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Social learning mechanisms shape 
transmission pathways through replicate 
local social networks of wild birds
Kristina B Beck*, Ben C Sheldon, Josh A Firth

Edward Grey Institute of Field Ornithology, Department of Biology, University of 
Oxford, Oxford, United Kingdom

Abstract The emergence and spread of novel behaviours via social learning can lead to rapid 
population-level changes whereby the social connections between individuals shape information 
flow. However, behaviours can spread via different mechanisms and little is known about how 
information flow depends on the underlying learning rule individuals employ. Here, comparing 
four different learning mechanisms, we simulated behavioural spread on replicate empirical social 
networks of wild great tits and explored the relationship between individual sociality and the order 
of behavioural acquisition. Our results reveal that, for learning rules dependent on the sum and 
strength of social connections to informed individuals, social connectivity was related to the order of 
acquisition, with individuals with increased social connectivity and reduced social clustering adopting 
new behaviours faster. However, when behavioural adoption depends on the ratio of an individuals’ 
social connections to informed versus uninformed individuals, social connectivity was not related to 
the order of acquisition. Finally, we show how specific learning mechanisms may limit behavioural 
spread within networks. These findings have important implications for understanding whether and 
how behaviours are likely to spread across social systems, the relationship between individuals’ soci-
ality and behavioural acquisition, and therefore for the costs and benefits of sociality.

Editor's evaluation
This valuable study will be of interest to researchers in the fields of behavioural ecology, social 
ecology and evolution, and network science. The authors use simulations on empirically-recorded 
great tit social networks to examine how behavioural contagion might spread through social groups 
if individuals follow different social learning rules. The evidence supporting the conclusions is 
convincing, with careful modeling and parameterization for the chosen system.

Introduction
Social learning, in which individuals learn from others, is widespread in the animal kingdom, and 
enables individuals to acquire novel behaviours facilitating phenotypic change (Heyes, 1994; Hoppitt 
and Laland, 2013; Whiten, 2021). Socially induced changes in behaviour can spread through a popu-
lation and social networks provide the pathways along which behaviour can spread (Hasenjager 
et al., 2021). Research increasingly shows how the structure of social networks and individual sociality 
can together influence information flow (Aplin et al., 2012; Evans et al., 2021; Kulahci et al., 2016; 
Romano et al., 2018; Voelkl and Noë, 2008). However, information can spread via various social 
learning mechanisms (Cantor et al., 2021; Evans et al., 2021; Firth, 2020; Nunn et al., 2009) and 
we know surprisingly little about how the relationship between sociality and information flow depends 
on the social learning mechanisms at play.
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By definition, the social spread of behaviour to a focal individual requires contact with at least 
one knowledgeable individual. Frequently, it is intuitively assumed that the extent (i.e. number 
and duration) of social contacts to knowledgeable others predicts the likelihood of adoption 
(Coussi-Korbel and Fragaszy, 1995; Franz and Nunn, 2009; Hasenjager et al., 2021). In this way, 
behavioural spread is predicted to follow a similar pattern to the transmission of many diseases. 
However, in contrast to disease spread, individuals may employ ‘social learning rules’ where 
they can actively shape how to act on acquired novel information. For example, for more costly 
behaviours such as the usage of a novel food type, an individual may only change its behaviour after 
the majority of its social contacts consumes the novel food. Consequently, behavioural spread may 
require exposure to multiple sources (rather than just one) and depends on the ratio of connections 
to both informed and uninformed individuals (rather than just the connections to informed others) 
(Centola and Macy, 2007; Firth et al., 2020; Guilbeault et al., 2018; Hodas and Lerman, 2014). 
Therefore, the type of behaviour considered and its underlying learning rule can fundamentally 
influence whether and how behaviour spreads through a social network (Centola and Macy, 2007; 
Firth et al., 2020).

In sociology, research increasingly demonstrates that the spread of various behaviours, from inno-
vations, to health, and political movements (Guilbeault et al., 2018), follow diverse and more complex 
learning rules compared to the assumptions of many disease models (Centola and Macy, 2007). In 
contrast, research in animal systems has rarely explored how the diffusion dynamics of behaviours 
may be altered by learning rules (but see Nunn et  al., 2009; Cantor et  al., 2021; Evans et  al., 
2020; Evans et al., 2021), which is somewhat surprising given that previous studies have revealed 
several social learning strategies in animals that suggest a range of different underlying social learning 
mechanisms (Hoppitt and Laland, 2013; Kendal et al., 2018). For instance, an increasingly reported 
learning mechanism is conformist learning in which individuals disproportionally adopt the behaviour 
performed by the majority of their social connections (e.g. stickelbacks: Pike and Laland, 2010; chim-
panzees: Haun et al., 2012; vervet monkeys: van de Waal et al., 2013; great tits: Aplin et al., 2015a; 
fruit flies: Danchin et al., 2018). Further, individuals often only learn from specific individuals (e.g. 
depending on status, Canteloup et al., 2020; relatedness, Wild et al., 2019; or conspecifics, Farine 
et  al., 2015) or adopt behaviours only once the social connections to informed others surpass a 
certain threshold (Rosenthal et al., 2015).

Research on social learning in animal social networks has frequently assumed that more social 
individuals (i.e. with more social connections and central network positions) have a higher probability 
to adopt new behaviours because they are more likely to hold connections to knowledgeable others 
compared to less social individuals (Aplin et al., 2012; Claidière et al., 2013; Kulahci and Quinn, 
2019). This link between individual sociality and behavioural adoption can be expected if the learning 
rule depends on the sum and strength of social connections to knowledgeable others. However, this 
relationship may change when learning rules rely on both the connections to informed and unin-
formed individuals (Centola and Macy, 2007; Firth, 2020). For instance, in the case of conformist 
learning, we may expect that the most social individuals will be less likely to adopt (because it may 
take longer until the majority of their social connections becomes informed). Such patterns have been 
reported in humans, where highly connected individuals required stronger social signals in order to 
act on information (Hodas and Lerman, 2014; Hodas and Lerman, 2012) and poorly connected indi-
viduals may utilize information sooner (González-Avella et al., 2011). Hence, predictions of how indi-
vidual sociality relates to the probability of acquiring novel behaviour, and the resulting transmission 
pathways, can change fundamentally depending on the social learning mechanism at play (Centola 
and Macy, 2007; Firth et al., 2020).

Examining and comparing the transmission pathways of behaviours that follow different learning 
mechanisms in wild animals is challenging. Therefore, research investigating the relationship between 
social structure and information flow often simulates behavioural spread (Cantor et al., 2021; Evans 
et al., 2021; Evans et al., 2020; Nunn et al., 2009; Voelkl and Noë, 2008). For instance, studies 
compared the transmission speed (number or proportion of individuals informed at a given timestep) 
of simple versus conformity learning (Evans et al., 2021; Evans et al., 2020) or ‘prestige’ (subordi-
nates copy dominants) versus conformity learning (Nunn et al., 2009). While these studies show that 
on the population level, different learning mechanisms, together with the social network structure, can 
fundamentally impact the diffusion dynamics (e.g. how quickly a behaviour can spread), we know little 
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on how learning mechanisms impact the relationship between individual sociality and the probability 
of behavioural adoption.

