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Abstract Cyborg control of insect movement is promising for developing miniature, high-
mobility, and efficient biohybrid robots. However, considering the inter-individual variation of the 
insect neuromuscular apparatus and its neural control is challenging. We propose a hierarchical 
model including inter-individual variation of muscle properties of three leg muscles involved in 
propulsion (retractor coxae), joint stiffness (pro- and retractor coxae), and stance-swing transi-
tion (protractor coxae and levator trochanteris) in the stick insect Carausius morosus. To estimate 
mechanical effects induced by external muscle stimulation, the model is based on the systematic 
evaluation of joint torques as functions of electrical stimulation parameters. A nearly linear relation-
ship between the stimulus burst duration and generated torque was observed. This stimulus-torque 
characteristic holds for burst durations of up to 500ms, corresponding to the stance and swing 
phase durations of medium to fast walking stick insects. Hierarchical Bayesian modeling revealed 
that linearity of the stimulus-torque characteristic was invariant, with individually varying slopes. Indi-
vidual prediction of joint torques provides significant benefits for precise cyborg control.

Editor's evaluation
This valuable work presents new results to characterize the relationship between electrical excitation 
and torque generation in stick insect joints. The evidence supporting this work is a series of torque-
voltage measurements across individuals. The strength of evidence is compelling in supporting the 
outcomes.

Introduction
Hybrid insect–computer robots (Krause et  al., 2011; Li and Sato, 2018) represent cutting-edge 
approaches to develop robots with locomotor performances comparable to those of insects. With the 
advancement and diversity in micro-flexible and micro-printable electronics (Rogers et al., 2010; Rich 
et al., 2021), micro-mechanical fabrication, and micro-actuator technologies (Kim et al., 2020), such 
biohybrid, that is cyborg robots have been engineered to manipulate their gait and flight through 
electrical stimulation of target muscles in various insects, includings beetles (Sato, 2009; Sato and 
Maharbiz, 2010; Sato et al., 2015; Cao et al., 2016; Vo Doan et al., 2018; Nguyen et al., 2020; 
Kosaka et al., 2021), moths (Sane et al., 2007; Bozkurt et al., 2009; Hinterwirth et al., 2012; Ando 
and Kanzaki, 2017), and cockroaches (Sanchez et al., 2015). The advantage of biohybrid (cyborg) 
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robots is that they do not require individual ‘design’, ‘fabrication’, and ‘assembly’ processes for each 
component because they use the body tissues of living insects (Cao et al., 2014). Moreover, cyborg 
robots have low power consumption, that is, a few milliwatts (Sato and Maharbiz, 2010). Although 
studies on insect cyborgs have demonstrated simple manufacturing and promising energy efficiency, 
they are still in the initial phase of development from the perspective of evaluating both feasibility and 
reliability of their control.

Perhaps, the greatest challenge in cyborg control comes with the inter-individual variability of 
animals. Past neurophysiological studies related to animal neural activity have discussed the failure 
of averaging-based approaches, in which a model formulated using the average data for a group 
cannot explain the characteristics of any individual in the group (Golowasch et  al., 2002; Schulz 
et al., 2006). For example, variable and non-periodic patterns in feeding behavior of Aplysia have 
been reported to be subject to strong inter-individual variation (Horn et al., 2004; Brezina et al., 
2005; Zhurov et al., 2005). In insect motor physiology, the prediction error of muscle models which 
are based on sample averages is very high (Blümel et al., 2012a) and may be halved using individual-
specific model (Blümel et al., 2012b). At the level of leg movements, variability has been investigated 
in lobsters (Thuma et al., 2003) and stick insects (Hooper et al., 2006). The variability of whole-body 
locomotion arises from step parameter variation of single legs (Theunissen and Dürr, 2013) but also 
from variation of coupling strength among legs (Dürr, 2005). One possible approach for accounting 
for inter-individual variability in cyborg control of single-leg movement is to construct a feedback 
control system (Cao et al., 2014). Although the kinematics-control of joint angles (Cao et al., 2014) 
has exhibited remarkable performance, its applicability to the control of dynamic gaits, such as that 
for walking, is still controversial. Furthermore, insects have abundant control variables, that is, degrees 
of freedom in their actuators and sensors. At present, the number of control variables of current insect 
cyborgs has to be reduced owing to system implementation difficulties.

A promising approach to overcome the ‘pitfalls’ associated with averaging across individuals is to 
understand the underlying principles that govern inter-individual variability in insect motor control. 
Especially, the output characteristics of muscle are key for controlling the dynamics of movement: 
muscles convert neural activity into movement and then generate behavior from interactions with 
the environment. In conjunction with current models of muscle activation (Harischandra et al., 2019) 
and contraction dynamics (Blümel et al., 2012c), we can exploit experimental data to tell parame-
ters that are strongly influenced by inter-individual variation as opposed to others that are common 

eLife digest Hybrid insect-computer robots – an exciting fusion of biology and technology – 
herald a future of small, highly mobile and efficient devices. However, these robots require a way to 
control the movements of the insects, a task made complex due to the differences between different 
insects’ nervous and muscle systems.

To bridge this gap, Owaki, Dürr and Schmitz studied the relationship between electrical stimulation 
of three leg muscles in the legs of stick insects and the resultant torque. To do these experiments, 
the scientists kept the body of the stick insects fixed and electrically stimulated one out of three leg 
muscles to produce walking-like movements.

The results of these electrical stimulations allowed Owaki, Dürr and Schmitz to propose a model 
that predicts the torque created in the insect's joints when different patterns of electrical stimulation 
are applied to a leg muscle. The researchers identified a near-linear relationship between the duration 
of the electrical stimulus and the resultant torque. Moreover, the slope of this linear relationship can 
be estimated for individual animals with a few measurements only. This finding refines the precision of 
the motor control required to build individually tuned biohybrid robots.

Investigating the precise control of insect biohybrid robots, particularly using stick insects, can lead 
to advancements in biohybrid robotics and enrich our understanding of insect locomotion.

Owaki, Dürr and Schmitz’s insights could lead to the creation of adaptable and highly mobile 
devices with many applications, but key challenges need to be addressed. First, model testing must 
be implemented in free-walking insects, and the electrical stimuli must be refined to mimic natural 
neuromuscular signals more closely.

https://doi.org/10.7554/eLife.85275
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characteristics. To this end, we employed a hierarchical modeling framework based on the Bayesian 
statistical analysis (Watanabe, 2018; Gelman et al., 2013) that explicitly accounts for inter-individual 
variation in experimental data. In particular, we applied a set of hierarchical Bayesian models with 
different combinations of common and individually varying parameters and mathematically evaluated 
their prediction performance.

