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Abstract Deciphering patterns of connectivity between neurons in the brain is a critical step
toward understanding brain function. Imaging-based neuroanatomical tracing identifies area-to-
area or sparse neuron-to-neuron connectivity patterns, but with limited throughput. Barcode-based
connectomics maps large numbers of single-neuron projections, but remains a challenge for jointly
analyzing single-cell transcriptomics. Here, we established a rAAV2-retro barcode-based multiplexed
tracing method that simultaneously characterizes the projectome and transcriptome at the single
neuron level. We uncovered dedicated and collateral projection patterns of ventromedial prefrontal
cortex (vmPFC) neurons to five downstream targets and found that projection-defined vmPFC
neurons are molecularly heterogeneous. We identified transcriptional signatures of projection-
specific vmPFC neurons, and verified Pou3f1 as a marker gene enriched in neurons projecting to
the lateral hypothalamus, denoting a distinct subset with collateral projections to both dorsomedial
striatum and lateral hypothalamus. In summary, we have developed a new multiplexed technique
whose paired connectome and gene expression data can help reveal organizational principles that
form neural circuits and process information.

Editor's evaluation

This manuscript describes a valuable new circuit mapping and profiling technique called Multiplexed
projEction neuRons retrograde barcodE (MERGEseq) that combines transcriptome and projectome
data at a single-cell resolution. The authors provide solid evidence that MERGEseq can be used to
identify projection targets and cell type/layer/transcriptome differences of projection neurons in the
mouse prefrontal cortex, and validation experiments are rigorous. While this report is a proof-of-
principle that MERGEseq is useful for circuit mapping and profiling and many potential details will
influence conclusions, this technique could easily be adapted to other regions with known projection
targets and adds to a growing arsenal of combinatorial circuit mapping and profiling tools.
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Introduction

Wiring diagrams of a brain can be divided into three levels: (1) the macroscale connectome that
describes inter-areal connections, (2) the mesoscale connectome that describes connections between
cells, and (3) the microscale connectome that describes connections at the synaptic level (Zeng,
2018). Studying circuit architecture at the level of the mesoscale connectome describes how informa-
tion flows between brain regions (Oh et al., 2014). Traditionally, neuroanatomical tracers are used to
characterize regional connectivity matrices (Cowan, 1998). To obtain cell-type-specific connectivity,
one can use recombinant virus-based tracer in transgenic model organisms or more precisely trace
a specific component of a neural circuit using viral-genetic tracing tools to dissect the input-output
organization (Ghosh et al., 2011; Nassi et al., 2015; Schwarz et al., 2015). However, these methods
are highly reliant on complex recombinant virus design and genetically modified model organism, and
often are not at a single-neuron resolution.

While recent advances have brought invaluable insights into understanding neuronal circuits at
single-neuron resolution, existing methods have limitations. High-throughput fluorescence imaging,
such as fluorescence micro-optical sectioning tomography (fMOST), can reconstruct detailed neuron
morphologies but requires specialized expertise and equipment and lack transcriptomic information
(Gong et al., 2016; Rompani et al., 2017). Barcode-based methods like MAPseq, BRICseq (multi-
plexed MAPseq), BARseq, and ConnectlID utilize sequencing to map projections (Chen et al., 2019;
Huang et al., 2020; Kebschull et al., 2016; Klingler et al., 2021). However, MAPseq and BRICseq
can only provide connectome information (Huang et al., 2020, Kebschull et al., 2016), BARseq is
constrained to assessing a handful of genes via in situ hybridization (Chen et al., 2019), and ConnectID
has low recovery of cells with dual connectome-transcriptome data (~16%, 391 cells with connectome
barcode identity in 2450 cells with scRNA-seq; Klingler et al., 2021). VECTORseq, a Retro-seg-based
method (Tasic et al., 2018), is limited by its number of transgenic barcodes used (Cheung et al.,
2021). The updated BARseq protocol enables detection of up to 100 genes, but throughput remains
lower and oligo synthesis costs remain higher compared to scRNA-seq (Chen et al., 2023; Sun et al.,
2021). In summary, despite significant progress, existing methods fall short in efficiently integrating
high-throughput projectomes and transcriptomes at the single-neuron level, hindering a comprehen-
sive understanding of the connectomic and transcriptomic interplay in neuronal circuitry.

Medial prefrontal cortex (mPFC) is an intricate brain region involved in higher order cognitive
functions, information processing (e.g., memory and emotions) and driving goal-directed actions (Le
Merre et al., 2021). For example, mPFC neurons projecting to the nucleus accumbens encoding
punishment-related internal states were located in more superficial layer 5a, and mPFC neurons
projecting to the ventral tegmental area encoding aversive learning were located in deeper layer
5b (Kim et al., 2017; Wu et al., 2021). Although previous studies have extensively investigated the
anatomical and functional diversities of mPFC, the relationship between anatomical and molecular
features of mMPFC neurons remains elusive. Do mPFC neurons projecting to different downstream
brain regions differ in their transcriptomes? Are these projection-defined mPFC neurons homoge-
neous or composed of different neuron subtypes? The answer to these questions may be further
complicated by the finding that mPFC neurons can send collateral axons to multiple brain regions
(Cornwall and Phillipson, 1988). So, what are the principles of target selection or target combination
for these collateral projection mPFC neurons? What are the cell type and molecular features of these
‘broadcasting’ neurons?

To address these challenges, we designed a multiplexed tracing method capable of characterizing
single-neuron transcriptome and projectome at the same time, which we called MERGE-seq (Multi-
plexed projEction neuRons retroGrade barcodE). We used MERGE-seq to interrogate the projectome
and the corresponding transcriptome of ventral mPFC neurons. We injected five rAAV2-retro viruses
with distinct barcodes into the five known downstream targets of ventromedial prefrontal cortex
(vmPFC), including agranular insular cortex (Al), dorsomedial striatum (DMS), basolateral amygdala
(BLA), mediodorsal thalamic nucleus (MD), and lateral hypothalamus (LH), in the same mouse brain
such that each target region received a unique barcoded rAAV2-retro. We found that vmPFC neurons
projecting to each downstream target are heterogeneous, which are composed of transcriptionally
different subtypes of neurons. Approximately 65% of barcoded vmPFC neurons exhibited dedicated
projection patterns based on MERGE-seq data, sending axonal projections exclusively to one of
the five selected targets. It is important to note that this characterization of ‘dedicated projection’
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neurons is specifically defined in the context of the five target regions examined in this study. Approx-
imately 35% of barcoded vmPFC neurons sent collateral projections to multiple brain regions, most of
which are dual-target projection neurons (bifurcated projection). We further uncovered the cell type
compositions and layer distributions of these dedicated and collateral projection vmmPFC neurons, and
revealed their molecular signatures. We validated complex MERGE-seqg-inferred projection patterns
by joint analysis with recently published single-neuron projectome data (Gao et al., 2022). Addition-
ally, dual-modal interrogation using RNA fluorescence in situ hybridization (FISH) and dual-color retro-
grade AAV labeling allowed us to confirm vmPFC neuron bifurcations to DMS and LH, demonstrating
layer 5 Pou3f1* neurons collateralize between these targets. Finally, we implemented a machine
learning-based methodology and uncovered specific gene clusters for predicting certain projection
patterns. As MERGE-seq bridges the gap between single-neuron projectome and transcriptome data,
it can uncover new molecular properties of anatomical neural circuits.

Results

MERGE-seq characterizes single neuron transcriptome and projectome
simultaneously

In order to use the 10x Genomics scRNA-seq system to analyze transcripts from cells infected with
rAAV2-retro virus, we modified the viral vector by adding a 15 bp barcode index and polyadenylation
signal sequences to the 3’ end of the EGFP sequences, which was driven by a short CAG promoter
(Figure 1A and B, see Materials and ethods). Then, five rAAV2-retro viruses with different barcodes
were individually injected into five brain regions of the same mouse, including Al, DMS, BLA, LH, and
MD. These brain areas are the known downstream brain regions of vmPFC (Hunnicutt et al., 2016;
Hurley et al., 1991; Reppucci and Petrovich, 2016, Vertes, 2004; Zhu et al., 2020). A period of
six weeks was set to allow efficient retrograde labeling of vmPFC neurons by these barcoded viruses.
These mice were then sacrificed and the vimPFC (specifically the prelimbic area [PrL] and the infralimbic
area [IL]) was carefully dissected for scRNA-seq analysis (Figure 1A). Single-cell transcriptional libraries
were obtained using 10x Genomics library preparation protocols, and virus barcode expression libraries
were obtained using user-defined primers, which could enrich cDNA fragments composed of barcode
index, unique molecular identifiers (UMIs), and the cell barcode (Figure 1B). We detected 24,788 cells
in the raw data matrix. Following initial quality control, which ensured the number of detected RNA in
each cell ranged between 500 and 8000, RNA UMI counts in each cell were within 1000-60,000, and
the percentage of mitochondrial genes remained below 20%, we recovered 1791 cells undergoing
fluorescence-activated cell sorting (FACS) from three mice and 19,470 single cells without sorting
from the other three mice, a total of 21,261 cells. Transcriptional profiling of all cells revealed major
cell types including excitatory neurons (Slc17a7*), microglia (C1ga*), endothelial cells (ltm2a*, Endo),
oligodendrocyte progenitor cells (Olig2*Mog, OPCs), oligodendrocyte (Olig2*Mog*, Oligo), inhibi-
tory neurons (Gad1"), astrocyte (Aldh111*, Astro), and activated microglia (C1ga*Pf4*, Act. Microglia)
as previously reported (Bhattacherjee et al., 2019, Figure 1C-E). Barcoded cells below refer to a
collection of barcoded cells from unsorted group and FAC-sorted group.

