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Abstract Aging is a major risk factor for Alzheimer’s disease (AD), and cell-type vulnerability 
underlies its characteristic clinical manifestations. We have performed longitudinal, single-cell RNA-
sequencing in Drosophila with pan-neuronal expression of human tau, which forms AD neurofibrillary 
tangle pathology. Whereas tau- and aging-induced gene expression strongly overlap (93%), they 
differ in the affected cell types. In contrast to the broad impact of aging, tau-triggered changes are 
strongly polarized to excitatory neurons and glia. Further, tau can either activate or suppress innate 
immune gene expression signatures in a cell-type-specific manner. Integration of cellular abun-
dance and gene expression pinpoints nuclear factor kappa B signaling in neurons as a marker for 
cellular vulnerability. We also highlight the conservation of cell-type-specific transcriptional patterns 
between Drosophila and human postmortem brain tissue. Overall, our results create a resource for 
dissection of dynamic, age-dependent gene expression changes at cellular resolution in a genetically 
tractable model of tauopathy.

Editor's evaluation
Wu et al. have provided a revised manuscript that presents important new findings that start to 
explain cell type vulnerability and the types of transcriptional changes that occur in the context of 
neurodegenerative diseases. They cleverly use Drosophila for this as they have access to numerous 
brain cells and exquisite genetic control. They present compelling evidence of transcriptional dereg-
ulation and affected pathways in relation to Tau toxicity in a well-controlled study. They also tested 
if affected pathways modify toxicity but were not successful, however, as pointed out, this can have 
different reasons. This paper is of broad interest to those in the field of neurodegeneration and 
neuronal disease and from a methodological point of view to single-cell biologists.

Introduction
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by extracellular 
amyloid-beta neuritic plaques and intracellular tau neurofibrillary tangles (DeTure and Dickson, 2019; 
Scheltens et al., 2021). Tau neuropathological burden is strongly correlated with cognitive decline, 
synaptic loss, and neuronal death (Arriagada et  al., 1992; Braak and Braak, 1991; Gómez-Isla 

Research Article

*For correspondence: 
joshua.shulman@bcm.edu

Present address: †Department 
of Genetics, Stanford University 
School of Medicine, Standford, 
United States; ‡School of 
Computing and Informatics, Al 
Hussein Technical University, 
Amman, Jordan

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 25

Preprinted: 16 November 2022
Received: 29 November 2022
Accepted: 22 May 2023
Published: 23 May 2023

Reviewing Editor: Patrik 
Verstreken, KU Leuven, Belgium

‍ ‍ Copyright Wu et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.85251
mailto:joshua.shulman@bcm.edu
https://doi.org/10.1101/2022.11.14.516410
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Neuroscience

Wu et al. eLife 2023;12:e85251. DOI: https://doi.org/10.7554/eLife.85251 � 2 of 32

et al., 1997). Cell-type-specific vulnerability is also an important driver of AD clinical manifestations, 
including its characteristic amnestic syndrome. Neurofibrillary tangles first appear in the transento-
rhinal cortex, entorhinal cortex, and CA1 region of the hippocampus, affecting resident pyramidal 
cells and excitatory glutamatergic neurons; cholinergic neurons of the basal forebrain are also partic-
ularly vulnerable (Mrdjen et al., 2019; Fu et al., 2018). Single-cell RNA-sequencing (scRNAseq) or 
single-nucleus RNA-sequencing (snRNAseq) are promising approaches to pinpoint cell-type-specific 
mechanisms in AD, including those that may underlie neuronal vulnerability (Mathys et al., 2019; 
Grubman et al., 2019; Lau et al., 2020; Zhou et al., 2020). Emerging data highlight altered tran-
scriptional states and/or cell proportions for vulnerable versus resilient neurons, including excitatory 
or inhibitory neurons, respectively (Leng et al., 2021). snRNAseq profiles also implicate important 
roles for non-neuronal cells, including oligodendrocytes, astrocytes, and microglia (Grubman et al., 
2019; Lau et al., 2020; Zhou et al., 2020). Microglial expression signatures, including genes with 
roles in innate immunity, are sharply increased in brains with AD pathology, and an important causal 
role in AD risk and pathogenesis is reinforced by findings from human genetics (Bohlen et al., 2019; 
Deczkowska et al., 2018; Bellenguez et al., 2022).

One important limitation to gene expression studies from human postmortem tissue is that only 
cross-sectional analysis is possible, making it difficult to reconstruct dynamic changes over the full time 
course of disease. In fact, age is the most important risk factor for AD, which develops over decades 
(Masters et al., 2015; Villemagne et al., 2013). Another potential challenge is identifying molecularly 
specific changes since tau tangle pathology usually co-occurs with amyloid-beta plaques, along with 
other brain pathologies that can also cause dementia (e.g., Lewy bodies or infarcts) (Kapasi et al., 
2017). By contrast, animal models permit experimentally controlled manipulations isolating specific 
triggers and their impact over time. For example, in mouse models of amyloid-beta pathology, 
scRNAseq and snRNAseq have implicated subpopulations of disease-associated microglia and astro-
cytes, and similar changes may also characterize brain aging (Keren-Shaul et al., 2017; Habib et al., 
2020). Further, in tau transgenic models, activation of immune signaling by the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) transcription factor within microglia was found to 
be an important driver of pathological progression (Wang et al., 2022). We recently characterized 
tau- and aging-induced gene expression changes in a Drosophila melanogaster tauopathy model, 
revealing perturbations in many conserved pathways such as innate immune signaling (Mangleburg 
et al., 2020). Over 70% of tau-induced gene expression changes in flies were also observed in normal 
aging. In this study, we deploy scRNAseq in Drosophila to map the cell-specific contributions of age- 
and tau-driven brain gene expression and identify NFκB signaling as a promising marker of neuronal 
vulnerability.

Results
Single-cell transcriptome profiles of the tau transgenic Drosophila brain
Pan-neuronal expression of either wildtype or mutant forms of the human microtubule-associated 
protein tau (MAPT) gene in Drosophila recapitulates key features of AD and other tauopathies, 
including misfolded and hyperphosphorylated tau, age-dependent synaptic and neuron loss, and 
reduced survival (Wittmann et al., 2001). We performed scRNAseq of adult fly brains in tauR406W trans-
genic Drosophila (elav>tauR406W) and controls (elav-GAL4), including animals aged 1, 10, or 20 days 
(Figure 1—figure supplement 1A and B). The GAL4-UAS expression system is used to express human 
tau in neurons throughout the central nervous system (CNS) (Brand and Perrimon, 1993). The R406W 
variant in MAPT causes frontotemporal dementia with parkinsonism-17, an autosomal-dominant, 
neurodegenerative disorder with tau pathology (i.e., tauopathy). In flies, wild type and mutant forms 
of tau share conserved neurotoxic mechanisms and cause similar neurodegenerative phenotypes, 
but tauR406W induces a more robust transcriptional response and accelerated course (Wittmann et al., 
2001; Bardai et al., 2018; Mangleburg et al., 2020). Following stringent quality control, transcrip-
tome data from 48,111 single cells were available for our initial analyses, including from 6 total condi-
tions (2 genotypes × 3 ages) (Figure 1—figure supplement 1C and E). In the integrated dataset, 
we identified 96 distinct cell clusters grouped by transcriptional signatures, and annotated cell-type 
identities to 59 clusters using available Drosophila brain scRNAseq reference data and established cell 
markers (Figure 1A, Figure 1—figure supplement 2, Figure 1—source data 1). As expected, most 
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Figure 1. Single-cell RNA-sequencing of the adult Drosophila brain. (A) Uniform manifold approximation and projection (UMAP) plot displays 
unsupervised clustering of 48,111 cells, including from control (elav-GAL4/+) and elav>tauR406W transgenic animals (elav-GAL4/+; UAS-tauR406W/+) at 1, 
10, and 20 days. Expression of neuron- and glia-specific marker genes, CadN and repo, respectively, is also shown. Cell cluster annotations identify 
heterogeneous optic lobe neuron types, including from the lamina (L1-5, T1, C2/3, Lawf, Lai), medulla (Tm/TmY, Mi, Dm, Pm, T2/3), and lobula (T4/
T5, LC). Other identified neuron types include photoreceptors (ninaC, eya), dopaminergic neurons (DAT, Vmat, ple), and central brain mushroom 
body Kenyon cells (ey, Imp, sNFP, trio). (B) Violin plot showing cell-type marker expression across annotated cell clusters. Selected markers include 
Elav (neurons), repo/Gs2 (glia), Gad1 (GABA), VGlut (glutamate), VAChT (acetylcholine), and DAT/Vmat/ple (dopamine). See also Figure 1—figure 
supplements 1–3 and Figure 1—source data 1–4.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Drosophila scRNAseq cell cluster annotations.

Source data 2. Cell cluster markers.

Source data 3. Single-cell RNA-sequencing quality control parameters.

Source data 4. Drosophila cell-type expression markers.

Figure supplement 1. Study design and quality control metrics.

Figure supplement 2. Annotating cell identities for 96 cell clusters across 48,111 cells from Drosophila brains.

Figure supplement 3. Normalized gene expression of general cell-type markers across all defined cell clusters.

https://doi.org/10.7554/eLife.85251
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cells in the fly brain were neurons (CadN expression, n = 42,587), whereas glia were comparatively 
sparse (repo expression, n = 5524). Our dataset comprises a diverse range of cell types. Among all cell 
clusters, 49% were cholinergic neurons (VAChT), 20% were glutamatergic neurons (VGlut), 11% were 
GABAergic neurons (Gad1), and 7% were glia (repo, Gs2) (Figure 1B, Figure 1—figure supplement 
3). We also identified several major glial subtypes in the fly brain (Kremer et al., 2017), including 
astrocyte-like, cortex, chiasm, subperineurial, perineurial, and ensheathing glia, along with a group 
of circulating macrophages (hemocytes). Overall, our findings are consistent with results from prior 
scRNAseq studies of whole adult Drosophila brains (Davie et al., 2018).

Tau drives changes in cell proportions in the brain
Leveraging our scRNAseq data and pooling longitudinal samples to permit robust comparisons, we 
first assessed how tau affects the relative abundance of cell-type subpopulations in the adult brain. 
We found 16 neuronal and 6 glial clusters with statistically significant changes in cell abundance when 
comparing tau and controls (Figure 2A and B, Figure 2—source data 1). Cholinergic mushroom body 
Kenyon cell neurons in the central complex, which are important in learning and memory, were sharply 
reduced, likely consistent with developmental toxicity of tau, as noted in prior studies of Drosophila 
tauopathy models (Mershin et al., 2004; Kosmidis et al., 2010). In fact, seven excitatory neuronal 
clusters, including several cholinergic and glutamatergic cell types, demonstrated significant declines, 
whereas inhibitory neuronal subpopulations (e.g., Pm and Mi4 GABAergic cells in the visual system) 
appeared resilient. Conversely, cluster 12 cells appeared more abundant in tau flies; this non-annotated 
cell type was enriched for neuroendocrine expression markers, Ms and Hug, as well as a regulator of 
synaptic plasticity, Arc1 (Figure 1—source data 2). Interestingly, several glial cell types also appeared 
increased in the brains of tau animals. Ensheathing glia, which showed the largest potential increase, 
are localized to neuropil in the fly brain and mediate phagocytosis following neuronal injury (Doherty 
et al., 2009; Freeman, 2015). In order to confirm these observations, which were based on pooled 
data across timepoints, we generated additional scRNAseq profiles from 10-day-old elav>tauR406W and 
control flies in triplicate samples (69,128 cells; Figure 2—figure supplement 1). Overall, 13 out of 
the 22 significant cell abundance changes were also observed in this replication dataset, including the 
sharp reduction of excitatory neurons (e.g., Kenyon cells), and the increase in multiple glial clusters 
(e.g., ensheathing glia) (Figure 2—figure supplement 1B, Figure 2—source data 1). Non-replicated 
changes in cell-type abundance may be driven by data from earlier (1 day) or later (20 day) timepoints 
(Figure 2B). Although our experimental design limits cross-sectional analyses at 1 and 20 days, the 
observed changes in cell abundance were suggestive of a combination of both developmental tau 
toxicity and progressive, age-dependent neurodegeneration (e.g., neuronal clusters 1, 9, and 12, and 
astrocyte-like glia). Selected cell-type proportion changes were also recapitulated based on compu-
tational deconvolution of available bulk-tissue RNAseq from tauR406W and control flies at 1, 10, and 
20 days by using an independent, published scRNAseq reference dataset (Figure 2—figure supple-
ment 2).