The main objective of this study was to systematically evaluate how muscle force and corre-
sponding joint torques depend on external electrical stimulation, as a fundamental pre-requisite for 
precise insect cyborg control. To this end, we measured joint torques induced by stimulating one out 
of three leg muscles in the middle leg of the stick insect species Carausius morosus (Sinéty, 1901): 
these were the protractor coxae, retractor coxae, and levator trochanteris. We focused on these three 
proximal muscles because the retractor coxae is the primary muscle for propulsion (Rosenbaum et al., 
2010), the pro/retractor coxae contributes to weight-dependent postural adjustment by regulating 
joint stiffness (Dallmann et al., 2019; Günzel et al., 2022), and the levator trochanteris is important 
for postural termination and swing initiation (Dallmann et al., 2017). Using a custom-built electrical 
stimulator to generate parameter-tunable pulse-width-modulated (PWM) signals, we simulated burst-
like activity of motor neurons in insects and measured the corresponding joint torques generated in 
response to our electrical stimuli. Using Bayesian statistical modeling and the ‘widely applied informa-
tion criterion’ (WAIC) index (Watanabe, 2018) for model prediction, we evaluated six model variants, 
namely a simple linear, hierarchical linear, simple nonlinear, and three hierarchical nonlinear models, to 
identify the model that best explained the experimental data. In particular, we evaluated the predic-
tive performances of model variants with and without inter-individual variation of experimental param-
eter estimates. A piecewise linear relationship was observed between the burst duration and the 
joint torque generated for a given parameter set of the PWM burst. Linearity was found to hold for 
burst durations of up to 500ms, which corresponds to the stance phase (300–500ms) and swing phase 
(to 250ms) of a stick insect walking at medium to fast speeds (Dürr et al., 2018). Furthermore, the 
hierarchical Bayesian modeling revealed both invariant and individually varying characteristics of joint 
torque generation in stick insects. This allows for individual tuning of electrical stimulation parameters 
for highly precise insect cyborg control.

With regard to our general understanding of insect motor control, our study demonstrates that 
the dependency of joint torque on electrical stimulus duration is linear, despite nonlinear activation 
and contraction dynamics of insect muscle. Furthermore, the proposed hierarchical Bayesian model 
allows for a quick, simple and reliable measurement of the individual characteristics and, therefore, 
quantification of inter-individual differences. Whereas several studies have reported on inter-individual 
differences in neural (Golowasch et al., 2002; Schulz et al., 2006) and muscle activity (Horn et al., 
2004; Brezina et al., 2005; Zhurov et al., 2005; Blümel et al., 2012b; Blümel et al., 2012a; Thuma 
et al., 2003; Hooper et al., 2006), we propose how hierarchical Bayesian models may be used to 
harness inter-individual differences in insect locomotion research.

Results
Joint torque measurements
Since movement at a given leg joint is effected by joint torque, the goal of our experimental measure-
ments was measure jont torque as a function of electrical stimulation. This was done for the two prox-
imal joints of the stick insect middle leg. The insect was fixed dorsal side up on a wooden support, with 
its right middle leg coxa reaching beyond the edge (Figure 1A right). We selected three leg muscles 
(protractor, retractor, and levator) for electrical stimulation (Figure 1B). When stick insects walk, they 
use the protractor to swing the leg forward during the swing phase, the retractor to move the leg 
backward during the stance phase, and levator to initiate the stance-to-swing transition (Rosenbaum 
et al., 2010; Dallmann et al., 2019; Günzel et al., 2022; Bässler and Wegner, 1983). Moreover, 
co-contraction of the protractor and retractor are known to vary based on the overall load distribu-
tion, thus being important for postural control by regulating joint stiffness (Dallmann et al., 2019; 
Günzel et al., 2022). Accordingly, electrical stimulation of the protractor and retractor muscles gener-
ated forward and backward movements at the thorax–coxa (ThC) joint, as measured by a calibrated 
custom-made force transducer with a strain gauge held against the femur with known distance from 

https://doi.org/10.7554/eLife.85275
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the joint. Stimulation of the levator muscle generated an upward movement at the coxa–trochanter 
(CTr) joint (Dallmann et al., 2016).

Figure 2 illustrates the obtained relation between the PWM burst duration and the generated 
joint torques for the protractor (A), retractor (B), and levator (C) muscles from 10 animals (‍N = 10‍). 
The parameters of the PWM signals were set to 2.0 V, 50 Hz, and 30% duty ratio. During one trial, we 
stimulated one muscle ‍n‍ times with fixed PWM parameters and measured the generated torque at 
the corresponding joint.

The results indicate the input–output relation (burst duration and generated torque) corresponded 
to a linear function or a power function with an exponent of less than 1.0. Furthermore, the relation-
ship holds for burst durations up to 500ms for all animals, corresponding to the duration of swing and 
stance phases in medium to fast walking stick insects (Dürr et al., 2018). Maximum torques for ThC 
and CTr joints were 60 µNm, 120 µNm, and 40 µNm (Dallmann et al., 2019). For a given set of PWM 
parameters, the generated torque characteristics remained almost constant during all stimulations 
under the same condition, suggesting that muscle fatigue or warm-up effects were negligible for 

Figure 1. Experimental setup and joint torque calculation (A) The insect was fixed dorsal side up on a balsa wood platform. Two small insect pins 
attached to the tip of the force transducer held the middle part of the femur segment of the middle leg. (B) Electrodes (arrows) implanted into the 
three leg muscles protractor, retractor, and levator, in the right middle leg. (C) We systematically analyzed how joint torques depended on the three 
PWM burst parameters amplitude [V], frequency [Hz], and duty ratio [%], and identified the combinations that most effectively and repeatedly produced 
torque. The upper graph shows the profile of an electrical stimulation signal for each muscle. The lower graph shows the profile of the sensor value 
measured with the force transducer. (D). The panel shows the calculated ThC-joint torque profile versus the burst duration ‍Ti‍ during the protractor 
stimulations (animal05, ‍n = 74‍). In this experiment, the burst duration ‍Ti‍ was varied at random, and the torque was calculated from force measurements 
with calibrated conversion factor and moment arm (see (C)). The voltage, frequency, and duty ratio of the PWM signals were 2.0 V, 50 Hz, and 30%, 
respectively. The color of the dots represents the number of stimulations (blue–yellow: 1–74). The orange dotted vertical line indicates ‍Ti‍ at 500ms.

https://doi.org/10.7554/eLife.85275
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Figure 2. Joint torques as a function of burst duration. Data from 10 animals with three muscles, each: 
(A) protractor, (B) retractor, and (C) levator muscle stimulation. The PWM burst parameters were 2.0 V. 50 Hz, 
and 30% duty ratio. ‍n‍ gives the number of stimulations for each animal. Electrical stimulations were performed 
manually and randomly; therefore, the total number of stimuli was different for each animal. The color of the 

Figure 2 continued on next page
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at least ‍n = 50‍ stimulations. Furthermore, we verified that no significant changes occurred in muscle 
characteristics owing to the pre- and post-experimental relationship.