In addition, behavioural simulations are often performed on artificial social networks with pre-
defined structure and size (Voelkl and Noë, 2008; Nunn et al., 2009; Cantor et al., 2021; Evans 
et al., 2021), and may thus represent unrealistic social structures, failing to capture the social behaviour 
observed in real animal social networks (but see Naug, 2008; Romano et al., 2018). Therefore, in 
addition to purely computational studies, it is important to examine real-world social networks to test 
whether general findings from artificial networks can be replicated using real social systems. Further, 
simulated social networks are often relatively large including 100 or more individuals, and empir-
ical social networks may be generated over prolonged periods of time. However, for behavioural 
spread, an individual’s social connections at a relatively small temporal scale may predict subsequent 
transmission (Aplin et al., 2015a; Aplin et al., 2015b; Somveille et al., 2018). Many animal species 
live in non-stable social groups such as fission–fusion societies (e.g. various species of birds: Silk 
et al., 2014, primates: Amici et al., 2008, and fish: Papastamatiou et al., 2020; Wilson et al., 2014) 
where group composition and size frequently change. As a result, social connections between indi-
viduals can change over time, and empirical networks generated over weeks/months, and artificial, 
large networks, may overestimate the social connections of an individual at the time a new behaviour 
emerges. Thus, it is crucial to examine social networks – both empirical and artificially derived – on a 
meaningful temporal scale (which will be study species dependent) to better understand whether and 
how different types of behaviours spread through social networks.

In this study, we explore by simulation how novel behaviours, transmitted according to different 
social learning mechanisms, spread through replicated empirical social networks of great tits (Parus 
major). Great tits are small songbirds that forage in fission–fusion mixed-species flocks during winter 
(Ekman, 1989) and frequently use social information (e.g. to find novel food: Aplin et al., 2012; Firth 
et al., 2016, to access novel food: Aplin et al., 2015a, and for prey avoidance: Hämäläinen et al., 
2020; Thorogood et  al., 2018) which makes them an ideal study species. Here, we create social 
networks from empirical data on birds’ foraging associations at distinct locations sampled on two days 
each week to capture the social structure at a relatively small spatiotemporal scale. Subsequently, we 
simulate behavioural spread on these weekly, local, networks using four different social learning mech-
anisms and compare how the social behaviour of individual great tits relates to the order in which they 
acquire novel behaviour under the four different mechanisms.

The first learning mechanism follows the omnipresent concept of simple contagion, which is 
mainly inspired by models on disease spread and was first formulated in the field of sociology (Guil-
beault et al., 2018). Simple contagion assumes that the probability of adopting a novel behaviour 
depends on the number and strength of connections to informed individuals (thereafter simple rule, 
Coussi-Korbel and Fragaszy, 1995; Franz and Nunn, 2009; Hasenjager et al., 2021). The other 
three learning mechanisms imply more complex adoption rules (Centola and Macy, 2007) where 
behavioural adoption requires more social reinforcement: (1) a threshold rule, (2) a proportion rule, 
and (3) a conformity adoption rule. Here, the probability of adopting the novel behaviour depends 
on: (1) the connections to informed individuals surpassing a given threshold; (2) the proportion of 
connections to informed individuals (rather than the sum); and (3), the behaviour that the majority 
of connections performs. Threshold-based learning rules have been studied frequently in sociology 
and network sciences (González-Avella et al., 2011; Granovetter, 1978; Watts, 2002), but have 
rarely been considered in animals (Rosenthal et al., 2015). In contrast, conformity learning, where 
individuals are disproportionally more likely to copy the behaviour performed by the majority, has 
received much attention both in humans (Boyd and Richerson, 1988; Haun et al., 2012; Toyokawa 
and Gaissmaier, 2022) and animals (Aplin et al., 2015a; Danchin et al., 2018; van de Waal et al., 
2013). The proportion rule assumes that the transmission rate is proportional to the ratio of informed 
and uninformed individuals (rather than disproportional as in the conformity rule) and has rarely been 
considered (Centola, 2018; Firth, 2020; Rosenthal et al., 2015).

Individual variation in sociality – the number and strength of social connections and centrality within 
the network – may influence the access to information and thus behavioural adoption. We infer indi-
viduals’ sociality by extracting three commonly used weighted social network metrics: the weighted 
degree (i.e. sum and strength of their social connections to others), weighted clustering coefficient 
(propensity for their associates to be associated with one-another), and weighted betweenness 
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(propensity to act as a ‘bridge’ within the network). We predicted that the relationship between indi-
vidual sociality and behavioural adoption would differ depending on the social learning mechanism. 
Specifically, if the likelihood to adopt a behaviour depends on the number and strength of connec-
tions to informed individuals such as in the case for the simple and threshold rule, we predicted 
that individuals with high degree and betweenness and low clustering coefficient should be faster 
in adopting the novel behaviour due to being more likely to be connected to at least one informed 
conspecific. In contrast, if the likelihood of adopting a behaviour depends on the ratio of an individu-
al’s informed and uninformed connections, such as in the case for the proportion or conformity rule, 
we expected that individuals with low degree and betweenness and high clustering coefficient should 
be faster in adopting the novel behaviour because the majority of their social connections should 
become informed faster.

Materials and methods
Study system
The empirical data used in this study were collected over 3 years (December 2011–March 2014) in 
a population of great tits located in Wytham Woods, Oxfordshire, UK (51°46′ N, 01°20′ W, approx. 

Figure 1. Schematic overview of the simulation procedure. First, a weekly social network of one of the feeder locations (shown as black dots) in the 
study site was selected. Second, behavioural spread was simulated on the selected network using four different social learning rules (i.e. simple, 
threshold, proportion, and conformity). The starting point (i.e. the first individual performing the new behaviour) was randomly chosen. Then, at each 
timestep (t1–tn), a naive individual adopted the novel behaviour with a given probability of the adoption event being from social learning (dependent 
on the social learning rule at play; see methods for further details) until all individuals in the network had adopted the novel behaviour. Third, we 
calculated a correlation coefficient (Spearman’s rank correlation coefficient) between three individual social network metrics (i.e. weighted clustering 
coefficient, weighted degree, and weighted betweenness) and the order (i.e. timestep) in which individuals adopted the novel behaviour. Finally, we 
repeated this process 100 times for each weekly, local social network.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Great tit social networks illustrating individuals’ different social network positions.

Figure supplement 2. Data distribution of four global network metrics from the 1343 weekly, local social networks.

Figure supplement 3. Mean correlation coefficient between weighted degree and order of acquisition in relation to different numbers of simulations.

Figure supplement 4. Data distribution of network sizes (i.e. the number of individuals each network contained).

https://doi.org/10.7554/eLife.85703


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Beck et al. eLife 2023;12:e85703. DOI: https://doi.org/10.7554/eLife.85703 � 5 of 23

385 ha). Great tits are short-lived (mean lifespan of 1.9 years, Bulmer and Perrins, 1973) hole-nesting 
songbirds that form socially monogamous pairs, and establish territories during the breeding season 
(March–June). During the non-breeding season (September–February), great tits forage with other 
species in loose fission–fusion flocks that differ in size and composition (Ekman, 1989; Hinde, 1952) 
and consist of mainly unrelated individuals (annual population turnover of about 50% and less than 
1.5% of social foraging associations are between first-order relatives, Firth and Sheldon, 2016). Great 
tits frequently use social information in foraging contexts (Aplin et al., 2012; Farine et al., 2015; Firth 
et al., 2016; Thorogood et al., 2018).

The woodland contains 1017 nest boxes hosting breeding great tits and 65 bird feeders that were 
deployed during the winter months in an evenly spaced grid (see Figure 1). Each feeder contained 
two access holes of which both were equipped with radio-frequency identification (RFID) antennas. 
The feeders were in place from December to February across three winters (2011–2012, 2012–2013, 
and 2013–2014) and collected data on the bird visits 2 days each week (from pre-dawn Saturday 
morning until after dusk on Sunday evening) resulting in 13 sampling periods each year. At other times 
feeders were closed. For the duration of the study, the location of each feeder was consistent.

