Figure 3-source data 7. Published admixture graphs from Librado et al. (2019) and alternative graphs found with findGraphs (10 populations, 3 to 5 admixture events) for the modified group composition and using the updated algorithm for calculating f-statistics. The graphs were also re-fitted on the original set of SNPs/individuals and using the original algorithm for calculating f statistics. Selected alternative graphs found with findGraphs when more admixture events were allowed (from 6 to 9) are also shown. Model parameters (graph edges) that were inferred to be unidentifiable are plotted in red.
a, published model, 3 admixture events

claim 1 yes claim 2 yes claim clas clim 4 yes claim ces	claim 1 yes claim 2 yes claim 3 yes claim 4 yes claim 5 yes
The modified set of individuals and the corrected algorithm for calculating $f_{3}-$ statistics ($1,767,419$ variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating f_{3} statistics ($6,343,116$ variable site with no missing data at the group level)

Claims by Librado et al. 2021 relying on the admixture graph:

1) NEO-ANA-related admixture is absent in DOM2;
2) $D O M 2$ and C-PONT are sister groups;
3) there is no gene flow connecting the CWC and the cluster associated with Yamnaya horses and horses of the later Sintashta culture whose ancestry is maximized in the Western Steppe (DOM2, C-PONT, TURG);
4) there was a gene flow from a deep-branching ghost group to NEO-ANA;
5) Tarpan is a mixture of a CWC-related and a DOM2-related lineage.
b, an alternative model with 3 admixture events fitting significantly better than the published one

claim 1 yes claim 2 yes claim 3 yes claim 4 yes claim 5 no	claim 1 yes claim 2 yes claim 3 yes claim 4 yes claim 5 no
The modified set of individuals and the corrected algorithm for calculating $f_{3}-$ statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)
$L L=508.3, W R=16.99$, admix $=3$	$L L=773.9, W R=19.85, \text { admix }=3$

c, published model, 4 admixture events

claim 1 yes claim 2 yes claim 3 yes claim 4 yes claim 5 yes	claim 1 yes claim 2 yes claim $\mathbf{3}$ yes claim 4 yes claim 5 yes
The modified set of individuals and the corrected algorithm for calculating $f_{3}-$ statistics ($1,767,419$ variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating f_{3} statistics ($6,343,116$ variable site with no missing data at the group level)

d, an alternative model with 4 admixture events fitting not significantly worse than the published one

claim 1 yes claim 2 yes claim 3 yes claim 4 yes claim 5 yes	claim 1 yes claim 2 yes claim $\mathbf{3}$ yes claim 4 yes claim 5 yes
The modified set of individuals and the corrected algorithm for calculating $f_{3}-$ statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)

e, published model, 5 admixture events

$\begin{aligned} & \begin{array}{l} \text { claim } 1 \\ \text { claim } 2 \\ \text { claim } \\ \text { clas } \\ \text { claim } \end{array} \text { yes } \\ & \text { clas } \\ & \text { claim } 5 \\ & \hline \end{aligned}$	claim $\mathbf{1}$ yes claim $\mathbf{2}$ yes claim $\mathbf{3}$ yes claim $\mathbf{4}$ yes claim $\mathbf{5}$ yes
The modified set of individuals and the corrected algorithm for calculating $f_{3^{-}}$ statistics ($1,767,419$ variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating f_{3-} statistics ($6,343,116$ variable site with no missing data at the group level)

f, an alternative model with 5 admixture events fitting not significantly worse than the published one

claim 1 yes claim 2 yes claim 4 yes claim 5 yes	claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 ye
The modified set of individuals and the corrected algorithm for calculating $f_{3}-$ statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)

g, selected models with 6 admixture events

claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 yes	claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 yes
The modified set of individuals and the corrected algorithm for calculating $f_{3^{-}}$ statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)

claim 1 no claim 2 yes claim 3 no claim 4 no claim 5 yes	claim 1 no claim 2 yes claim 3 no claim 4 no claim 5 yes
The modified set of individuals and the corrected algorithm for calculating f_{3} statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating f_{3} statistics ($6,343,116$ variable site with no missing data at the group level)

h, selected models with 7 admixture events (all plausible models with WR < 5 SE)

claim 1 yes claim $\mathbf{2}$ yes claim 3 no claim 4 ye claim 5 no	claim 1 yes claim 2 yes claim 3 no claim 4 ye claim 5 no
The modified set of individuals and the corrected algorithm for calculating f_{3} statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)
$L L=46.6, W R=4.1, a d m i x=7$	

claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 yes	claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 yes
The modified set of individuals and the corrected algorithm for calculating $f_{3}-$ statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating f_{3} statistics ($6,343,116$ variable site with no missing data at the group level)
$L L=36, W R=4.12$, admix $=7$	$L L=45.9, W R=4.48, \operatorname{admix}=7$

