. Columns 1–3 
are the genomic position of the test SNP, column 4 is the rsID for the test SNP, and column 5 is the 
ID of the motif in JASPAR.

•  Supplementary file 3. Characterization of regulatory regions and variants. Includes contingency 
tables for all Fisher’s exact tests reported in this study. Please see the legend provided within the 
file. Briefly, A1–C5 is the contingency table and summary of results for ASE variants within open 
chromatin regions, A6–C10 for ASE variants overlapping with artery eQTLs, A11–C15 for cASE 
variants within open chromatin, and A16–C20 for cASE variants overlapping with artery eQTLs.

•  Supplementary file 4. Allele-specific effects and conditional allele-specific effects results. Output 
from ASE/cASE analysis. The ‘identifier’ column is the SNP/direction pair, ‘meta_estimate’ is the 
effect size (of the ASE), ‘meta_se’ is the standard error of the effect size, ‘n’ is the number of 
replicates containing nonzero read counts, ‘DNA_prop’ is the proportion of reads (reference/
alternate) present in the DNA library, ‘meta_z’ is the z-score, ‘meta_p’ is the nominal ASE p-value, 
‘meta_padj’ is the adjusted ASE p-value before filtering for SNP/direction pairs where n > 3, ‘new_
padj’ is the adjusted ASE p-value after filtering for SNP/direction pairs where n > 3, ‘group’ refers to 
the applicable condition for the statistic (.x suffix for caffeine, .y suffix for control), ‘case_z’ is ZT-ZC, 
‘case_p’ is the nominal p-value for cASE, and ‘case_padj’ is the adjusted p-value for cASE.

•  Supplementary file 5. Fine-mapped artery eQTLs with significant ASE or cASE. The ‘chr’ column 
contains the chromosome information, ‘pos’ is the genomic position (0-based, hg19), ‘pos1’ is the 
genomic position (1-based, hg19), ‘identifier’ is the SNP/direction pair, ‘rsID’ refers to rsID, ‘padj_
min’ refers to the minimum p-adjusted value for ASE (across conditions), ‘ID’ is an ID to identify the 
genomic position in the format of chr_pos1, ‘PIP’ is the posterior inclusion probability as calculated 
by DAP-G, ‘gene’ refers to the Ensembl gene ID, ‘tissue’ refers to the GTEx artery tissues (tibial, 
aorta, or coronary), ‘group’ identifies if the variant has significant ASE or significant cASE, ‘case_p’ 
refers to the cASE nominal p-value, and ‘case_padj’ refers to the cASE adjusted p-value.

•  Supplementary file 6. Variants that regulate putatively casual genes as identified via INTACT. The 
‘Identifier’ column is the SNP/direction pair, ‘ID’ is an ID to identify the genomic position in the 
format of chr_pos1 (see above), ‘Gene ID’ refers to the Ensembl gene ID, ‘Gene symbol’ refers to 
the gene symbol, ‘Trait’ is CAD or hypertension (HTN), ‘Tissue’ refers to the GTEx artery tissues 
(tibial, aorta, or coronary), ‘DAP-G PIP’ is the posterior inclusion probability as calculated by DAP-G, 
‘GWAS z-score’ is the z-score for the GWAS of the corresponding trait, ‘GWAS pvalue’ is the 
nominal p-value for the GWAS of the corresponding trait, ‘PTWAS-INTACT PCG’ is the probability 
of being a putative causal gene as calculated by INTACT, ‘PTWAS-INTACT FDR’ is the FDR statistic 
as calculated by INTACT, ‘INTACT z-score’ is the z-score statistic as calculated by INTACT, ‘cASE_p’ 
is the cASE nominal p-value, ‘cASE_padj_(original)’ is the cASE adjusted p-value, ‘cASE_z’ is ZT-ZC, 
‘DE_construct?’ indicates if the construct is significantly differentially active as defined by our assay, 
‘Caffeine_ASE_z’ is the z-score for ASE (caffeine condition), ‘Water_ASE_z’ is the z-score for ASE 
(control condition), ‘centiSNP motifs’ refers to motifs the SNP is within as identified by centiSNP, and 
‘centiSNP category’ refers to if the motif is a footprintSNP, effectSNP, or switchSNP as identified by 
centiSNP.

•  Supplementary file 7. Read counts. Read counts for all libraries at different steps of the data 
processing pipeline. ‘Library Name’ is an identifier used for the sample, ‘Treatment’ is the condition 
(caffeine or control), ‘Dedup’ refers to the number of reads after deduplication, and ‘>1 read either 
direction’ describes the number of reads that have >1 read for each allele in either direction.

•  MDAR checklist 

Data availability
FASTQ files and read count data are available at the GEO accession number GSE221514. Supple-
mental files are available at https://doi.org/10.5281/zenodo.7327508.

https://doi.org/10.7554/eLife.85235
https://doi.org/10.5281/zenodo.7327508
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Boye C, Kalita C, 
Findley A, Alazizi A, 
Wei J, Wen X, Luca F, 
Pique-Regi R

2024 Characterization of caffeine 
response regulatory 
variants in vascular 
endothelial cells

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE221514

NCBI Gene Expression 
Omnibus, GSE221514

Boye C, Kalita C, 
Findley A, Alazizi A, 
Wei J, Wen X, Pique-
Regi R, Luca F

2024 Characterization of caffeine 
response regulatory 
variants in vascular 
endothelial cells

https://​doi.​org/​10.​
5281/​zenodo.​7327508

Zenodo, 10.5281/
zenodo.7327508

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Findley AS, Richards 
AL, Petrini C, Alazizi 
A, Shanku AG, Davis 
GO, Hauff N, Sorokin 
Y, Wen X, Luca F, 
Doman E, Pique-
Regi R

2019 Gene-Environment 
Interactions (GxE) and 
Complex Traits

https://www.​ncbi.​nlm.​
nih.​gov/​projects/​gap/​
cgi-​bin/​study.​cgi?​
study_​id=​phs001176.​
v3.​p1

NCBI Gene Expression 
Omnibus, phs001176.v3.p1
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