First, we validated that each target region was labeled and effectively covered by the rAAV2-retro-
EGFP (Figure 1—figure supplement 1A). Next, we showed that there were sufficient sequence differ-
ences to distinguish one barcode from others and sufficient sequences difference to identify the right
barcode among five references during sequencing (Figure 1—figure supplement 1B, C). Since each
downstream brain region of vmPFC received a unique and predetermined barcoded virus, each virus
barcode identified in a vmPFC neuron represents the specific corresponding downstream brain region
that the neuron projects to. We found abundant zero counts for projection barcodes in scRNA-seq
libraries, contrasting robust detection in projectome libraries generated by targeted amplification
from full-length cDNA (Figure 1—figure supplement 1D). To determine validly barcoded cells, we first
calculated the 95th nUMI percentile across all barcodes and removed outlier cells with exceptionally
high nUMI (see Materials and methods). We used 'EGFP-negative’ FAC-sorted cells (defined by nUMI
EGFP = 0) and non-neuronal cells from scRNA-seq as negative controls to calculate 99.9th percen-
tile UMI thresholds per barcode using empirical cumulative distribution functions (ECDF; Figure 1—
figure supplement 1E). By taking the higher threshold for each barcode from these two negative
control analyses, we classified cells exceeding these values as validly barcoded. It is worth mentioning
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Figure 1. MERGE-seq characterized single-neuron transcriptomes and projectomes simultaneously. (A) Schematic diagram of the experimental
workflow. (B) rAAV2 plasmid vector design, and schematic of designed primers to recover cell barcode and UMl in read 1, and 3’ tail of EGFP and

virus barcode in read 2. According to the recommendation of 10x Genomics, a faithful mapping should cover 28 bp for read 1 and 91 bp for read 2.

In our design, 150 bp pair-end sequencing can sufficiently meet the need to recover cell barcode, UMI and virus barcode. (C) Umap embedding of
transcriptional clustering results for all vmPFC cells. (D) Stacked violin plots showing the expression of markers for each cluster. (E) Heatmap showing the
gene-expression correlation between major cell types defined by scRNA-seq of this study and Bhattacherjee et al., 2019. (F) Umap embedding of all
determined barcoded cells labeled in blue. (G) Bar plot showing frequency of barcoded (blue) and non-barcoded (grey) cells in all recovered cell types.
In (C-E), 21,267 cells were represented. In (F, G), 20,047 cells were represented. 1214 cells with exceptionally high nUMIs were removed.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Validation of rAAV2-retro injection sites and determination of valid barcoded cells.

that the UMI threshold differs for different targets due to different magnitude of barcode expression
of each projection target (Figure 1—figure supplement 1F). Across all detected cell types, barcoded
cells were primarily excitatory neurons rather than inhibitory neurons or non-neuronal cell types (2116
validly barcoded in 8805 excitatory neurons, and 5 validly barcoded in 2738 endothelial cells, 3 validly
barcoded in 1780 oligodendrocyte progenitor cells, 7 validly barcoded in 1773 oligodendrocytes, and
17 in 1420 inhibitory neurons, Figure 1F and G). This is consistent with the finding that mPFC projec-
tion neurons are excitatory (Gabbott et al., 2005). Using this stringent threshold, 49.0% of FAC-
sorted and 18.7% of unsorted cells were classified as barcoded (Figure 1—figure supplement 1G).
In parallel, we calculated EGFP* ratios (nUMI of EGFP RNA >0) as 81% for FAC-sorted and 26% on
average for unsorted cells (Figure 1—figure supplement TH). The lower fraction of barcoded versus
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EGFP* cells suggests our conservative threshold increases false negatives, classifying some low UMI
cells as non-barcoded. Therefore, we focused analyses on reliably barcoded cells, though conclusions
may not capture the full heterogeneous projection repertoire. Together, these results demonstrate
that MERGE-seq can record single neuron transcriptome and projectome simultaneously.

MERGE-seq reveals transcriptomic heterogeneity and cell type
composition of vmPFC neurons projecting to different targets

Previous studies have shown that vmPFC neurons project to multiple brain regions including Al, DMS,
BLA, LH, and MD; however, the cell type composition of these projection neurons remains largely
unknown (Le Merre et al., 2021). Combining with single neuron transcriptome, we explored the
transcriptome and subtype composition of vmPFC neurons projecting to different downstream brain
regions. We first re-clustered excitatory projection neurons expressing Slc17a7 (also known as vesic-
ular glutamate transporter, Vglut1). Clusters with low gene/UMI counts and high mitochondrial gene
expression were filtered out as low-quality (llicic et al., 2016). Some clusters exhibited non-neuronal
cell markers like microglial genes (C1ga, C1gb), oligodendrocyte genes (Olig1, Olig2), and endo-
thelial cell genes (Flt1, Cldn5) despite small cluster size, indicating contamination from other cell
types incorrectly grouped within excitatory neurons after initial clustering. In total, we filtered out
637 cells that were identified as either low-quality or contaminated with non-neuronal cell types and
recovered 9368 excitatory neurons (see Materials and methods, Figure 2—figure supplement 1A,
Supplementary file 1). We generated seven excitatory neuron clusters, which were annotated based
on typical markers of cortical layers (Bhattacherjee et al., 2019; Sorensen et al., 2015; layer 2/3,
Cux2; layer 5, Etv1; layer 6, Sulf1) and differentially expressed genes (DEGs; Supplementary file 2).
These neuron clusters include L2/3-Calb1 (4.1%), L2/3-Rorb (5.9%), L5-Bclé (3.3%), L5-Htr2c (3.9%),
L5-S100b (11.6%), L6-Npy (12.6%), and L6-Syté (58.7%,; Figure 2A). The layer and subtype marker
genes of these clusters were confirmed to be expressed in corresponding layers in the vmPFC, as
revealed by in situ hybridization results of the Allen Mouse Brain Atlas (Figure 2A, Figure 2—figure
supplement 1A-C). Of note, we captured more layer 6 neurons than superficial layer neurons (12.6%
L6-Npy and 58.7% L6-Syté, Figure 2B), which is different from a previous report (Bhattacherjee et al.,
2019). We speculate that different dissociation protocols may cause biased neuron capture.

Cells that were retrogradely barcoded spanned all layers of the vmPFC (layer 2/3, 5, and 6) and
included all seven neuronal subtypes (Figure 2A-C). These subtypes were highly corresponding to
the spatially resolved PFC excitatory neuronal subtypes (Bhattacherjee et al., 2023; see Materials
and methods, Figure 2D). High correlation allows us to infer the spatial localization of our annotated
subtypes detected in scRNA-seq data. We also found that excitatory neuronal subtypes are transcrip-
tionally similar to those previously reported (Figure 2—figure supplement 1D; Bhattacherjee et al.,
2019, Lui et al., 2021; Yao et al., 2021). All these integrated analyses suggest that multiple viral infec-
tions will not significantly affect the transcriptional state of these retrogradely labeled vmPFC neurons.
For the L5-Htr2c subtype, only nine neurons were recovered with valid barcodes, possibly due to cell
loss during single-cell dissociation or tropism of AAV2-retro, or these neurons may intrinsically not
project to any target we chose (Figure 2B). Neurons projecting to DMS were abundant (n=1242),
whereas neurons projecting to BLA were rare (n=163; Figure 2E). These results are consistent with
data acquired via conventional fluorescence-based retrograde tracing in the prefrontal cortex of rats
(Gabbott et al., 2005).

We next calculated the subtype composition of vmPFC neurons projecting to each downstream
brain region. Interestingly, we found that these target specific projection neurons were transcrip-
tionally heterogeneous, which were composed of different neuronal subtypes (Figure 2F). Neurons
projecting to LH or MD were mainly L6-Syté subtype, whereas neurons projecting to Al, DMS, or
BLA were mainly composed of L5-S100b, and to a lesser extent L6-Npy and L2/3-Rorb subtypes
(Figure 2F). It is worth noting, based on the observed ratios, that the cellular composition of target-
specific projection neurons from FAC-sorted or unsorted groups is similar (Figure 2—figure supple-
ment 1E).

As the layer distribution of each neuron subtype can be inferred by their layer specific marker
gene expression, these results also implied the layer distribution of neurons projecting to each target
(Figure 2E, Figure 2—figure supplement 1B). By calculating the projection properties of each vmPFC
neuron subtype, we found that each transcriptome-defined neuron subtype can project to specific but
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Figure 2. MERGE-seq unravels transcriptomic heterogeneity of projection target-defined vmPFC neurons. (A) Umap embedding of excitatory neuron
subtype annotation. (B) Bar plot showing frequency of barcoded (blue) and non-barcoded (grey) neurons in distinct neuron subtypes. (C) Stacked

violin plot showing the expression of markers for each neuronal subtype. (D) Heatmap showing the gene-expression correlation between excitatory
subtypes defined by Multiplexed Error-Robust Fluorescence in situ Hybridization (MERFISH) and scRNA-seq. MERFISH data were downloaded from
Bhattacherjee et al., 2023. (E) Umap embeddings of barcoded (blue) neurons projecting to each target. Number indicates the number of barcoded
cells for each target. (F) Bar plot describing the distribution of neuronal subtypes for barcoded neurons associated with each projection target. Neuronal
subtype color codes are the same as in (A), number of barcoded cells are same as the number indicated in (E) for each target. (G) Bar plot describing
the distribution of projection targets for barcoded neurons associated with each neuronal type. In (A, C, D), 9368 cells in total were represented. In (B,
E, F), 8210 cells in total were represented. In (G), cell numbers represented are as follows: L2/3-Calb1=72 cells, L2/3-Rorb=331 cells, L5-Bcl6=145 cells,
L5-S100b=766 cells, L6-Npy=526 cells, L6-Syt6=1264 cells.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Layer and cluster annotation using the mouse brain atlas and published scRNA-seq transcriptomes, and projection patterns per
mouse.

multiple targets. For instance, L5-S100b, L6-Npy and L2/3-Rorb mainly projected to Al, DMS and
BLA, while L6-Syté mainly projected to MD and LH (Figure 2G). Interestingly, we also found that
different neuron subtypes localized in the same layer could project to distinct targets. For instance,
L6-Npy neurons projecting to Al, DMS, and BLA, while L6-Syté neurons projecting to MD, DMS, and
LH (Figure 2G). Similar phenotypes were observed for L5-5100b and L5-Bclé subtypes (Figure 2G),
suggesting transcriptomic and projection/function diversities in the spatially close neurons within the
same cortical layer.
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Together, by MERGE-seq analysis, we have revealed the heterogeneity and cellular composition of
vmPFC neurons projecting to different target. Our results demonstrate that vmPFC neurons projecting
to a certain target are composed of different transcriptome-defined neuronal subtypes, and individual
transcriptome-defined subtypes of vmPFC neuron project to multiple targets.