All birds were caught in either a nest-box or a mist-net and were fitted with a uniquely numbered 
metal leg ring (British Trust for Ornithology). In addition, each bird was also fitted with a uniquely 
coded passive integrated transponder (PIT) tag enclosed in a plastic ring fitted to the other leg. This 
allowed us to record each visit of a PIT-tagged bird when it came close to the RFID antenna of a feeder 
(approximately 3 cm). At every detection, the bird’s unique PIT tag code, and the date and time were 
saved to a data logger. Breeding surveys and frequent trapping allowed to fit almost all individuals 
with metal rings and PIT tags (>90%, Aplin et al., 2013a).

Social networks
We created social networks based on the foraging associations of PIT-tagged great tits at each feeder 
and each of the 13 weekends across the 3 years. We created temporal and locally restricted networks 
because we wanted to generate a large number of different social networks (rather than just one 
network from the whole population) and because we expect networks from such a small time-window 
(i.e. one weekend) to be most meaningful in capturing the social connections relevant for the spread of 
a novel behaviour. For instance, Aplin et al., 2015b showed that individuals disproportionally copied 
the behaviour of the majority of individuals in the social group that preceded the focal individual’s first 
successful solve. Across the winter, individual great tits may move between locations and new indi-
viduals arrive at different times to the study site. Therefore, generating a social network spanning the 
whole study period will contain many connections not relevant at the time a novel behaviour emerges. 
Further, when examining the relationship between individual sociality and the probability of adoption, 
generating a social network from the whole population would add considerable spatial noise. For 
instance, within a sub-population where a new behaviour emerges, individuals with high connectivity 
may be faster in adopting the behaviour. However, if examined on the population level, such a rela-
tionship may be obscured by spatial effects, because an individual’s probability of behavioural adop-
tion will be considerably predicted by its’ spatial proximity to the location of behavioural emergence. 
Further, creating social networks for each feeder location provided a comparable spatial unit and did 
not require to draw arbitrary spatial boundaries across the study site.

All analyses were conducted in R 4.0.5 (R Development Core Team, 2020). An ‘association’ was 
defined as two birds foraging together within the same flock. Flock membership was identified using 
Gaussian Mixture Models (Psorakis et al., 2015; Psorakis et al., 2012) from the R package ‘asnipe’ 
(Farine, 2013). This method detects events of increased feeding activity in the spatiotemporal data, 
clusters these into non-overlapping gathering events (i.e. flocking events), and assigns each individual 
detection to the event it most likely belonged to. This provided us with information about which 
individuals co-occurred in the same flock (Psorakis et al., 2015; Psorakis et al., 2012). From the 
pattern of co-occurrences, we then inferred the strength of associations for each dyad. We calculated 
association strength using the simple ratio index (SRI, Cairns and Schwager, 1987). The SRI describes 
the proportion of observations of two individuals in which they were seen together, ranging from 0 
(never observed in the same flock) to 1 (always observed in the same flock). We inferred a propor-
tional measure for the association strength between individuals (rather than just a measure for the 
total number of times two individual were observed together) because we have an unequal number of 
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observations for each individual (Farine and Whitehead, 2015; Hoppitt and Farine, 2018). Further, 
the SRI provides a more representative measure for the social relationship between two individuals 
across multiple contexts (e.g. while not foraging at the feeder). We created undirected social networks 
with edges weighted by the SRI for each sampling weekend (in total: 39 weekends across 3 years) and 
feeder location (in total: 65).

For each of the weekly, local networks, we then inferred for each individual three social network 
metrics: the weighted clustering coefficient, the weighted degree and the weighted betweenness. 
All network metrics were calculated using the R package ‘igraph’ (Csardi and Nepusz, 2006). The 
weighted clustering coefficient was calculated following Barrat et al., 2004. It represents the propor-
tion of the sum of edge weights of all direct connections of a focal individual i over the sum of weights 
of all connections of individual i that form a triangle (i.e. where two direct connections of individual 
i are themselves connected). The weighted degree describes the total interaction rate for a focal 
individual i with all other individuals, defined as the sum of all the focal individual’s edge weights. The 
weighted betweenness describes the number of weighted, shortest paths from all individuals to all 
other individuals that pass through the focal individual i and measures an individuals’ propensity to 
move between groups. Here, weights were added by considering the inverse of an individuals’ edge 
weights.

Finally, we standardized the individual metrics within each network to allow comparisons between 
networks. Social networks including fewer than ten individuals and exhibiting no variation in indi-
vidual network metrics were excluded from further analyses resulting in the final sample size of 1343 
social networks (generated from 62 locations). The three individual network metrics are moderately 
correlated, with weighted clustering coefficient being negatively correlated to weighted degree and 
weighted betweenness, weighted degree and weighted betweenness were positively correlated (see 
Supplementary file 1a). In addition, we provide example networks with individual great tits colour-
coded based on their different weighted network metrics (Figure 1—figure supplement 1) and calcu-
lated four global network measures (network density, average path length, average edge weight, and 
modularity) to provide a general overview of the weekly, local great tit social structures (Figure 1—
figure supplement 2, details on how these metrics were calculated can be found in the figure legend).

Simulations
On each network, we simulated behavioural spread using four different social learning rules, as 
described in Firth et al., 2020, using the R package ‘complexNBDA’. A brief explanation is provided 
below but full detailed description and tests of each can be found in Firth et al., 2020 and all resources 
are freely available at https://github.com/whoppitt/complexNBDA (Hoppitt, 2020). The R code and 
data to replicate the simulations used in this manuscript can be found at https://osf.io/6jrhz/.

(1) Simple rule: This transmission rule follows the logic of the classic NBDA framework:

	﻿‍
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Here, ‍λi
(
t
)
‍ represents the rate at which individual i acquires a novel behaviour as a function of time. 

‍λo
(
t
)
‍ represents a baseline rate function (i.e. the rate of asocial learning at time t) and s determines 

the strength of social transmission. When simulating the order of acquisitions across individuals 
(OADA) for a specified parameter set instead of the times of acquisitions (TADA) (Hasenjager et al., 
2021), the probabilities that each specific individual is next to learn is independent of ‍λo

(
t
)
‍ and thus 

‍λo
(
t
)
‍ drops out of the equation. ‍zi

(
t
)
‍ is the ‘status’ of individual i at time t, (1 = informed; 0 = naive), 

and N is the number of individuals in the network. The rate at which an individual acquires a novel 

behaviour through social learning is proportional to 
‍
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aijzj
(
t
)
‍
 , the total connections to informed 

individuals at time t. Therefore, s gives the rate of transmission per unit connection relative to the rate 
of asocial learning of the novel behaviour. For example, when s = 2, an increase of 1 in an individuals’ 
edge weights to informed individuals will increase the rate of social learning by 2 times the baseline 
rate.  ‍

(
1 − zi

(
t
))

‍ ensures that only naive individuals acquire the behaviour. Consequently, the more and 
stronger connections to informed individuals, the more likely an individual is to adopt the behaviour. 
The social transmission strength s was set to 5.
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Following, we define three more complex rules that generalize the classic NBDA model as:
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Here, ‍ai‍ represents the connections individual i has to all others in the network, ‍z
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of each individual in the network at time t, and ‍T
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(2) Threshold rule: This transmission rule is defined as:
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Similar to the classic NBDA, the rate of social transmission is zero when the total connections to 
informed individuals, ‍

∑
j aijzj

(
t
)
‍ = 0. However, the rate of transmission increases suddenly as the 

threshold, a, is approached, to a maximum value of c. The parameter b determines how sharp the 
threshold effect is. Our threshold rule differs from how threshold rules are sometimes defined in 
network sciences where the threshold represents a true step function rather than a sigmoidal curve. 
Here, we aimed to generate a model with a clear sharp threshold, so we set b = 3 for our simulations 
(for details and other parameter settings for b, see Firth et al., 2020). We set the threshold value a 
to 5 for all networks. This means that an individual’s weighted connections to informed individuals 
need to be ≥5 before an individual’s behavioural adoption is likely to stem from social learning. For 
example, if an individual with two connections with weights of 2 each to informed others adopts the 
new behaviour, the probability of this adoption event stemming from social learning is low. In contrast, 
if the individual’s two connections have a weight of 3 each, the behavioural adoption likely stemmed 
from social learning under the set threshold rule (see also Firth et al., 2020 for more details). The 
social transmission strength s was set to 5.

