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Abstract Most cases of preterm labor have unknown cause, and the burden of preterm birth 
is immense. Placental aging has been proposed to promote labor onset, but specific mechanisms 
remain elusive. We report findings stemming from unbiased transcriptomic analysis of mouse 
placenta, which revealed that hypoxia- inducible factor 1 (HIF- 1) stabilization is a hallmark of 
advanced gestational timepoints, accompanied by mitochondrial dysregulation and cellular senes-
cence; we detected similar effects in aging human placenta. In parallel in primary mouse tropho-
blasts and human choriocarcinoma cells, we modeled HIF- 1 induction and demonstrated resultant 
mitochondrial dysfunction and cellular senescence. Transcriptomic analysis revealed that HIF- 1 stabi-
lization recapitulated gene signatures observed in aged placenta. Further, conditioned media from 
trophoblasts following HIF- 1 induction promoted contractility in immortalized uterine myocytes, 
suggesting a mechanism by which the aging placenta may drive the transition from uterine quies-
cence to contractility at the onset of labor. Finally, pharmacological induction of HIF- 1 via intraper-
itoneal administration of dimethyloxalyl glycine (DMOG) to pregnant mice caused preterm labor. 
These results provide clear evidence for placental aging in normal pregnancy, and demonstrate how 
HIF- 1 signaling in late gestation may be a causal determinant of the mitochondrial dysfunction and 
senescence observed within the trophoblast as well as a trigger for uterine contraction.

eLife assessment
This valuable study provides insights into mechanisms of placental aging and its relationship to 
labor initiation. The authors provide solid evidence and have thoroughly investigated the molec-
ular characteristics of normal placental aging using in vivo and in vitro model systems and human 
placental tissue analysis to corroborate their findings. This work contributes to existing work in 
placental aging and preterm birth and will be of interest to reproductive scientists.

Introduction
Preterm birth (birth prior to 37 completed weeks of gestation) is a massive global health burden: it 
leads all causes of death in neonates and children to the age of 5 worldwide (Liu et al., 2015), and 
survivors face a broad array of short- and long- term health challenges (Blencowe et al., 2013). Most 
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preterm births in the United States are due to spontaneous onset of preterm labor, with unknown 
underlying cause (Goldenberg et al., 2008). Preterm labor has proven difficult to treat; there currently 
exist no highly effective interventions that prevent spontaneous preterm birth (SPTB) (Smith et al., 
2009; Romero et al., 2014). The dearth of effective treatments stems from our lack of understanding 
about the pathways regulating spontaneous onset of labor, both preterm and at term.

The placenta defines the maternal- fetal interface; it is capable of profoundly influencing both 
maternal and fetal physiology (Kiserud et al., 2006; Shaut et al., 2008; Lykke et al., 2009), and it is 
subject to remodeling in response to its local environment (Genbacev et al., 1996). Placental disease 
is known to contribute to other disorders of pregnancy including preeclampsia (Plaks et al., 2013; 
Li et al., 2016; Romero and Chaiworapongsa, 2013) and intrauterine growth restriction (McIntyre 
et al., 2020; Xu et al., 2021) and there is increasing interest in its potential role as a driver of preterm 
labor (Koga et al., 2009; Pique- Regi et al., 2019; Beharier et al., 2020).

Recent studies have found that placentas from pregnancies that resulted in SPTB have unique 
metabolomic and transcriptomic signatures from term counterparts (Elshenawy et al., 2020; Lien 
et al., 2021; Paquette et al., 2018). The reported differences broadly implicate the stress response, 
inflammation, and various metabolic pathways. It has been challenging to narrow these findings or 
translate them for mechanistic relevance, given the lack of suitable culture systems that integrate 
experimental manipulation of placental cells with the uterine myocyte response. Furthermore, inter-
pretation studies profiling human placentas from SPTB is sharply limited by the lack of gestational 
age- matched controls. Without these, the effects of gestational age cannot be distinguished from 
factors driving premature labor. The placenta encounters a dynamic local environment across its life-
time and faces evolving needs of the growing fetus, so the context of normal gestational age- related 
changes is vital for the correct interpretation of molecular characteristics distinguishing an SPTB 
placenta. Defining the molecular- level changes in the healthy placenta as it approaches the end of 
gestation, and their potential effects on the timing of labor onset would therefore address important 
knowledge gaps.

Here, we report findings from unbiased transcriptomic analysis of healthy mouse placenta, which 
highlighted hypoxia- inducible factor 1 (HIF- 1) signaling as a hallmark of advanced gestational time-
points, accompanied by mitochondrial dysfunction and cellular senescence. We detected some 
similar effects in human placentas, then modeled HIF- 1 induction with two different stimuli and in 
two trophoblast cell models, demonstrating that mitochondrial dysfunction and cellular senescence 
arise secondary to HIF- 1 stabilization. Whole transcriptome analysis revealed that upon HIF- 1 stabili-
zation, a trophoblast cell line acquires signatures that recapitulate the aged placenta. Finally, we show 
that conditioned media from these cells is sufficient to potentiate a contractile phenotype in uterine 
myocytes, implicating a mechanism by which the aging placenta may help drive the transition from 
uterine quiescence to contractility at the onset of labor. This mechanism is further reinforced by an in 
vivo model in which administration of the prolyl hydroxylase inhibitor dimethyloxalyl glycine (DMOG) 
to pregnant mice induces HIF- 1 signaling in the placenta and causes SPTB.

Results
To illuminate gestational age- dependent transcriptional changes in across a healthy pregnancy, we 
collected whole mouse placentas at 48 hr intervals spanning embryonic day 13.5–17.5 (e13.5–e17.5) 
and quantified mRNA and protein targets that emerged from network analysis of an independently 
published microarray dataset from healthy mouse pregnancies. Upon searching Gene Expression 
Omnibus (GEO) (Edgar et al., 2002) datasets for ‘placenta AND transcriptome’, we were surprised 
that among 326 results, only 9 included data from normal placenta across a series of gestational time-
points extending to late pregnancy (Knox and Baker, 2008; Zhou et al., 2009; Loux et al., 2019; 
Soncin et al., 2018; Maeda et al., 2019; Morey et al., 2021; Steinhauser et al., 2021; Figure 1). We 
applied weighted gene correlation network analysis (WGCNA) to a microarray study of mouse placenta 
(Knox and Baker, 2008) (GEO accession GSE11224) spanning e8.5 to postnatal day 0 (p0) to assess 
the mRNA signature of the aging mouse placenta, using the dataset with the best temporal resolu-
tion across gestation. Distinct clusters emerged, each reflecting a group of genes whose expression 
changes across timepoints in a unified way (Figure 2A; accompanying statistics available at Mendeley 
Data, doi: 10.17632/g6vrw9jjn4.1). Genes in the ‘blue’ cluster showed increasingly positive correla-
tion with advancing gestational timepoints; KEGG functional pathways significantly overrepresented 
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among these genes include HIF- 1 signaling, AMPK signaling, and cellular senescence. Genes in the 
‘turquoise’ cluster showed increasingly negative correlation to advancing timepoints; KEGG functional 
pathways significantly overrepresented among these genes include the citric acid cycle, mitochondrial 
complex I biogenesis, and the mitotic cell cycle.