Bayesian statistical modeling
To investigate joint-torque properties generated by muscle stimulation while explicitly considering 
inter-individual variation of muscle physiology, we used a Bayesian statistical analysis and modeling 
framework. The probabilistic nature of Bayesian models makes them appropriate for modeling ‘uncer-
tainty’, as introduced by inter-individual variation (Gelman et al., 2013). Bayesian analysis can be used 
to estimate a probabilistic distribution (model) that encodes an unknown observation target by using 
observed data and updating the distribution in the model. Furthermore, hierarchical model variants 
allow the inclusion of a hyperparameter, thus allowing for a parameter of choice to be drawn from yet 
another probabilistic distribution. In our case, hierarchical-model variants were used to account for 
inter-individual differences (Watanabe, 2018).

Here, we modeled the relationship between the burst duration of the electrical stimulation and 
the joint torque generated using a single model (a power function) with six variants (for details, see 
subsection ‘Models’). All model variants were specified in a probabilistic programming language 
developed by Stan (Stan Development Team, 2023). Here, we used non-informative uniform priors 
for the parameters ‍β‍, ‍γ‍, and ‍σ‍, unless stated otherwise. For estimation, we used the numerical Markov 
Chain Monte Carlo (MCMC) method, and scripted the models in R (v.4.1.3; R Development Core 
Team, 2023), in which the Stan code was compiled and executed using the R package ‘rstan’ (Stan 
Development Team, 2023). The software performed sampling from prior distributions using No-U-
Turn Sampler (NUTS; Hoffman and Gelman, 2014). Sampling convergence was detected through 
trace plots and the quantitative Gelman–Rubin convergence statistic ‍Rhat‍ (Gelman and Rubin, 1992), 
where ‍Rhat < 1.10‍.

Models
‍τi‍ and ‍Ti‍ represent the calculated joint torque based on the force-transducer value and the burst 
duration of a PWM signal for electrical stimulation, respectively. We assumed that ‍τi‍ follows a normal 
distribution, described by the ‍N (µ,σ)‍ function, where µ and ‍σ‍ represent the mean and standard devi-
ation (S.D.) of the distribution. Indexes ‍i‍ and ‍j‍ represent the numbers of stimulations and animals, 
respectively.

Model 1-1: Linear model representing the linear relationship between burst duration and joint 
torque

	﻿‍ τi ∼ N (µ = βTi,σ),‍� (1)

where ‍β‍ represents the inclination of the estimated linear function.
Model 1-2: Hierarchical model representing the linear relation between burst duration and joint 

torque

	﻿‍ τi,j ∼ N (µ = βjTi,σ),‍� (2)

	﻿‍ βj ∼ N (µ = µβ ,σβ),‍� (3)

where ‍βj‍ represents the inclination of the estimated linear function on the (‍j‍)th animal. Furthermore, in 
this hierarchical model, ‍βj‍ is drawn out of a normal distribution that captures inter-individual variation, 
where ‍µβ‍ and ‍σβ‍ represent the mean and S.D. of the distribution, respectively.

Model 2-1: Non-linear model representing the nonlinear relationship between burst duration and 
joint torque

	﻿‍ τi ∼ N (µ = β{Ti}γ ,σ),‍� (4)

symbols indicates the order of the stimulations: blue (1) to yellow (‍n‍). The positive values of joint torque represent 
intended (A) forward, (B) backward and (C) upward rotation of the coxa relative to the thorax. Source code and 
data are available on Dryad (Figure2.zip, https://doi.org/10.5061/dryad.wpzgmsbsw).

Figure 2 continued

https://doi.org/10.7554/eLife.85275
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where, ‍β‍ and ‍γ‍ represent the magnitude of the base and exponent of the estimated non-linear power 
function, respectively.

Model 2-2: Hierarchical model representing the nonlinear relationship between burst duration and 
joint torque

	﻿‍ τi,j ∼ N (µ = βj{Ti}γ ,σ),‍� (5)

	﻿‍ βj ∼ N (µ = µβ ,σβ),‍� (6)

where ‍βj‍ and ‍γ‍ represent the magnitude of the base on the (‍j‍)th animal and the exponent of the 
estimated nonlinear power function, respectively. In this model, ‍βj‍ follows a normal distribution as 
described above, where, ‍µβ‍ and ‍σβ‍ represent the mean and S.D. of the distribution.

Model 2-3: Hierarchical model representing the nonlinear relation between burst duration and joint 
torque

	﻿‍ τi,j ∼ N (µ = β{Ti}γj ,σ),‍� (7)

	﻿‍ γj ∼ N (µ = µγ ,σγ ),‍� (8)

where ‍β‍ and ‍γj‍ represent the magnitude of the base and the exponent on the (‍j‍)th animal for the 
estimated nonlinear, power function, respectively. In this model, ‍γj‍ follows a normal distribution as 
described above, where ‍µγ‍ and ‍σγ‍ represent the mean and S.D. of the distribution.

Model 2-4: Hierarchical model representing the nonlinear relationship between burst duration and 
joint torque

	﻿‍ τi,j ∼ N (µ = βj{Ti}γj ,σ),‍� (9)

	﻿‍ βj ∼ N (µ = µβ ,σβ),‍� (10)

	﻿‍ γj ∼ N (µ = µγ ,σγ ),‍� (11)

where ‍βj‍ and ‍γj‍ represent the magnitude of the base and the exponent of the estimated nonlinear 
power function, respectively, on the (‍j‍)th animal. In this model, ‍βj‍ and ‍γj‍ follow normal distributions 
as described above, where ‍µβ‍ and ‍µβ‍ are the means, and ‍σγ‍ and ‍σβ‍ are the S.D.s of the distribution.

Comparison of model predictability
Using the WAIC described in the ‘Materials and methods’ section, we compared the prediction 
performance of the six models. Figure 3 (A)–(C) shows the WAIC values for each voltage applied 
(1.0–4.0 V) and models 1–1 to 2–4. Figure 3 (A)–(C) show the results for the protractor, retractor, and 
levator muscles, respectively. For stimulation experiments on each of the three muscles, the models 
with a hierarchical parameter for expressing individual differences for ‍̃β‍ (models 1–2 and 2–2) had the 
lowest WAIC and, therefore, the best predictive performance. Conversely, the model with individual 
differences for both ‍̃β‍ and ‍̃γ‍ (model 2–4) exhibited the lowest prediction performance, indicating that 
inter-individual variation of the exponent does not improve model estimates.