Similar to our Drosophila tauopathy model, snRNAseq from postmortem human brain tissue has 
consistently suggested AD-associated increases in glial cell abundance, including astrocytes, oligo-
dendrocytes, microglia, and endothelial cells (Lau et al., 2020; Zhou et al., 2020). However, one 
major limitation of both scRNAseq and snRNAseq analysis is that cell-type abundance estimates are 
relative across the dataset. Therefore, a decline in neuronal subpopulations could lead to inflated 
abundance estimates of other, stable cell types. Indeed, whereas widespread neuronal loss is highly 
characteristic of AD (Davies and Maloney, 1976; Braak and Braak, 1991; Leng et al., 2021), system-
atic histopathological studies in postmortem brain tissue do not support an absolute increase in 
microglia or astrocyte numbers, but rather a proportional increase in reactive glia in diseased tissues 
(Serrano-Pozo et al., 2013; Davies et al., 2017; Paasila et al., 2019). We therefore computed confi-
dence intervals for cell abundance changes under an alternative model in which glia were assumed 
to be unchanging (Figure 2—figure supplement 3A). In this more conservative, adjusted analysis, 
only the neuroendocrine group (cluster 12) was increased and 15 excitatory neuronal subtypes were 
decreased.

In order to resolve the remaining ambiguity in potential glial cell changes, we performed immu-
nofluorescence on whole-mount Drosophila brains (Figure 2C). Although the overall intensity of glial 
nuclear staining (anti-Repo) was increased in elav>tauR406W flies, quantification revealed no significant 

https://doi.org/10.7554/eLife.85251
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Figure 2. Tau-triggered cell proportion changes in the adult brain. (A) Log2-fold change (log2FC) of normalized cell counts between elav>tauR406W (elav-
GAL4/+; UAS-tauR406W/+) and control (elav-GAL4/+) animals. Timepoints are pooled for each cluster. Cell clusters with statistically significant changes 
(false discovery rate [FDR] < 0.05) are highlighted in black. Many of these cell abundance changes were replicated in an independent dataset generated 
from 10-day-old animals (Figure 2—figure supplement 1). Since cell-type abundance estimates are relative between clusters, we also performed an 

Figure 2 continued on next page
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increase in absolute glial numbers. Instead, we found nominally increased glial density in tau animals 
after considering their reduced total brain volumes (Figure 2D). The increased intensity of antibody 
staining in tau brains may arise from enhanced antibody penetration since similar changes are also 
seen for other markers (Figure 2—figure supplement 3B and C). Moreover, increased repo gene 
expression was not observed in either scRNAseq or in our previously published bulk-tissue RNAseq 
(Mangleburg et al., 2020). Overall, our results suggest that the apparent increase in glial cell abun-
dance from scRNAseq is likely a consequence of proportional changes in single-cell suspensions due 
to neuronal loss: in our replication dataset from 10-day-old flies, the proportion of neurons were 
reduced from 90% to 83% in control versus elav>tauR406W flies. While it is difficult to exclude more 
modest or selective regional changes, we conclude that similar to human postmortem tissue findings 
(Serrano-Pozo et al., 2013), absolute glial numbers are largely stable following tau expression in the 
Drosophila brain.

Tau and aging exert cell-specific effects on brain gene expression
To our knowledge, the specific contributions of tau and aging on gene expression across hetero-
geneous cell types in the adult brain have not been systematically examined. In order to define the 
impact of aging on brain gene expression, we first quantified cell-specific transcriptional signatures 
in control flies (elav-GAL4) by performing differential expression analyses between the three time-
points from matched cell clusters (Figure 3A, Figure 3—source data 1). Overall, we define 5998 
unique, aging-induced differentially expressed genes. Based on Gene Ontology term enrichment, 
ribosome/protein translation and energy metabolism pathways were broadly dysregulated during 
aging, involving the majority of cell types (Figure 3—source data 2). We next used linear regression 
to examine tau-induced differential gene expression within each cell type, including adjustment for 
age as a covariate. Overall, a total of 5280 unique genes were differentially expressed in at least one 
or more cell types (Figure 3B, Figure 3—figure supplement 1A), and these results overlap signifi-
cantly with our prior bulk RNA-seq in elav>tauR406W flies (Figure 3—figure supplement 2). Importantly, 
93% of tau-induced differentially expressed genes (n = 4917 out of 5280) were also triggered by 
aging in control flies (among n = 5998 genes). However, tau and aging appeared to have markedly 
distinct impacts when considering the distribution of gene perturbations across heterogeneous cell 
types (Figure 3C). Whereas aging broadly perturbed gene expression, tau-triggered changes were 
sharply polarized to excitatory neurons and glia. Further, the overlap between tau and aging varied 
across clusters (range = 0–75%) and tau-specific signatures predominated in selected cell types. For 
example, cholinergic Kenyon cells from the α'/β' mushroom body lobes were among the most vulner-
able cell types (Figure  2A) and also had the greatest number of tau-induced gene perturbations 
(Figure  3B), which were approximately equally divided between up- and downregulated changes 
(Figure 3—figure supplement 1A, Figure 3—source data 1). In fact, among 2289 tau-induced differ-
entially expressed genes within α'/β' Kenyon cells, 2139 (93%) were unique to tau and not similarly 
triggered in the corresponding cell type in aging control animals. We confirmed that the number of 
differentially expressed genes and affected cell types does not correspond to the spatial pattern of 

adjusted analysis in which glia were assumed to be unchanged (Figure 2—figure supplement 3A). (B) Plots highlight cluster cell counts with significant 
differences based on pooled timepoint comparisons between elav>tauR406W (red) and control (black) animals, including results for samples collected 
at 1 day (triangle), 10 days (cross-hatch square), or 20 days (filled square). See Figure 2—figure supplement 2 for complementary analysis based on 
deconvolution of bulk brain RNA-sequencing. (C) Whole-mount immunofluorescence of adult brains from 10-day-old flies. Glia are stained using the 
Anti-Repo antibody (red) in control (elav-GAL4/+) and elav>tauR406W transgenic flies. Full Z-stack projection is shown. Scale bar = 100 microns. See also 
Figure 2—figure supplement 3B for additional immunostains for nuclei and actin. (D) Quantification of glia (Repo-positive puncta), brain volume, and 
glial density is shown. Statistical analysis employed Welch’s T-test with n=9 animals per group and significance threshold p < 0.05. Error bars denote the 
95% confidence interval. See also Figure 2—figure supplements 1–3 and Figure 2—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Tau-triggered cell proportion changes.

Figure supplement 1. Additional scRNAseq from three tauR406Wand three control libraries at day 10 post-eclosion.

Figure supplement 2. Estimation of cell proportions by deconvolution of bulk-tissue RNA-sequencing.

Figure supplement 3. Adjusted tau-triggered cell abundance changes.

Figure 2 continued

https://doi.org/10.7554/eLife.85251
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Figure 3. Aging- versus tau-triggered brain gene expression changes. (A) Aging has widespread transcriptional effects on most brain cell types. 
Number of aging-induced differentially expressed genes (false discovery rate [FDR] < 0.05) within each cell cluster is shown, based on comparisons 
of day 1 vs. day 10 and day 10 vs. day 20 in control animals only (elav-GAL4/+). For each cell cluster, the number of gene expression changes unique 
to aging (white) or overlapping with tau-induced changes (gray) is highlighted. Labels for cell clusters with significant tau-induced cell abundance 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.85251
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MAPT transgene pan-neuronal expression in the brain (Figure 3—figure supplement 4); however, it 
is difficult to exclude the possibility that some vulnerable cell types with high MAPT expression might 
be inadvertently censored from our analyses.

Using functional enrichment analysis, we identify tau transcriptional signatures implicating altered 
inflammation, oxidative phosphorylation, and ribosomal gene expression (Figure 3—figure supple-
ment 1B, Figure 3—source data 2). These pathways were prominently disrupted in excitatory 
neurons of the fly visual system, along with other central brain cholinergic and glutamatergic cell clus-
ters. The pattern of transcriptional perturbation is also consistent with the established susceptibility 
of the mushroom body and optic lobes to tau-mediated neurodegeneration (Wittmann et al., 2001; 
Kosmidis et al., 2010). In other cases, we noted functional enrichments with greater specificity for 
selected cell clusters, such as altered signatures for mTOR signaling in glutamatergic cluster 21 and 
Foxo signaling in a subset of neuron types, including lamina intrinsic amacrine (Lai) cells and a cluster 
receptive to columnar motion (T4/T5). In addition, genes involved in mRNA splicing regulation were 
perturbed in another group of visual processing cells (T2a) as well as cholinergic cluster 7. Among 
non-neuronal cells, ensheathing glia, cortex glia, astrocyte-like glia, and hemocytes had the greatest 
number of tau-driven differential expression changes (Figure 3—figure supplement 1C), highlighting 
signatures related to fatty acid metabolism and synaptic regulation (Figure 3—source data 2).

To examine the robustness of our findings, we compared our results on tau-induced, cell-type-
specific gene expression changes with the independent dataset from 10-day-old flies. Based on hyper-
geometric overlap tests of differentially expressed gene sets, expression profiles in two-thirds (61 out 
of 90) of cell-type clusters from our longitudinal analysis were replicated at 10 days, including several 
vulnerable excitatory neuron and glial cell clusters (Figure 3—source data 4). In secondary analyses, 
we also analyzed differential expression cross-sectionally, permitting examination of age-dependent 
changes in specific genes or pathways (Figure 3—figure supplement 5, Figure 3—source data 5). 
Overall, when aggregated across all clusters, there was a 90% overlap between the total unique, tau-
triggered differentially expressed genes at 10 days between the discovery and replication dataset.

Tau triggers changes in neuronal innate immune signaling
Whereas most tau-induced genes strongly overlapped with aging, a minority overall were tau-specific 
(363 out of 5280 gene perturbations). Interestingly, this gene set was significantly enriched for medi-
ators of the innate immune response, particularly NFκB signaling pathway components (Figure 
3—source data 2). From Drosophila bulk brain RNA-seq data, we previously identified seven gene 

changes are shown in bold. (B) In contrast with aging, tau induces a more focal transcriptional response, with greater selectivity for excitatory neurons 
and glia. Number of tau-induced, differentially-expressed genes (FDR < 0.05) within each cell cluster is shown, based on regression models including 
age as a covariate and considering both control and elav>tauR406W animals (elav-GAL4/+; UAS-tauR406W/+) at 1, 10, and 20 days. For each cell cluster, the 
number of gene expression changes unique to tau (black) or overlapping with aging-induced changes (gray) is highlighted. Labels for cell clusters with 
significant tau-induced cell abundance changes are shown in bold. Tau-induced gene expression changes from single-cell profiles significantly overlap 
with prior analyses conducted using bulk brain RNA-sequencing (Figure 3—figure supplement 2). (C) Uniform manifold approximation and projection 
(UMAP) plots show the number of aging- (red) versus tau- (green) triggered differentially expressed genes within each cell cluster. Color intensity 
represents the number of differentially expressed genes. See also Figure 3—figure supplements 1–5 and Figure 3—source data 1–5.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Tau- and aging-triggered gene expression changes.