MERGE-seq reveals dedicated and collateral projection patterns of
vmPFC neuron at single cell level

Interestingly, we found that a portion of barcoded vmPFC neurons had more than one type of barcode,
suggesting collateral projection of these neurons. We therefore analyzed the projection pattern of
each barcoded vmPFC neuron by calculating the number of valid barcode types (see Materials and
methods). We defined the dedicated projection neuron as a neuron containing only one type of
barcode, the collateral projection neuron as a neuron containing more than one type of barcode. We
found 64.88% of 2050 viral-barcoded neurons belonged to dedicated projection and the remaining
belonged to collateral projection. A total of 23.37% had dual targets (bifurcated projection), 8.15%
had triple targets, and 3.61%, if any, projected to more than three targets (Figure 3A). It is worth
mentioning that the definition of ‘dedicated’ and ‘collateral’ projections relies solely on the analysis
of MERGE-seq data. The quantitative resolution of dedicated and collateral projections of vmPFC
neurons will depend on the comprehensiveness of retrograde labeling from all postsynaptic targets
and labeling efficiency. By calculating the conditional probability that the same neuron projects to two
targets (see Materials and methods), we found that vmPFC neurons projecting to Al or BLA were more
likely to have collateral projection to DMS (Figure 3B). We also observed a relatively high conditional
probability of collateral projection between MD and LH, or DMS and LH, or DMS and MD (Figure 3B),
suggesting bifurcated projections to these paired targets for single vmPFC neuron.

We first validate the bifurcated projection patterns (2 targets) inferred from the digital projec-
tome. We injected retrograde AAV2 encoding different fluorescent proteins (EGFP or tdTomato) into
different combinations of projection targets (dual-color rAAV2-retro labeling assay), and analyzed
the projection patterns by immunohistochemistry. Consistent with MERGE-seq identifying DMS + LH
bifurcated projections (Figure 3B), dual-color labeling revealed 17.8% + 0.11% of vmPFC neurons
collateralize to DMS and LH (Figure 3—figure supplement 1A-C). Of these, 73.28% + 7.60% local-
ized to layer 5 (Figure 3—figure supplement 1A-C). Other bifurcated projection patterns inferred
by MERGE-seq was also verified by our dual-color retro-AAV labeling assay. These patterns included
DMS + Al (23.1% + 2.03% of all dual-color neurons) and DMS + BLA (6.59% + 1.55%) (Figure 3—
figure supplement 1D-I). In contrast, we only observed 1.66% + 0.92% of dual-color labeled neurons
in BLA + LH group (Figure 3—figure supplement 1J-L). This result is consistent with our MERGE-seq
analysis, in which BLA + LH was not inferred as bifurcated projection targets (Figure 3B), further
supporting the accuracy of the digital projectome based on MERGE-seq analysis.

Since dual-color labeling can only validate two targets, we additionally validated inferred projec-
tions by quantifying MERGE-seq patterns as percentages of totals and comparing to published
single-neuron PFC projectome data (Gao et al., 2022). We found that DMS, Al + DMS, MD, and
LH projection pattern appear as the most frequent projection patterns in both studies, with a rela-
tively higher percentage of DMS dedicated projection pattern in MERGE-seq data (Figure 3C). We
further categorized projection patterns by number of targets and found no significant differences
versus imaging-based reconstruction (Figure 3D), indicating MERGE-seq faithfully identifies projec-
tion patterns.

Next, we focused our analysis on the 5 dedicated projections (DMS, Al, MD, LH, and BLA) and
most frequent five collateral projections (DMS + Al, DMS + MD, DMS + LH, DMS + Al + MD, and
DMS + Al + MD + LH). We conducted a principal component analysis (PCA) of the projection matrix
and mapped binary projection labels on PC embeddings. Results from binary projection clustering
aligned well with clusters at PC1- and PC2-defined embeddings (Figure 3—figure supplement 1M).
We further clustered cells according to projection strength (defined as normalized projection barcode
UMI counts; Figure 3E). We found that cells exhibited collateral projections to DMS + Al, or DMS +
MD, or DMS + LH, or DMS + Al + MD, or DMS + Al + MD + LH (Figure 3E), a pattern very similar to
that we observed in binary projection model, indicating that projection strength-based clustering is
comparable to binary projection pattern model (Figure 3B). We next explored the cell type compo-
sition of the top 10 dedicated or collateral projection neurons. We mapped transcriptomic clusters
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Figure 3. MERGE-seq reveals projection diversity within the vmPFC. (A) Pie chart indicating the number of projection targets for barcoded vmPFC
neurons recovered by MERGE-seq. (B) Heatmap showing the probability that a neuron projecting to area A also projects to area B. (C) Bar graph
illustrating the percentage of neuronal projection pattern of all projection patterns given five projection targets inferred by MERGE-seq (red bars)
versus the 1155 fMOST-based single-neuron projectome data (blue bars) (Gao et al., 2022). (D) Boxplot comparison of percentage of neurons with
different projection targets identified by MERGE-seq and fMOST. (E) Heatmap showing normalized projection strength. Rows represent the projection
targets and columns represent the cells labeled by the top 10 binary projection patterns or labeled by transcriptional neuron subtypes. (F) Alluvial

plot showing the 10 most frequent projection patterns distribution into neuronal subtypes. (G) Pie charts describing the projection patterns from

(E) partitioned by neuronal subtype. In (A, B), 2050 barcoded neurons were represented. In (C, D), 2050 barcoded neurons from MERGE-seq data were
represented, 1155 cells with fIMOST data were represented (Gao et al., 2022). In (E-G), 1853 barcoded neurons (top 10 frequent projection patterns)
were represented.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Related to Figure 3C, D, F and G.

Figure supplement 1. Immunostaining of dual-color, retrogradely labeled neurons and quantification, PCA plot of projection clusters.
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Figure 4. Transcriptional profiling of projection target-specific vimPFC neurons. (A) Volcano plots DEGs of MD-projecting versus non-MD-projecting
vmPFC neurons. Assigned DEGs (red dots) were determined using threshold: Log, fold change = 0.5, p value cutoff=10""°. (B) Immunostaining of EGFP
(MD) and tdTomato (LH), and RNA FISH of Syté. (i, ii) Enlarged view of dotted box in (B). (i) represents typical view at layer 6 and (i) represents typical
view at layer 5. Arrow head indicates Syt6"EGFP* neurons. (C) Quantifications of (B). (B) Scale bars, 200 pym. i, ii in (B) Scale bars, 50 pm. N=3 mice. Data
are presented as mean =+ SD. In (A), 8210 cells were represented.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Related to Figure 4A, Figure 4—figure supplement 1.

Source data 2. Related to Figure 4B and C.

Figure supplement 1. Transcriptional profiling of projection target-specific vmPFC neurons.

to projection patterns (Figure 3F). While dedicated and collateral projection neurons were largely
transcriptionally diverse (=3 subtypes, Figure 3G), certain projections like MD-projecting and DMS +
MD-projecting were highly homogeneous, composed of >90% L6-Syt6 cells (Figure 3G).

Overall, MERGE-seq elucidated dedicated and collateral vmPFC neuron projections at the single-
neuron level, demonstrating diversity in projection patterns within individual vmPFC neurons. Further-
more, projection-defined (collateral or bifurcated) neurons have specific cell type composition and
layer distributions. It is worth noting that as a proof of concept, we only acquired the vmPFC projec-
tome from five downstream targets. Definitions of dedicated or collateral projections are thus limited
to these five targets and some collateral projections may be underestimated.

Transcriptional profiling of projection target-specific vmPFC neurons
Next, we sought to determine the molecular features of neurons projecting to different downstream
targets. We calculated DEGs for each target-specific projection neurons (Figure 4A, Figure 4—figure
supplement 1). We found that some of projection-specific DEGs are marker genes of typical neuronal
types. For example, Syt6, Foxp2, and Cyr61 are both MD-projecting DEGs and marker genes of
L6-Syté neurons; Rorb and Slc24a3 are both DMS-projecting DEGs and marker genes of layer 2/3
neurons (neuronal subtype L2/3-Rorb; Figure 2C, Figure 4A, Figure 4—figure supplement 1).

We further validated the molecular features of neurons associated with their specific projections
by combining RNA fluorescence in situ hybridization (FISH) and retrograde labeling. Syté is one of the
DEGs of MD-projecting neurons (Figure 4B), and is the marker gene of L6-Syté cluster. By retrograde
labeling of MD-projecting neurons and Syté FISH experiment, we found that about 51.6% = 16.9%
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Syt6* neurons project to MD. Further statistical analysis showed that, among Syt6* MD-projecting
(Syt6*EGFP*) neurons, 84.2% = 14.8% were located in layer 6 while 15.8% * 14.8% were located in
layer 5 (Figure 4C), similar to the pattern obtained in our MERGE-seq analysis (Figure 2F). These
results are in accordance with single-neuron projectomic and transcriptomic analysis of MERGE-seq,
indicating that MERGE-seq can faithfully reveal the transcriptomic features of projection-specific
neurons.