To validate the dynamic pathway activity suggested by the WGCNA, we used qPCR to quantify 
mRNA expression of the senescence marker Glb1 (Lee et al., 2006) in our mouse placentas, which 
mirrored the WGCNA finding that cellular senescence in the placenta peaks in the final days of gesta-
tion (Figure 2B). HIF- 1 protein abundance was found to peak at e17.5 (Figure 2C) and HIF- 1 targets 
Hk2 and Slc2a1 likewise confirmed increasing HIF- 1 activation with advancing gestational age through 
e17.5 (Figure 2D). Of note, a modest but significant fetal sex- dependent difference in HIF- 1 target 
expression (but not Glb1) was also observed across timepoints (Figure 2—figure supplement 1). To 
assess changes in mitochondrial abundance across gestation, we measured COX IV protein expression 
and found it declined progressively across mouse gestation (Figure 2E) as predicted by the WGCNA.

Figure 1. Systematic search flow for placental transcriptomics datasets. 326 Gene Expression Omnibus (GEO) datasets were identified by the search 
terms ‘placenta’ and ‘transcriptome’; nine met criteria for containing placental transcriptomic data representing normal physiology at a range of 
gestational timepoints spanning through the final 1/3 of pregnancy. Dataset selected for further analysis in yellow.

https://doi.org/10.7554/eLife.85597
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Figure 2. Mouse placental aging is characterized by cellular senescence, hypoxia- inducible factor 1 (HIF- 1) signaling, and mitochondrial dysregulation. 
Weighted gene correlation network analysis (WGCNA) yielded 20 gene clusters. Functional pathways overrepresented in clusters found to increase 
(blue) and decrease (turquoise) across gestation highlight enhanced cellular senescence, increased HIF- 1 signaling, and decreased mitochondrial 
synthesis and respiration late in pregnancy (A). mRNA expression of senescence marker Glb1 peaks at e17.5 (B; one- way ANOVA p=0.0048). HIF- 1 
protein abundance is higher at e17.5 versus e13.5 and e15.5 (C; one- way ANOVA p=0.019), as is expression of HIF- 1 targets Hk2 and Slc2a1 (D; two- 
way ANOVA p<0.0001 for gestational age factor). (See Figure 2—figure supplement 1 for analysis of gene expression changes across timepoints by 
placental sex.) Mitochondrial abundance, reflected by COX IV protein, decreases with gestational age (E, one- way ANOVA p=0.0064), and mitochondrial 
DNA lesion rate peaks at e17.5 in the regions of the D- loop (one- way ANOVA p=0.0001), COII/ATPase6 (p=0.0027), and ND5 (p=0.036) (F). (B–F) Each 
data point represents a biological replicate (e.g. RNA, protein, or DNA extracted from an individual placenta, in turn collected from one of 2–4 pregnant 
dams per group). Data normalized to mean at e13.5. See Figure 2—source data 1 for uncropped blots.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Uncropped, unedited blots from 2c (left) and 2e (right).

Figure supplement 1. Gestational age- dependent variability in expression of hypoxia- inducible factor 1 (Hif- 1) target Slc2a1, but not Hk2, is affected by 
placental sex.

https://doi.org/10.7554/eLife.85597
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Having observed a pattern of declining mitochondrial abundance in the placenta with advancing 
gestational age, we next investigated the mitochondrial DNA (mtDNA) lesion rate. The mitochondrial 
genome is particularly vulnerable to reactive oxygen species (ROS) insults, and mtDNA damage partic-
ipates in a vicious cycle with mitochondrial dysfunction and further ROS production; these effects are 
observed in a number of age- related diseases in various tissues (Jang et al., 2018) and may drive 
age- associated loss of function (Trifunovic et  al., 2004). We employed a semi- long run real- time 
qPCR approach (Rothfuss et al., 2010) to quantify relative mtDNA lesion rates in mouse placentas, 
normalized to e13.5. There was a measurable increase in the mtDNA lesion rate in the D- loop and 
COII/ATPase 6 regions of the mitochondrial genome at e17.5 (Figure 2F). Together, these results 
reflect a series of coordinated changes as gestation progresses—namely HIF- 1 signaling induction, 
decreasing mitochondrial abundance, accumulating mtDNA damage, and escalating cellular senes-
cence—confirming the patterns we discovered through reanalysis of published transcriptomic data.

We next probed human placentas for the same gestational age- dependent changes. Studying 
normal human placenta at a range of gestational ages beyond the second trimester is challenging, as 
placental sampling is usually only possible after delivery, and most deliveries associated with healthy 
pregnancies occur at term. We therefore sought to capitalize on rare exceptions such as cases of 
placenta previa, vasa previa, or uterine dehiscence, where iatrogenic preterm delivery is indicated for 
reasons unrelated to placental health. With an objective to compare term versus preterm placentas, 
yet minimize confounding factors that accompany labor and disease states that could be expected 
to affect placental health, we designed a case- control study using the following exclusion criteria: 
onset of labor prior to delivery (spontaneous or induced); maternal history of hypertension, asthma, 
diabetes, or autoimmune disease; pregnancy complicated by gestational hypertension, gestational 
diabetes, preeclampsia, multiples, fetal anomalies, placenta accreta spectrum disorder, or smoking 
during pregnancy.

Placentas from 9 cesarean deliveries occurring before 35 weeks’ gestation and 11 cesarean deliv-
eries occurring after 39 weeks’ gestation were studied (Table 1). Maternal characteristics including 
race, nulliparity, and obesity were not statistically different across the early versus late groups; there 
was a small but statistically significant difference in maternal age at the time of delivery (31.9±0.9 years 
versus 36.2±1.0 for early gestation versus late, p=0.008). The distribution of fetal sex was not different 
among groups.