(3) Proportion rule: This transmission rule is defined as:

	﻿‍
T
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ai, z
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t
))

= s
∑

j aijzj
(
t
)

∑
j aij ‍�

Here, the learning rate is proportional to the ratio of connections that an individual i holds to informed 
others. As such, the individual with the highest proportion is most likely to learn and assumes addi-
tional influence from individuals’ uninformed connections rather than just considering the sum of 
connections to informed individuals such as in the simple and threshold model. The social transmis-
sion strength s was set to 5.

(4) Conformity rule: Finally, the fourth transmission rule assumes that individuals are disproportion-
ately more likely to copy the majority of the population (i.e. frequency dependent):
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Here, the frequency dependence parameter is f ≥ 1, and s > 0. When f = 1 this model reduces to 
the proportional model above, and as f increases the strength of conformity bias increases. Thus, an 
individual is expected to adopt a new behaviour if it is perceived as being performed by the majority 
of its’ social connections. Similar to the proportional rule, the conformity rule considers an individual’s 
informed and uninformed connections. Further, in this way, this conformity rule is somewhat analo-
gous to a threshold rule but based on the proportion of informed connections rather than the total 
connectivity to informed individuals. For our simulations, we set f to 5 and the social transmission 
strength s to 5.

For each simulation the individual ‘initiating’ the behaviour (i.e. the demonstrator) was randomly 
chosen, and was then used across the four transmission models. We then simulated behavioural 
spread across the entire network under each transmission model separately. This means that at each 
timestep one new individual adopted the seeded behaviour, whereby each time each individual has 
a given probability of adopting the behaviour through social learning which ranges from 0 (asocial 
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acquisition, i.e. an individual has no connections to informed individuals and cannot socially learn 
the behaviour under the set learning rule) to 1 (social acquisition, that is when an individual has the 
maximum probability of learning socially under the set learning rule). Therefore, at each timestep, 
the new individual adopting the behaviour was stochastically chosen based on their probability of 
adopting the behaviour in the previous timestep (i.e. where the one most likely to be chosen was the 
one most likely to adopt the behaviour under the given social learning rule). For instance, under the 
proportion rule, the next individual adopting the behaviour (i.e. from t1 → t2, see Figure 1) would 
most likely be the one with the highest proportion of connections to informed others. Following, we 
inferred the probability of this adoption event stemming from social learning. For instance, for an indi-
vidual that adopted the novel behaviour with a proportion of connections to informed others of 0.2, 
the probability of the behavioural adoption stemming from social learning would be lower compared 
to the individual having a proportion of 0.7.

Once individuals adopted the novel behaviour, they remained ‘informed’ within each simulation 
run. For each network, we repeated the simulations 100 times to minimize the influence of the identity 
of the randomly selected demonstrator on the subsequent transmission pathways. We selected 100 
simulation runs because this was enough in acquiring a relatively stable mean correlation coefficient 
between network metric and order of acquisition (Figure 1—figure supplement 3). We repeated our 
simulations testing various parameter combinations for s (1, 5, 10), f (3, 5, 7), and a (3, 5, 7) which we 
consider appropriate for our study system (i.e. the average strength of an individuals’ connections 
is approximately 2.5). In the main text we present results for s = 5, f = 5, a = 5 and as such a total 
of 537,200 simulations (1343 weekly, local networks × 4 different learning rules × 100 simulation 
runs). Results for all other parameters can be found in the supplementary material and with the code 
provided other parameter combinations can be tested.

Data summary statistics
To assess the relationship between each individual’s network metric and the order of acquisition, we 
calculated Spearman’s rank correlation coefficients. After every simulation, for each of the networks 
and transmission models, we calculated the Spearman’s rank correlation coefficient between the order 
in which individuals adopted the behaviour (always excluding the demonstrator) and each of the three 
individual network metrics (i.e. the weighted clustering coefficient, the weighted degree and the 
weighted betweenness). For an overview of the transmission process, see Figure 1. For each network 
and model, we then calculated the average correlation coefficient for each network metric across the 
100 simulations (Figure 1). To additionally assess the general relationships between the size of the 
network, and the correlation coefficient between individuals’ centralities and their acquisition order, 
we used linear mixed-effect models using the ‘lme4’ package (Bates et al., 2015). For each model 
separately, we set the average correlation coefficient as the dependent variable and network size as 
the predictor variable. Location identity and week nested in year were set as random effects to factor 
in these differences when assessing this relationship (Supplementary file 1b). We examined model 
assumptions and fit using graphical methods (e.g. qq plot of residuals, fitted values versus residual 
plots, Korner-Nievergelt et al., 2015).

Results
The data in this study were simulated across 1343 empirically derived social networks, inferred 
from recordings of 1774 individual great tits at 62 feeder locations across 39 weekends and 3 
years. Social networks varied in size (right skewed distribution towards smaller networks, see 
Figure 1—figure supplement 4) and consisted of an average of 21.7 individuals (min = 10, max 
= 77, sd = 10.0; note that we excluded social networks smaller than 10 from the analysis [see 
methods] resulting in the minimum network size of 10). For each location, we included on average 
21.7 networks into the analysis (min = 1, max = 39, sd = 11.9) and each individual was part of on 
average 16.5 networks (min = 1, max = 88, sd = 13.2). Individuals on average visited 1.3 different 
feeder locations on a weekend (min = 1, max = 10, sd = 0.7) and from 21,036 occasions where 
individuals were recorded on a given weekend, individuals had visited only one location in 14,888 
occasions (71%).

https://doi.org/10.7554/eLife.85703
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Relationship between individual social behaviour and order of 
acquisition
Simulating behavioural spread under four different social learning rules revealed different trans-
mission pathways across social networks. For both the simple and the threshold rule, the weighted 
clustering coefficient was on average positively related to the order of acquisition, with more 
clustered individuals adopting the seeded behaviour later than less clustered individuals across 
different network sizes (Figure 2). Weighted degree and betweenness were on average negatively 
related to the order of acquisition. Thus, individuals with higher weighted degree and weighted 
betweenness adopted the novel behaviour on average faster than individuals with a lower weighted 
degree and betweenness (Figure 2). In addition, we show the relationship between mean individual 
network metrics and the standardized order of acquisition across network sizes (Figure 2—figure 
supplement 1). For the simple learning rule, the relationship between network metric and order 
of acquisition only changed when the majority of individuals in a network had already adopted the 
behaviour (with approximately 75% of individuals knowledgeable; Figure 2—figure supplement 
1). Behavioural spread under the threshold rule showed a small ‘hump’ shortly after the start of the 
spread, especially for the network metric weighted degree (Figure 2, Figure 2—figure supplement 
1). Here, the initial individuals to acquire the behaviour exhibited network metrics close to the mean, 
suggesting that acquisition at the initial stages (when the starting individual is chosen randomly) 
likely depends on the connections to the demonstrator and/or asocial learning (particularly as social 
learning may not be likely yet under the set threshold, see section on ‘Probability of social spread’). 
As more individuals became informed, social learning becomes much more likely as the threshold is 
possible to be reached, particularly for individuals with higher weighted degree, and possibly higher 
betweenness and lower clustering, adopted the behaviour sooner (e.g. start of the hump). Finally, 
the relationship between mean network metric and order of acquisition reversed, suggesting that 
individuals with higher weighted clustering and lower weighted degree and betweenness adopted 
the behaviour last. This may partly be a product of necessity (given the opposite type of individuals 
are already informed). But, interestingly the presence of the ‘hump’ was most prominent in larger 
networks and at low thresholds (a = 3, Figure 2—figure supplement 5), suggesting that under 
these scenarios this may be related to a larger variation in network positions (or more extremely 
central individuals) or more opportunities for social learning being present earlier on in the total 
diffusion (see also section on ‘Probability of social spread’). In contrast to the simple and threshold 
rules, there was little or no relationship between individual social network metrics and the order of 
acquisition under both the proportion and conformity learning rules (Figure 2, Figure 2—figure 
supplement 1).