MERGE-seq uncovers the molecular features of collateral projection
neurons in vmPFC
Axons of projection neurons, including vmPFC neurons, have highly complex collaterals, which could
regulate information processing and neural response properties at the microcircuit level (Gagnon
and Parent, 2014; Gao et al., 2022; Rockland, 2019). However, the molecular features of neurons
sending collateral projections remain elusive. MERGE-seq provides an opportunity to explore. Here,
we identified DEGs for neurons with dedicated and collateral projection pattern (Figure 5A). Next,
we asked whether there was transcriptional difference between neurons with dedicated projection
to A and neurons with bifurcated projection to A and B. DEGs were rare in comparisons between
projection patterns A/B vs. A, or A/B vs. B in all of groups we tested, except for the DMS + LH group
and DMS + MD group (Figure 5B and C,Figure 5—figure supplement 1). We found that DMS + LH
projection neurons were transcriptionally distinct to DMS but similar to LH, and DMS + MD neurons
were transcriptionally distinct to DMS but similar to MD (Figure 5B and C,Figure 5—figure supple-
ment 1). Specifically, we identified a set of genes which differentially expressed in DMS + LH projection
neurons (such as Pou3f1, Igfbp4, and Gprc5b) or DMS + MD projection neurons (such as Rprm, Crym,
Hs3st4 and Bc1). Interestingly, Pou3f1 is marker gene of L5-Bclé neurons (layer 5 neuron subtype),
representing one of the two distinct neuron subtypes within the DMS + LH projection neuronal popu-
lation (Figure 3G). We next verified the specific gene expression in DMS + LH projection neurons by
using RNA FISH in combination with dual-color retrovirus labeling assay (Figure 5D). We found that
the expression of Pou3f1 was mainly distributed in layer 5, where Pou3f1 was specifically expressed
in dual-color labeled DMS + LH projecting neurons (white arrowheads, Figure 5E) and LH projecting
neurons (white arrows, Figure 5E), but not DMS projecting neurons (blue arrows, Figure 5E). Quanti-
fication analysis showed that, among Pou3f1* neurons, there are 55.7% + 10.4% DMS + LH-projecting
(Pou3fT*EGFP*tdT") neurons, 31.6% *+ 13.1% dedicated LH-projecting (Pou3fT*EGFPtdT") neurons,
and 8.89% + 2.38% dedicated DMS-projecting (Pou3fT*EGFP*tdT) neurons (Figure 5G). We addi-
tionally discovered that 3.79% + 2.91% of Pou3f1* neurons did not project to either DMS or LH
(Pou3fT*EGFPtdT) (yellow arrowheads, Figure 5F, Figure 5G). These results are consistent with our
observation based on MERGE-seq data (Figure 3G).

Together, by MERGE-seq analysis and experimental validation, we uncovered that Pou3f1 predom-
inantly marks neurons projecting to the LH, denoting a distinct subset with collateral projections to
both DMS and LH.

Machine learning-based modeling reveals gene clusters for predicting
projection patterns

Although many efforts have been made to correlate gene expression with neuronal circuit connectivity
(Huang et al., 2020, Sorensen et al., 2015; Sun et al., 2021), the lack of a shared coordinate system
for two modalities or limited genes examined reduces the prediction precision. MERGE-seq over-
comes these challenges by acquiring high-throughput gene expression and projection pattern in the
same neuron (Figure 6A). To evaluate potential relationships between the transcriptome and projec-
tome, we used a probabilistic classifier, Naive Bayes classifier, to predict binary projection patterns for
each projection target based on transcription profiles. First, we encoded binary projection labels for
each target region, encompassing both barcoded and non-barcoded projections, and subsequently
trained a separate set of models for each of the five targets: Al, DMS, BLA, LH, and MD (see Materials
and methods). Subsequently, we conducted a systematic evaluation of the impact of varying numbers
of highly variable genes (HVGs), ranging from 2 to 5000, on model performance. This analysis revealed
that employing the top 50 HVGs for modeling yielded the the highest F1 score (a harmonic mean of
precision and recall), area under the curve (AUC), and a comparatively high prediction accuracy (see
Materials and methods, Figure 6—figure supplement 1A). Next, we chose top 50 HVGs as features
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Figure 5. Molecular features of single vmPFC neuron with collateral projections to downstream targets. (A) Heatmap showing scaled expression of
calculated DEGs based on 10 projection patterns. Top 10 DEGs ordered by average log, fold change of each pattern were selected. (B) Volcano plot
showing genes differentially expressed in the DMS + LH-bifurcated projection pattern compared to the DMS-dedicated projection pattern. (C) Track
plots showing normalized data of the selected DEGs in DMS-dedicated, LH-dedicated, and DMS + LH-bifurcated projection pattern. (D-F) Examining

Figure 5 continued on next page
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Figure 5 continued

Pou3f1 and DMS + LH-bifurcated projection pattern using RNA FISH and immunostaining of dual-color traced retrograde labeled neurons. Virus
injection scheme was the same as in Figure 3—figure supplement 1. Scale bars, 200 um. (E, F) Enlarged view of dotted box in (D). Arrow heads
indicate Pou3f1"EGFP*tdTomato® neurons, white arrows indicate Pou3f1"EGFPtdTomato® neurons, blue arrows indicate Pou3f1EGFP*tdTomato
neurons, and yellow arrowheads indicate Pou3f1T*"EGFPtdTomato neurons. Scale bars, 50 um. (G) Quantification of (D). N=3 mice, Data are presented
as mean = SD. In (A), 1,853 barcoded neurons (top 10 frequent projection patterns) were represented. In (C), 805 barcoded neurons (projection pattern
DMS + LH = 35, LH = 176, DMS = 594) were represented.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Related to Figure 5B.

Source data 2. Related to Figure 5D-G.

Figure supplement 1. DEGs between dedicated projection neurons versus bifurcated neurons.

to build the model. As a control model, we chose 50 randomly chosen genes. Five projection targets
models were independently trained by splitting cells into training (70%) and test dataset (30%). Using
top 50 HVGs also gave rise to significantly better model performance in regarding to prediction
accuracy, AUC and F1 score, compared to using randomly chosen 50 genes (Figure 6B). We also
performed 100 iterations randomly sampling 1000 cells and swapping barcoded with non-barcoded
labels, which substantially decreased model predictive performance across various evaluation metrics
(see Materials and methods, Figure 6—figure supplement 1B). This outcome underscores the critical
importance of label accuracy for the predictive capabilities of the model, suggesting the authen-
ticity of current barcoded cells labels despite potential false positives from stringent UMI thresh-
olding. Altogether, these results suggest that the top 50 HVGs are more informative for predicting
and decoding projection patterns.

To interpret the important genes contributing to a certain projection pattern, we used a game-
theoretic approach to explain the output of HVGs-based Naive Bayes models (Lundberg et al., 2020,
Figure 6A). We used top 50 HVGs to build Naive Bayes model and summarized effects of HVGs in
SHAP (SHapley Additive exPlanations) values for each projection pattern (see Materials and methods;
Figure 6C-F, Figure 6—figure supplement 1C). As examples, Nptxr gene was the top positive
predictors for DMS projection, suggesting that a cell that expresses high levels of Nptxr has a higher
probability of projecting to DMS. Similarly, Rprm was the top positive predictors for MD projection.
By examining top effective genes (features) on PC embeddings of the projection matrix, we found
that the expression pattern of these positive predictors mostly overlaps with projection barcode
distribution (Figure 6D and F). These results mathematically establish the relationship between gene
expression and structural connectivity, indicating the predictive power of a specific gene cluster for
projection properties of vmPFC neurons.

Discussion
Given the complexity of brain circuits, neuronal subtypes must be characterized from multiple view-
points (Zeng, 2022). Information including neuronal projection patterns (i.e. region-to-region connec-
tivity), physiological properties, gene expression, and how they encode information in behavioral
paradigms, are essential to understand functional brain circuits. Therefore, it is inevitably difficult
to acquire a complete picture of brain circuits when only one analytic modality is considered. In
this study, we have developed a multiplexed barcoding method that is integrated with scRNA-seq,
enabling simultaneous transcriptome and projectome analyses. Retrograde AAVs are injected into
multiple target regions simultaneously, thereby labeling projection neurons within the brain region
of interest and facilitating their transcriptional analysis. Here, by comparing to other methods, we
highlight distinct features of MERGE-seq and key biological insights that MERGE-seq can provide.
Early approaches of barcode-based neuronal projection mapping mainly focus on elucidating the
projections of individual neurons in a single brain without providing the transcriptional signatures
corresponding to those individual neurons (MAPseq; Kebschull et al., 2016). We therefore devel-
oped MERGE-seq to connect single-neuron transcriptome and projectome with high throughput.
While there are some conceptual similarities to BARseq or ConnectlD (Chen et al., 2019; Klingler
et al., 2021), MERGE-seq has its unique features and advantages. BARseq can acquire single-neuron
transcriptome and projectome, but with only a number of genes due to limited throughout of in situ
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Figure 6. Machine learning-based modeling predicts projection patterns based on gene expression. (A) Schematics of machine learning modeling
steps. (B) Prediction accuracy (left panel), AUC score (middle panel) and F1 score (right panel) of top HVGs and random chosen equal number of genes
for modeling building. A total of 100 trials have been performed by randomly sampling 1000 cells from 8210 cells. Top 50 HVGs or 50 randomly chosen
genes were used as features per trial. Comparisons were made between models built by the HVGs group and random genes group for each projection
target. The displayed p value was computed using a two-sided Wilcoxon test. Data are the mean + SD. (C, E) SHAP summary plots of DMS and MD
showing important features (genes) with feature effects. For each model, non-barcoded cells were encoded to class 0 and barcoded cells were encoded
to class 1. Models were built using top 50 HVGs. (D, F) Normalized expression of the most important genes with positive feature effects in Naive Bayes
modeling of DMS (D) or MD (F) and normalized expression of barcode 1 representing DMS-projecting (E) or barcode 2 representing MD-projecting

(F) on PC1 and PC2 embeddings. Note that bottom panel of (D, F) is identical to DMS and MD barcode expression in Figure 3—figure supplement
1M. In (D, F), 1853 barcoded neurons (top 10 frequent projection patterns) were represented. In (C, E), For calculating SHAP values, both the training
and testing datasets were subsampled to include 1500 cells each.