Table 1. Maternal and fetal characteristics.
Data summarized by mean ± SEM or n (%). p- Values calculated via t- test (continuous variables) or 
Chi- square contingency table (categorical variables).

<35 weeks >39 weeks p- Value

n=9 n=11

Gestational age at delivery 
(weeks)

34.0±0.3 39.5±0.1 <0.0001

Maternal age (years) 31.9±0.9 36.2±1.0 0.008

Maternal BMI >40 1 (11) 0 (0) 0.26

Maternal race

White 7 (78) 9 (82) 0.13

Black 2 (22) 0 (0)

Asian 0 (0) 2 (18)

Primiparous 4 (44) 4 (36) 0.71

Female neonate 5 (55) 8 (73) 0.42

Indication for delivery Placenta previa (3) Scheduled repeat (7)

Vasa previa (4) Breech presentation (3)

Thinned lower uterine 
segment (2)

Elective (1)

https://doi.org/10.7554/eLife.85597
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qPCR revealed a trend toward increased mRNA expression of GLB1 and HIF- 1 targets HK2 and 
SLC2A1 in the >39- week cohort (Figure 3A), consistent with the gestational age- dependent effect 
seen in mouse placenta. We also examined mitochondrial abundance in the two groups and found 
that mitochondrial RNA transcripts ATP6 and COX2 were significantly decreased (Figure  3B) and 
COX IV protein abundance was lower at the later timepoint (Figure 3C), mirroring the mouse findings. 
Of note, power calculation to reject the null hypothesis for difference between means for some of 
these measurements (with α=0.05 and β=0.2) suggests a sample size of greater than 35 per group is 
required, assuming a similar effect size as seen in mouse data (e.g. expecting GLB1 fold change [FC] 
difference of 40% across groups), and greater variability than seen for mouse data (e.g. expected 
standard deviation of GLB1 FC equal to 0.6, vs 0.3 in mice). Practical constraints, especially given our 
strict exclusion criteria, make a study of this size unfeasible; nonetheless, we have included analysis of 
20 human placentas here in recognition of the vital importance of translating mouse findings to human 
biology, even preliminarily. The data should be interpreted in the context of these statistical realities.

The co- appearance of cellular senescence, HIF- 1 signaling, and mitochondrial dysregulation in the 
placenta as it approaches the end of gestation led us to hypothesize that in aging placental cells, 
HIF- 1 induction could be upstream of mitochondrial dysregulation and cellular senescence, as is seen 
in other systems in emerging aging research (Bratic and Larsson, 2013; Wiley and Campisi, 2016; 
Wiley and Campisi, 2021). To test this hypothesis, we established a pharmacological model of HIF- 1 
induction in primary mouse trophoblasts using cobalt chloride, a prolyl hydroxylase inhibitor that 
stabilizes HIF- 1α (Maxwell et al., 1999; Jaakkola et al., 2001) and has been widely used to model 
hypoxia. After 6 hr of CoCl2 exposure, we confirmed HIF- 1 protein accumulation in cultured tropho-
blasts (Figure 4A). After 48 hr of CoCl2 exposure, mouse trophoblasts exhibit decreased mitochon-
drial abundance, by Cox2 mRNA expression (Figure 4B) and Cox IV protein abundance (Figure 4C), 
and an increase in senescence- associated beta galactosidase (SA-βGal), encoded by Glb1 (Figure 4D) 
and detected as a blue stain in an X- gal assay for senescence (Figure 4E). These findings suggest that 
HIF- 1 stabilization induces subsequent mitochondrial dysfunction and senescence in trophoblasts.

Primary trophoblasts undergo spontaneous syncytialization in culture, a phenomenon that limits the 
duration of study and may also confound the interpretation of experimental changes in key metabolic 
factors (Nursalim et al., 2020). We therefore also modeled HIF- 1 activation in JAR cells, a tropho-
blast cell line that does not undergo syncytialization (Rothbauer et al., 2017). Consistent with our 
results in primary cells, we found that HIF- 1 is stabilized in CoCl2- treated JAR cells (Figure 5A), and 
after 6 days of exposure, mtDNA and protein abundance declined (Figure 5B–C). We further defined 
the time course of mitochondrial downregulation: by 72 hr the effect began to appear (Figure 5—
figure supplement 1). Furthermore, at the 6- day timepoint we found that CoCl2 exposure leads to 
accumulation of mitochondrial ROS, as measured by mtSOX, a fluorescent mt- superoxide indicator 
dye (Figure 5D), and impairs mitochondrial polarization, as measured by tetramethylrhodamine ethyl 
ester (TMRE) staining, a cell- permeant fluorescent dye that accumulates in polarized mitochondria 
(Figure 5E). Additionally, we observed pronounced signs of cellular senescence: morphological hall-
marks (cellular swelling) and β-galactosidase overexpression (Figure 5F); growth arrest which persists 
for days after removal of the HIF- 1 stabilizing compound (Figure 5G); and a senescence- associated 
secretory phenotype (SASP, Figure  5H) reflected by increases in mRNA expression of the genes 
encoding VEGF, TNFα, and IL- 1α and a decrease in mRNA expression of the gene encoding anti- 
inflammatory cytokine IL- 10.

We conducted additional studies to confirm that cell death was not a primary contributor to the 
lack of proliferation. Propidium iodide staining with quantitative fluorescence cytometry indicated that 
CoCl2 treatment only increased cell death by 0–3% (Figure 5—figure supplement 2). Importantly, 
cells remained adherent and continued to acidify culture medium beyond 14 days of CoCl2 exposure, 
providing confidence that HIF- 1 stabilization induces a phenotype characterized by predominantly 
viable cells that are no longer proliferating, namely cellular senescence. Finally, to assess whether 
the effects we observed were attributable to HIF- 1 stabilization and not an off- target effect of CoCl2, 
we also evaluated an alternative prolyl hydroxylase inhibitor, dimethyloxalylglycine (DMOG) (Epstein 
et al., 2001), and found similar effects on HIF- 1, mitochondrial abundance and cellular senescence 
(Figure 5—figure supplement 3).