Source data 2. Functional pathways from differential expression analysis.

Source data 3. Tau-induced gene expression changes in the replication dataset.

Source data 4. Cell-type-specific overlaps between tau-induced differentially expressed genes.

Source data 5. Cross-sectional tau-induced differential expression.

Figure supplement 1. tau-induced differential gene expression analysis and functional enrichment.

Figure supplement 2. Overlap between tau-induced adult brain gene expression changes between Drosophila scRNAseq and bulk-tissue RNA-
sequencing.

Figure supplement 3. Volcano plots for selected excitatory neurons and glial populations.

Figure supplement 4. Expression of the MAPT transgene.

Figure supplement 5. Volcano plots for cross-sectional tau-induced differentially expressed genes.

Figure 3 continued
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coexpression modules perturbed by tauR406W expression using weighted correlation network analysis 
(WGCNA) (Mangleburg et al., 2020). Among these, a 236-gene module was strongly enriched for 
innate immune response genes downstream of NFκB. In our bulk brain RNA-seq data, this module 
was also activated by wildtype tau, but the mutant form, tauR406W, caused a more robust, acceler-
ated response (Figure 4—figure supplement 1). In order to better understand the cell type-specific 
expression patterns, we next examined the innate immune coexpression module in our scRNAseq 
data. This immune signature was broadly detected in the adult fly brain, including both glia and many 
neuron types (Figure 4A, Figure 4—figure supplement 2A). Moreover, expression of the immune 
module was strongly dysregulated by tau, with 50 out of 90 clusters showing significant changes 
(Figure 4B, Figure 4—source data 1). Tau activated the immune signature in the majority of affected 
cell types (86%, 43 out of 50 clusters). In particular, tau-triggered increases were noted in multiple 
excitatory neuron clusters (e.g., Dm3 glutamatergic cells in the visual system) as well as non-neuronal 
cells, including glia (e.g., ensheathing and cortex glia) and hemocytes. Conversely, in a selected subset 
of seven clusters, tau attenuated expression of the innate immune module (Figure  4B), including 
excitatory neurons in the lamina and several Kenyon cell types that were among the most vulnerable 
to tau-triggered neuronal loss, based on cell abundance estimates (Figure 2A). Other tau-perturbed 
coexpression modules revealed distinct cell-type-specific patterns (Figure 4—figure supplement 3). 
For example, a module enriched for synaptic regulators was markedly reduced in glia in response to 
tau, whereas expression was increased in multiple glutamatergic neuron subtypes.

To confirm and extend our analysis of tau- and cell-type-specific gene expression perturbations, 
we derived a complementary set of 183 transcription factor coexpression networks (regulons) based 
on our scRNAseq data. Specifically, regulons define coexpressed gene sets in which members are 
also predicted targets of a specific transcription factor (Van de Sande et al., 2020). Overall, clus-
tering cells based on regulon enrichment recapitulates similar, expected relationships between anno-
tated cell types (Figure 4—figure supplement 4, Figure 4—source data 2), and differential regulon 
analysis also revealed consistent tau-induced, cell-type-specific transcriptional perturbations (Figure 
4—source data 3). In particular, we examined the 442-gene regulon comprised of targets of the 
NFκB transcription factor ortholog in Drosophila, Relish (Rel), which is activated downstream of the 
Drosophila Imd (Immune deficiency) pathway, similar to the tumor necrosis factor receptor pathway 
in mammals (Myllymäki et al., 2014). The expression pattern of the Rel regulon and its differential 
expression in tau versus control flies were consistent with our findings for the immune coexpression 
module derived from bulk RNAseq, which includes both Imd, Rel, and multiple antimicrobial peptides 
that are activated by Rel (Figure 4C). We also obtained consistent results based on a manually-curated, 
62-gene set including well-established NFκB signaling pathway members (Figure 4—figure supple-
ment 2B and C). Based on our cross-sectional analyses, the pattern of tau-triggered activation of the 
Rel regulon in selected clusters (e.g., L1-5 lamina neurons and astrocyte-like glia) was age-dependent 
(Figure 4—figure supplement 5). We also experimentally confirmed Rel expression in both neurons 
and glia in the adult fly brain using an available strain in which the endogenous protein harbors an 
amino-terminal GFP tag (Figure 4—figure supplement 2D).

Expression signatures for neuronal vulnerability in tauopathy
In order to more directly model the relationship of transcriptional regulation and cellular vulnerability 
in tauopathy, we integrated regulon expression levels with cell abundance estimates from scRNAseq 
(Figure 4—figure supplement 7A). We hypothesized that innate immune signatures may be predic-
tors of neuronal subtype vulnerability in tauopathy. We implemented regularized multiple regression 
in which cell-type-specific regulon mean expression served as the predictor variable and tau-triggered 
cell abundance changes from scRNAseq provided the response variable. The analysis was restricted 
to cell clusters that show significant declines in elav>tauR406W flies. Out of 183 total regulons, Rel/NFκB 
activity was prioritized among the top predictors of vulnerability to tau-induced cell loss (Figure 4D, 
Figure  4—figure supplement 7B). The Rel regulon remained a robust predictor in an expanded 
analysis including multiple technical variables as well as expression levels for an additional 2793 
curated functional pathways (Figure 4—source data 4). Importantly, for this analysis, regulon expres-
sion was averaged across both elav>tauR406W and control cells, rather than considering differential 
expression, and the vulnerable clusters include cell types in which Rel and its targets (Rel regulon) are 
either activated (e.g., Dm3) or suppressed (e.g., Gamma lobe of the Kenyon cells) in response to tau 

https://doi.org/10.7554/eLife.85251
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Figure 4. Tau-induced changes in innate immune response genes and neuronal vulnerability. (A) Innate immune genes are expressed broadly in the 
adult fly brain, including both neurons and glia. Plot shows mean overall normalized expression by cell cluster among n = 236 genes belonging to a 
tau-induced coexpression module that is significantly enriched for innate immune response pathways (Mangleburg et al., 2020). In this plot, gene 
expression was averaged across both elav>tauR406W and control cells; similar results are seen when stratifying by either age or genotype (Figure 4—
figure supplement 2A). See also Figure 4—figure supplement 2D for experimental confirmation of NFκB/Rel protein expression in neurons and 
glia. (B) Tau activates or suppresses innate immune response genes in a cell-type-specific manner. Plot shows log2 fold-change mean expression per cell 
cluster for the same 236-gene immune response coexpression module, based on comparisons between elav>tauR406W (elav-GAL4/+; UAS-tauR406W/+) and 

Figure 4 continued on next page
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(Figure 4C). Interestingly, the inverse relationship with cell abundance is recapitulated when restricting 
consideration of Rel regulon activity in control animals, suggesting that basal NFκB signaling—in the 
absence of tau—may be a predictive marker for neurodegeneration (Figure 4—figure supplement 
7C). Specifically, among those cells vulnerable to tau-triggered cell abundance changes, Rel regulon 
expression is associated with the severity of decline. Besides Rel, the top 3 predictors of vulnerability 
for tau-induced cell loss include the CrebB and CHES-1 regulons (see Figure 4—figure supplement 
7B for full list). Interestingly, CrebB—the cAMP response element-binding protein—and its target 
genes were previously shown to be dysregulated in the Drosophila tauopathy model (Mahoney et al., 
2020), consistent with our finding of CrebB regulon downregulation across many cell types (Figure 
4—source data 3). In mammals, the conserved CrebB ortholog, CREB, is linked to synaptic plasticity 
and long-term memory storage, and has also been proposed to interact with the NFκB pathway 
(Kaltschmidt et al., 2006).

In order to directly test whether Rel/NFκB may modify tau-mediated neurodegeneration in a cell-
autonomous manner, we used RNA-interference (RNAi) for neuron-specific knockdown of Rel and 
performed histology to detect structural brain degeneration. In these experiments, elav-GAL4 is used 
to drive pan-neuronal expression of both UAS-tauR406W and the UAS-Relish.RNAi transgenes. However, 
we did not detect any significant difference in the vacuolar degeneration caused by tau following Rel 
knockdown (Figure 4—figure supplement 8). Additional experiments will likely be required defini-
tively resolve the cell-type-specific causal mechanisms (see ‘Discussion’); however, our results identify 
NFκB targets and innate immune signaling as potential markers and/or mediators of vulnerability to 
tau-mediated neurodegeneration.

Cross-species overlap of cell-type-specific transcriptional signatures
To establish translational relevance, we next examined the conservation of cell-type-specific transcrip-
tional signatures between Drosophila and human brain (Figure 5A, Figure 5—figure supplement 
1A). Using Pearson correlation and considering 5630 conserved genes (1:1 fly/human mapping), we 
assessed pairwise correspondences between gene expression profiles for all clusters from either our 
Drosophila scRNAseq data (tauR406W + control) and published snRNAseq from human dorsolateral 
prefrontal cortex (AD cases and control) (Mathys et al., 2019). Overall, inferred neuronal and glial 
cellular identities correlated well across species. Cross-species correlations in cell-type-specific signa-
tures were further replicated in an independent AD case/control snRNAseq dataset from the human 

control (elav-GAL4/+) flies. See also Figure 4—figure supplement 2B and C for plots of curated NFκB signaling pathway genes and Figure 4—figure 
supplement 3 for similar analyses of other coexpression modules. (C) Log2 fold-change in Relish (Rel) regulon gene expression per cluster is shown, 
based on comparisons between tauR406W and control flies. All results were significant (false discovery rate [FDR] < 0.05) based on regression models 
including age as a covariate. (D) Plot shows overall mean expression of the Rel-regulon (x-axis) versus tau-induced cell abundance change (y-axis). 
Among clusters with significant, tau-induced cell loss (denoted in blue, FDR < 0.05; see also Figure 2A), cell abundance change was inversely correlated 
with Rel regulon expression (Pearson correlation: R = –0.9, p=0.0021). Many other cell types without significant cell abundance changes are also shown 
in gray. Both control and tau cells are pooled for this analysis. See also Figure 4—figure supplements 1–8 and Figure 4—source data 1–4.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Tau-induced expression changes in innate immune response genes.

Source data 2. Regulon coexpression networks.

Source data 3. Differential regulon expression analysis.

Source data 4. Predictors of tau-triggered cell proportion changes.

Figure supplement 1. Mean expression of the innate immune (magenta) module in bulk-tissue RNAseq.

Figure supplement 2. Expression of immune response and NFκB genes in Drosophila brain.

Figure supplement 3. Cell-type-specific expression of tau-induced gene coexpression modules.

Figure supplement 4. Unsupervised clustering based on regulon coexpression networks.

Figure supplement 5. Cross-sectional differential expression of the Rel regulon (n = 442 genes).

Figure supplement 6. Specificity of Rel-GFP animals.

Figure supplement 7. Regulons associated with tau-induced cell vulnerability.

Figure supplement 8. Pan-neuronal knockdown of Rel in tauR406W flies.