Assessing the relationship between each individuals’ network metric and the order of acquisition 
across all social networks and simulation runs, revealed substantial variation in relationship strength 
(Figure 3). Across network metrics, there were on average the strongest positive (Figure 3: weighted 
clustering coefficient) and negative (Figure 3: weighted degree and betweenness) correlations under 
the simple rule, and coefficients for the threshold, proportion, and conformity model were lower. 
Even though Figure 2 indicates a clear relationship between average network metric and order of 
acquisition under the threshold model (Figure 2), correlation coefficients were very small (Figure 3). 
This may be because of the non-linear relationship under the threshold rule in which the slope of the 
relationship between network position and order of acquisition changes direction as more of the 
population becomes informed (Figure 2, Figure 2—figure supplement 1), leading to overall low 
correlation coefficients (Figure 3).

The direction of the relationship between average network metrics and order of acquisition 
remained unchanged when setting lower or higher parameters for the social transmission strength ‘s’ 
(Figure 2—figure supplements 2 and 3). However, for the simple rule, the correlation coefficients 
became on average stronger under larger social transmission rates (Figure 3—figure supplement 
1). Further, different values for the frequency dependence ‘f’ under the conformity rule, and different 
values for the threshold location ‘a’ under the threshold rule did not change the general direction of 
the relationship between average network metrics and order of acquisition (Figure 2—figure supple-
ments 4 and 5, Figure 3—figure supplement 2). However, under the threshold model, increasing 
the threshold location on average reduced the correlation between network metrics and order of 
acquisition (Figure 2—figure supplement 5, Figure 3—figure supplement 2).

https://doi.org/10.7554/eLife.85703
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Figure 2. Relationship between individual network metric and the order of acquisition for each social learning rule. Each column shows a different 
network metric (left to right: weighted clustering coefficient, weighted degree, and weighted betweenness). Each row represents one of the four 
spreading rules (top to bottom: simple, threshold, proportion, and conformity). Lines plot the average network metric for each order of acquisition and 
ribbons show the 95% confidence interval from the 100 simulations for each binned group of network sizes. Colour represents network size with darker 
colour indicating smaller networks. The social transmission rate, the threshold location, and the frequency dependence parameter were set to 5.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure 2 continued on next page

https://doi.org/10.7554/eLife.85703
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Relationship between social network size and pathways of behavioural 
diffusion
The direction and magnitude of the correlation between individual sociality and their order of acqui-
sition were partly predicted by network size (Figure 4, Supplementary file 1b). For the simple and 
threshold model, behavioural spread on larger networks led to more positive correlations between 
individual network metric and order of acquisition for weighted clustering coefficient and more nega-
tive correlations for weighted degree and betweenness (Figure  4, Supplementary file 1b). The 
predicted effects of network size on mean correlation coefficient inferred under the proportion and 
conformity rule suggest contrasting directions or no relationship with network size (Figure 4, Supple-
mentary file 1b).

Overall, the predicted effects of network size on the inferred correlation coefficients were small, 
particularly for more complex contagions (Figure  4, Supplementary file 1b). The relationship 
between correlation coefficient and network size was modulated by the social transmission rate (‘s’ 
parameter; Figure 4—figure supplement 1). For the simple model, the direction of the relationship 
did not change across different social transmission rates, that is correlation coefficients became on 
average more positive (weighted clustering coefficient) and negative (weighted degree and weighted 
betweenness) with increasing network size (Figure 4—figure supplement 1). Further, the slope of 
the relationship between network size and correlation coefficient for each network metric remained 
relatively constant across social transmission rates (Figure 4—figure supplement 1). However, for 
weighted betweenness, there was no relationship between correlation coefficients and network size 

Figure supplement 1. Relationship between individual network metric and the standardized order of acquisition (OAC) for each transmission rule and 
split by network size.

Figure supplement 2. Relationship between individual network metric and the order of acquisition for each social learning rule with a social learning 
rate of 1.

Figure supplement 3. Relationship between individual network metric and the order of acquisition for each social learning rule with a social learning 
rate of 10.

Figure supplement 4. Relationship between individual network metric and the order of acquisition for the conformity learning rule under different 
frequency-dependent values ‘f’.

Figure supplement 5. Relationship between individual network metric and the order of acquisition for the threshold learning rule under different 
threshold locations ‘a’.

Figure 2 continued

Figure 3. Distribution of average correlation coefficients for each social learning rule and network metric. Violin and boxplots show the distribution of 
the average correlation coefficients between individual network metric and order of acquisition across 100 simulations from each network for each of the 
four social learning rules (i.e. simple, proportion, conformity, and threshold). Each plot shows one of the individual network metrics (weighted clustering 
coefficient, weighted degree, and weighted betweenness).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distribution of average correlation coefficients for each social learning rule and network metric under different social learning 
rates.

Figure supplement 2. Distribution of average correlation coefficients for the threshold and conformity learning rule under different parameters.

https://doi.org/10.7554/eLife.85703
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under a strong transmission rate (i.e. s = 10; Figure  4—figure supplement 1). For the threshold 
model, the direction of the relationship did not change across different social transmission rates, 
that is correlation coefficients became on average more positive (weighted clustering coefficient) 
and negative (weighted degree and weighted betweenness) with increasing network size (Figure 4—
figure supplement 1). However, the relationship was strongest (i.e. steepest slope) for larger trans-
mission rates (Figure 4—figure supplement 1). Similar patterns are present for weighted degree 
and weighted betweenness under the proportion and conformity model where correlation coeffi-
cients increase with increasing network size (Figure  4—figure supplement 1). For the weighted 
clustering coefficient, the slope indicated opposing directions for different transmission rates under 

Figure 4. Relationship between correlation coefficient and network size across the four social learning rules. Each row shows one of the individual 
network metrics (top to bottom: weighted clustering coefficient, weighted degree, and weighted betweenness) and each column a different social 
learning rule (left to right: simple, threshold, proportion, and conformity). Average correlation coefficients across the 100 simulations per network are 
plotted as count dots (larger dots indicate more values for the respective value), lines represent the predicted effects generated from linear mixed-effect 
models (LMM) and ribbons represent the 95% confidence intervals (see Supplementary file 1b for model results).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Relationship between correlation coefficient and network size across the four social learning rules under different social learning 
rates.

Figure supplement 2. Relationship between correlation coefficient and network size for the threshold and conformity learning rule under different 
parameters.

https://doi.org/10.7554/eLife.85703
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the proportion and conformity model but were generally small and non-significant (Figure 4—figure 
supplement 1). The relationship between correlation coefficient and network size under the threshold 
model was also modulated by the threshold location ‘a’ (Figure 4—figure supplement 2). Here, the 
relationship between correlation coefficient and network size was strongest for small threshold loca-
tions (Figure 4—figure supplement 2). The frequency dependence parameter had no effect on the 
predicted relationship (Figure 4—figure supplement 2).