To determine if other features of the aged placenta phenotype were recapitulated in this model, 
we performed whole transcriptome analysis via RNA- Seq. Differential expression (log2  FC>1; 

https://doi.org/10.7554/eLife.85597
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Figure 3. Senescence, hypoxia- inducible factor 1 (HIF- 1) signaling, and decreased mitochondrial abundance 
characterize late- gestation human placenta. mRNA expression of senescence marker GLB1 and HIF- 1 targets HK2 
and SLC2A1 trends higher in placentas from >39- week cohort vs <35- week cohort (A; two- way ANOVA gestational 
age factor p=0.057). Mitochondrial abundance, reflected by mitochondrial genes ATP6 and COX2 (B; two- way 
ANOVA gestational age factor p=0.042) and COX IV protein (C; p=0.0036) decreases with advancing gestational 
age. Each data point represents a biological replicate (RNA or protein isolated from an individual placenta). Data 
normalized to mean in <35- week group. See Figure 3—source data 1 for uncropped blots.

The online version of this article includes the following source data for figure 3:

Source data 1. Uncropped, unedited blots from Figure 3.

https://doi.org/10.7554/eLife.85597
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false discovery rate [FDR] <0.05) was found for 2188 upregulated and 1389 downregulated genes 
(Figure  5I). Gene set enrichment analysis revealed that chemical hypoxia led to upregulation of 
inflammatory signaling, and downregulation of the TCA cycle, mitochondrial biogenesis, and respi-
ratory electron transport. These data therefore recapitulated metabolic patterns that emerged from 
time course transcriptomic analysis of intact placentas (Figure 2A).

The onset of labor is accompanied by a transformation of the uterus from quiescence into a distinct 
physiologic state in which it generates powerful, coordinated contractions. This phenotypic change 
is characterized by upregulation of a cadre of contraction- associated proteins (CAPs), notably cyclo-
oxygenase- 2 (COX- 2, encoded by PTGS2), prostaglandin F2α receptor (encoded by PTGFR), inter-
leukin- 6 (IL- 6), and connexin 43 (Cx43, encoded by GJA1). Phenotypic switching can be modeled in 
primary and immortalized uterine myocytes upon stimulation with inflammatory mediators such as 
IL- 1β, PGF2α, and thrombin (Nishimura et al., 2020; Rauk and Chiao, 2000; Leimert et al., 2019).

To test whether primary placental metabolic disruptions could crosstalk with uterine myocytes to 
trigger the contractile phenotype, we collected conditioned media from our JAR cell model of HIF- 
1- driven senescence and measured the effect on expression of CAPs in uterine myocytes (hTERT- HM 
cells). We observed a robust and specific effect: co- stimulation of uterine myocytes with IL- 1β plus 
conditioned media from JAR cells treated with CoCl2 (but not from untreated JAR cells) potentiated 
the induction of PTGS2, GJA1, PTGFR, and IL6 mRNA expression (Figure 6A–D). We next employed 
a collagen lattice assay previously described for assessing contractility of myometrial cells in vitro 
(Nishimura et  al., 2020; Devost and Zingg, 2007), and demonstrated that myocyte contraction 
is augmented upon exposure to conditioned media from JAR cells treated with CoCl2 but not from 

Figure 4. Short- term hypoxia- inducible factor 1 (HIF- 1) stabilization in primary mouse trophoblasts leads to 
decreased mitochondrial abundance and cellular senescence. HIF- 1 is detected in cultured trophoblasts exposed 
to CoCl2 (A). After 48 hr of CoCl2 exposure, trophoblasts exhibit decreased mitochondrial abundance reflected by 
Cox2 mRNA expression levels (B; p=0.014) and COX IV protein levels (C; p=0.0047). Senescence marker Glb1 is 
increased (D; p=0.038) and senescence- associated beta galactosidase (SA-βGal) accumulation is noted by X- gal 
assay (E; p=0.012). Each data point represents a technical replicate (e.g. protein, RNA, or β-Gal measured from an 
individual well of cells grown in treated or control condition). Data normalized to mean of control treatment group. 
See Figure 4—source data 1 for uncropped blots.

The online version of this article includes the following source data for figure 4:

Source data 1. Uncropped, unedited blots from 4a (left) and 4c (right).

https://doi.org/10.7554/eLife.85597
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Figure 5. Long- term hypoxia- inducible factor 1 (HIF- 1) stabilization in JAR cells leads to mitochondrial dysfunction, cellular senescence, and 
metabolic reprogramming. HIF- 1 is stabilized at 6- day timepoint of CoCl2 exposure (A). After 6 days, mitochondrial abundance is decreased as 
reflected by a drop in the mitochondrial:nuclear DNA copy number (B) and a decrease in COX IV protein (C). (See Figure 5—figure supplement 1 
for timecourse of declining mitochondrial abundance.) Cells also exhibit augmented signs of mitochondrial dysfunction via MtSox (D; p=0.0003) and 
tetramethylrhodamine ethyl ester (TMRE) staining (E; two- way ANOVA CoCl2 factor p<0.0001). Senescence- associated beta galactosidase (SA-βGal) 
staining reflects a high proportion of senescent cells (F; p<0.0001) and growth arrest is confirmed by cell counting following a 6- day pre- treatment with 
CoCl2 (G; two- way ANOVA p<0.0001 for interaction of CoCl2 factor with time). (See Figure 5—figure supplement 2 for assessment of cell death by 
propidium iodide staining.) mRNA expression of senescence- associated secretory phenotype (SASP) candidates VEGF, TNFA, IL1A, and IL10 is altered 
after CoCl2 exposure (H; *, adjusted p<0.01). RNA- Seq revealed upregulation of 2188 and downregulation of 1389 genes (I; genes with |log2(FC)|>1 and 
-log(FDR)>2 indicated in red) after CoCl2 treatment, with gene set enrichment analysis revealing several pathways significantly dysregulated after CoCl2 
treatment recapitulating changes seen in transcriptomic analysis of late versus early gestation mouse placenta. Scale marker = 200 μm. FCCP = carbonyl 
cyanide 4- (trifluoromethoxy) phenylhydrazone, an ionophore uncoupler of oxidative phosphorylation which depolarizes mt membrane potential. See 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.85597
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untreated JAR cells (Figure 6E). These transcriptional and functional results collectively demonstrate 
that uterine myocytes are responsive to the secretome of JAR cells driven to senescence via HIF- 1 
induction.