Figure 4 continued
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Figure 5. Conservation of cell-type-specific gene expression signatures. (A) Heatmap shows Pearson correlation of gene expression (5630 conserved, 
orthologous genes) between annotated cell clusters from Drosophila (rows) and human postmortem brain (column). Human brain single-nucleus 
RNA-sequencing (snRNAseq) was obtained from Mathys et al., 2019, including published cell-type associations with amyloid plaque burden and 
neurofibrillary tangle Braak staging (braaksc) (top). Annotated human cell types include endothelial cells (End), microglia (Mic), oligodendrocytes (Oli), 

Figure 5 continued on next page
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entorhinal cortex (Grubman et al., 2019; Figure 5—figure supplement 1B). Similar results were also 
obtained in a complementary analysis leveraging a published Drosophila scRNAseq dataset (wildtype 
flies only) and excluding human brains with AD pathology (controls only) (Figure 5—figure supple-
ment 2). The resulting correlation map can enable integrative, cross-species analyses. For example, 
a human microglial subcluster (Mic1) notable for association with high tau neuropathological burden 
was correlated with the ensheathing glia cluster from Drosophila, indicating shared characteristic tran-
scriptional signatures (Figure 5A). Moreover, these two cell types showed significantly overlapping 
gene expression changes in association with AD pathology (human brain) or following pan-neuronal 
expression of tauR406W (Drosophila) (hypergeometric test, p=4.83 × 10–5) (Figure 5—source data 1). 
This result suggests that tau pathology may indeed be an important driver of Mic1 transcriptional 
changes in disease.

As introduced above, mediators of innate immunity are also highly conserved across species. 
Similar to elav>tauR406W flies, we confirmed consistent NFκB pathway expression in excitatory neurons 
and microglia in transgenic mice harboring a MAPTP301S transgene (Lee et al., 2021; Figure 5—figure 
supplement 3). Next, leveraging the Mathys et al. human snRNAseq data, we confirmed that NFκB 
signaling pathway genes are expressed across most cell types in human postmortem brain tissue, 
including both neurons and glia (Figure 5B). In the context of AD pathology, NFκB pathway gene 
expression appeared strongly downregulated in most neurons from the dorsolateral prefrontal cortex, 
which are highly susceptible to degeneration, whereas expression was increased among oligoden-
drocytes, microglia, and astrocytes (Figure 5C). Interestingly, a subset of excitatory and inhibitory 
neuronal subclusters (Ex8 and In4, respectively) showed an AD-associated increase in expression. 
Thus, human brains with AD pathology are also characterized by widespread changes in NFκB innate 
immune signaling, including either activation or attenuation in many distinct neuronal and non-
neuronal subtypes.

Discussion
Aging is the most important risk factor for AD, influencing both disease onset and progression. Based 
on longitudinal, single-cell analysis in Drosophila, we discover that tau and aging activate strongly 
overlapping transcriptional responses: 93% of tau-induced differentially expressed genes are also 
perturbed by aging in control animals. Instead, tau and aging are distinguished by their spatial and 
cell-type-specific impacts. Aging has a global influence on brain gene expression, affecting most brain 
cell types. By contrast, tau has a focal impact, polarizing the transcriptional response to a handful of 
cell types, including excitatory neurons and glia. The strong overlap between tau- and aging-induced 
gene expression signatures agrees with our prior analyses of bulk brain tissue (Mangleburg et al., 
2020). We and others have also documented similar findings in AD mouse models, including both 
MAPT and amyloid precursor protein transgenics (Wan et al., 2020; Cummings et al., 2015; Gjoneska 
et al., 2015; Matarin et al., 2015; Hargis and Blalock, 2017). By contrast with animal models, cross-
sectional studies of human postmortem tissue make it difficult to disambiguate the impact of aging 
from disease pathology on the brain transcriptome. However, our cross-species analyses highlight that 
most human brain cell types share transcriptional signatures with counterparts in the Drosophila brain. 

pericytes (Per), astrocytes (Ast), oligodendrocyte precursor cells (Opc), excitatory neurons (Ex), and inhibitory neurons (In). (B) Innate immune mediators 
are expressed broadly in the human brain, including in neurons and glia. Plot shows mean expression by cell cluster for 85 human orthologs of NFκB 
signaling pathway members, based on reprocessing and analysis of the Mathys et al. snRNAseq data. (C) Alzheimer’s disease (AD) is associated with 
cell-type-specific perturbation in NFκB signaling genes. Plot shows log2 fold-change mean expression per cell cluster for the same 85 NFκB signaling 
genes, based on comparisons of brains with AD pathology versus controls. See also Figure 5—figure supplements 1–3 and Figure 5—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Cell-type-specific, Alzheimer’s disease (AD)-associated gene expression changes from human brain.

Figure supplement 1. Cross-species gene expression correlation of all Drosophila cell clusters in this study.

Figure supplement 2. Replication of gene expression correlation between Drosophila scRNAseq and snRNAseq from control human subjects.

Figure supplement 3. Cell-specific Rel/NFκB regulon differential expression in MAPTP301L transgenic mice.

Figure 5 continued
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These correspondences comprise a cross-species atlas enabling studies of controlled experimental 
manipulations (e.g., tau vs. aging) on homologous cell clusters between humans and flies.

Mechanistic dissection of cell-type-specific vulnerability promises to reveal drivers for the earliest 
clinical manifestations of AD, such as the characteristic memory impairment accompanying the loss 
of excitatory neurons in hippocampus and associated limbic regions (Mrdjen et al., 2019; Fu et al., 
2018). Given the transcriptional overlaps, one attractive model is that aging establishes a spatial 
pattern of vulnerable cell states that templates the subsequent tau-triggered neurodegeneration. 
However, as noted above, aging has wide-ranging impact across the brain and many cell types with 
robust aging-induced transcriptional responses in Drosophila are, in fact, resilient to tau-mediated 
neurodegeneration based on cell proportion changes (e.g., clusters 2, 3, and T4/T5; Figures 2A and 
3A). Moreover, the overlap between tau and aging does not reliably predict those cell types that are 
most vulnerable to neuronal loss (Figure 3A and B). Differentially expressed genes triggered by tau 
and aging are nevertheless similarly enriched for many common biological pathways that may provide 
clues to cell-type-specific mechanisms of vulnerability in neurodegeneration. Specifically, we docu-
ment shared expression signatures for altered synaptic regulation, protein translation, lipid metab-
olism, and oxidative phosphorylation across heterogeneous cell populations, including excitatory 
neuron types that are particularly vulnerable to tau. Similar pathways have been implicated based on 
snRNAseq analyses from human postmortem brain (Mathys et al., 2019; Grubman et al., 2019; Lau 
et al., 2020) and several mouse AD models, including MAPT transgenics (Wang et al., 2022; Lee 
et al., 2021; Habib et al., 2020; Zhou et al., 2020).

Among the many dysregulated molecular processes, aging is characterized by a systemic pro-
inflammatory state that has been called ‘immunosenescence’ or ‘inflamma-aging’ (Shaw et al., 2013; 
Hou et al., 2019). Genes encoding regulators of immunity, including TREM2, CR1, and many others, 
have been strongly implicated in AD susceptibility by human genetics (Bellenguez et al., 2022), and 
abundant evidence now supports a key role for many such genes among glial cells (Wang et  al., 
2015; Zhou et  al., 2020; Keren-Shaul et  al., 2017). We previously identified an age-associated 
Drosophila innate immune response signature that is amplified by tau (Mangleburg et al., 2020). 
Here, we significantly extend these observations, leveraging the cellular resolution afforded by single-
cell profiles. First, we discover that this immune coexpression module, including many NFκB/Rel 
signaling factors and targets, is broadly expressed in the adult fly brain, including both neurons and 
glia, and we confirm similar findings in snRNAseq data from human postmortem brain. Second, we 
show that tau can either activate or attenuate NFκB immune pathways in a cell-type-specific manner, 
with tau-triggered decreases in expression apparent in neurons with the greatest proportional cell 
loss. Lastly, models integrating cell-type-specific gene transcriptional expression and cell abundance 
changes suggest that basal Imd signaling strength (i.e., Rel regulon activity) predicts the severity of 
tau-triggered neuronal decline among susceptible cell types. Overall, our results suggest that besides 
the well-established requirements in glia (see below), innate immune response pathways may also 
have important, cell-autonomous roles in modulating neuronal vulnerability to tau pathology in AD. 
Indeed, both insect and mammalian neurons express evolutionary-conserved innate immune signaling 
pathways, including Toll-like receptors and NFκB signal transduction components, and these path-
ways can be triggered by infection or other cellular insults (Lehnardt et al., 2003; Tang et al., 2007; 
Cao et al., 2013; Cho et al., 2013; Petersen et al., 2013; Welch et al., 2022). In addition, NFκB 
immune signaling pathways have been coopted for diverse, non-canonical functions, such as in neuro-
development and synaptic plasticity (Okun et al., 2011; Gutierrez and Davies, 2011; Nguyen et al., 
2020). Knockdown of Rel in Drosophila neurons has previously been shown to promote survival in 
non-transgenic, wildtype animals (Kounatidis et al., 2017), whereas activation of the Rel signaling 
pathway leads to neurodegeneration (Cao et al., 2013). In addition, a recent reanalysis of snRNAseq 
data from Mathys et al., 2019 revealed AD-associated perturbation of NFκB immune pathways in 
excitatory neurons, possibly triggered by DNA double-strand breaks (Welch et al., 2022). Although 
experimental manipulation of Rel in the elav>tauR406W model did not alter tau-mediated neurode-
generation, additional studies may be required to definitively resolve the potential cell-type-specific 
causal contribution(s) of NFκB/Relish. Our negative result could reflect poor sensitivity and variability 
of the histologic assay or it may be necessary to use alternate neuronal drivers restricted to the adult 
brain.

https://doi.org/10.7554/eLife.85251
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Our scRNAseq analyses also highlight a robust, tau-induced transcriptional response among 
Drosophila glia. This result is consistent with several brain gene expression studies from both humans 
and mouse models that strongly implicate altered transcriptional states and/or increased numbers of 
AD-associated glial subtypes, including oligodendrocytes, astrocytes, and microglia (Mathys et al., 
2019; Grubman et al., 2019; Lau et al., 2020; Zhou et al., 2020; Habib et al., 2020). Although our 
analyses initially suggested a possible tau-triggered increase in glial abundance in the brain, on direct 
examination, we documented stable absolute numbers but increased density of glia due to brain 
atrophy. Systematic histopathological studies in human brain tissue have similarly revealed predomi-
nantly reactive changes with overall stable numbers of both astrocytes and microglia (Serrano-Pozo 
et  al., 2013). We conclude that potential increases in disease-associated glia inferred exclusively 
from single-cell profiles should be interpreted cautiously, and additional experimental investigations 
may ultimately be required to resolve whether they result from (i) absolute changes in cell number, 
(ii) activation and/or transformation of cell states, or (iii) proportional changes due to primary pertur-
bations in other brain cell types. Nevertheless, glial-specific experimental manipulations of immune 
regulators in both Drosophila and mammalian models, including NFκB signaling (flies and mice) and 
the AD susceptibility gene TREM2 (mice), can potently modify neurodegeneration, consistent with cell 
non-autonomous requirements (Walter, 2016; Kounatidis et al., 2017; Petersen et al., 2012; Hakim-
Mishnaevski et al., 2019; Fuhrmann et al., 2010; Town et al., 2008; Leyns and Holtzman, 2017; 
Wang et al., 2022). By contrast with mammals, glia represent only 5–10% of all cells in the Drosophila 
brain (Ito et al., 1995; Schmidt et al., 1997; Awasaki et al., 2008). Nevertheless, Drosophila glial 
subtypes recapitulate the diversity of functions and morphologies of mammalian glia (Doherty et al., 
2009; Freeman, 2015; Kremer et al., 2017; Stork et al., 2012). Although the myeloid hematopoietic 
lineage is not present in flies, which therefore lack microglia, ensheathing glia can similarly respond to 
cellular injury and scavenge debris (Doherty et al., 2009). Indeed, our cross-species analysis demon-
strates shared transcriptional signatures between corresponding glial subtypes, consistent with our 
findings of conserved responses to tau-mediated neuronal injury. In future work, it will be interesting 
to further dissect both the cell-autonomous and non-cell-autonomous drivers underlying both the 
neuronal and glial responses to tauopathy.