Probability of social spread
Across the different social learning mechanisms, the average probability that an individual socially 
adopted the seeded behaviour increased with increasing timestep (i.e. order of acquisition, Figure 5). 
This is because with an increasing number of individuals becoming knowledgeable, the probability 

Figure 5. Relationship between the probability of an individual socially adopting the seeded behaviour and the number of informed individuals within 
the network. Panels show the results for each of the four social learning rules (simple, threshold, proportion, and conformity). The x-axis describes the 
number of informed individuals within a social network. The simulations are set so that at each timestep a new individual adopts the behaviour, whereby 
each time each individual has a probability of adopting the behaviour through social learning (y-axis) given the set learning rule. Lines plot the average 
probability for each timestep and ribbons show the 95% confidence intervals from the 100 simulations across the binned groups for different network 
sizes. Colour represents network size with darker colour indicating smaller networks. The social transmission rate, the threshold location, and the 
frequency dependence parameter were set to 5.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Relationship between the probability of an individual socially adopting the seeded behaviour and the number of informed 
individuals within the network under different social transmission rates.

Figure supplement 2. Relationship between the probability of an individual socially adopting the seeded behaviour and the number of informed 
individuals within the network under different threshold location (a) and frequency dependence (f) parameters.

https://doi.org/10.7554/eLife.85703
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to be connected to informed others and thus to reach the set learning criterion increased (Figure 5). 
Behaviours were most likely to socially spread under the simple and proportion model (on average a 
non-zero probability to socially spread, Figure 5). That is because both rules did not require to surpass 
a given threshold (such as set for the threshold rule or reaching the majority of an individual’s connec-
tions as set for the conformity rule). Therefore, one connection to an informed conspecific was suffi-
cient for the seeded behaviour to spread socially. However, under more complex spreading processes, 
social learning was limited (Figure 5). This was particularly the case for smaller networks when trans-
mission followed the threshold rule. For instance, in networks consisting of less than 20 individuals, 
the set threshold for socially adopting the behaviour was almost never met (average probability of 
social learning close to 0; Figure 5, Threshold). The high rate of asocial learning presumably led to no 
clear relationship between individual network metric and order of acquisition (Figure 2, Threshold; 
see also section on ‘Relationship between individual social behaviour and order of acquisition’). For 
the conformity rule, larger networks limited social spread, but only at the initial phase of transmission 
(Figure 5, Conformity). In larger social networks, individuals have on average more social connections 
and thus at the initial stages of behavioural spread, it is less likely that the majority of an individual’s 
social connections are already informed.

For both the simple and threshold model, the mean probability of social spread initially increased 
but then dropped towards the later adoptions (Figure 5). This may be caused by a few individuals that 
are not well connected in the social network, and thus have in general a low probability to socially learn 
under the simple and threshold rule. For instance, some great tits may only be connected to one other 
individual and thus, even if the number of knowledgeable individuals in the social network increases 
over time, it is very unlikely to reach the required threshold for social learning. For the proportion and 
conformity rule, the average probability of social learning peaked after a given percentage of individ-
uals being knowledgeable (Figure 5).

The probability to socially adopt a behaviour was modulated by the model parameters chosen. 
Across all four models, the probability of social learning increased with an increasing social transmis-
sion rate ‘s’ (Figure 5—figure supplement 1). Further, for the threshold model, the likelihood of social 
spread decreased with increasing threshold location ‘a’, especially in smaller networks (Figure 5—
figure supplement 2). For the conformity model, changing the frequency dependence parameter ‘f’ 
did only slightly affect the probability of social learning in larger networks whereby with higher param-
eters social spread at the initial stage was more limited (Figure 5—figure supplement 2).

Discussion
Using simulations on large numbers of empirical great tit social networks, we show how the underlying 
social learning rules individuals employ strongly influence the transmission pathways of behaviours 
across social networks derived from real-world data. Under learning rules that rely purely on the 
extent of social connections to informed others, we found that individual great tits with a higher 
weighted degree and betweenness, and lower clustering coefficients were likely to adopt the seeded 
behaviour faster, in line with common expectations of the benefits of sociality for gaining information. 
However, if the likelihood of adopting a behaviour depended on the ratio of connections to informed 
and uninformed others, such as conformist learning, social connectivity was not strongly related to 
the order in which individuals acquired the seeded behaviour. Notably, this contrasts with the widely 
proposed prediction that more social individuals may be more likely to adopt new information. Thus, 
our results show how the relationship between individual sociality and behavioural acquisition can 
change fundamentally with the type of social learning mechanism at play. Finally, we reveal that the 
probability of social spread under certain social learning rules is predicted to be limited in certain real-
world settings, particularly in networks of a very small or large size.

Individuals differ in the quantity and quality of social connections to others which impacts several 
aspects of life history (Alberts, 2019; Beck et al., 2021; Farine and Sheldon, 2015; Formica et al., 
2012; MacIntosh et al., 2012; McDonald, 2007), including the social transmission of information 
(Aplin et al., 2012; Kulahci and Quinn, 2019). Generally, individuals that hold many social connec-
tions to others, and occupy central network positions, are expected to be more likely to acquire infor-
mation (Aplin et al., 2012; Claidière et al., 2013; Hoppitt and Laland, 2011; Kulahci et al., 2016). 
In line with these assumptions, we find that great tits with lower weighted clustering coefficients, and 
higher weighted degree and betweenness were more likely to adopt the seeded behaviour faster 

https://doi.org/10.7554/eLife.85703


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Beck et al. eLife 2023;12:e85703. DOI: https://doi.org/10.7554/eLife.85703 � 15 of 23

when the underlying spreading mechanism depended on the extent of connections to knowledgeable 
others (Figure 2). However, when rules were more complex, for example when behavioural adop-
tion depended on the ratio of connections to knowledgeable and naive individuals, sociality was 
not strongly related to the order of acquisition (Figure 2), matching the expectations from studies 
on complex contagions in humans (Guilbeault et al., 2018). For instance, in humans individuals with 
more social connections require stronger exposure to identify ‘useful’ information from the noise 
received from all their associates (Hodas and Lerman, 2014; Hodas and Lerman, 2012) and indi-
viduals with fewer social connections may utilize information sooner (González-Avella et al., 2011). 
These findings suggest that, under certain spreading mechanisms, the extent of social connections 
can reduce social spread. Thus, the concept that more social and central individuals are especially 
important in acquiring and subsequently spreading information (Kulahci and Quinn, 2019) cannot 
be generalized across different types of behaviours, and may even lead to erroneous conclusions. For 
instance, if no evidence is found that individual sociality is related to the probability of behavioural 
adoption, one might be led to conclude the absence of social learning where, in fact more complex 
social learning rules may be in operation.

These findings have important consequences for our understanding of the relationship between 
sociality and behavioural acquisition, and also for what may constitute an ‘optimal’ social structure for 
efficient social transmission (Cantor et al., 2021; Pasquaretta et al., 2014; Romano et al., 2018). 
In many social structures, individuals differ in their social connectivity, ranging from highly to less 
connected individuals (i.e. heterogenous degree distribution). In networks with higher variation in 
connectivity, simple contagions may spread more efficiently because highly connected individuals 
can act as ‘hubs’ (Evans et al., 2020; Xue et al., 2020). In contrast, more complex contagions may 
spread more slowly on networks with heterogenous degree distribution (Evans et  al., 2020; Xue 
et  al., 2020). Many animals, live in fission–fusion societies (Amici et  al., 2008; Silk et  al., 2014; 
Wilson et al., 2014) where individuals frequently join, leave, and rejoin groups which can result in 
large individual differences in social connectivity (Sah et al., 2018). In contrast, some animals form 
highly stable groups (e.g. many primates and carnivores; Kappeler and van Schaik, 2002; Holekamp 
et al., 2007) with lower individual variation in social connectivity (Sah et al., 2018). In social networks 
with heterogenous degree distribution, an individual’s social network position may, under certain 
behavioural contagions, have a strong impact on the probability of behavioural acquisition whereas in 
groups with homogenous degree distribution, an individuals’ position within the network may not be 
as important. Ultimately, the ‘optimal’ social structure for information transmission will highly depend 
on the behaviour and the underlying learning mechanism. For future work it will be interesting to 
test how different behavioural contagions spread on social networks of different species, ideally with 
contrasting social structures.