To test whether HIF- 1 induction drives labor onset in vivo, we administered DMOG intraperito-
neally to pregnant mice on gestational day e16.5. Analysis of placentas recovered 12 hr following 
injection indicated that HIF- 1 protein is stabilized in placenta following maternal DMOG injection 
(Figure  7A), and transcription of HIF- 1 target genes Hk2 and Slc2a1 was significantly increased 
(Figure 7B). Following injection of DMOG, gestational length was significantly shortened compared 
to injection of vehicle alone (Figure 7C–D).

Discussion
The subject of whether the healthy placenta undergoes aging (with accompanying dysfunction) 
within its 40- week lifespan has been of great interest and debate for many years. Age- related func-
tional decline is a near- universal phenomenon affecting many tissues, but the underlying biochemical 
driving factors vary widely depending on the context of cell type and local stressors. Mechanisms well 
described in other tissues are rooted in genomic instability, mitochondrial dysfunction and oxidative 
stress, nutrient deprivation and metabolic insufficiency, or loss of proteostasis (Campisi et al., 2019). 
While characterization of the placenta as an aging organ appeared in the literature beginning nearly 
50 years ago (Rosso, 1976; Martin and Spicer, 1973), a counter- argument has been offered that 
there is no logical reason for the placenta to undergo accelerated aging relative to the fetus, since 
both share the same genes and environment (Fox, 1997). A third viewpoint proposes that aging in 
the placenta is indicative of a disease state—not normal progression of healthy gestation—one usually 
reflective of maladaptive responses to oxidative stress (Sultana et al., 2017; Cindrova- Davies et al., 
2018; Biron- Shental et al., 2010; Chen et al., 2011; Maiti et al., 2017). Finally, recent reports have 
noted prominent signs of aging in another fetally derived tissue, the chorioamniotic membranes, 
in healthy pregnancies (Bonney et al., 2016), and have linked aging of the fetal membranes to the 
onset of labor (Menon et al., 2016; Menon et al., 2019). The results presented here span mouse and 
human placentas to provide evidence for placental aging in normal pregnancy. Mechanistic dissec-
tion of this phenomenon further demonstrates how hypoxia in late gestation may be both a causal 
determinant of mitochondrial dysfunction and senescence observed within the trophoblast as well as 
a trigger to induce uterine contraction.

To our knowledge, this is the first report to propose that placental aging in healthy pregnancy is 
characterized by induction of HIF- 1 signaling, accompanied by downstream effects including mito-
chondrial dysfunction and cellular senescence. These findings have implications for the role of the 
placenta in signaling that promotes the onset of labor, particularly given our demonstration that upon 
HIF- 1 stabilization, trophoblasts can induce inflammatory changes in uterine myocytes and potentiate 
their contractility, and our in vivo demonstration that administration of DMOG stabilizes placental 
HIF- 1 and leads to preterm labor in mice. Important next steps prompted by this work include 
determining the specific components of the secretome of HIF- 1- activated trophoblasts which are 
responsible for inducing myocyte transformation, anticipating overlap with findings of prior studies 

Figure 5—figure supplement 3 for assessment of effects of HIF- 1 stabilization in JAR cells using dimethyloxalyl glycine (DMOG). Each data point 
represents a technical replicate (measurement from an independent well of cells grown in treatment vs control condition). Data normalized to mean of 
control group. See Figure 5—source data 1 for uncropped blots.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Uncropped, unedited blots from 5a (left) and 5c (right).

Figure supplement 1. The mitochondrial effects of hypoxia- inducible factor 1 (HIF- 1) stabilization in JAR cells begin to appear on day 3 following CoCl2 
exposure.

Figure supplement 2. Increased number of JAR cells stain with propidium iodide, but the absolute number remains low following 6 days of CoCl2 
treatment.

Figure supplement 3. Dimethyloxalyl glycine (DMOG) stabilizes hypoxia- inducible factor 1 (HIF- 1) in JAR cells (A) and induces similar effects as CoCl2 
on COX IV protein (B), senescence- associated beta galactosidase (SA-βGal) expression (C), and cell growth (D) after 4 days.

Figure 5 continued

https://doi.org/10.7554/eLife.85597
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Figure 6. Conditioned media (CM) from JAR cells following hypoxia- inducible factor 1 (HIF- 1) stabilization induces expression of contractile- associated 
proteins and augments contraction in immortalized human uterine myocytes. hTERT- HM mRNA expression of PTGS2 (A), GJA1 (B), PTGFR (C), and IL6 
(D) was induced by CM from JAR cells following CoCl2 treatment (but not in control conditions), potentiating the effect of stimulation of myocytes by 
exogenous IL- 1β. Data normalized to mean of null treatment group. Percent well area occupied by hTERT- HM cells embedded in collagen matrix is 
significantly smaller after stimulation with IL- 1β plus JAR CM from CoCl2 condition, reflecting greater degree of hTERT- HM cellular contraction (E). Each 
data point represents a technical replicate (measurement from an independent well of cells grown in treatment vs control condition).

https://doi.org/10.7554/eLife.85597
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delineating paracrine signals that mediate labor onset (Sheller- Miller et  al., 2019; Migale et  al., 
2015; Srikhajon et al., 2014; Gomez- Lopez et al., 2014). Additionally, having established that HIF- 1 
signaling is upstream of mitochondrial dysfunction and cellular senescence in late- gestation placenta 
in normal pregnancies, future studies can investigate whether factors that modulate this pathway 
could increase or decrease vulnerability to preterm labor. In studies targeted to uterine decidua, a link 
between cellular senescence and labor onset has previously been established, with evidence impli-
cating phospho- Akt and mTORC1 signaling upstream of prostaglandin synthesis as a key mechanism 
in this model (Hirota et al., 2010; Hirota et al., 2011). It is possible that senescence signaling from 
the placenta and decidua converge, and labor is provoked upon these convergent endpoint signals 
surpassing a threshold, regardless of their origin within the gestational compartment. Future studies 
using targeted manipulation of senescence and metabolism in these compartments individually will 
help clarify their specific contributions to labor onset.