Bayesian estimation of the generated torque for a given burst duration
Figure 3(D)-(F) shows the predictive distributions for data of a new animal using the Bayesian poste-
rior distribution for the six models. The results were obtained with PWM bursts at 2.0 V voltage, 50 Hz 
frequency, and 30% duty ratio. The results show that the hierarchical models (model 1–2 and model 
2–2) for the ‍̃β‍ parameter can successfully and adequately capture the range of experimental results 
on (D) protractor, (E) retractor, and (F) levator torques for all animals. This suggests that, compared 
with other models, the hierarchical models can appropriately account for inter-individual variation of 
muscle properties for new unknown animals. Figure 4 depicts the distributions predicted by the linear 
hierarchical model (model 1–2) for each individual by overlapping the experimental data shown in 
Figure 2.

Effect of an individual animal and applied voltage on muscle properties
Figure 5 presents the variations in the muscle characteristic parameters ‍β‍ and ‍γ‍ in response to changes 
in the applied voltage. In the voltage-change experiments, we followed a specific order of voltage 
application, gradually increasing from 1 V to 4 V, for each individual. Furthermore, we confirmed that 

https://doi.org/10.7554/eLife.85275


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Owaki et al. eLife 2023;12:e85275. DOI: https://​doi.​org/​10.​7554/​eLife.​85275 � 8 of 24

Figure 3. Model comparison underscores significance of inter-individual variation of slope. We compared the six models that were explained in the 
‘Model’ subsection. (A), (B), and (C) show plots of the WAIC (Watanabe, 2018) values for the protractor, retractor, and levator stimulations, respectively 
(‍N = 10‍ animals per muscle). The parameters with tilde, ‍̃β‍ and ‍̃γ ‍, indicate that the parameters include inter-individual variation. PWM parameters 
were set as follows: (1.0 V, 2.0 V, 3.0 V, and 4.0 V), at 50 Hz and 30% duty ratio. Negative values were obtained for models 1–2 and 2–2 for all voltages 

Figure 3 continued on next page
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applying voltages ranging between 1 and 4 V did not induce fatigue. Table 1 summarizes the number 
of electrical stimuli administered to each muscle in each individual. We determined the changes in ‍β‍ 
and ‍γ‍ with respect to the applied voltage by analyzing the experimental results using the six Bayesian 
models.

The results indicate the following three points: (1) ‍β‍ varied with the applied voltage, and there 
exists an optimal voltage that maximizes ‍β‍; (2) except for non-hierarchical nonlinear models (models 
2–1 and 2–3), ‍γ‍ has a low dependence on the applied voltage; and (3) ‍β‍ is strongly subject to inter-
individual variation (large variability), whereas ‍γ‍ is affected much less.

Discussion
In this study, we investigated externally controlled joint torques induced by external electrical stimu-
lation of one out of three leg muscles (protractor, retractor, and levator) in the stick insect Carausius 
morosus. For a given parameter set for PWM burst stimulation, we found a piecewise linear relation-
ship between the burst duration and generated joint torque. Linearity holds for a burst duration up to 
500ms. For a more detailed analysis of the joint torques generated by leg muscles, we used Bayesian 
statistical analysis and modeling to account for inter-individual variation. A comparison of the six 
models (with combinations of linear, nonlinear, non-hierarchical, and hierarchical models) showed that 
the two models that include inter-individual variation of slope parameter ‍β‍ performed best. Models 
1–2 and 2–2 provide the most accurate predictions of the posterior predictive distribution.

The exponent ‍γ‍ is a macroscopic property of the generated joint torque, that is the degree of non-
linearity of the stimulus-torque characteristic; it is linear when ‍γ = 1‍. Conversely, slope parameter ‍β‍ 
defines the rate of increase of the generated torque. In a comparison of the prediction performance 
of models in Figure 3, the mathematical index WAIC revealed that the models 1–2 and 2–2, wherein 
only ‍β‍ was a hierarchical parameter, performed the best. Since only hierarchical parameters account 
for inter-individual variation, we conclude that ‍β‍ is strongly affected by individual differences, whereas 

‍γ‍ is invariant among specimens. Thus, we found that the macroscopic properties of leg muscles are 
common to all individuals, whereas individuals differ in the slope ‍β‍, that is the rate by which the three 
types of leg muscles respond to electrical stimulation. Furthermore, as shown in Figure 5, we found 
that ‍β‍ was highly affected by the applied voltage, whereas the exponent ‍γ‍ was close to unity, largely 
independent of the applied voltage, indicating that the macroscopic properties of leg muscles were 
invariant to the applied voltage. We conclude that linearity was an invariant feature of the stimulus-
torque characteristic, whereas the slope of this characteristic varies among individual stick insects and 
with the applied voltage. These results are in line with those of existing studies on the properties of 
myogenic forces in other insect species (Cao et al., 2014; Blümel et al., 2012a; Harischandra et al., 
2019): The generated torque depends considerably less on the PWM voltage and frequency (Blümel 
et al., 2012a; Harischandra et al., 2019) than on the burst duration, suggesting that the total number 
of subsequent input pulses is important. This is indeed expected for a slow insect muscle (Blümel 
et al., 2012a) that essentially ‘counts’ incoming spikes within a given time window. Compared to the 
nonlinear properties of muscle, we demonstrated that our monitoring of torques in an intact animal 
resulted in a linear characteristic (for intervals up to 500ms) that would not be expected from isometric 
force measurements of isolated muscles. Furthermore, changing the PWM frequency was found to be 
comparable to changing the number of spikes over a given period, whereas changing the duty ratio 
was found to be comparable to varying the average voltage over a given period (see Appendix 1—
figures 1 and 2). Therefore, from both technical and cyborg control viewpoints, the control of burst 
duration provides beneficial insights into feasibility.

The comparison of the linear model (model 1–2) with the nonlinear model (model 2–2) using the 
WAIC for all conditions (muscle type and applied voltage) resulted in lower values for the linear 

and all muscles. The lowest WAIC indicates the best prediction model, as explained in the "WAIC" subsection. Right panels show Bayesian predictive 
estimation for the protractor (D), retractor (E), and levator (F) stimulation experiments with PWM parameters 2.0 V, 50 Hz, and 30% duty ratio. The 
differences in the point styles indicate individual animals. In each panel, the violet shading indicates the probability density of the distribution predictive. 
The green lines represent twenty samples from the posterior distribution in decreasing order of probability density. Source code and data are available 
on Dryad (Figure3-5.zip, https://doi.org/10.5061/dryad.wpzgmsbsw).