The online version of this article includes the following source data and figure supplement(s) for figure 6:
Source data 1. Related to Figure 6B, Figure 6—figure supplement 1B.

Figure supplement 1. SHAP summary plots of Naive Bayes models.
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sequencing. An improved version of BARseq can allow tens of genes to be detected, but still with a
low throughput compared to scRNA-seq and a high cost in regards to synthesizing RNA probes (Sun
et al., 2021). ConnectlD (scRNA-seq combined with MAPseq) improves the detection of transcrip-
tome using scRNA-seq but has a relatively low recovery rate of cells with transcriptome and projec-
tome simultaneously (~16%, 391 cells with barcode identity in 2450 cells with scRNA-seq; Klingler
et al., 2021). In contrast, MERGE-seq enables transcriptional profiling of thousands of genes per
neuron, with valid projectome barcode information recovered from approximately 50% of FAC-sorted
cells passing stringent determination criteria. Another advantage of MERGE-seq is that users only
need to sequence one brain region — the source area. While, in BARseq or ConnectID, users need
to perform numerous tissue homogenization and sequencing for downstream brain regions to query
target area barcodes information (projection).

MERGE-seq is a retro-AAV-based scRNA-seq approach. Previous research has employed retro-AAV
techniques to probe the projection-specific transcriptome or epigenome of individual neurons (Lui
et al., 2021, Tasic et al., 2018; Tasic et al., 2016; Yao et al., 2021; Zhang et al., 2021). Yet, these
studies have not developed a multiplexed approach for investigating the complex collateral projec-
tion patterns of neurons. Another retro-AAV based-approach, VECTORseq, was recently devel-
oped to associate neuronal projectome and transcriptome (Cheung et al., 2021). VECTORseq used
several viral transgenes including three recombinases (DreO, Cre, Flpo) and two fluorescent proteins
(tdTomato and EGFP) to barcode neurons. However, these transgenes are variable in length (DreO,
~1000 bp; Cre, ~1000 bp; FLPo, ~1200 bp; tdTomato, ~1400 bp; EGFP, ~700 bp) and driven by
different promoters with different strength (EF1a, hSyn, CAG). Such an approach will inevitably result
in differential expression of these different transgenes in labelled neurons, which in turn leads to
different rates of transgene recovery in these neurons. In addition, viral-mediated overexpression
of these recombinase may lead to toxic to the labeled neurons due to non-specific recombination
events (Xiao et al., 2012). Therefore, the transgenes used in VECTORseq method should be care-
fully selected to avoid any potential interferences with neuronal function or gene expression by
these different transgenes. In contrast, MERGE-seq used 15-nucleotide barcode sequences in the
3'UTR region of EGFP as projection index driven by the same promoter to label different projection
neurons. The expression of these different barcoded EGFP mRNA is comparable, and the number of
these barcoded retro-AAV is unlimited. Therefore, MERGE-seq allows users to examine more popu-
lations (theoretically unlimited) in one brain and more extensive analysis of collateralization. Further,
MERGE-seq can reveal projectome of single collateral projection neurons and identify molecular
features of these neurons (Figure 5). However, the collateral projection patterns of single neurons
were not reported in VECTORseq and Retro-seq-based method (Cheung et al., 2021; Lui et al.,
2021). For example, Lui et al., 2021. used Retro-seq to investigate the correspondence between
transcriptomics and projection patterns of vmPFC neurons, and inferred collateral projection based
on the finding that transcriptome-defined neuron subtypes can project to different targets (or neurons
projecting to different targets share common transcriptome-defined neuron subtype). However, the
population level multi-target projections of a transcriptome-defined neuron subtype do not necessarily
reflect collateral projection of individual neurons within a subtype. For instance, individual neurons
within a subtype could project to distinct targets (dedicated projection), but their collective projec-
tions show multiple targets. In contrast, in MERGE-seq, individual neurons that were retrogradely
labeled multiple projection barcodes are determined as collateral projection neurons. By MERGE-seq
analysis, we uncovered dedicated and collateral projection patterns of individual vmPFC neurons to
the five downstream targets, and revealed molecular features associated with these dedicated or
collateral projection neurons (Figures 3-5). In addition, MERGE-seq strategy can be readily applied
to other animal models, which is especially beneficial for research in models (e.g. non-human primate)
where genetic manipulation is challenging. In summary, while Retro-seq methods provide valuable
population-level insights, they do not capture the complex collateral projections that MERGE-seq can
discern at the single-cell level. Our findings build upon and extend those of Lui et al. by demonstrating
that individual neurons within transcriptome-defined subtypes exhibit a diverse range of projection
patterns. This contributes a new layer of understanding to the intricate architecture of PFC circuits,
emphasizing the nuanced interplay between divergence and convergence in neuronal pathways.

Although MERGE-seq does not offer spatial information of neurons currently, it leverages widely
accessible droplet-based scRNA-seq, avoiding specialized equipment. Meanwhile, the extensive
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spatially resolved mouse brain atlases available (Allen et al., 2023; Yao et al., 2023; Zhang et al.,
2023) allow for easy spatial annotation of cell populations using DEGs identified by scRNA-seq, as
we demonstrated by mapping neuronal subtypes with MERFISH data of PFC. Compared to imaging-
based spatial transcriptomics like MERSCOPE with constrained gene numbers, or next-generation
sequencing (NGS)-based methods that are lack of true single-cell resolution (e.g. 50 pm 10 x Genomics
Visium or 10-50 um for DBiT-seg-based methods; Deng et al., 2023), we believe our method stands
out as a robust solution and offers an advantageous balance between resolution and scope.

There are several potential concerns and limitations of current study. First, a recognized limita-
tion of using retro-AAV-based methods, including MERGE-seq, is the imperfect retrograde labeling
efficiency in target regions. Labeling efficiency could be variable depending on the different source
brain regions, projection strength, the distance between source and target brain regions and
different AAV serotypes or tropism. For example, only nine neurons of the L5-Htr2c subtype were
recovered with valid barcodes, which may be attributable to technical factors including cell loss
during dissociation or AAV2-retro tropism. Alternatively, this subtype may intrinsically lack projec-
tions to the selected target regions examined in this study. Furthermore, single-cell dissociation for
scRNA-seq can result in cell loss, thereby reducing the recovery rate of barcoded neurons. All these
factors could influence the extent to which the complete range of neuronal projections is captured.
Consequently, the quantitative conclusions drawn here might not fully represent the true extent of
neuronal projections.

Second, the robust detection of projection barcodes and its recovery rate in neurons labeled
with barcoded AAV-retro viruses is indeed a critical and challenging aspect of our methodology. As
mentioned above, this challenge is largely due to the differential viral transduction efficiency across
neurons, leading to inconsistent barcode expression. Neurons with low barcode expression may fall
beneath the detection threshold of conventional sequencing methods. A suboptimal recovery rate
can potentially lead to underrepresentation of certain neuron populations or projection patterns in the
analyzed data. This in turn could impact the interpretation of neuronal connectivity and function, as
projections that are less efficiently labeled or harder to detect might be overlooked. For instance, if a
subset of neurons with low barcode expression is systematically missed, it could erroneously suggest
that these neurons do not participate in specific projection patterns. Conversely, overrepresentation
of certain barcodes due to higher transduction efficiency could falsely indicate a predominance of
certain projections. One potential solution to improve barcode detection is to include FAC-sorted
EGFP-negative cells as a negative control, which may help to differentiate between true signal and
background noise. Enhancements in sequencing technologies, offering increased read lengths and
deeper sequencing, could potentially improve barcode detection sensitivity. In parallel, applying
single-molecule FISH technologies like MERFISH to spatially resolve barcodes offers a robust and
direct detection method. This technology can provide detailed coverage and resolution of individual
RNA molecules within single cells, bypassing additional PCR amplification steps and reducing cell loss
during physical isolation. Furthermore, carefully controlling the viral titer and refining the procedures
of single neuron suspension preparation, as performed in this study, is required to control the labeling
efficiency and recovery rate.

DMS is en route from vmPFC to subcortical regions (Shepherd, 2013), thus raising another concern
about the transducing ability of AAV2 in axons of passages. However, the retrograde transport of AAV
has been effectively demonstrated to target projection neurons at axonal terminals, with injections
into the DMS exhibiting labeling patterns and efficiencies that match those of synthetic tracers (Tervo
et al., 2016). Further, it has been experimentally verified that AAV2 spread is confined to the vicinity
of synaptic terminals and does not affect axon fibers in passages, especially as evidenced by retro-AAV
injections in the cervical spinal cord (Wang et al., 2018). While these findings are reassuring, addi-
tional research is needed to unequivocally eliminate the possibility of transduction along axon fibers
of passage. The five distinct injection sites we chose for our study are spatially disparate, encom-
passing both cortical and subcortical regions, and span a range from the anterior (Bregma,+2 mm)
to the posterior (Bregma, —1.5 mm) brain regions. This separation mitigates the potential overlap in
labeling when examining spatially proximate nuclei, such as those in the hypothalamus. Nevertheless,
examining such closely situated targets would necessitate meticulous quantification of virus injection
volumes to prevent cross-target viral dissemination, ensuring the specificity required for accurate
projection mapping.
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In summary, we develop MERGE-seq, a powerful multiplexed projectome and transcriptome
analysis platform that will help researchers perform big-data research at low cost. This will enable
researchers to understand organizing principles and molecular features of neural circuits across
modalities, and to construct more comprehensive mesoscale connectomes.