Our results suggest that placental HIF- 1 becomes stabilized late in gestation, and this could be 
secondary to the onset of hypoxia sensing as oxygen demand outstrips supply in the fetoplacental 
unit. However, placental hypoxia has been difficult to examine in vivo. Despite evolving approaches 
for measurement of placental oxygenation, findings have varied widely and adequate spatiotemporal 
resolution has so far been challenging (Nye et al., 2018). However, it is apparent that due to arterio-
venous shunting and high metabolic extraction rates, the placenta experiences hypoxia throughout 
pregnancy with a reported partial pressure of oxygen 30–50  mm Hg in the intervillous space, so 
perhaps a relevant question is what prevents HIF- 1 stabilization and its downstream effects early in 
gestation. It is possible that the gestational age- dependent HIF- 1 induction we observed reflects not a 
change in oxygen availability, but rather a change in other HIF- regulatory factors such as nicotinamide 

Figure 7. Maternal dimethyloxalyl glycine (DMOG) injection on e16.5 stabilizes placental hypoxia- inducible factor 1 (HIF- 1) and induces preterm labor. 
HIF- 1α protein is detected in placental lysates 12 hr following DMOG injection but not vehicle (A). mRNA expression of HIF- 1 targets Hk2 and Slc2a1 
is upregulated following DMOG injection (p=0.002 for DMOG vs vehicle, two- way ANOVA) (B). Gestational length is significantly shortened following 
DMOG injection versus vehicle (C–D). Each data point represents a biological replicate (in A and B, each measurement from an individual placenta 
collected from one of two pregnant dams). Data normalized to mean of vehicle group. See Figure 7—source data 1 for uncropped blots.

The online version of this article includes the following source data for figure 7:

Source data 1. Uncropped, unedited blots from Figure 7.

https://doi.org/10.7554/eLife.85597
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adenine dinucleotide (NAD+) depletion, as has been demonstrated to occur in muscle and is accom-
panied by metabolic reprogramming and mitochondrial decline (Gomes et al., 2013). Importantly, 
replenishment of NAD+ was shown to restore markers of mitochondrial function in these aged cells, 
suggesting that mitochondrial effects of HIF- 1- driven aging are reversible in some systems. Sepa-
rately, a recent study which compared the miR- nomes of first- versus third- trimester human placenta 
highlighted differential expression of miRNAs with functional links to silencing of hypoxia response 
and cellular senescence pathways in the first trimester (Gonzalez et al., 2021). Future investigations 
into the impact of placental HIF- 1 regulation will require a more precise understanding of placental 
oxygenation in vivo and a sophisticated approach to model these factors in placental explants or other 
cellular systems.

The shift in metabolic phenotype away from oxidative respiration in late pregnancy as demon-
strated by our transcriptomics analysis is consistent with earlier findings from respirometry studies in 
mouse placenta (Sferruzzi- Perri et al., 2019), where rates of oxidative phosphorylation were noted 
to decline from e14 to e19, particularly in the labyrinthine zone. It is still unclear if this shift reflects 
changing substrate availability, or oxygen content, or perhaps the metabolic needs of the developing 
fetus. A better understanding of the dynamic metabolism of the placenta across gestation will be 
crucial for developing strategies for optimizing placental health, with major implications for both 
maternal and fetal outcomes. For example, placental metabolomics studies with a gestational time 
series could help corroborate the metabolic implications interpreted from our transcriptomic data. 
And while our study stemmed from analysis of the whole- organ placental transcriptome, single- cell 
transcriptomics across advancing gestational age in healthy placentas would offer critical cell- type 
localization of specific metabolic events noted to occur late in pregnancy.

Our data have implications for other adverse pregnancy outcomes beyond preterm birth, including 
intrauterine growth restriction and preeclampsia. Two important recent studies have examined sepa-
rate mouse models with constitutively active placental HIF- 1 and found that when induced from the 
beginning of gestation, placental HIF- 1 signaling drives abnormal placentogenesis and impaired spiral 
artery remodeling, leading to placental hypoperfusion, fetal growth restriction, and a preeclampsia- 
like clinical syndrome (Albers et al., 2019; Sallais et al., 2022). In the context of these earlier results, 
our study highlights the critical gestational age dependence of HIF- 1 effects, having demonstrated 
that in a normally developed mouse placenta, induction of HIF- 1 signaling during the final days of 
gestation leads to labor onset. Timing may be key to understanding how two distinct pregnancy 
complications—preterm labor and preeclampsia—appear to emerge separately from overlapping 
pathophysiologic mechanisms (Rasmussen et al., 2017; Mandò et al., 2014; Fujimaki et al., 2011; 
Davy et al., 2009; Burton et al., 2009).

In summary, we report a molecular characterization of placental aging phenomena occurring in 
normal pregnancies, stemming from induction of HIF- 1 signaling and downstream mitochondrial 
dysfunction and cellular senescence. These findings establish aging in the placenta as a feature of 
normal gestation; identify HIF- 1 signaling as an upstream trigger leading to mitochondrial dysfunction 
and senescence in the placenta; demonstrate that the secretome of senescent trophoblasts is suffi-
cient to potentiate uterine myocyte transformation and contractility; and establish that HIF- 1 induc-
tion in vivo can induce preterm labor. These findings may have important implications for illuminating 
the factors that determine gestational length both in health and disease.

Materials and methods
Mouse placenta collection
Wild- type C57BL/6 mice (Jackson Laboratory #000664) were fed a chow diet and housed at 20°C in 
a 12 hr light/12 hr dark cycle. Nulliparous females (<6 months of age) were housed for a single dark 
cycle (midnight = gestational day 0) with a stud male. On gestational day e13.5–17.5, placentas were 
isolated via laparotomy from pregnant females anesthetized via surgical- plane isoflurane. Placentas 
were quartered, immersion- rinsed in dH2O and blotted dry, then snap- frozen in liquid nitrogen and 
stored at –80°C prior to use.

Mouse trophoblast isolation
Protocol described in full in Pennington et  al., 2012. On gestational day e15.5, placentas 
were collected via laparotomy from pregnant wild- type C57BL/6 female mice anesthetized with 

https://doi.org/10.7554/eLife.85597
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surgical- plane isoflurane. After dissection, placentas were quartered, immersion- rinsed in dH2O, then 
placed in ice- cold digestion buffer: DMEM plus HEPES 20 mM, collagenase 1 mg/mL, and DNase I 
4000 U/mL. Placentas were digested for 20–40 min at 37°C with trituration and examined under a 
microscope until optimal digestion achieved. Digested cells were passed through a 70 µm strainer, 
washed in DMEM, then separated using a Percoll gradient. Trophoblast fraction was washed once 
more then plated in complete medium: DMEM with HEPES 20 mM, FBS 10%, and supplemented with 
sodium pyruvate, pen- strep- glutamine, non- essential amino acids, and gentamicin. Cells were grown 
at 37°C in 95% ambient air with 5% CO2.