Our results have implications for our understanding of the costs and benefits of individual sociality. 
While increased access to information is one of the postulated key benefits of sociality, simply holding 
more connections to others may in fact hinder the adoption of novel behaviours under certain social 
learning rules. For instance, if a novel behaviour follows a conformist learning mechanism, highly 
social individuals with lots of connections may be exposed to the new behaviour sooner than less 
social individuals because they are more likely to be connected to at least one informed conspecific, 
but despite this will be less likely to adopt the novel behaviour if it requires the majority of their social 
connections to become informed first (Firth, 2020) or if many social connections make the detection 
of useful information more difficult (Hodas and Lerman, 2014; Hodas and Lerman, 2012). In addi-
tion, our results suggest that occupying more peripheral network positions may be costlier in terms 
of behavioural adoption than occupying central network positions is beneficial, but that this is depen-
dent on the learning rule. For instance, the proportional rule and conformity rule did not show that 
individuals with lower social connectivity were likely to adopt very late, yet the simple and threshold 
learning rule showed that the average network centrality of late adopters was very low (after approx-
imately 75% of individuals being informed; Figure 2—figure supplement 1) but remained relatively 
unchanged for earlier adoptions (before 75%, Figure 2—figure supplement 1). This suggests that 
in various cases, poorly connected individuals adopt the behaviour last and have in general a very 
low probability of socially adopting behaviour (see decrease in social learning probability for simple 
and threshold rule, Figure 5) but that this can be negated when certain social learning rules (e.g. the 
proportional and conformity rules) are in play. We speculate that the relationship between network 
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position and order of acquisition at the initial stage (i.e. before approx. 75%), and the large variation 
in correlation coefficients (Figure 3) is also highly determined by the demonstrators’ network posi-
tion (i.e. the starting positing of spread, Banerjee et al., 2013) and the underlying network structure 
(Cantor et al., 2021; Evans et al., 2020; Romano et al., 2018) which may warrant future work. Finally, 
how biologically meaningful differences in the order of acquisition are will ultimately depend on the 
behaviour and context, and the actual observed variation in adoption times. Therefore, quantifying 
real individual variation in the timing of behavioural acquisition in the wild will be crucial for our under-
standing of the potential costs and benefits of individual sociality.

Examining behavioural innovation and its subsequent spread in nature is challenging (Klump et al., 
2021; Whiten and Mesoudi, 2008). This is because new behaviours are often only detected once the 
majority of individuals in a population are already knowledgeable. Alternatively, behavioural innova-
tions may occur much more frequently but remain undetected if the behaviour does not spread far 
(e.g. because the behaviour is mechanically challenging for individuals [Gajdon et al., 2006] or when 
the carryover of older, outdated behaviour hinders the spread of novel and more adaptive behaviours 
[Aplin et al., 2017; Barrett et al., 2019]). Here we used simulations on real-world empirical networks, 
and demonstrate that the ability of a behaviour to socially spread depends on its underlying social 
learning mechanism. Our findings are thus consistent with other studies that investigated different 
spreading processes (Cantor et  al., 2021; Evans et  al., 2021; Evans et  al., 2020; Nunn et  al., 
2009). For instance, Evans et al., 2020 simulated a simple and conformity contagion on different 
social structures and show that disease/information spreads faster (i.e. time until a certain number of 
individuals had been infected/informed) under a simple contagion compared to a conformity conta-
gion. Our study supplements past research by specifically focusing on the diffusion dynamics on the 
individual rather than the population level. Across the four models, the probability that individual 
great tits socially adopted the seeded behaviour increased with increasing timestep (Figure 5). This is 
expected as at each timestep in simulations a new individual becomes knowledgeable and remains in 
this state thereby increasing the number of knowledgeable individuals within the network. However, 
social transmission under certain social learning mechanisms was limited. For instance, behaviours 
that needed to surpass a given threshold of social connections to informed others (i.e. threshold or 
conformity rule) required more asocial learning events in the initial spreading phase to be able to 
subsequently transmit via social learning (Figure 5, Figure 4—figure supplement 2). In contrast, for 
the simple and proportion rules, the probability of social transmission was always higher, even in the 
initial spreading phase and when considering different transmission rates (Figure 5, Figure 5—figure 
supplement 1). This demonstrates that in the initial stage some behaviours may have a higher like-
lihood to spread socially, whereas other behaviours, following more complex processes, may rely on 
a larger extent of asocial learning events or social reinforcement. Therefore, the majority of empir-
ical research on behavioural spread in animals may in fact examine more simple social transmission 
processes (because they are easier to detect and observe) which may bias our picture of the existing 
social learning mechanisms of animals and behavioural innovations.

We found that network size impacted behavioural spread across the four transmission models. The 
strength of the relationship between individual network metric and the order of acquisition increased 
with increasing network size under the simple and threshold rule (Figure 4) and was mediated by the 
social transmission rate (Figure 4—figure supplement 1) and the threshold location (Figure 4—figure 
supplement 2). The weaker correlation between individual network metrics and order of acquisition 
in smaller networks might be caused by the relatively reduced likelihood of social spread (Figure 5). 
For instance, for the threshold rule, individuals in larger networks have an overall higher number of 
social connections (compared to individuals in smaller networks) which facilitates reaching the set 
threshold for social learning and thus increases the likelihood of social spread. This is supported 
by our results when simulating spread using different threshold values where behaviours were most 
likely to socially spread across different network sizes under small thresholds (see Figure 2—figure 
supplement 5). In addition, our findings may suggest that in smaller networks, the order of acquisition 
is mainly predicted by who an individual is connected to (e.g. whether it is directly connected to the 
demonstrator) compared to the number and extent of social connections it has. In contrast, in larger 
networks, the probability of behavioural acquisition may be strongly influenced by the number and 
extent of connections an individual has. Therefore, the importance of ‘who’ you know versus ‘how 
many you know’ may differ in networks of varying size. Past studies have investigated behavioural 
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spread on relatively large and static networks (using simulations: Cantor et al., 2021; Evans et al., 
2021; Nunn et al., 2009; Voelkl and Noë, 2008 or natural observations: Allen et al., 2013; Aplin 
et al., 2015a). However, in many species social associations can be highly dynamic and only the social 
connections at a relatively small temporal scale (e.g. at the time of emergence) may predict an indi-
viduals’ decision to adopt a novel behaviour. Our findings that network size can impact behavioural 
spread thus have important consequences for our understanding of the influence of wider society 
structure on when and where behaviours may emerge, and how to interpret empirical results. As such, 
it is important to improve our understanding of the factors that give rise to different social network 
sizes and structures and to consider networks on an appropriate spatiotemporal scale or dynamic 
versus static networks (Hasenjager et al., 2021; Hobaiter et al., 2014). For instance, spatiotemporal 
variation in environmental features (such as the availability and distribution of resources) may influence 
population densities and subsequently local social network size and structure across space and time, 
and as such may influence local social spread.