Materials and methods

Key resources table

Reagent type
(species) or Source or
resource Designation reference Identifiers Additional information
Anti-GFP (Rat Cat# 04404-84,
Antibody Monoclonal) Nacalai RRID:AB 10013361 IHC(1:500)
Anti-tdTomato (Goat Cat#AB8181-200,
Antibody Polyclonal) OriGene RRID:AB 2722750 IHC(1:500)
Antibody Hoechst 33342 Lifetech Cat#H3570 IHC(1:1000)
Donkey anti-rat Alexa
Fluor 488 (Donkey
Antibody Polyclonal) Invitrogen Cat#A21208 IHC(1:800)
Donkey anti-goat Alexa
Fluor 568 (Donkey
Antibody Polyclonal) Invitrogen Cat#A11057 IHC(1:800)
Recombinant pAAV-CAG-tdTomato
DNA reagent (plasmid) Addgene Cat#59462
pAAV-CAG-EGFP
Recombinant barcode-0-SV40 polyA
DNA reagent (plasmid) This paper Cat#190864 Submitted to Addgene
PAAV-CAG-EGFP
Recombinant barcode-1-SV40 polyA
DNA reagent (plasmid) This paper Cat#190865 Submitted to Addgene

Recombinant
DNA reagent

pAAV-CAG-EGFP
barcode-2-SV40 polyA
(plasmid) This paper Cat#190866 Submitted to Addgene

Recombinant
DNA reagent

pAAV-CAG-EGFP
barcode-3-SV40 polyA
(plasmid) This paper Cat#190867 Submitted to Addgene

Recombinant
DNA reagent

pAAV-CAG-EGFP
barcode-4-SV40 polyA
(plasmid) This paper Cat#190868 Submitted to Addgene

Recombinant
DNA reagent

pAAV-CAG-EGFP
barcode-5-SV40 polyA
(plasmid) This paper Cat#190869 Submitted to Addgene

Recombinant
DNA reagent

pAAV-CAG-EGFP
barcode-6-SV40 polyA
(plasmid) This paper Cat#190870 Submitted to Addgene

Recombinant
DNA reagent

pAAV-CAG-EGFP
barcode-7-SV40 polyA
(plasmid) This paper Cat#190871 Submitted to Addgene

Recombinant
DNA reagent

pAAV-CAG-EGFP
barcode-8-SV40 polyA
(plasmid) This paper Cat#190872 Submitted to Addgene

Recombinant
DNA reagent

PAAV-CAG-EGFP
barcode-9-SV40 polyA
(plasmid) This paper Cat#190873 Submitted to Addgene

Continued on next page
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Continued

Reagent type

(species) or Source or

resource Designation reference Identifiers Additional information
pAAV-CAG-EGFP

Recombinant barcode-10-SV40 polyA

DNA reagent (plasmid) This paper Cat#190874 Submitted to Addgene
pPAAV-CAG-EGFPnls

Recombinant barcode-206-SV40 polyA

DNA reagent (plasmid) This paper Cat#190875 Submitted to Addgene
pPAAV-CAG-EGFPnls

Recombinant barcode-210-SV40 polyA

DNA reagent (plasmid) This paper Cat#190876 Submitted to Addgene

Chemical AMPA receptor

compound, drug antagonist CNQX Abcam Cat#ab120017 working concentration:10 uM

Chemical NMDA receptor

compound, drug antagonist D-AP5 Abcam Cat#ab120003 working concentration:50 pM

Chemical

compound, drug 2-Mercaptoethanol Sigma Cat#M6250 working concentration:0.067 mM

Chemical

compound, drug EDTA Invitrogen Cat#15575020 working concentration:1.1 mM

Chemical L-Cysteine hydrochloride

compound, drug monohydrate Sigma Cat#C7880 working concentration:5.5 mM

Chemical

compound, drug Deoxyribonuclease | Sigma Cat#D4527 working concentration: 100 units/ml

Chemical

compound, drug Protease Sigma Cat#P5147 working concentration:1 mg/ml

Chemical

compound, drug Dispase Worthington Cat#LS02106 working concentration:1 mg/ml

Chemical

compound, drug Papain Worthington Cat#LS003126 working concentration:20 units/ml

Commercial assay
or kit

Debris Removal Solution

Miltenyi

Cat#130-109-398

Commercial assay

Chromium Single Cell 3'

or kit Reagent Kits (v3) 10 X Genomics  Cat#PN1000075
Commercial assay NEBNext Ultra Il Q5

or kit Master Mix NEB Cat#M0544L
Commercial assay

or kit SPRIselect Beckman Cati#B23317
Commercial assay

or kit Mm-Syté ACD Bioscience Cat#449641

Commercial assay
or kit

Mm-Pou3f1-C2

ACD Bioscience

Cat#436421-C2

Sequence-based

AATGATACGGCGACCACCGAGATC

reagent P5-Read1 This paper PCR primers TACACTCTTTCCCTACACGACGCTC
CAAGCAGAAGACGGCATACGAGATAGGATTCGG
Sequence-based TGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
reagent P7-index-Read2-EGFP  This paper PCR primers GgCATGGACGAGCTGTACAAG
AAV vector design

Plasmid pAAV-CAG-tdTomato (Addgene, #59462) was first modified by replacing tdTomato and
WPRE with EGFP by T4 DNA Ligase mediated ligation. A 15 bp barcode sequence was then inserted
after the stop codon of EGFP, linked by EcoRl restriction enzyme recognition site. Sequences barcode
0 representing the Al target, CTGCACCGACGCATT, barcode 1 (DMS target), GAAGGCACAGAC
TTT; barcode 2 (MD target), GTTGGCTGCAATCCA,; barcode 3 (BLA target), AAGACGCCGTCG
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CAA; barcode 4 (LH target), TATTCGGAGGACGAC. Other barcode sequences used for IHC include
barcode 10, AGCTATGCACGATCA,; barcode 206, GCGTAAGTCTCCTTG; barcode 210, CCTGTATG
CGTGGAG. Engineered viruses were produced by Gene Editing Core Facility, Center for Excellence
in Brain Science and Intelligence Technology.

Virus injection

Male adult C57BL/6 mice (8 weeks of age) were anesthetized intraperitoneally using pentobarbital
sodium (10 mg/mL, 120 mg/kg b.w.) and unilaterally injected with rAAV2-retro-EGFP-Barcode virus
(barcode 0, 1, 2, 3, 4) into five projection targets simultaneously. Coordinates for these injections are
as follows. Reference from Bregma and dura, Al at two locations (in mm: 2.0 AP, 2.52 ML, -2.0 DV; 1.6
AP, 2.97 ML, -2.2 DV) with rAAV2-retro-EGFP-barcode 0 (250 nl and 200 nl, 2.90x10" VG/ml); DMS
at one location (in mm: 0.6 AP, 1.8 ML, -2.2 DV, 8 degree angle), with rAAV2-retro-EGFP-barcode 1
(500 nl, 1.00x 10" VG/ml); MD at one location (in mm: —1.25 AP, 1.35 ML, -3.55 DV, 20 degree angle),
with rAAV2-retro-EGFP-barcode 2 (300 nl, 1.27x10" VG/ml); BLA at one location (in mm: =1.5 AP,
3.2 ML, -4.2 DV), with rAAV2-retro-EGFP-barcode 3 (300 nl, 2.00x10™ VG/ml); LH at one location
(in mm: =0.94 AP, 1.2 ML, -4.55 DV), with rAAV2-retro-EGFP-barcode 4 (250 nl, 2.25x10" VG/ml).
Following each injection, the micropipette was left in the tissue for 10 min before being slowly with-
drawn to prevent virus spilling and backflow. Mice were sacrificed 6 weeks after virus injection. Single-
cell suspensions were generated as described in methods below.