Mouse DMOG injection and measurement of gestational length
On gestational day e16.5, dams received an intraperitoneal injection of DMOG (Selleck Chemicals) 
7.5 mg in 0.3 mL sterile saline (approximately 250 mg/kg) versus vehicle alone. Video recordings were 
used to measure gestational length, defined as interval from midnight of timed mating period until 
birth of the first pup.

Human placental specimens
Placenta samples were collected at the time of cesarean delivery, within 20 min of delivery of the 
placenta. Placental tissue was sampled from approximately 1 cm deep to the maternal surface after 
dissecting away membranes. Cotyledons from all four quadrants were collected and minced together 
prior to immersion rinse in dH2O and storage of separate aliquots by snap freezing versus immersion 
in RNA later. All samples were stored at –80°C prior to use.

Cell culture
All cells were grown at 37°C in 95% ambient air with 5% CO2. JAR choriocarcinoma cells (ATCC 
HTB- 144; authenticated by STR profiling and confirmed negative for mycoplasma contamination) 
were grown in RPMI 1640 media (4.5 g/L glucose) supplemented with 10% FBS. Adherent JAR cells 
were treated with HIF- 1- stabilizing agents dissolved in 1X PBS (pH 7.4): cobalt chloride hexahydrate 
(100  µM CoCl2, Millipore Sigma) and dimethyloxalylglycine, N- (methoxyoxoacetyl)- glycine methyl 
ester (1 mM DMOG, Millipore Sigma). JAR cells were treated with 100 µM CoCl2 or 1 mM DMOG in 
culture media as indicated prior to endpoint assays.

Preparation of conditioned media
On day 5 of JAR cell treatment with CoCl2 (versus control condition), media exchange was performed 
to apply serum- free media for both conditions. 24 hr later, conditioned media samples were collected 
and applied to 10 kDa molecular weight cutoff filters (Amicon Ultra), with centrifugation for 20 min 
at 4000 × g, 4°C. Filters were washed with one volume of hTERT- HM base medium (see below), with 
repeat centrifugation. Concentrated proteins retained in suspension above the filter were collected 
and stored at –80°C.

hTERT- HM cells (generously supplied by Dr. Jennifer Condon, Wayne State; STR reference profile 
not available) were grown in DMEM/F12 medium (Gibco) with 10% FBS and Antibiotic- Antimycotic 
(1X, Gibco). Cells were stimulated by addition of recombinant human IL- 1β (R&D Systems) and/or 
filter- concentrated JAR cell conditioned media as indicated, 6 hr prior to collection of cellular RNA.

RT-qPCR
Total RNA was reverse- transcribed to cDNA with the Superscript III reverse transcriptase (Invitrogen) 
system with random hexamer primers (Invitrogen) according to the manufacturer’s instructions. cDNA 
was amplified via real- time quantitative PCR with TaqMan Fast Advanced Master Mix (Applied Biosys-
tems) or SYBR Green PCR Master mix (QIAGEN) in a QuantStudio 6 Flex Real- Time PCR System 
(Applied Biosystems). In mouse samples, target gene expression was normalized to endogenous 
levels of housekeeping gene, β-actin. In human samples, target gene expression was normalized to 
endogenous levels of housekeeping gene, YWHAZ (TaqMan) or β-actin (SYBR). Mouse and human 
primers are listed in Table 2.

https://doi.org/10.7554/eLife.85597
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Collagen lattice contraction assay
As previously described (Nishimura et al., 2020; Devost and Zingg, 2007), hTERT- HM cells were 
suspended in a collagen gel matrix (Cellmatrix collagen type I- A, Fisher Scientific, prepared with 
MEM, NaOH, and HEPES) then plated in 12- well dishes and grown in hTERT- HM medium. When 
cells reached approximately 60% confluence, gel matrix was detached from plate and experimental 

Table 2. Primers.

Mouse

Target Sequence Platform

Glb1 Mm00515342_m1 TaqMan

Hk2 Mm00443385_m1 TaqMan

Slc2a1 Mm00441473_m1 TaqMan

D loop (long, 801 bp amplicon) F: CGTA CATT AAAC TATT TTCC CCAA G
R: GAGT TTTG GTTC ACGG AACA T

SYBR

COII/ATPase 6 (long, 855 bp amplicon) F: TTGG TCTA CAAG ACGC CACA 
R: ATTT TGGT GAAG GTGC CAGT 

SYBR

Nd5 (long, 930 bp amplicon) F: CGCC TACT CCTC AGTT AGCC 
R: ATGG TGAC TCAG TGCC AGGT 

SYBR

Nd2/Nd1 (long, 832 bp amplicon) F: GGAT GAGC CTCA AACT CCAA 
R: ATGA TGGC AAGG GTGA TAGG 

SYBR

D loop (short) F: TGAC TATC CCCT TCCC CATT 
R: TTGT TGGT TTCA CGGA GGAT 

SYBR

COII/ATPase 6 (short) F: TCTC CCCT CTCT ACGC ATTC 
R: CGGT TAAT ACGG GGTT GTTG 

SYBR

Nd5 (short) F: GGCC TCAC ATCA TCAC TCCT 
R: GCTG TGGA TCCG TTCG TAGT 

SYBR

Nd2/Nd1 (short) F: GGAT GAGC CTCA AACT CCAA 
R: GGCT CGTA AAGC TCCG AATA 

SYBR

Actb Mm00607939_s1 TaqMan

Human

HK2 Hs00606086_m1 TaqMan

SLC2A1 Hs00892681_m1 TaqMan

IL1A Hs00174092_m1 TaqMan

IL1B Hs01555410_m1 TaqMan

TNFA Hs00174128_m1 TaqMan

IL6 Hs00174131_m1 TaqMan

IL10 Hs00961622_m1 TaqMan

MT- ATP6 Hs02596862_g1 TaqMan

MT- COX2 Hs02596865_g1 TaqMan

ND1 F: CCAT AAAA CCCG CCAC ACT
R: GAGC GATG GTGA GAGC TAAG GT

SYBR

18S F: CGCA GCTA GGAA TAAT GGAA TAGG 
R: CATG GCCT CAGT TCCG AAA

SYBR

GJA1   Hs.PT.58.38338544 SYBR

PTGS2 Hs.PT.58.77266 SYBR

ACTB Hs.PT.39a.22214847 SYBR

YWHAZ Hs01122445_g1 TaqMan

https://doi.org/10.7554/eLife.85597
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treatments were applied in fresh cell culture medium. After 1 hr incubation, a photograph was taken 
of each well for manual measurement of percent well area occupied by collagen disc (using ImageJ), 
reflecting cellular contraction.

mtDNA damage assay
mtDNA damage was assayed from total DNA via a semi- long run real- time PCR approach, as described 
elsewhere (Rothfuss et al., 2010). Briefly, separate qPCRs were assayed to compare a long versus 
short amplicon representing each genomic region. A lesion rate per 10 kb of mtDNA was calculated 
as:

 
lesion rate =

10000
(
bp

)

size of long fragment
(
bp

) ∗
(
1 − FClong−short

)
,
  

with  FClong−short = 2−∆∆Ct
  calculated in the usual method.