The elav>tauR406W flies selected for this study share conserved downstream mechanisms of neuro-
toxicity with wildtype tau (Bardai et al., 2018) and have been widely used as an experimental model 
for investigations of both AD and other tauopathies, including frontotemporal dementia. Neverthe-
less, one potential caveat is the absence of amyloid-beta peptide, which is also an important driver 
of gene expression changes in AD, including innate immune transcriptional signatures (Keren-Shaul 
et al., 2017; Wan et al., 2020). Another potential limitation is that the elav-GAL4 driver activates 
tau expression during developmental stages, and the observed changes in cell-abundance or gene 
expression may therefore reflect this time course. For example, tau developmental toxicity has 
been shown to cause malformation of mushroom body structures (Kosmidis et al., 2010), and this 
phenotype likely explains the reductions in several cell clusters in our dataset. While our study was 
under review, a complementary, single-cell transcriptome analysis using the nsyb>tauP301L model was 
published, in which transgene expression is expected to be more restricted within the adult brain 
(Praschberger et  al., 2023). While there were overlaps in the vulnerable cell types for both the 
elav>tau and nsyb>tau models (e.g., excitatory cholinergic neuron subtypes, like γ-KC, α'/β'-KC, and 
T4/5), there were also some notable distinctions—the inhibitory C2 cell cluster, which is GABAergic, 
was highlighted only in the nsyb model. Further comparisons are somewhat limited by other exper-
imental and analytic design differences between the studies. Nevertheless, the elav>tauR406W model 
is well established to recapitulate aging-dependent, neuronal loss and progressive CNS dysfunction 
(Wittmann et al., 2001). Indeed, our longitudinal design reveals suggestive age-dependent cell abun-
dance changes among several cell types (e.g., clusters 1, 9, and 12, along with astrocyte-like glia), 
and cross-sectional analyses also reveal evidence for progressive transcriptional changes. It will be 
important to perform additional studies, perhaps using inducible driver systems, to more systemati-
cally dissect the dynamic time course of tau neurotoxic mechanisms, including differentiating devel-
opmental versus degenerative changes that accompany brain aging.

Materials and methods
Key resources table 

https://doi.org/10.7554/eLife.85251
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Antibody
Rabbit polyclonal anti-
GFP GeneTex

Cat#GTX113617; 
RRID:AB_1950371 IF(1:500)

Antibody

Alexa 647 goat 
polyclonal anti-rabbit 
IgG (H+L) Jackson ImmunoResearch Cat#111-605-003 IF(1:500)

Antibody

CyTM3 AffiniPure goat 
polyclonal anti-mouse 
(H+L) Jackson ImmunoResearch Cat#115-165-003 IF(1:500)

Antibody

Alexa Fluor 488 donkey 
polyclonal anti-mouse 
IgG (H+L) Jackson ImmunoResearch Cat#715-545-150 IF(1:500)

Antibody

Cy3TM3 AffiniPure goat 
polyclonal anti-rat IgG 
(H+L) Jackson ImmunoResearch Cat#112-165-003 IF(I:500)

Antibody
Mouse monoclonal anti-
repo DSHB Cat#8D12

IF(1:500) – glial counting
IF(1:50) – Rel costain

Antibody Rat monoclonal anti-Elav DSHB
Cat#7E8A10; 
RRID:AB_528218 IF(1:100)

Antibody Mouse monoclonal 
anti-Rel

DSHB
Cat#21F3;
RRID:AB_1553772

IF(1:500)

Chemical compound, 
reagent

Conjugated A488-
Phalloidin Thermo Fisher Cat#A12379 IF(1:500)

Chemical compound, 
drug Dispase Sigma-Aldrich Cat#D4818;

Chemical compound, 
drug Collagenase I Invitrogen Cat#17100-100

Chemical compound, 
drug

NucBlue and Propidium 
iodide Invitrogen Cat#R37610

Chemical compound, 
drug

Vectashield antifade 
mounting medium Vector Laboratories Cat#H-1000-10

Commercial assay 
or kit

Chromium Single Cell 
Gene Expression 3’ v3.1 10x Genomics Cat#PN-1000268

Genetic reagent 
(Drosophila 
melanogaster) elavC155-GAL4

Bloomington Drosophila  
Stock Center BDSC:458

Genetic reagent (D. 
melanogaster) w1118; UAS-TauR406W

Lab: Dr. Mel B. Feany,  
PMID:11408621 N/A Wittmann et al., 2001

Genetic reagent (D. 
melanogaster) Rel-GFP

Bloomington Drosophila  
Stock Center BDSC:81268 y1 w*; PBac{GFP.FPTB-Rel}VK00037

Genetic reagent (D. 
melanogaster) UAS-Rel.RNAi-2

Bloomington Drosophila  
Stock Center BDSC:33661 y1; P{TRiP.HMS00070}attP2

Genetic reagent (D. 
melanogaster) UAS-Rel.RNAi-1

Vienna Drosophila  
Resource Center VDRC:49414 P{GD1199}v49414

Software, algorithm
Imaris Microscopy Image 
Analysis Software 9.9.1 https://imaris.oxinst.com/ Oxford Instruments

Software, algorithm Prism 9.4.1
https://www.graphpad.com/ 
scientific-software/prism/ GraphPad

Software, algorithm ImageJ https://imagej.nih.gov/ij/ NIH

Software, algorithm Cell Ranger 4.0.0

https://support.10xgenomics.com/​
single-cell-gene- 
expression/software/ 
pipelines/latest/what-is-cell-ranger 10x Genomics

https://doi.org/10.7554/eLife.85251
https://identifiers.org/RRID/RRID:AB_1950371
https://identifiers.org/RRID/RRID:AB_528218
https://identifiers.org/RRID/RRID:AB_1553772
https://pubmed.ncbi.nlm.nih.gov/11408621/
https://imaris.oxinst.com/
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
https://imagej.nih.gov/ij/
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Software, algorithm Seurat v3
https://doi.org/10.1016/j.cell.2019.​
05.031 Stuart et al., 2019

Software, algorithm DoubletFinder 2.0.3
https://github.com/ 
chris-mcginnis-ucsf/DoubletFinder McGinnis et al., 2019

Software, algorithm Scmap 1.9.3

https://bioconductor.org/ 
packages/release/bioc/html/scmap.​
html Kiselev et al., 2018

Software, algorithm
Optic lobe neural 
network classifier

https://static-content.springer.com/​
esm/art% 
3A10.1038%2Fs41586-020-2879-3/
MediaObjects/ 
41586_2020_2879_MOESM7_ESM.zip

Özel et al., 2021,  
Supplementary  
Data Appendix 1,  
Python/R code

Software, algorithm pySCENIC 0.12.0
https://github.com/aertslab/​
pySCENIC Van de Sande et al., 2020

Software, algorithm DESeq2 1.34.0

https://bioconductor.org/ 
packages/release/bioc/html/DESeq2.​
html Love et al., 2014

Software, algorithm MuSiC 0.1.1 https://github.com/xuranw/MuSiC Wang et al., 2019

Software, algorithm MAST 1.20.0

https://bioconductor.org/ 
packages/release/bioc/html/MAST.​
html Finak et al., 2015

Software, algorithm
WEBGESTALTR  
0.4.4

https://github.com/bzhanglab/ 
WebGestaltR Wang et al., 2013

Software, algorithm Glmnet 4.1-4
https://cran.r-project.org/web/ 
packages/glmnet/index.html Friedman et al., 2010

Software, algorithm Caret 6.0-92
https://cran.r-project.org/web/ 
packages/caret/index.html Kuhn, 2008

Software, algorithm

DRSC Integrated 
Ortholog Prediction Tool 
(DIOPT) https://www.flyrnai.org/diopt Hu et al., 2011

Software, algorithm gProfiler2 0.2.1
https://cran.r-project.org/web/ 
packages/gprofiler2/index.html Raudvere et al., 2019

Software, algorithm SCTransform 0.3.3
https://github.com/satijalab/​
sctransform Stuart et al., 2019

Human subjects
No new data from human subjects were generated for this study. Previously published, available 
snRNAseq data from human postmortem brain were obtained from Mathys et  al., 2019 and 
Grubman et al., 2019 in order to evaluate cross-species correspondences in cell-type-specific expres-
sion signatures. The Mathys data is comprised of snRNAseq from the dorsolateral prefrontal cortex 
(DLPFC) from 48 brain autopsies with varying AD neuropathology (amyloid plaque and tau neuro-
fibrillary tangle burden), including 24 with no significant pathology (controls) and 24 cases with mild 
to severe AD pathology. Subjects were balanced for sex (12 males and 12 females), and age (median 
age at death = 87 for both groups). The Grubman data is comprised of snRNAseq from the entorhinal 
cortex of 12 brain autopsies, including 6 AD pathological cases and 6 controls without significant AD 
pathology. Subjects in the Grubman data were also age-matched, with a median age of 83 and 80 for 
the AD case and control groups, respectively.

Drosophila stocks and husbandry
For scRNAseq libraries generated in this study, w1118; UAS-tauR406W flies (0N4R isoform, 383 amino 
acids), described in Wittmann et al., 2001; Mangleburg et al., 2020 were crossed with the pan-
neuronal driver elavC155-Gal4, producing the experimental genotypes: elav-Gal4/+;UAS-tauR406W/+ 
or elav-Gal4/Y; UAS-tauR406W/+. In order to minimize genetic background as a potential confounder, 

https://doi.org/10.7554/eLife.85251
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://bioconductor.org/packages/release/bioc/html/scmap.html
https://bioconductor.org/packages/release/bioc/html/scmap.html
https://bioconductor.org/packages/release/bioc/html/scmap.html
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-2879-3/MediaObjects/41586_2020_2879_MOESM7_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-2879-3/MediaObjects/41586_2020_2879_MOESM7_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-2879-3/MediaObjects/41586_2020_2879_MOESM7_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-2879-3/MediaObjects/41586_2020_2879_MOESM7_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-2879-3/MediaObjects/41586_2020_2879_MOESM7_ESM.zip
https://github.com/aertslab/pySCENIC
https://github.com/aertslab/pySCENIC
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://github.com/xuranw/MuSiC
https://bioconductor.org/packages/release/bioc/html/MAST.html
https://bioconductor.org/packages/release/bioc/html/MAST.html
https://bioconductor.org/packages/release/bioc/html/MAST.html
https://github.com/bzhanglab/WebGestaltR
https://github.com/bzhanglab/WebGestaltR
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://www.flyrnai.org/diopt
https://cran.r-project.org/web/packages/gprofiler2/index.html
https://cran.r-project.org/web/packages/gprofiler2/index.html
https://github.com/satijalab/sctransform
https://github.com/satijalab/sctransform
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UAS-tauR406W strains used in this study were backcrossed with w1118 for five generations as previously 
described (Guo et al., 2018). Controls were generated by outcrossing elav-Gal4 with w1118 animals, 
producing elav-Gal4/+ or elav-Gal4/Y. Adult progeny from experimental crosses were subsequently 
aged to 1, 10, or 20 d for dissection and library generation. Flies were raised on standard molasses-
based media at 25°C in ambient lighting. We also utilized a Rel-GFP strain (y, w; PBac{GFP.FPTB-Rel}
VK00037), which is an endogenous protein trap allele, encoding a fusion protein with GFP at the 
Rel amino-terminus. For the histology experiments, elav-Gal4/Y;UAS-tauR406W/+ animals were crossed 
with UAS-Rel.RNAi-1 (VDRC: v49414), UAS-Rel.RNAi-2 (TRiP: HMS00070), or w1118. Resulting female 
progeny with both the UAS-tauR406W transgene and RNAi (or controls) were aged to 10 d and prepared 
for histology.