Figure 3 continued
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Figure 4. Predictive distributions from the linear hierarchical model (1-2) for each individual: The protractor 
(A), retractor (B), and levator (C) stimulation experiments with PWM parameters, 2.0 V, 50 Hz, and 30% duty ratio. ‍n‍ 
gives the number of stimulations for each animal. The color legend indicates the order of the stimulations: blue (1) 
to yellow (‍n‍). In each panel, the violet shading indicates the probability density of the predictive distribution. The 

Figure 4 continued on next page
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model. Models with lower WAIC can generate predictive distributions closer to the true distribution 
while using fewer parameters (Watanabe, 2018), suggesting that the experimental results obtained 
in this study can be adequately explained using a linear hierarchical Bayesian model (1-2). This model 
renders it useful for predicting the generated torque for each new animal in real-time during an exper-
iment. Specifically, by assuming the linear hierarchical Bayesian model, we can measure responses to 
very few PWM stimulus bursts and estimate ‍β‍ for the current individual’s stimulus-torque character-
istic. This allows an experimenter to acquire an appropriate muscle model of an unknown animal in a 
short time without having to use potentially time-consuming machine learning methods, such as deep 
learning algorithms. Moreover, the properties were linear for stimulus burst durations up to 500ms. 
This linearity region corresponds to the stance and swing phase durations of medium-speed to fast-
walking stick insects of the species Carausius morosus (Dürr et al., 2018). The magnitudes of the joint 
torques generated by the protractor, retractor, and levator were comparable to those for resisted 
movement during stick-insect walking, for example coxa-trochanter joint depression during stance 
(Dallmann et  al., 2016). This suggests that the estimated stimulus-torque characteristic captures 
the natural dynamic properties of leg muscles during walking in terms of both the duration of exci-
tation and maximum torque. However, the hierarchical nonlinear model (model 2–2) would be more 
appropriate for estimating properties related to longer time scales, such as those associated with the 
complete range of muscle excitation. Nevertheless, we emphasize once again that a key contribution 
of this study lies in demonstrating, based on experimental data, that the muscle property ‍γ‍ across the 
complete excitation range exhibits inter-individual variations and is independent of linear or nonlinear 
properties; hence, the weight ‍̂β‍ assigned to these properties represents individual differences.

This study takes a first but important step towards highly precise insect cyborg control. In previous 
studies, we defined Motion Hacking (Owaki et al., 2019; Owaki and Dürr, 2022) as a technique for 
controlling insect leg movements through external electrical stimulation, while retaining the insect’s 
own nervous system and sensorimotor loops. This approach requires a collaborative effort of engi-
neering and biology in order to elucidate how adaptive walking ability of insects may be exploited 
for biohybrid control of motor flexibility. The Motion Hacking (Owaki et al., 2019; Owaki and Dürr, 
2022) method strives to observe the adaptation process in the insect’s own sensorimotor system as 
leg movements are intentionally controlled by a human operator, so as to reveal hidden mechanisms 
underlying natural locomotion. Thus far, research on insect cyborg control has addressed aspects 
of flight control (Sato, 2009; Sato and Maharbiz, 2010; Sato et al., 2015; Kosaka et al., 2021; 
Sane et al., 2007; Bozkurt et al., 2009; Hinterwirth et al., 2012), gait control (Cao et al., 2016; 
Vo Doan et al., 2018; Nguyen et al., 2020; Ando and Kanzaki, 2017; Sanchez et al., 2015), and 
controlling jellyfish propulsion (Xu and Dabiri, 2020a; Xu et al., 2020b; Xu et al., 2020c). In contrast 
to our present study, the main objective of the mentioned studies was to convert target animals 
into cyborgs, with little examination of the control mechanisms and/or muscle properties involved. 
Here, we used PWM pulse bursts to mimic motor neuron commands during insect locomotion, and 
selected key muscles to estimate stimulus-torque characteristics reliably and in very short time. Then, 
we used Bayesian statistical modeling to tell which parameters were subject to inter-individual vari-
ation and which were not. Our finding of linear characteristics with inter-individual variation of slope 
show compellingly how a systematic engineering intervention to an otherwise intact animal motor 
system can yield a simple, technically exploitable description of motor system properties. We argue 
that this description could not have been obtained by methods addressing isolated neural circuits or 
partial anatomical structures, but required the physical intactness of the natural system.

The contributions of this research are as follows: (1) this study demonstrates that compared to the 
nonlinear activation and contraction dynamics of insect muscles, the joint torque generated through 
electrical stimulation increases linearly with the duration of the stimulus, particularly during the stance 
and swing phases that characterize stick insect locomotion; (2) it introduces a hierarchical Bayesian 
model that allows for a reliable and simple description of the individual differences observed in neuro-
muscular system parameters. These contributions not only advance the field of insect cyborg control 

green lines represent twenty samples from the posterior distribution in decreasing order of probability density. The 
results demonstrate that the linear hierarchical model had an accurate predictive distribution in the range up to 
500ms. Source code and data are available on Dryad (Figure3-5.zip, https://doi.org/10.5061/dryad.wpzgmsbsw).