Relative mtDNA copy number
qPCR assays for nuclear and mitochondrial genes were performed using total DNA as a template. 
Relative mtDNA was calculated as follows:

mt:nuc DNA copy number  = 2 ∗ 2∆Ct,  where  ∆Ct = Ctnuclear gene − Ctmitochondrial gene  .

Immunoblots
Protein extraction was performed on cell pellets using RIPA lysis buffer, or on snap- frozen tissue using 
RIPA lysis buffer and a bead homogenizer. Protein lysates were fractionated using NuPage Bis- Tris 
polyacrylamide gels (20 μg total protein per well) and transferred to PVDF membranes. Antibodies 
are listed in Table 3.

SA-βGal assay
Adherent cells were fixed and stained for SA-βGal via a Senescence Detection kit (Abcam, ab65351) 
per manufacturer’s instructions. Representative images were used to calculate the fraction of SA-βGal- 
positive cells, scored by an observer blinded to treatment condition.

Live cell staining
Adherent cells were stained using the TMRE- Mitochondrial Membrane Potential Assay Kit (Abcam, 
ab113852) per manufacturer’s instructions. Select wells were pre- treated with 20 µM FCCP, a decou-
pling agent, as a positive control for 20 min before TMRE and Hoechst counterstain was applied. 
Live JAR cells were analyzed by the Celigo Image Cytometer (Nexcelom BioScience) for fluorescence 
quantification and gating. Adherent live JAR cells were stained with MitoSOX Red Mitochondrial 
Superoxide Indicator kit (Invitrogen) and analyzed using the cytometer in a similar manner.

Cell counting
JAR cells were cultured for 6 days±cobalt chloride exposure prior to cell counting. On day 6, cells 
from each condition were replated in a 96- well plate in CoCl2- free media at a density of 5×103 cells 
per well. Celigo Image Cytometer was used for automated cell counting (total cells per well) at 24 hr 
intervals.

Table 3. Antibodies.

Antibody Species Working concentration Source

CoxIV Mouse IgG mAb 1:1000 Cell Signaling Technology, #11967S

β-Actin- HRP conjugate Rabbit IgG mAb 1:2000 Cell Signaling Technology, # 5125S

HIF- 1 Rabbit 1:1000 Cell Signaling Technology, #14179S

https://doi.org/10.7554/eLife.85597
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RNA-Seq
Following 6 days of treatment with CoCl2 100 µM versus control media, total RNA was isolated from 
JAR cells as described above. Extracted RNA (300 ng) was treated with NEBNext rRNA Depletion Kit 
v2 (E7400X) and cDNA was generated using random hexamer priming and Maxima H Minus Reverse 
Transcriptase. cDNA was converted into double- stranded cDNA using NEBNext mRNA Second Strand 
Synthesis Module (E6111L) and sequencing libraries were generated by tagmentation using Nextera 
XT DNA Library Preparation Kit (Illumina FC- 131) with 12 cycles of PCR amplification. Sequencing 
libraries were analyzed by Qubit and Agilent Bioanalyzer, pooled at a final concentration of 1.2 pM, 
and sequenced on an Illumina NextSeq500 instrument 36 × 8 × 36 read structure.

Transcriptomics analysis
Sequencing reads were demultiplexed and trimmed for adapters using bcl2fastq (v2.20.0). Secondary 
adapter trimming, NextSeq/Poly(G) tail trimming, and read filtering were performed using fastp 
(v0.20.0) (Chen et  al., 2018) low- quality reads and reads shorter than 18 nt after trimming were 
removed from the read pool. Salmon (v1.1.0) (Patro et al., 2017) was used to simultaneously map and 
quantify reads to transcripts in the GENCODE 33 genome annotation of the GRCh38/hg38 human 
assembly. Salmon was run using full selective alignment, with sequence- specific and fragment GC- bias 
correction turned on (--seqBias and --gcBias options, respectively). Transcript abundances were 
collated and summarized to gene abundances using the tximport package for R (Soneson et  al., 
2015). Normalization and differential expression analysis were performed using edgeR (Robinson 
et al., 2010; Chen et al., 2016). For differential gene expression analysis, genes were considered 
significant if they passed an FC cutoff of log2FC >1 and an FDR cutoff of FDR <0.05. Functional 
enrichment analyses were performed using g:Profiler (Raudvere et al., 2019). WGCNA (Langfelder 
and Horvath, 2008) was performed after removing genes with low expression as previously described 
(Bentsen et al., 2020).

Statistics
Student’s two- tailed unpaired t- test, ordinary one- way, and two- way ANOVA statistical tests were 
applied as indicated to compare biological replicates in each experiment. Data were excluded as 
outliers using the interquartile range method (lower limit = first quartile – 1.5× IQR; upper limit = third 
quartile + 1.5× IQR).

Study approval
All animal experiments were approved by the Beth Israel Deaconess Medical Center Institutional 
Animal Care and Use Committee (protocol #008- 2022). Human placental specimens and data were 
biobanked and accessed under protocols approved by the Beth Israel Deaconess Medical Center 
Institutional Review Board, and written informed consent was obtained before subject participation 
(protocols #2008P000061, 2020P000997, 2021P000897).
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Ciampa EJ, Parikh SM 2022 Hypoxia- inducible factor 1 
signaling drives placental 
aging and can elicit 
inflammatory changes in 
uterine myocytes

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE199278

NCBI Gene Expression 
Omnibus, GSE199278

Ciampa EJ 2022 WGCNA supplement https:// doi. org/ 10. 
17632/ g6vrw9jjn4.1

Mendeley Data, 10.17632/
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The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Knox K, Baker JC 2008 Expression data from 
developing mouse placenta
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GSE11224

NCBI Gene Expression 
Omnibus, GSE11224
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