Drosophila brain histology
Drosophila heads were fixed in 8% glutaraldehyde (Electron Microscopy Sciences) at 4°C for 10 d, 
followed by paraffin embedding and microtome sectioning as previously described in Chouhan et al., 
2016. Serial 5-µm-thick coronal sections were prepared for the whole head, mounted onto micros-
copy slides, and stained with hematoxylin and eosin. Bright-field microscopy images were acquired 
using the Leica DM 6000B system. For quantification, the number of vacuoles greater than 5  um 
in diameter in an ~50 um stack comprising of the ellipsoid body, fan-shaped body, and posterior 
commissure. The mean number of vacuoles per section was computed per animal. Statistical testing 
between conditions was performed using Welch’s t-test.

Drosophila brain dissociation
For scRNAseq profiling of elav >tauR406W and control flies, 16–18 dissected and intact Drosophila 
brains were combined and dissociated for each experimental condition (six total samples: 2 geno-
types × 3 timepoints). An equal number of male and female animals were combined for each condi-
tion. For the replication dataset, triplicate samples (biological replicates) for the identical elav>tauR406W 
and control genotypes were prepared at day 10 (six total samples). Adult fly brains were dissected 
out of the cuticle using sharp forceps in 1X PBS and dissociated following published protocols (Davie 
et al., 2018). Dissected brains in solution were first centrifuged at 800 × g for 3 min, resuspended, 
and dissociated by incubating with 50 uL of dispase (3 mg/mL, Sigma) and 75 uL of collagenase I 
(100 mg/mL, Invitrogen) for 2 hr at 25°C while shaking at 500 RPM. Cell suspensions were mixed by 
gentle pipetting 3–4 times every 5 min in the first hour, and every 10 min in the second hour. Resulting 
cell suspensions were pelleted by centrifugation at 400 × g for 5 min at 4°C, washed in 1000 uL 
ice-cold PBS, pelleted, and resuspended in 400 uL ice-cold PBS with 0.04% bovine serum albumin. 
Cell suspensions were passed through a 10 um pluriStrainer cell strainer (pluriSelect) to ensure that 
undissociated tissue were removed and a single-cell suspension was obtained. Cell concentration and 
viability were assessed using a hemocytometer under a fluorescent microscope after staining with 
NucBlue and Propidium iodide (Invitrogen). Fresh, intact single-cell suspensions were immediately 
used for single-cell library preparation.

Single-cell library preparation and sequencing
Single-cell libraries were prepared per the manufacturer’s protocol for the Chromium Single Cell Gene 
Expression 3’ v3.1 kit (10x Genomics) by the BCM Single Cell Genomics Core. 16,000  cells were 
added to each channel with a target recovery rate of 10,000  cells per library. Cells, reverse tran-
scription (RT) reagents, gel beads containing barcoded oligonucleotides, and oil were loaded on a 
Chromium controller (10x Genomics) to generate single-cell Gel Bead-In-Emulsions (GEMs) where full-
length cDNA was synthesized and barcoded for each individual cell. GEMs were subsequently broken 
and cDNAs from each single cell were pooled. Following clean up using Dynabeads MyOne Silane 
Beads (Invitrogen), cDNA was amplified by PCR. The amplified product was fragmented to optimal 
size before end-repair, A-tailing, and adaptor ligation. Final library was generated by amplification. 
Completed libraries were sequenced using the Baylor Genomic and RNA Profiling Core on the Illumina 
NovaSeq 6000 platform with a minimum depth of 300,000,000 reads per sample (on average 463 M 
reads per sample). A total of 12 high-quality libraries were generated (six libraries for the discovery and 
replication datasets, respectively). Illumina BCL files were demultiplexed into FASTQ files by calling 
the Cell Ranger 4.0.0 mkfastq function. FASTQ files were aligned to the Drosophila reference genome 

https://doi.org/10.7554/eLife.85251


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Neuroscience

Wu et al. eLife 2023;12:e85251. DOI: https://doi.org/10.7554/eLife.85251 � 19 of 32

(BDGP6.22.98) and quantified using the Cell Ranger 4.0.0 count pipeline. The human microtubule-
associated protein tau (MAPT) mRNA coding sequence (CDS) (isoform 3, NCBI Reference Sequence 
NM_016834.5:151–1302) along with a short SV40 3’UTR sequence was appended to the Drosophila 
reference genome for assessing MAPT transgene expression levels. Given the 10× recovery rate 
estimations, the cell calling algorithm in Cell Ranger was applied by setting the --expect-cells 
parameter in count to 10,000 for each library, thus filtering out partitions that likely did not contain 
single cells. Cell ranger alignment metrics for each library are available in Figure 1—source data 3. 
Filtered count matrices were loaded into Seurat v3 in R for additional quality control and downstream 
analyses. Cells were removed from the data object if the number of unique genes per cell were 
less than 200 or greater than 3000, or if the proportion of mitochondrial reads per cell was greater 
than 20%. Filtered count matrices from Cell Ranger are available to download with the Drosophila 
scRNAseq data on the Synapse AMP-AD Knowledge Portal.

Normalization, integration, and clustering
Gene expression was first normalized independently per library using a regularized negative bino-
mial regression approach as implemented by SCTransform (Stuart et al., 2019). 5000 highly variable 
features (HVG) were used for normalization while accounting for percent mitochondrial reads. Vari-
able features were defined and ranked by computing the variance of standardized gene counts after 
loess-based adjustment of mean–variance relationships (Stuart et al., 2019). Residuals of the fitted 
regression models were used as normalized gene expression values for HVGs. All libraries normalized 
via SCTransform were integrated using the canonical correlation analysis (CCA) pipeline in Seurat 
v3 to correct for batch effects and facilitate identification of similar cell identities across conditions. 
Highly ranked HVGs shared across all libraries were used as integration features. Integration anchors 
across libraries (correspondences of the selected features between cells) were computed over the first 
30 CCA dimensions in the combined dataset and then used to inform the subsequent integration and 
grouping of cells. After integration, Seurat v3 was used for principal component analysis (PCA) and 
cell clustering. 100 principal components (PCs) of the integrated dataset were used for graph-based 
clustering and Louvain algorithm optimization as implemented in FindNeighbors and FindClusters. 
The final resolution in FindClusters was set to resolution = 2, yielding 96 cell clusters in our dataset. 
We selected this resolution to replicate the clustering pattern of a similarly processed Drosophila 
whole-brain scRNA-seq dataset (Davie et al., 2018). 100 PCs were used to embed cells in 2D space 
via uniform manifold approximation and projection (UMAP). Normalization of gene counts used in 
differential expression analysis, cell cluster marker gene computation, cell identity annotation, and 
other applications directly comparing gene expression levels between cell clusters were computed 
separately on the non-integrated gene expression data using the NormalizeData function in Seurat v3. 
In brief, for each gene in each cell, unique molecular identifiers (UMI) were divided by the sum UMIs in 
that cell, multiplied by a scalar (10,000), and log transformed. However, cell cluster membership (clus-
ters 0–95) was defined using the integrated dataset as described above. The six additional libraries 
that comprise the day 10 replication dataset were clustered, integrated, and analyzed separately 
using the identical pipeline.

Doublet detection
DoubletFinder was applied per library to predict and remove heterotypic doublets, leaving a total 
of 48,111 high-quality single cells in the discovery dataset. For each library, artificial doublets were 
generated from the existing data. PCA was performed after merging the real and artificial data and a 
distance matrix was generated with the first 40 PCs to compute the proportion of artificial K-nearest-
neighbors (pANN) for each cell. PC neighborhood size (pK) for computing pANN was estimated for 
each library as previously described (McGinnis et al., 2019). The number of suspected doublets per 
library was estimated and cells were ranked by pANN for removal. Total doublet proportion for each 
library was computed based on a custom linear equation of the input-to-multiplet estimation provided 
by the 10x Chromium documentation: Y = 5.272x10-4 + 7.589x10-6 (x), x being the number of recov-
ered intact cells after the initial filtering criteria described above. The linear equation was generated 
based on recovery estimations in the manufacturer’s protocol. Adjustment of the estimated doublet 
proportion for undetectable homotypic doublets was applied in DoubletFinder by using the Seurat 
clustering classifications at resolution = 2 as described above.

https://doi.org/10.7554/eLife.85251
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SCENIC regulons
Gene regulatory networks (regulons) were computed using the Python implementation of SCENIC 
(pySCENIC). Raw gene abundances (UMIs) for 48,111 high-quality cells were exported as a loom 
object via loompy, and pySCENIC was implemented as described in Van de Sande et  al., 2020. 
Putative gene targets for the published list of 815 Drosophila transcription factors (TFs) (see Key 
Resources Table) were inferred by tree-based regression (GRNBoost2) where expression of each gene 
was regressed on TFs, producing a list of adjacencies connecting TFs to their target genes (non-
mutually exclusive). In the cisTarget step, modules were retained for further analysis if the regulatory 
motif of its parent TF was enriched among most gene members. Within retained modules, genes 
lacking enrichment of the appropriate motif were pruned. TF-motif annotations and pre-computed 
motif-gene rankings were obtained from https://resources.aertslab.org/cistarget/, Drosophila v8; 
motif search space encompassed up to 5 kb upstream of transcription start sites and intronic regions. 
This pipeline identified 183 regulons, encompassing 7134 out of 14,907 genes in the transcriptome 
dataset (Figure 4—source data 2), and cell-level activity for each regulon was computed by a ranking 
and recovery approach using pySCENIC AUCell. Within each cell, genes were ranked by expression 
level in a descending order, then the cumulative number of genes recovered belonging to a regulon at 
each rank was recorded. An area under the curve (AUC) was calculated after applying a default cutoff 
at the 95th percentile of gene ranks and is used to infer regulon activity. High AUC scores indicate 
greater representation of a given regulon among the top 5% of highly expressed genes in a cell. AUC 
scores for the 183 regulons across 48,111 cells were used for unsupervised clustering by UMAP for 
visualization of cell relationships based on gene regulatory networks (Figure 4—figure supplement 
4A).