Figure 4 continued
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Figure 5. Dependence of muscle property parameters on the applied voltage and individual animals in the six models: The left graphs (A), (B), and 
(C) represent the estimation for ‍β‍ for the applied voltage varied from 1.0 to 4.0 V for the six models. (A) and (D), (B) and (E), and (C) and (F) illustrate the 
protractor, retractor, and levator stimulations, respectively. In (A) to (C), the upper and lower panels show non-hierarchical (1-1, 2-1, 2-3) and hierarchical 
(1-2, 2-2, 2-4) models for ‍β‍, respectively. The right graphs (D), (E), and (F) represent the estimation for ‍γ ‍ in applied voltage changes. In (D) to (F), the left 
panel shows linear models (‍γ = 1‍, 1–1, 1–2); the middle and right panels illustrate non-hierarchical (2-1, 2-2), and hierarchical (2-3, 2-4) models for ‍γ ‍, 
respectively. For hierarchical models (1-2, 2-2, 2-3, 2-4), the plot includes thirty samples from the posterior distribution in decreasing order of probability 
density, showing inter-individual variation. Source code and data are available on Dryad (Figure3-5.zip, https://doi.org/10.5061/dryad.wpzgmsbsw).
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but also enhance our understanding of insect locomotion mechanisms. Animal locomotion is not 
solely governed by the brain and nervous system but also relies on the physical properties of the body 
and its interactions with the environment (Chiel et al., 2009; Nishikawa et al., 2007). Arthropods, in 
particular, effectively utilize mechanical properties and environmental interactions in their locomotion. 
Studies have revealed various related strategies, including the joint stiffness nonlinearity and hyster-
esis in spiders (Blickhan, 1986), generation of large motor outputs during escape maneuvers (Card, 
2012) and posture stabilization (Blickhan, 1986) by adjusting the joint stiffness, mechanical sensing 
based on frequency characteristics that vary with the joint stiffness and posture in web-making spiders 
(Blickhan and Barth, 1985; Mhatre et al., 2018), transitions in movement patterns in response to 
mechanical interactions with the environment (Othayoth et al., 2020), and transitions in the coordi-
nated movements of the body and legs (Wang et al., 2022) in cockroaches. Similarly, to elucidate the 
animal locomotion mechanisms emerging from such complex interactions, Sponberg et al., 2011a; 
Sponberg et al., 2011b conducted experiments similar to those in our study by perturbing neural 
feedback through artificial interventions on muscle action potentials (MAPs) in cockroaches Blaberus 
discoidalis (L.). In follow-up studies, we further estimated the passive joint stiffness and analyzed the 
phase responses of stick insects during walking by accurately controlling the joint torque based on the 
linear stimulus duration-joint torque model derived in this study. We believe that these approaches 
will contribute to a deeper understanding of stick insect walking mechanisms, such as their use of two 
different stride lengths in response to their environment (Theunissen and Dürr, 2013).

Still, there are several limitations to the present study. First, as in many neurophysiological exper-
iments (Berg et  al., 2012; Lepreux et  al., 2019), stick insects were fixed and not walking in the 
experimental setup (Figure 1A). Although there are only few studies on the natural dispersal behavior 
of stick insects, it is clear that they spend a lot of their lifetime at rest, for example in camouflage. 

Table 1. List of Stick insects used in the stimulation experiments for each muscle.
Animal ** denotes the identification number of the stick insects. We analyzed 20 animal data from 
‘Animal 01’ to ‘Animal 22’ except for ‘12’ and ‘16’. Due to experimental failures and time limitations, 
we could not obtain stimulation data for all three muscles from the same animal on the same day. 
Therefore, we conducted experiments to collect data for ten animals (‍N = 10‍) for each muscle 
through experiments using 20 animals.

Date Protractor 1,2,3,4 V Retractor 1,2,3,4 V Levator 1,2,3,4 V

2018.8.21. Animal 01 50,49,60,50 Animal 01 60,65,55,72

2018.8.22. Animal 02 49,55,51,40 Animal 02 55,68,58,65 Animal 02 37,68,67,70

2018.8.27. Animal 03 60,77,91,72 Animal 03 94,81,63,75

2018.8.28. Animal 04 74,69,80,77

2018.8.30. Animal 05 67,74,79,79

2018.8.31. Animal 06 75,86,76,76

2018.9.03. Animal 07 81,79,74,78 Animal 07 82,77,81,75 Animal 07 75,75,75,75

2018.9.04. Animal 08 75,75,79,75 Animal 08 75,71,77,84

2018.9.05. Animal 10 74,74,74,75 Animal 09 75,95,75,75

2018.9.19. Animal 13 62,60,70,69 Animal 11 50,50,50,50

2018.9.20. Animal 14 59,59,60,59 Animal 14 60,60,60,60

2018.9.21. Animal 15 59,59,59,59 Animal 15 61,60,60,51

2018.9.23. Animal 17 59,59,60,69 Animal 17 59,61,60,61

2018.9.24. Animal 19 61,61,61,60 Animal 18 60,60,59,66

2018.9.25. Animal 20 62,60,70,60

2018.9.26. Animal 21 59,59,60,59 Animal 22 60,60,60,60

Total N=10 N=10 N=10

https://doi.org/10.7554/eLife.85275
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Their tendency to attain camouflage postures can be exploited in experiments, as it is relatively easy 
to restrain active, spontaneous leg movements in an experimental setup. Nevertheless, the possibility 
to conduct combined motion capture and EMG recordings in freely walking stick insects (Dallmann 
et al., 2019; Günzel et al., 2022; Dallmann et al., 2017; Bidaye et al., 2018) suggests that Motion 
Hacking during unrestrained, voluntary locomotion will be feasible in the future. Whereas the range 
of PWM burst duration and the joint torques generated are well within the physiological range, there 
is still considerable discrepancy between the PWM signals generated by our Raspberry Pi microcon-
troller and the natural firing patterns of motor neuron pools (Günzel et al., 2022). Future research will 
need to examine how much the simplification of the driving burst input affects the time course of the 
torque generated. So far, it is re-assuring that the simplified PWM signal used here could be applied 
more than 50 times in a sequence without causing muscle fatigue, that is with a sustained level of 
generated torque.

Finally, so far we have not fully investigated the effects of the electrical muscle stimulation on 
sensory feedback. The maximum voltage of 4 V used here did not cause abnormal motion that could 
be attributed to cross-talk stimulation of sensory afferents. Therefore, we conclude that unintended 
electrical stimulation of sensory afferents was negligible. Moreover, control measurements confirmed 
that muscles other than those stimulated by the electrodes were not active and did not generate force, 
as it would be expected from unintended stimulation via cross-talk. More generally, the activation of 
sensory organs during cyborg control is an interesting topic, with strong potential for expanding the 
concept of Motion Hacking. In the future, we will examine the performance of external leg movement 
control in an experimental setup, both without load (i.e. on a tether, without substrate contact) and 
with natural load distribution (i.e. by intervention during free walking). We are confident that these 
experiments, will provide further support of the Motion Hacking method and will reveal findings that 
could not be obtained by more conventional experiments without external stimulation of the neuro-
muscular system. This will also contribute to potential applications in highly precise insect cyborg 
control.

Materials and methods
Animals
We tested 20 adult female Carausius morosus from our laboratory colony at Bielefeld University in 
2018. The animals were raised under a 12 hr:12 hr light:dark cycle at a temperature of 23.9 ±1.3 °C 
(mean ± S.D). All experiments were conducted at room temperature (20–24 °C). Table 1 lists the 
stick insects used in the electrical stimulation experiments. Owing to a combination of experimental 
failures and time constraints, we could not obtain stimulation data for all three muscles from the same 
animal on a single day. Therefore, we collected data from 10 animals (‍N = 10‍) for each muscle through 
experiments with 20 animals. Joint torques were measured with custom-built force sensors with strain 
gauges. Prior to the experiments, the measured force [mN] was calibrated from the force-sensor value 
[V] with weights of known mass (0.2–5 g). Two small insect pins attached to the tip of the force trans-
ducer held the middle part of the femur of the middle leg (Figure 1A right). The length between the 
ThC or CTr joints and the attachment point at the femur was measured and used as the moment arm 
for the calculation of torque.