For dual-color retrograde virus tracing, two regions were ipsilaterally injected with virus at the
same time, one with rAAV2-retro-EGFP-barcode 10 (2.00x10" VG/ml) or rAAV2-retro-EGFPnls-
barcode 206 or 210 (3.10x10" VG/ml for barcode 206 and 4.38x10'" VG/ml for barcode 210) and
one with rAAV2-retro-tdTomato (2.25x10" VG/ml). rAAV2-retro-EGFPnls was used to avoid dense
fiber staining when performing immunohistochemistry. We deposited the virus plasmid constructs
to Addgene (pAAV-CAG-EGFP barcode-(0-10)-SV40 polyA, pAAV-CAG-EGFPnls barcode-(206, 210)-
SV40 polyA; Addgene ID 190864-190876).

scRNA-seq sample and library preparation

For mice without FAC-sorting (mouse #1, #2, #3), three mice that had been injected with virus were
anaesthetized and then subjected to transcranial perfusion with ice-cold oxygenated self-made
dissection buffer (in mM: 92 Choline chloride, 2.5 KCI, 1.2 NaH,PO,, 30 NaHCO,, 20 HEPES, 25
Glucose, 5 Sodium ascorbate, 2 Thiourea, 3 Sodium pyruvate, 10 MgSO,.7H,0, 0.5 CaCl,.2H,0, 12
N-Acetyl-L-Cysteine). The brain was removed, 300 pm vibratome sections were collected, and the
PrL and IL regions were microdissected under a stereo microscope with a cooled platform. Brain
slices were incubated in dissection buffer with 10 yM AMPA receptor antagonist CNQX (Abcam,
ab120017) and 50 uM NMDA receptor antagonist D-AP5 (Abcam, ab120003) at 33 °C for 30 min.
The pieces were dissociated first using the ice-cold oxygenated dissection buffer added papain (20
units/ml, Worthington, LS003126), 0.067 mM 2-mercaptoethanol (Sigma, M6250), 1.1 mM EDTA
(Invitrogen, 15575020), 5.5 mM L-Cysteine hydrochloride monohydrate (Sigma, C7880) and 100
units/ml Deoxyribonuclease | (Sigma, D4527), with 30-40 min enzymatic digestion at 37 °C, followed
by 30 min 1 mg/ml protease (Sigma, P5147) and 1 mg/ml dispase (Worthington, LS02106) enzymatic
digestion at 25 °C. Supernatant was removed and digestion was terminated using dissection buffer
containing 2% fetal bovine serum (FBS, Bioind, 04-002-1A). Single-cell suspension was generated
by manual trituration using fire-polishing Pasteur pipettes and filtered through a 35 pm DM-equili-
brated cell strainer (Falcon, 352052). Cells were then pelleted at 400 x g for 5 min. The supernatant
was carefully removed and resuspended in 1-2 ml dissection buffer containing 2% FBS. The suspen-
sion was then subjected to the debris removal step using the Debris Removal Solution (Miltenyi,
130-109-398). Cell pellets were resuspended and 48,000 cells were loaded into 3 lanes to perform
10x Genomics sequencing. For mice with FAC-sorting (mouse #4, #5, #6), PrL and IL regions were
microdissected and dissociated as mice without FAC-sorting, cells were sorted to enrich for EGFP-
positive rAAV2-retro-EGFP-barcodes labeled cells. About 4893 EGFP-positive cells were captured
and loaded to perform 10x Genomics sequencing. Chromium Single Cell 3' Reagent Kits (v3) were
used for library preparation (10x Genomics). Libraries were sequenced on an lllumina Novaseq 6000
system.
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Projection barcode library preparation

Parallel PCR reactions were performed containing 50 ng of post cDNA amplification reaction cleanup
material as a template. P5-Read1 (AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA
CGCTC) and P7-index-Read2-EGFP (CAAGCAGAAGACGGCATACGAGATAGGATTCGGTGACTGG
AGTTCAGACGTGTGCTCTTCCGATCTGgCATGGACGAGCTGTACAAG) (200 nM each) were used
as primers with the NEBNext Ultra Il Q5 Master Mix (NEB, M0544L). Amplification was performed
using the following PCR protocol: (1) 33 °C for 1 min, (2) 98° for 10 s, then 65 °C for 75 s (20-24
cycles), (3) 75 °C for 5 min. Reactions were re-pooled during 1 X SPRI selection (Beckman, B23317),
which harvested virus projection barcodes library. 431-437 bp (with 120 bp adaptors) libraries were
sequenced using lllumina HiSeq X Ten.

Immunohistochemistry

Mice were sacrificed 6 weeks after virus injection. Mice were transcardially perfused with phosphate-
buffered saline (PBS) followed by 4% paraformaldehyde (PFA). Brain samples were extracted and
cryoprotected in 20% sucrose/4% PFA, immersed sequentially in 20% sucrose (in 4% PFA) and 30%
sucrose (in 0.1 M phosphate buffer, PB) until sunk, and then transferred to 30% sucrose/PB for more
than 24 h. Brain samples were flash-frozen on dry ice and sectioned at 30 ym on a cryostat (Leica,
SM2010R). For dual-color retrograde virus tracing, brain slices were blocked in 10% donkey serum
and 0.3% Triton X-100 at 37 °C for 1 hr. Slices were then incubated with primary antibodies against
green fluorescent protein (GFP, 1:500, Nacalai, 04404-84, RRID: AB_10013361) and tdTomato (1:500,
OriGene, AB8181-200, RRID: AB_2722750) at room temperature for 2 hr, then 4 °C overnight. Slices
were washed three times using PBS and incubated with Hoechst 33342 (1:1000, Lifetech, H3570), as
well as secondary donkey anti-rat Alexa Fluor 488 antibodies (1:800, Invitrogen, A21208) and donkey
anti-goat Alexa Fluor 568 antibodies (1:800, Invitrogen, A11057) at room temperature for 1 hr. Slices
were washed three times using PBS and coverslipped. Stained slices were imaged with a 4 X objective
with numerical aperture 0.16 as a map, followed by 1.5 ym increment z stacks with a 10 X objective
with numerical aperture 0.4 (FV3000, OLYMPUS). Composite images were automatically stitched in
the X-Y plane using ImageJ/FIJI. RNA FISH experiments were performed using RNA-Scope reagents
and protocols (ACD Bioscience, CA), following instructions for fixed-frozen tissue. For experiments
using RNA-Scope, immunohistochemistry was performed following RNA-Scope. Probes of RNA-
Scope used in this study include, Mm-Syt6 (449641), Mm-Pou3f1-C2 (436421-C2).

scRNA-seq data pre-processing

scRNA-seq data were aligned with the customized mouse reference genome mm10-3.0.0 adding
five projection barcodes as separate genes. Further projection barcode expression was obtained
as described in (Projection barcode library preparation and Projection barcode FASTQ alignment).
scRNA-seq data were demultiplexed using the default parameters of Cellranger software (10x
Genomics, v3.0.2). Obtained filtered transcription count matrix was used for downstream analysis.
For unsorted samples, we used three mice with three GEM wells in one Chromium Single Cell 3' Chip
(v3). Among unsorted samples, sample mouse #1 recovered 8040 cells, 447,984,945 read pairs were
aligned, mean reads per cell is 55,719, median genes per cell is 2382; sample mouse #2 recovered
7443 cells, 399,187,134 read pairs were aligned, mean reads per cell is 53,632, median genes per cell
is 2379; sample mouse #3 recovered 7243 cells, 410,627,696 read pairs were aligned, mean reads
per cell is 56,693, median genes per cell is 2385. For FAC-sorted samples, we used three mice with
one GEM well in one Chromium Single Cell 3' Chip (v3). FAC-sorted sample recovered 2075 cells,
410,434,792 read pairs were aligned, mean reads per cell is 197,799, median genes per cell is 6533.

Projection barcode FASTQ alignment

Demultiplexing of projection index barcode was performed using deMULTIplex R package (v1.0.2)
(https://github.com/chris-mcginnis-ucsf/MULTI-seq, copy archived at meGinnis, 2023) with modifica-
tions. Briefly, we have revised the MULTIseq.align function to count the UMI of each projection barcode
separately. We adopted a minimal Hamming distance of 2 for the MULTIseq.align function to improve
the matching accuracy between detected and designed barcodes. Tag parameters in ‘MULTlIseq.
preProcess’ function were adjusted according to our user-defined position of index barcode length
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and position. Based on our primer design, the expected format is: cell barcode in Read 1 (bases 1-16),
UMI in Read 1 (bases 17-28), and projection barcode in Read 2 (bases 31-45).

scRNA-seq transcriptional expression analysis

The filtered count matrix was analyzed and processed using Seurat and Scanpy, including data
filtering, normalization, highly variable genes selection, scaling, dimension reduction, and clustering
(Stuart et al., 2019; Wolf et al., 2018). First, scRNA-seq data from three samples of unsorted cells
and one sample of sorted EGFP-positive cells were created as Seurat object separately; genes with
less than three counts were removed and cells with fewer than 200 genes detected were removed.
Second, four Seurat objects were merged using the ‘merge’ function in Seurat. Downstream analysis
of merged Seurat objects were as follows: (1) Data filtering: cells with a mitochondrial gene ratio of
greater than 20% were excluded. We kept cells for which we detected between 500 and 8000 genes
(cells with more than 8000 genes detected were considered potential doublets), and between 1000
and 60,000 counts (cells with more than 60,000 counts detected were considered potential doublets).
(2) Data normalization: for each cell, counts were log normalized with the ‘NormalizeData’ function
in Seurat; ‘scale.factor’ was set to 50,000. (3) Highly variable gene selection: 2000 highly variable
genes were calculated using the ‘FindVariableFeatures’ function in Seurat. (4) Data scaling: the Seurat
object was performed using the ‘ScaleData’ function with default parameters. The number of counts,
number of genes, mitochondrial gene ratio, and sorting condition were regressed out in ‘ScaleData’.
(5) Principal component analysis: highly variable genes were used to calculate principal components
in the ‘RunPCA’ function. A total of 100 principal components (PCs) were obtained and stored in
Seurat object for computing neighborhood graphs and uniform manifold approximation and projec-
tion (umap) in following section. (6) Leiden clustering: Seurat object was converted into loom file and
imported by Scanpy. A neighborhood graph of observations was computed by ‘scanpy.pp.neighbors’
function in Scanpy. Then, leiden algorithm was used to cluster cells by ‘scanpy.tl.leiden’ function in
Scanpy. (7) Cluster merge and trimming: The top 200 DEGs for each cluster were calculated using the
‘scanpy.tl.rank_genes_groups’ function in Scanpy using parameters method="'wilcoxon’ and n_genes
= 200. Cluster annotation was performed manually based on previously reported markers of PFC all
cell types, layer, neuron subtypes, and mouse brain atlas (Bhattacherjee et al., 2019; Sorensen et al.,
2015). Cell clusters with similar marker genes were merged into one cluster. Complete marker lists for
all cell types and all excitatory neuron subtypes calculated using ‘FindAllMarkers’ function in Seurat
were provided (see Supplementary files 2 and 3).