Annotation of cell identity/abundance
We searched for cell identities of the 96 defined clusters by consolidating a series of four analytic 
approaches (Figure 1—figure supplement 2A). Two published datasets were used as references for 
our annotation procedure, including 56,902 cells from adult wildtype Drosophila (w1118 and DGRP-551) 
brains profiled at days 0, 1, 3, 6, 9, 15, 30, and 50 (Davie et al., 2018), as well as 109,743 cells from 
adult Canton-S Drosophila optic lobes at day 3 (Özel et al., 2021). Cell clusters in these references 
were previously annotated using available literature-based cell markers or statistical inference with 
published bulk RNA-sequencing of reporter-targeted cell types. The Davie et al. dataset contained 
87 cell clusters (Seurat FindClusters res = 2.0) with 41 assigned cell identities. The Özel et al., 2021 
dataset was clustered at a higher resolution (Seurat FindClusters res = 10), containing 200 cell clusters 
and 87 assigned cell identities. First, Scmap-cluster was used to compute gene expression correlation 
between each cell in our dataset to all defined clusters in the Davie and Özel datasets. 500 genes 
with higher-than-expected dropouts were selected as correlation features as described in Kiselev 
et al., 2018. The cosine similarity, Spearman and Pearson correlations of these features were subse-
quently computed between each cell in our dataset and all reference cluster centroids. For a cell to 
be mapped to a reference cluster, two out of three similarity scores must be concordant, and at least 
one must be greater than 0.7. Second, we intersected the top 20 cluster markers for each cell cluster 
(ranked by log2 fold change) in our dataset with the top 20 markers in each reference cluster. Cluster 
markers (cluster-enriched genes) for our 96 cell clusters were computed by differential expression 
analysis of the non-integrated, normalized gene abundances, comparing each cell cluster against all 
remaining cells. Markers were defined as positively differentially expressed genes (log2 fold-change 
greater than 0.1, Benjamini–Hochberg [BH]-corrected p-value 0.05) when comparing cells in given 
cluster versus all remaining cells in the dataset. Cell clusters were ‘mapped’ to a reference cluster 
in the Davie dataset (whole brain reference) if at least 13/20 top markers were shared. Likewise, a 
cluster was mapped in the Özel dataset (optic lobe reference) if at least 7/20 top markers were shared. 
These cutoffs were empirically determined by maximizing the number of best matches. Cell cluster 
markers for our dataset are listed in Figure 1—source data 2. Third, a trained neural network classifier 
for adult neurons as described in Özel et al., 2021 was implemented in Python to label optic lobe 
neurons in our dataset. Log-normalized expression of 533 genes (out of the 587 genes in the Özel 
adult training set) across all cells were used as the input for the classifier. Finally, we checked for posi-
tive expression of well-established cell markers in each cluster (Figure 1—source data 4, Figure 1—
figure supplement 2B, and Figure 1—figure supplement 3), using published cell marker datasets 

https://doi.org/10.7554/eLife.85251
https://resources.aertslab.org/cistarget/


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Neuroscience

Wu et al. eLife 2023;12:e85251. DOI: https://doi.org/10.7554/eLife.85251 � 21 of 32

(Davie et al., 2018; Konstantinides et al., 2018; Kremer et al., 2017). Most cell cluster annotations 
were evaluated and consolidated based on best agreement across two or more approaches within or 
across the Davie and Özel references. Less certain annotations were visually inspected in UMAP space 
to check for proximity with adjacent clusters and manually evaluated for cell marker expression. Cell-
level confidence for scmap assignment (similarity score) or neural network classifications (confidence 
score) were also manually evaluated. Results from the Özel reference was prioritized for optic lobe 
neurons, especially for cell clusters that may be heterogeneous in the Davie reference (Dm8/Tm5c, 
TmY14, Tm9, Tm5ab, Mt1). Pm neurons, chiasm glia, and subperineurial glia did not reach consensus 
across two or more approaches and were thus deemed less confident annotations. Several other optic 
lobe cell types were well mapped in a single approach to the Özel et al., 2021 dataset (TmY8, TmY3, 
Tm5c, Tm5ab, Tm20, Dm2, Dm8, Mi9, LC12, and LC17), where robust metrics were observed from 
the optic lobe neural network predictor or with scmap. Confirming our cell identity correspondences 
with the published scRNAseq datasets, we found high correlation among normalized gene expression 
when comparing individual cells in our dataset with the cluster-level means of the transcriptome in 
reference clusters as computed by cosine similarity (Figure 1—figure supplements 1 and 2C and D). 
The cosine similarity score between each annotated cell in our dataset and its cluster-level counterpart 
in the Davie or Özel references were computed based on shared non-dropout (count >0) genes, that 
is, the transcriptome of each cell in our data was correlated to the cluster-level mean of corresponding 
genes in a reference cluster. Lower similarity scores may reflect gene expression changes induced by 
tau pathology, less confident annotation (in this study or in the references used), clustering resolution 
differences, or high variance in the reference cluster.

To annotate the replication scRNAseq data (69,128 cells), labels from the completed dataset above 
(48,111 cells) were transferred using the Seurat v3 FindTransferAnchors and TransferData functions. 
In brief, pairs of similar cells between the reference and query dataset were identified using a mutual 
nearest-neighbor approach after projecting the replication dataset onto the reference dataset in PCA-
reduced space. The 5000 most variable genes in the new dataset were used for the dimensional 
reduction. Each cell was assigned a score and a predicted label from the reference dataset. Cell-
level metadata for both the discovery and replication datasets are uploaded to the Synapse AMP-AD 
Knowledge Portal as noted in the Key Resources Table.

After annotation, cell counts for each assigned cluster (90 clusters) were first quantified per library 
(six libraries, ages: days 1, 10, and 20; genotypes: control, tau), and treated as count data. To adjust 
for extreme proportional differences in cell composition across libraries and differences in the total 
number of cells captured per library, cell counts were normalized using negative binomial generalized 
linear models (NB-GLM) as implemented in DESeq2 (Love et al., 2014). In brief, raw cell counts were 
modeled using NB-GLM with a fitted mean and a cluster-specific dispersion factor. Dispersion factors 
were computed based on mean count values using an empirical Bayes approach as described in Love 
et al., 2014. The fitted mean is composed of a library-specific size factor and a parameter propor-
tional to the true counts in each cluster per library. To compute size factors per library, raw counts 
were organized in a matrix such that rows represent clusters and columns represent samples (libraries). 
Raw counts were first divided by the row-wise geometric means and then divided by the per-column 
median of resulting quotients (size factor) to obtain normalized cell count values per cluster. These 
normalized cell counts were used to generate the plots in Figure 2B. The three age groups for each 
genotype (days 1, 10, 20) were combined to produce an n = 3 comparison of cell counts between tau 
and control animals.

Deconvolution of fly RNA-sequencing data
Deconvolving bulk-tissue RNA-sequencing data into estimated proportions of cell populations was 
performed by implementing Multi-subject Single-cell Deconvolution (Wang et al., 2019) using default 
parameters. MuSiC leverages cell-specific expression data from annotated scRNA-seq datasets and 
weighted non-negative least-squares regression to characterize cell compositions of bulk tissue gene 
expression data. This approach accounted for gene expression variability across samples and cells, 
thus upweighting the most consistently expressed genes across samples or cells for deconvolution. 
Whole-head RNA-sequencing counts of experimental conditions identical to those in this study were 
taken from Mangleburg et al., 2020 and used as input for deconvolution. Specifically, cell counts for 
n = 2 control and n = 3 tauR406W samples at days 1, 10, and 20 were deconvolved (15 samples total, 
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each sample is a homogenate of 100 heads). 56,902 cells from a published Drosophila whole-brain 
scRNAseq dataset was used as an orthogonal reference for deconvolution, providing cell-specific 
transcriptional profiles from wildtype control animals (w1118 and DGRP-551) (Davie et al., 2018). Indi-
vidual scRNA libraries were treated as subjects in the MuSiC pipeline for evaluating gene expression 
variability in marker gene weighting. Both annotated and unannotated cell clusters in the reference 
scRNAseq dataset were included in the deconvolution pipeline. Select cell clusters with non-zero 
estimated proportions across two or more timepoints are plotted in Figure 2—figure supplement 2.

Immunofluorescence and confocal microscopy
10-day-old female controls (elav-GAL4/+) or elav>tauR406W (elav-GAL4/+; UAS-tauR406W/+) were used 
for glial quantification immunofluorescence experiments. The animals were anesthetized with CO2 and 
brains were dissected with forceps and fixed in 4% paraformaldehyde (PFA) overnight at 4°C. After 
fixation, PFA was aspirated and replaced with PBS with 2% Triton-X (PBST) and incubated at 4°C over-
night for tissue penetration. Residual air trapped in brain tissues were removed by placing samples 
under a vacuum for 1 hr at room temperature. The brains were then incubated in blocking solution (5% 
normal goat serum in PBST) at room temperature, rocking for 1 hr. Primary antibodies were diluted in 
0.3% PBST and samples were incubated in primary at 4°C, rocking for at least 24 hr. The primary anti-
body solution was aspirated, and the samples were washed with PBST (two quick washes followed by 
three 15 min washes). Samples were incubated in secondary antibodies at room temperature, rocking 
for 2 hr. The secondary antibody solution was then aspirated and the samples were washed with PBST 
(two quick washes followed by three 15 min washes). DAPI stain, when applicable, was added in the 
secondary antibody step. Whole brains were then mounted in Vectashield antifade mounting medium 
(Vector Laboratories, H-1000-10) and stored in the dark at 4°C until imaged. Samples were imaged on 
a Leica Microsystems SP8X confocal microscope. Z-stacks covered the entirety of whole-mount brains. 
We used the following antibodies and dilutions: mouse anti-Repo (8D12, 1:500 for glial quantification 
experiment, 1:50 for Rel experiment, DSHB), rat anti-Elav (7E8A10, 1:100, DSHB); rabbit anti-GFP 
(1:500; GeneTex), mouse anti-Rel (21F3, 1:500, DSHB), conjugated A488-Phalloidin (1:500; Thermo 
Fisher), Cy3 AffiniPure goat anti-mouse (H+L) (1:500; Jackson ImmunoResearch Laboratories), Alexa 
647-conjugated goat anti-Rabbit IgG (1:500; Jackson ImmunoResearch), Alexa Fluor 488 donkey anti-
mouse IgG (H+L) (1:500; Jackson ImmunoResearch), and Cy3 AffiniPure goat anti-rat IgG (H+L) (1:500; 
Jackson ImmunoResearch).

Quantification of glia from confocal immunofluorescence digital microscopy was performed using 
Imaris (v9.9.1) imaging software. We counted the total number of repo-positive cells using the ‘spots’ 
object and automatic detection parameters with local thresholding and background subtraction. Brain 
volume was determined by using the ‘surfaces’ object on the Phalloidin channel to encompass the 
entire three-dimensional volume of the brain. Graphs of raw repo-positive counts per brain as well as 
glial density (repo-positive counts divided by brain volume) were created in GraphPad Prism (v9.4.1) 
software. Glial quantifications were performed using full Z-stacks of whole-mount brains. Welch’s t-
test was used for comparisons between control and tauR406W animals (n = 9 animals per group). The 
significance threshold was set to p<0.05. Error bars represent the 95% confidence interval.

Mean pixel intensity for DAPI, phalloidin, or repo signal was calculated for n = 9 brains per geno-
type using ImageJ/Fiji (units: corrected total cell fluorescence [CTCF]). In GraphPad Prism, the mean 
pixel intensity for each channel (DAPI, phalloidin, or repo) was compared between control vs. tau-
expressing animals using parametric, unpaired, two-tailed t-tests. All experimental groups passed 
the Shapiro–Wilk test for normality except for phalloidin intensity in tau-expressing animals, so this 
comparison (mean phalloidin intensity in control vs. tau-expressing animals) was done with a nonpara-
metric (Mann–Whitney) t-test. The BIOP JACoP plugin on ImageJ/Fiji was used to calculate colocal-
ization between relish-GFP signal and elav or repo signal. Area of overlap between signals (in pixels) 
was calculated for each slice (n = 85 slices total) using a stack histogram as the threshold. The area of 
overlap was then divided by the total elav or repo area to find the percentage of elav or repo area that 
was also positive for relish-GFP signal.