Electrical stimulation
We developed a custom-built electrical stimulator for stimulating muscles (Figure 1A left). An exten-
sion circuit board was designed for Raspberry Pi 3 B+ (Raspberry Pi Foundation), including isolated 
8-channel PWM signal outputs. The parameters of the PWM signals, for example, frequency (1–120 Hz) 
and duty ratio (0 to 100%), were changed using a Raspberry Pi microprocessor. The amplitude of the 
output voltage (0–9 V) was changed using variable resistors on the circuit board, which enabled the 
investigation of the effects of these parameters on torque generation due to muscle stimulation. In 
this study, we systematically analyzed the joint torques generated by muscle contraction as induced 
by bursts of PWM pulses. To do so, we varied the amplitude [V], frequency [Hz] and duty ratio [%] 
of the PWM-signal, and identified the combinations that most effectively and repeatedly produced 
torque.

https://doi.org/10.7554/eLife.85275
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For one trial of the stimulation experiments, the frequency, duty ratio, and amplitude (voltage) of 
the PWM signals were not changed, but the burst duration ‍Ti‍ of the signals was changed (Figure 1C 
top). Owing to the slow activation dynamics of an insect muscle, burst duration is one of two key 
parameters for controlling isometric muscle-contraction force because the muscle essentially acts as a 
second-order low-pass filter (Harischandra et al., 2019). The pulse frequency is the other key param-
eter, which can be held constant because burst duration alone is sufficient to effectively control joint 
torques in the range of 0–1.0 [s].

Electrode implementation
A pair of stimulation electrodes was implanted into each muscle through two small holes in the cuticle. 
Holes were pierced using an insect pin, and wires were fixed with dental glue (Figure 1B). The stimu-
lation electrodes were thin silver wires (A-M Systems, diameter = 127 µm, without insulation; 178 µm 
with Teflon insulation). The insulation at the end of the silver wire was removed, and the wires were 
implanted. The other end of the stimulation electrode was connected to the output of the electrical 
stimulator. The correctness of the electrode implantation was verified through triggered resistance 
reflexes, which are responses to imposed movements of the ThC and CTr joints for the corresponding 
muscles.

Data collection
We determined the parameter set with a frequency of 50 Hz and a duty ratio of 30%, which would 
allow continuous and effective torque generation in a pre-experiment. We performed electrical stim-
ulation experiments in the following order: (i) first, we selected one of the three muscles (protractor, 
retractor, levator) to be stimulated in each stick insect and (ii) performed electrical stimulation of the 
selected muscle more than 50 times at 1 V (50 Hz, 30%). The duration of the electrical stimulation, ‍Ti‍, 
was set manually and randomly; this was followed by a (iii) 3-min-resting-period to reduce the effect 
of muscle fatigue (the resting period was determined in the pre-experiment). (iv) We then performed 
electrical stimulations at 2 V, 3 V, and 4 V for more than 50 times each; note that each stimulation was 
preceded by a 3-min-resting-period. (v) A voltage from 1 to 4 V that effectively generated the torque 
for the corresponding muscle was selected. (vi) Following this selection, we conducted electrical stim-
ulation experiments for each combination of frequency (30 Hz, 50 Hz, 70 Hz, 90 Hz, and 110 Hz) and 
duty ratio (10%, 30%, 50%) for more than 50 times, with a resting time of 3 min between each condi-
tion. (vii) The next muscles were selected depending on the condition of the stick insect and within 
the time constraints, and we repeated steps (ii)–(vi) and recorded the data. (viii) The individuals were 
changed (on another day), and steps (i)–(vii) were repeated. We collected 10 individuals (‍N = 10‍ in 
Table 1) for each muscle using this procedure. Notably, even after such a large number of electrical 
stimulations of the muscles, we did not observe any significant biological damage to the stick insect 
nor any fatigue or warm-up effects.

Data analysis
To investigate the dependence of externally induced joint torques by electrostimulating one out of 
the three leg muscles, we measured the force generated at the attachment point and multiplied it 
with the known moment arm as follows: (1) For different burst duration ‍Ti‍ we estimated peak-to-peak 
sensor values ‍Sp2p(i)‍ [V] (Figure 1C left). (2) Applying the conversion factor obtained from the previous 
calibration, we obtained peak-to-peak force change [mN] in response to stimulation. (3) The force was 
then multiplied with the measured moment arm [mm] to obtain the joint torque ‍τi‍ [µNm] (Figure 1C 
right).

Widely applied information criterion (WAIC)
We compared the predictive performances of the formulated models using the mathematical index 
WAIC (Watanabe, 2018Watanabe, 2005; Watanabe, 2010a; Watanabe, 2010b). The WAIC is a 
measure of the degree to which an estimate of the predictive distribution is accurate relative to the 
true distribution (Watanabe, 2018). Essentially, it is based on the difference between the information 
conveyed by the mean and that conveyed by the variance. This difference is negative if the term corre-
sponding to the mean exceeds that corresponding to the variance. The smaller (or more negative) the 
WAIC index, the higher the predictive value of the model variant.

https://doi.org/10.7554/eLife.85275
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When calculating the WAIC index for a hierarchical model, several calculation methods can be 
used, depending on the definition of the predictive distribution, that is, the type of unknown data 
distribution being predicted (Watanabe, 2018). We were interested in predicting muscle properties 
with electrostimulation for a new, additional animal, not including experimental date, to enable indi-
vidualized leg ‘control’. From this perspective, we constructed a new distribution of the predictive 
parameters of a new animal by marginalizing intermediate parameters assigned to each hierarchical 
model (models 1–2, 2–2, 2–3, 2–4; Watanabe, 2018; Wakita et al., 2020; Harada et al., 2020). This 
allows for a fair comparison of the prediction performance of hierarchical and non-hierarchical models. 
Referring to the method from the previous studies (Wakita et al., 2020; Harada et al., 2020), the 
WAIC was computed by numerical integration with MCMC (Markov Chain Monte Carlo) samples by 
using Simpson’s law and the ‘log_sum_exp’ function provided by Stan (Stan Development Team, 
2023).