Two rounds of clustering were performed. In the first round, we clustered all cells detected by
scRNA-seq to generate major cell type classification, that is excitatory neurons, inhibitory neurons,
astrocytes, oligodendrocytes, endothelial cells, and microglia. Then we use the annotated ‘Excitatory
neuron’ cluster to further cluster excitatory neuronal subtypes. In the 2nd round clustering, we found
several clusters expressed a lower number of counts per cell, a lower number of genes per cell, a
higher percentage of mitochondria genes, and ribosome protein genes as DEGs, which indicates
cell clusters with low cell quality (llicic et al., 2016). We also found several other clusters with a
small number of cells expressing typical markers of non-neuron cells, such as microglia (C1ga, C1gb)
oligodendrocytes (Olig1, Olig2) and endothelial cells (FIt1, Cldn5), which indicated ‘contamination’ of
other cell types mixed in ‘Excitatory neuron’ in the initial clustering results. We then filtered out those
cells from ‘Excitatory neuron’ cluster and redid clustering to generate excitatory neuronal subtypes
(see Supplementary file 1).

Cell type correspondence assessment

To evaluate whether the transcriptional cell types we recovered and annotated correlated with cell
types from spatial transcriptomics of PFC or other scRNA-seq datasets of PFC, we used a previously
reported comparison analysis method (Bhattacherjee et al., 2023). Briefly, we integrated our dataset
and previously reported datasetes (Bhattacherjee et al., 2023, Bhattacherjee et al., 2019, Lui et al.,
2021; Yao et al., 2021) into a harmonized PCA space using the Harmony algorithm (Korsunsky et al.,
2019). We then constructed a K-nearest neighbor (KNN) graph incorporating all cells from the two
datasets. We used the first 30 harmonized principal components as inputs for FindNeighbors function
of Seurat to calculate the KNN. For each cluster of public dataset, we found its 30 nearest neighbor
cells and determined the percentages of those cells belonging to each scRNA-seq cluster of our
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dataset. This created a correspondence matrix showing the transcriptional similarity of each public
dataset cluster to each cluster of our dataset.

In this matrix, rows represent our scRNA-seq clusters, columns represent public dataset clusters,
and the matrix values reflect the degree of similarity between the clusters. This process was recip-
rocally conducted for clusters of our dataset, comparing them to public dataset clusters to form a
secondary correspondence matrix. The mean of these two matrices provided a quantifiable measure
of the similarity between cell clusters identified by our annotation and public dataset annotation.

Binary projection pattern classification

To determine valid barcoded cells, we first calculated the 95th percentile of the total number of
unique molecular identifiers (nUMI) that were mapped with five barcodes, and removed the unusually
high numbers of UMIs, which might indicate doublets or PCR-biased amplification. Next, we used two
set of cells as negative control, that is, cells supposed not to contain projection barcodes. First set of
negative control cells we used is non-neuronal cells classified by coarse clustering based on single-cell
transcriptome (Tervo et al., 2016). Second set of negative control cells we used is 'EGFP-negative’
cells in FAC-sorted dataset. Basically, we calculated the total five projection barcodes counts deter-
mined by cellranger of FAC-sorted dataset, then we assigned the cells with zero projection barcodes
(nUMI of EGFP RNA = 0) counts as 'EGFP-negative’ cells. For two set of negative control cells, we
searched for the value in the empirical cumulative distribution function (ECDF) that is closest to the
99.9th percentile agains each projection barcode, respectively. We selected the higher UMI threshold
from the two given sets of threshold values. A cell is determined to be validly barcoded if the number
of the barcode UMIs within the cell is larger than the threshold. For example, the calculated threshold
of UMIs for barcode 0 (Al) is 28, which means if a cell contains more than 28 UMIs of barcode 0, then
this cell is validly barcoded by Al. UMIs threshold for DMS, 101; for MD, 114; for BLA, 35; for LH,
103. Finally, we dropped UMI counts of determined non-barcoded cells to zero to obtain the index
barcode counts matrix used for downstream analysis. Binary projection patterns were calculated by
five projection targets set intersections of corresponding barcoded cells. Only the top 10 frequent
binary and collateral projection patterns were kept for reliable inference.

Projection pattern-specific DEGs analysis
DEGs were calculated using the default parameters of the ‘FindMarkers’ function in Seurat, except
the MAST algorithm was used to do DE testing. For the DEG volcano plot, the chosen cut-off for
statistical significance was 107'° (Figure 4 and Figure 4—figure supplement 1) or 10~ (Figure 5 and
Figure 5—figure supplement 1) and chosen cut-off for absolute log, fold-change was 0.5. Volcano
plots were implemented using the EnhancedVolcano R package (v1.4.0).

For the DEG heatmap in Figure 5A, the top 10 DEGs ordered by average log, fold-change were
chosen from each binary cluster. The heatmap was implemented using the ‘scanpy.pl.heatmap’ func-
tion in Scanpy.

Joint analysis of MERGE-seq and fMOST projection patterns

Single-neuron projectome data for five PFC target regions (Al, dorsal striatum, BLA, MD, LH) were
extracted from Gao et al., 2022. Projection patterns were quantified by calculating the percentage of
each pattern relative to total patterns. Patterns were categorized by number of targets (1, 2, 3, or >3
targets). MERGE-seq and fMOST projection pattern percentages were statistically compared within
each category using two-sided Wilcoxon tests with Holm correction for multiple comparisons.

Machine learning implementation on projection and transcription data
Naive Bayes was applied to perform a machine learning classification task. We first encoded binary
projection labels for each projection target (barcoded and non-barcoded) and five set of models (Al,
DMS, BLA, LH and MD) were independently trained. We explored a parameter range of number of
the top highly variable genes (HVGs) (2, 5, 10, 20, 50, 100, 200, 300, 400, 500, 1000, 2000, 5000) to fit
the model. A total of 1000 cells were randomly sampled from 8210 excitatory neurons and top HVGs
were selected by default order of results based on ‘FindVariableFeatures’ function of Seurat per trial.
In total, 100 trials were repeated.
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To interpret contribution of important genes for each HVGs-based Naive Bayes model, data matrix
for modeling building was constructed as below: for each projection target, 8210 excitatory neurons
x (normalized expression of the top 50 HVGs + binary projection labels), or 8210 excitatory neuronsx
(normalized expression of 50 random genes +binary projection labels). Each data matrix was shuffled
first and split by training-testing data in a ratio of 0.7. Machine learning workflow was implanted in
pycaret python package (v2.3.4) ‘pycaret.classification’ module. First, for each model, we used ‘setup’
function to initialize the training environment and created the transformation pipeline by setting
‘target’ parameter to column name of input data matrix corresponding to binary projection labels.
Then we used ‘create_model’ function to train and evaluate the performance of a given model by
setting ‘estimator’ parameter to 'nb’ and other parameters by default.

To validate barcode/non-barcode label integrity, we performed 100 iterations of random sampling
1000 cells and swapping barcoded with non-barcoded labels. Prediction accuracy, AUC, and F1 scores
were compared between original models using the top 50 HVGs with true labels versus models with
swapped labels. For each of the 100 trials, 1000 cells were randomly sampled from the 8210 total
cells, and barcoded/non-barcoded labels were swapped to the extent possible based on the smaller
group. Models were built for each target using original or swapped labels and the top 50 HVGs.

We implemented kernel explainer of SHAP python package (v0.40.1) to summarize the effects of
genes. SHAP explainer was created using ‘shap.KernelExplainer(model.predict, training data)’ func-
tion. SHAP values were calculated using ‘explainer.shap_values(testing data)’ function, and plotted
by ‘shap.summary_plot()’ function to create a SHAP beeswarm plot by displaying top 20 features.
Training data and testing data for calculating SHAP values were subsampled with 1500 cells.

Statistical analysis

No statistical methods were used to predetermine sample size. The experiments were not random-
ized and investigators were not blinded to allocation during experiments and outcome assessment.
Two-sided Wilcoxon test with Holm correction for multiple comparisons was performed in Figure 3D,
Figure 6B, and Figure 6—figure supplement 1B. Detailed summary statistics were provided in corre-
sponding Source data files.
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Data availability

Raw gene expression, barcode count matrices and metadata are available from the Gene Expression
Omnibus (GSE210174). The computational code used in the study is available at GitHub (https://github.
com/MichaelPeibo/MERGE-seq-analysis copy archived at Peibo, 2024). The data needed to evaluate
the conclusions in the paper can be downloaded at https://figshare.com/projects/High-throughput_
mapping_of_single-neuron_projection_and_molecular_features_by_retrograde_barcoded_labeling/
150207. All data needed to evaluate the conclusions in the paper are present in the paper and/or the
Supplementary Materials and source data files.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Xu P, PengJ, Yuan T, 2024
ChenZ, Wu Z, Luo
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of single-neuron projection nlm.nih.gov/geo/

NCBI Gene Expression
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and molecular features
by retrograde barcoded
labeling

query/acc.cgi?acc=
GSE210174

Peibo X 2022 figure1&S1 https://doi.org/10. figshare, 10.6084/
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21298842.v4
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier
Bhattacherjee A, 2019 Cell type-specific https://www.ncbi. NCBI Gene Expression
Djekidel MN, Chen R, transcriptional programs ~ nlm.nih.gov/geo/ Omnibus, GSE124952
Chen W, Tuesta LM, in mouse prefrontal cortex query/acc.cgi?acc=
Zhang Y during adolescence and GSE124952
addiction
Lui JH, Luo L 2020 Single cell RNAseq of https://www.ncbi. NCBI Gene Expression
Rbpdcre+ neurons from nlm.nih.gov/geo/ Omnibus, GSE161936
prefrontal cortex query/acc.cgi?acc=
GSE161936
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