Bulk-tissue RNA-sequencing data
Bulk-RNA sequencing data and WGCNA co-expression modules of the experimental conditions 
described in this study were obtained from Mangleburg et al., 2020. WGCNA module expression 

https://doi.org/10.7554/eLife.85251


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Neuroscience

Wu et al. eLife 2023;12:e85251. DOI: https://doi.org/10.7554/eLife.85251 � 23 of 32

activity in scRNAseq was computed by taking the mean of module member genes within each cell. 
Cluster-level expression activity of WGCNA modules was then estimated by averaging the cell-level 
activity across all cells in a given cluster and was subsequently used to compute the log2 fold change 
of tau versus control expression activity.

Drosophila NFκB signaling mediators
A list of Drosophila NFκB signaling pathway members was generated based on manual curation from 
published studies (Valanne et al., 2011; Myllymäki et al., 2014; Kounatidis et al., 2017; Li et al., 
2020) and included the following genes: PGRP-LE, imd, Tak1, key, Rel, eff, PGRP-LC, bsk, akirin, 
Jra, sick, Tab2, IKKbeta, Uev1A, ben, Dredd, Fadd, PGRP-LA, Diap2, Diap1, egr, Traf6, trbd, pirk, 
casp, PGRP-LB, PGRP-LF, dnr1, scny, RYBP, PGRP-SC1a, PGRP-SC1b, PGRP-SC2, CYLD, POSH, spirit, 
spheroide, spz, PGRP-SA, PGRP-SD, pll, Myd88, dl, Gprk2, Deaf1, Tl, psh, grass, modSP, Dif, mop, 
tub, cact, nec, Pli, 18w, Toll-4, Tehao, Toll-6, Toll-7, Tollo, and Toll-9.

Analysis of differential cellular abundance
Statistical testing of the log2 fold change (log2FC) of tau versus control normalized cell abundance was 
performed using negative binomial-generalized linear models (NB-GLM) as implemented in DESeq2. 
Age was treated as a covariate, and a Wald test was performed on the coefficient of the genotype 
variable using the following model: log2(cell count) ~ age + genotype. Using DESeq2, log2FC was 
computed for each cluster (elav>tauR406W vs. control) based on maximum-likelihood estimation after 
fitting the GLM. Raw log2FC values were transformed using an adaptive shrinkage estimator from 
the ‘ashr’ R package as implemented in DESeq2 to account for clusters with high dispersion or low 
counts. These transformed log2FC values were then used for cell abundance analysis and interpreta-
tion. A BH-adjusted p-value<0.05 was used to establish significance of Wald test statistic. In order to 
generate the plots for Figure 2B, normalized cell counts were obtained using the counts function in 
DESeq2. Results were visualized using box and whisker plots, including the following values: median, 
minimum/maximum, and lower/upper quartiles.

In order to better understand how relative changes might influence cell abundance estimates, 
we inferred confidence intervals for cell cluster log2FC values (Figure 2—figure supplement 3A). 
Based on experimental ground truth (Serrano-Pozo et al., 2013), the log2FC value for seven cell 
clusters (Ensheathing glia, Perineurial glia, Astrocyte-like glia, Cortex glia, Chiasm glia, Subperineurial 
glia, and Hemocytes) was centered to zero. Specifically, the value of each glial cluster was itera-
tively subtracted from the log2FC values for all other clusters, establishing a minimum and maximum 
log2FC value for all cell clusters. We predict that the true cell abundance falls within this computed 
range, after accounting for potential proportional influences. A range that includes zero thus suggests 
there may be no true change between tau and control.

Analysis of differential gene expression
Differential gene expression analyses were performed using Model-based Analysis of Single-cell 
Transcriptomics (MAST) for each cell cluster (Finak et al., 2015). In brief, generalized linear hurdle 
models were used to compute differential expression, where logistic regression was used to account 
for stochastic dropouts, and a Gaussian linear model was fitted to predict gene expression levels. 
Differential expression was determined by a likelihood ratio test. We required that differentially 
expressed genes meet a significance threshold of BH-adjusted p-value<0.05; absolute log2 fold-
change > 0.1; and detectable (non-zero) expression in at least 10% of cells in the cluster. Cellular 
detection rate (CDR, fraction of genes reliably detected in each cell) was included as a covariate in all 
regression models, as in published protocols (Finak et al., 2015). CDR acts as a proxy for estimating 
the effect of dropout events, amplification efficiency, cell volume, and other extrinsic factors while 
performing expression-related regression analyses. Analyses of tau-induced differential expression 
(age-adjusted) also included age as a regression model covariate. Separately, aging-induced changes 
within each cell cluster were computed from control data (elav-GAL4/+), comparing differential gene 
expression between days 1 and 10, and days 10 and 20. In order to evaluate robustness and repli-
cability, cross-sectional, tau-induced differentially expressed genes were also computed in day 10 
animals (tau vs. control) in the replication data and results were compared between the discovery and 
replication datasets. Similarly, cross-sectional tau-induced differential expression was also computed 
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for each timepoint in the discovery dataset. For differential expression of the human cell subclusters 
reported in Mathys et al., 2019, normalized counts between individuals with AD pathology (n = 
24) and low/no pathology (n = 24) were compared using MAST for each cell subcluster as described 
above.

To assess cell-type-specific differences in regulon gene expression levels (Figure 4C), we performed 
differential regulon analysis using base statistical packages in R. In brief, mean expression of gene 
members in each regulon were computed per cell, and cell-type-matched comparisons were made 
between control and elav>tauR406W using linear regression, including age as a covariate. Specifically, 
for each cell type, a likelihood ratio test compared the fit of a full model (Regulon Expression ~ 
Genotype + age) and a reduced model (Regulon Expression ~ age), evaluating the contribution of 
genotype to model fit. Significance was set at a BH-adjusted p-value<0.05. Regulon log2-fold changes 
were computed for elav>tauR406W versus control mean expression in each cluster.

Overrepresentation analysis (ORA) of differentially expressed gene sets were completed using the 
R implementation of WEBGESTALT (Wang et al., 2013). The following databases were used: Gene 
Ontology (GO) biological processes, GO molecular functions, GO cellular component, KEGG, and 
Panther. Enrichment significance was defined by hypergeometric test, followed by p-value adjust-
ment using the BH-procedure; significance was set at p<0.05. ORA of the tau unique gene set (n = 
363 genes) was performed using gProfiler (Raudvere et al., 2019). The Gene Ontology (GO), Human 
phenotype ontology (HP), KEGG, miRTarBase (MIRNA), Transfac (TF), and WikiPathways (WP) data-
bases were used for querying genes. The organism parameter was set to ‘dmelanogaster’ and the ‘fdr’ 
correction method was used to apply the BH multiple testing correction. A false discovery rate (FDR) 
< 0.05 was the threshold for significance.

Multiple regression with elastic net
To identify features driving cell vulnerability in our scRNAseq dataset, we pooled information across 
cell clusters by performing elastic net regression. For all clusters showing significant elav>tauR406W 
vs. control cell abundance changes, log2FC values were regressed on the cell-type-specific mean 
expression for 183 regulons. Given our goal to identify the factors that influence cell-type-specific 
vulnerability, we focused on eight cell clusters with significant cell loss (FDR < 0.05). In a secondary 
analysis, we repeated elastic net regression and considered a larger number of potential predictor 
variables including (i) the 183 regulons (as above); (ii) 2793 unique GO, KEGG, and Panther path-
ways found to be significantly enriched among elav>tauR406W differentially expressed genes; (iii) 7 
WGCNA modules altered in elav>tauR406W (Mangleburg et al., 2020); and (iv) curated NFκB signaling 
pathways. In addition, we also considered a large number of (v) cell cluster technical parameters as 
potential predictors, including normalized cell counts, mean tau transgene expression, sum of UMIs, 
mean percent mitochondrial reads, and number of tau-induced differentially expressed genes (age-
adjusted). For this analysis, all computed variables (e.g., GO pathways, WGCNA modules, regulons, 
NFκB genes) were first averaged within each cell, then averaged across all cells in order to determine 
a mean value for each cell cluster. Cluster-level means for all gene sets were computed using pooled 
cell data from both elav>tauR406W and controls and all ages. For gene sets derived from ORA analyses, 
we restricted consideration to those differentially expressed genes driving enrichment. We generated 
a matrix consisting of rows for each cell cluster and columns with values/means for each potential 
predictor variable.

We used the caret and glmnet packages in R to organize the data and perform elastic net 
regularized regression. Alpha (ridge vs. lasso characteristic) and lambda (shrinkage parameter) 
values were tuned in a 1000 × 1000 grid using repeated threefold cross-validation in caret, and the 
average root mean squared errors (RMSE) from testing the partitions were used to assess model 
performance. Threefold cross-validation was repeated 100 times for all alpha-lambda pairs using a 
different data fold split for each iteration in order to account for variability in model performance 
from random sample partitioning. The mean of all prediction errors was used to assess the final 
performance of each alpha-lambda pair, and we selected the model with the lowest RMSE. Lastly, 
we generated a ranklist of predictor variables for tau-induced cell abundance changes based on 
the magnitude of coefficients from the selected model (Figure 4—figure supplement 7B, Figure 
4—source data 4).

https://doi.org/10.7554/eLife.85251


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Neuroscience

Wu et al. eLife 2023;12:e85251. DOI: https://doi.org/10.7554/eLife.85251 � 25 of 32

Cross-species analysis with human and mouse RNAseq datasets
Previously published human snRNAseq data (Mathys et al., 2019; Grubman et al., 2019) were repro-
cessed and filtered using the identical pipeline as describe above for Drosophila data. Raw gene 
counts were normalized using the NormalizeData function in Seurat v3. The resulting 70,634 filtered 
cells from the Mathys data were re-clustered using our pipeline above for visual representation in 
Figure 5; however, the cell cluster annotations from the original publication were preserved. 13,214 
filtered cells from the Grubman data were similarly promoted for analysis. Drosophila orthologs of 
genes detected in human datasets were determined using the DRSC Integrated Ortholog Prediction 
Tool (DIOPT) (Hu et al., 2011), requiring a minimum DIOPT score threshold of 5 or greater. If more 
than one fly ortholog was identified, we selected the ortholog with either (i) the highest DIOPT score, 
(ii) the highest weighted DIOPT score, or (iii) the highest ranked option (best score when mapped 
both forward and reverse). Thus, 5630 or 4145 human-fly gene ortholog pairs, respectively, were 
considered for cross-species analyses of the Mathys and Grubman datasets. We scaled normalized 
expression of each gene with mean = 0 and variance = 1. Cluster-level gene expression was computed 
by averaging scaled expression values from all cells. Subsequently, we performed Pearson correlation 
analysis for all cluster pairs to quantify transcriptional similarities between fly and human cell, exam-
ining pairwise correlation coefficients for all gene-orthologs across all clusters. For visualization, we 
generated heatmaps representing Pearson correlation coefficients by seriation with hierarchical clus-
tering. Association statistics for human neuropathological traits (heatmap at top of Figure 5A) were 
repurposed directly from the published supplementary from Mathys et al., 2019. For quantification 
of overlap between human microglia and fly ensheathing glia, we examined conserved differentially 
expressed genes using the hypergeometric overlap test. To demonstrate control-only correlations, 
scRNAseq from the filtered Davie et al. dataset (subsetted for annotated cell types) were compared 
to snRNAseq profiles of 24 control individuals in the Mathys et al. data. To compute Rel regulon differ-
ential expression in a tauopathy mouse model, we used normalized scRNAseq pseudobulk counts 
from MAPT P301L mice (n = 3) and non-transgenic controls (n = 2) as published in Lee et al., 2021. 
Conserved mice genes (DIOPT > 4) in the fly Rel regulon were averaged per cell cluster (554 mice 
genes mapped to at least one fly ortholog) and a likelihood ratio test was used to evaluate the contri-
bution of genotype to differential expression in each cluster.
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