From the models described above, the model with the smallest WAIC value was considered the 
most appropriate predictive model in terms of predictivity for a new animal.
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Appendix 1

Effect of frequency and duty ratio of PWM
Appendix 1 figure (Appendix  1—figure 1) 1 presents the variation of parameters and of the 
muscle characteristics with the PWM frequency for the six Bayesian models. The results indicate the 
following: (1) increases with frequency, but there exists an optimal frequency for each muscle; (2) is 
independent of the frequency; and (3) is affected by individual differences, whereas exhibits cross-
individual consistency. In this study, we employed a frequency of 50 Hz, which had minimal effect on 
the individual differences in .

Furthermore, Appendix  1—figure 2 presents the variation in the parameters and for the six 
Bayesian models as a function of the PWM duty ratio. The results reveal the following: (1) linearly 
increases with the duty ratio; (2) is independent of the duty ratio; and (3) is affected by individual 
differences, whereas is consistent across individuals. We employed an intermediate duty ratio of 
30%, which yielded consistent data.

Appendix 1—figure 1. Dependence of muscle property parameters on the applied frequency of the PWM signals 

(2.0 V and 30% duty ratio) for the six models. The left graphs (A), (B), and (C) present the value of ‍β‍ estimated for 

an applied frequency ranging from 50 to 110 Hz for the six models. (A) and (D), (B) and (E), and (C) and (F) illustrate 

the protractor, retractor, and levator stimulations, respectively. In (A) to (C), the upper and lower panels refer to the 

non-hierarchical (1-1, 2-1, 2-3) and hierarchical (1-2, 2-2, 2-4) models for,‍β‍ respectively. The right graphs (D), (E), and 

(F) present the value of ‍γ ‍ estimated for the applied voltage changes. In (D) to (F), the left panel refers to the 
Appendix 1—figure 1 continued on next page
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linear models (‍γ = 1‍, 1–1, 1–2), and the middle and right panels refer to the non-hierarchical models (2-1, 2-2) 
and hierarchical (2-3, 2-4) models for,‍γ ‍ respectively. Source code and data are available on Dryad (​Figure6-​7.​zip, 
https://doi.org/10.5061/dryad.wpzgmsbsw).

Appendix 1—figure 2. Dependence of muscle property parameters on the applied duty ratio of the PWM signals 
(2.0 V and 50 Hz) in the six models. The left graphs (A), (B), and (C) present the estimation for ‍β‍ with the applied 
duty ratio varied from 10 to 30% for the six models. (A) and (D), (B) and (E), and (C) and (F) illustrate the protractor, 
retractor, and levator stimulations, respectively. In (A) to (C), the upper and lower panels present the non-
hierarchical (1-1, 2-1, 2-3) and hierarchical (1-2, 2-2, 2-4) models for ‍β‍, respectively. The right graphs (D), (E), and 
(F) present the estimation for ‍γ ‍ under the applied voltage changes. In (D) to (F), the left panel shows linear models 
(‍γ = 1‍, 1–1, 1–2), and the middle and right panels illustrate the non-hierarchical (2-1, 2-2) and hierarchical (2-3, 2-4) 
models for ‍γ ‍, respectively. Source code and data are available on Dryad (​Figure6-​7.​zip, https://doi.org/10.5061/​
dryad.wpzgmsbsw).

Relationship between generated joint torque and body morphology
We also examined the relationship between the joint torque generated by electrical muscle 
stimulation and body morphology, though in a separate sample of ‍N = 9‍ individuals (Appendix 1—
figure 3) that was different from the sample used for Figures 2–5, Appendix 1—figures 1 and 
2. This is because experiments for Figures 2–5, Appendix 1—figures 1 and 2 did not log size 
data, and experiments with suitable data on animal did not cover all three leg muscles (retractor, 
retractor, and levator). We considered the femur segment length (i.e., the length between the ThC 

Appendix 1—figure 1 continued
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and FTi joints) of the stimulated middle leg and the body length (i.e., the length from head to tail) 
as body morphology features. Both lengths were measured from top-view videos of stick insects. As 
the characteristic parameters of joint torque, we considered the maximum joint torque ‍Tmax‍ [µNm] 
during electrical stimulation of the protractor and retractor muscles, and the average value of ‍β‍ 
[µNm/s] in the linear models (model 1–2) for each individual. Note that there were no differences in 
joint torque characteristics between the figures (Figures 2–5, Appendix 1—figures 1 and 2) and 
Appendix 1—figure 3.

Appendix 1—figure 3A shows the correlation coefficients (color: purple = 1  to orange = –1) 
and p-values (numbers in the panel) between femur length, body length, ‍Tmax‍, and average ‍β‍ for 
the protractor and retractor muscles. Statistically significant correlations (‍p < 0.05‍) were found only 
between either length measured (Appendix  1—figure 3B, ‍r = 0.669, p = 0.0487‍) and ‍Tmax‍ and ‍β‍ 
for the protractor (‍r = 0.869, p = 0.00233‍) and retractor (‍r = 0.866, p = 0.00251‍), respectively. Between 
femur length and joint torque features, we found a negative correlation for protractor ‍Tmax‍ and ‍β‍ 
(upper left of Appendix 1—figure 3C), and a positive correlation for retractor ‍Tmax‍ and ‍β‍ (upper 
right of App.Figure 3C). We likewise observed weak positive correlations between the body length 
and torque features for both the protractor (bottom left of App.Figure 3C) and retractor (bottom 
right of App.Appendix 1—figure 3C). Thus, no consistent pattern of correlation was found between 
individual differences in generated joint torque and bodily characteristics in this experimental 
data (‍N = 9‍ in App.Figure  3). Nonetheless, because weak correlations were observed, bodily 
characteristics may be considered as the input of a more precise prediction model that accounts for 
individual differences.

https://doi.org/10.7554/eLife.85275
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Appendix 1—figure 3. Relationship between generated joint torque and body morphology. (A) Correlation 
coefficients (color: purple = 1 to orange=-1) and ‍p‍-values (numbers in the panel) between middle femur length, 
body length, Tmax, and the averaged ‍β‍ for protractor and retractor muscles. (B) Linear regression between middle 
femur length and body length. The purple line represents the linear regression line. (C) Linear regression between 
middle femur length (upper)/body length (lower) and ‍Tmax‍ and ‍β‍ for protractor (left) and retractor (right) muscles, 
respectively. For (B) and (C), color differences in plot points indicate individual differences (‍N = 9‍), and the gray 
area represents the 95% confidence interval. The correlation coefficient ‍r ‍ and ‍p‍-value are indicated in each panel. 
These data are for future follow-up studies and cannot be disclosed.

https://doi.org/10.7554/eLife.85275
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