i, selected models with 7 admixture events (all plausible models with WR < 5 SE)

claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 yes	claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 yes
The modified set of individuals and the corrected algorithm for calculating $f_{3^{-}}$ statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)

	claim 1 no claim 2 yes claim 3 no claim 4 yes claim 5 no
The modified set of individuals and the corrected algorithm for calculating f_{3} statistics ($1,767,419$ variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating f_{3} statistics ($6,343,116$ variable site with no missing data at the group level)

j, selected models with 8 admixture events (all plausible models with WR < 4 SE)

claim 1 no claim 3 no claim 4 y	claim 1 no claim 3 no claim 4 y claim 5 no
The modified set of individuals and the corrected algorithm for calculating $f_{3^{-}}$ statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)

claim 1 no claim 2 yes claim 3 yes claim 4 yes claim 5 no	claim 1 no claim 2 yes claim 3 yes claim 4 yes claim 5 no
The modified set of individuals and the corrected algorithm for calculating f_{3} statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating f_{3} statistics ($6,343,116$ variable site with no missing data at the group level)

k, selected models with 8 admixture events (all plausible models with WR < 4 SE)

claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 yes	claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 yes
The modified set of individuals and the corrected algorithm for calculating $f_{3}-$ statistics ($1,767,419$ variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)
$L L=37.6, W R=3.81$, admix $=8$	

claim 1 yes claim 2 yes claim $\mathbf{3}$ yes claim 4 claim 5	claim 1 yes claim 2 yes claim 3 yes claim 5 yes
The modified set of individuals and the corrected algorithm for calculating $f_{3}-$ statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)

I, selected models with 8 admixture events (all plausible models with WR < 4 SE)

claim 1 yes claim yes claim 3 no clam clas claim 5 yes	claim 1 yes claim yes claim 3 no clam clas claim 5 yes
The modified set of individuals and the corrected algorithm for calculating f_{3} statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating f_{3} statistics ($6,343,116$ variable site with no missing data at the group level)

\mathbf{m}, selected models with 9 admixture events (all plausible models with $\mathrm{WR}<4 \mathrm{SE}$)

n, selected models with 9 admixture events (all plausible models with WR < 4 SE)

The modified set of individuals and the corrected algorithm for calculating f_{3} statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)

claim 1 no claim 2 yes claim 3 no claim 5 no	claim 1 no claim 2 yes claim 3 no claim 5 no
The modified set of individuals and the corrected algorithm for calculating f_{3} statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating f_{3} statistics ($6,343,116$ variable site with no missing data at the group level)
$L L=26.5, W R=3.38$, admix $=9$	$\mathrm{LL}=56.8, \mathrm{WR}=5.64$, admix $=9$

o, selected models with 9 admixture events (all plausible models with WR < 4 SE)

The modified set of individuals and the corrected algorithm for calculating f_{3} statistics ($1,767,419$ variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics (6,343,116 variable site with no missing data at the group level)

p, selected models with 9 admixture events (all plausible models with WR < 4 SE)

The modified set of individuals and the corrected algorithm for calculating f_{3} statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3^{-}}$ statistics ($6,343,116$ variable site with no missing data at the group level)

claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 yes	claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 yes
The modified set of individuals and the corrected algorithm for calculating $f_{3}-$ statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)

q, selected models with 9 admixture events (all plausible models with WR < 4 SE)

claim $\mathbf{1}$ yes claim $\mathbf{2}$ yes claim $\mathbf{3}$ no claim 4 yes claim 5 no	claim 1 yes claim 2 yes claim 3 no claim 4 yes claim 5 no
The modified set of individuals and the corrected algorithm for calculating $f_{3^{-}}$ statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating f_{3-} statistics ($6,343,116$ variable site with no missing data at the group level)
$L L=31.3, W R=3.78$, admix $=9$	$\mathrm{LL}=66, \mathrm{WR}=5.61$, admix $=9$

\mathbf{r}, selected models with 9 admixture events (all plausible models with $\mathrm{WR}<4 \mathrm{SE}$)

claim 1 no claim 2 no claim 3 no $\begin{array}{ll}\text { claim } 4 & \text { no } \\ \text { claim } 5 & \text { yes }\end{array}$	claim 1 no claim 2 no claim 3 no $\begin{array}{ll}\text { claim } 4 & \text { no } \\ \text { claim } 5 & \text { yes }\end{array}$
The modified set of individuals and the corrected algorithm for calculating $f_{3}-$ statistics (1,767,419 variable site with no missing data at the group level)	The modified set of individuals and the original algorithm for calculating $f_{3}-$ statistics ($6,343,116$ variable site with no missing data at the group level)
$L L=38.1, W R=3.9$, admix $=9$	$\mathrm{LL}=88.8, \mathrm{WR}=7.42$, admix $=9$