Our study suggests further questions for future research. Our models assume that each individual 
adopts a seeded behaviour under the same ‘learning rule’. While variation in individual learning rules 
and their impact on behavioural contagions have been widely examined in humans (Aral and Nico-
laides, 2017; McCullen et al., 2013; Melnik et al., 2013; Muthukrishna et al., 2016), its’ investiga-
tion in animals remains scarce. However, individuals may differ in the extent of social information use 
and the thresholds required for behavioural adoption (Chimento et al., 2022), which may be context 
and state dependent (Penndorf and Aplin, 2020; Rendell et al., 2011). For instance, dominance 
rank (Krueger et al., 2014) and sex (Aplin et al., 2013b) have been shown to be related to variation 
in social information use and individuals may only copy behaviour from certain individuals, based on 
familiarity or kin (Boogert et al., 2018; Kavaliers et al., 2005). Therefore, learning rules may differ 
within individuals (e.g. with changes in age or dominance) and between individuals (e.g. sex, relat-
edness). Future simulation and empirical studies could explore how heterogeneity in learning rules, 
within and between individuals, and variation in acquisition versus adoption, impact information flow 
(Chimento et al., 2022). In addition, we only explored learning rules which might be relevant for 
our study system. However, future research could test the same and different rules on species with 
different social structures. For instance, in species with more stable social groups such as in primates 
and many carnivores (Holekamp et al., 2007; Kappeler and van Schaik, 2002), kin- or dominance-
based learning rules may be more applicable.

Furthermore, using simulations did not allow us to test changes in the social network resulting from 
behavioural adoption: individuals may occupy more central social network positions once performing 
a new behaviour (Kulahci et al., 2018; Kulahci and Quinn, 2019). This can be the case if individuals 
preferentially associate with knowledgeable others (Kulahci et  al., 2018), or if individuals change 
their behaviour in response to information acquisition which can also lead to an increase in social 
connections (Kulahci and Quinn, 2019). Such dynamics are not reflected in our study, and would 
require the investigation of natural behavioural spread, ideally under experimental conditions in the 
wild. In addition, our models assume that once individuals become ‘informed’, they cannot return 
to an ‘uninformed’ state. In natural conditions, however, individuals may return again to an ‘unin-
formed’ state if the novel behaviour was not rewarding. Future studies incorporating these aspects 
could provide further new insights into the patterns of social transmission and its link to sociality. 
Finally, we used empirical networks to capture the fine-scale social association patterns between wild 
birds and to explore how different behavioural contagions spread on them. While it is important to 
test predictions on real networks, such an approach also has additional considerations. For instance, 
network metrics are often correlated and dependent on one another (Supplementary file 1a) which 
makes it difficult to tease apart the direct effects on the probability of behavioural adoption for each 
metric alone. In studies using simulated networks, interdependencies can be controlled for in certain 
ways and the effects of each metric could be teased apart (e.g. by using sensitivity analysis). There-
fore, we suggest that, while both empirical and simulation studies can provide valuable informa-
tion on their own, considering both complementary to each other will improve our understanding of 
how behaviours spread on different networks and how different social network metrics relate inde-
pendently to behavioural adoption.

From copying the majority (Aplin et al., 2015a; Danchin et al., 2018; van de Waal et al., 2013) to 
learning from specific tutors (Canteloup et al., 2020; Wild et al., 2019), individuals use a large range 
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of different learning strategies (Hoppitt and Laland, 2013; Kendal et al., 2018). While, an increasing 
number of studies show how social network structure can influence social transmission (using simu-
lations: Evans et al., 2021; Romano et al., 2018; Voelkl and Noë, 2008 and empirical data: Firth 
et al., 2016; Naug, 2008; Romano et al., 2018), our research highlights the importance of the under-
lying social learning mechanism in shaping the transmission pathways across social networks. We 
demonstrate that the common assumption that sociality is linked to a higher likelihood in acquiring 
information and adopting new behaviours cannot be generalized for behavioural spread in real-world 
networks. This also sheds new light on our current understanding of the costs and benefits of indi-
viduals sociality and asks to focus more on the social learning mechanism at play, and to differentiate 
between access to information and behavioural adoption (Chimento et al., 2022). In addition, we 
reveal that social transmission can be limited under certain adoption rules (such as the threshold 
rule), and social networks of particular size. Our findings thus have important consequences for our 
understanding of whether and how behaviours spread across different social networks, and subse-
quently the establishment of traditions and cultures. Further, differences in spreading mechanisms 
alter predictions of what may constitute optimal social structures for the transmission of information, 
and how selection may act on sociality.

Acknowledgements
We thank the large number of contributors to the data collection, and we are very grateful to Will 
Hoppitt for all his input. The study has been supported by grants from NERC (NE/S010335/1 & 
NE/V013483/1), ERC (AdG 250164), and BBSRC (BB/S009752/1). We also thank three anonymous 
reviewers and the Editor for their comments and suggestions on this manuscript.

Additional information

Funding

Funder Grant reference number Author

Natural Environment 
Research Council

NE/S010335/1 Ben C Sheldon

European Research 
Council

AdG 250164 Ben C Sheldon

Biotechnology and 
Biological Sciences 
Research Council

BB/S009752/1 Josh A Firth

Natural Environment 
Research Council

NE/V013483/1 Josh A Firth

The funders had no role in study design, data collection, and interpretation, or the 
decision to submit the work for publication.

Author contributions
Kristina B Beck, Conceptualization, Formal analysis, Visualization, Methodology, Writing – original 
draft; Ben C Sheldon, Conceptualization, Supervision, Funding acquisition, Project administration, 
Writing – review and editing; Josh A Firth, Conceptualization, Supervision, Visualization, Method-
ology, Writing – review and editing

Author ORCIDs
Kristina B Beck ‍ ‍ http://orcid.org/0000-0002-5027-0207
Ben C Sheldon ‍ ‍ http://orcid.org/0000-0002-5240-7828
Josh A Firth ‍ ‍ http://orcid.org/0000-0001-7183-4115

Ethics
All work was subject to review by the University of Oxford, Department of Zoology, Animal Welfare 
and Ethical Review Board (approval number: APA/1/5/ZOO/NASPA/Sheldon/TitBreedingEcology). 

https://doi.org/10.7554/eLife.85703
http://orcid.org/0000-0002-5027-0207
http://orcid.org/0000-0002-5240-7828
http://orcid.org/0000-0001-7183-4115


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Beck et al. eLife 2023;12:e85703. DOI: https://doi.org/10.7554/eLife.85703 � 19 of 23

Data collection adhered to local guidelines for the use of animals in research and all birds were caught, 
tagged, and ringed by appropriate BTO licence holders.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.85703.sa1
Author response https://doi.org/10.7554/eLife.85703.sa2

Additional files
Supplementary files
•  Supplementary file 1. Supplementary tables. (a) Correlation coefficients between the three 
individual network metrics. Shown are the correlation coefficient between the network metrics 
weighted clustering coefficient, degree, and betweenness. (b) Effects of network size on the mean 
correlation coefficient. Shown are the effects of network size on the mean correlation coefficient 
for weighted clustering coefficient, degree, and betweenness for each of the four social learning 
models. We report the estimate, the standard error (SE), test statistic (t), and p values.

•  MDAR checklist 

Data availability
All data and code to reproduce the analyses can be accessed at https://osf.io/6jrhz/.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Beck K 2022 Data and R code for: ‘Social 
learning mechanisms shape 
transmission pathways 
through replicate local 
social networks of wild 
birds’

https://​osf.​io/​6jrhz/ Open Science Framework, 
6jrhz

References
Alberts SC. 2019. Social influences on survival and reproduction: insights from a long-term study of wild 

baboons. The Journal of Animal Ecology 88:47–66. DOI: https://doi.org/10.1111/1365-2656.12887, PMID: 
30033518

Allen J, Weinrich M, Hoppitt W, Rendell L. 2013. Network-Based diffusion analysis reveals cultural transmission of 
lobtail feeding in Humpback whales. Science 340:485–488. DOI: https://doi.org/10.1126/science.1231976

Amici F, Aureli F, Call J. 2008. Fission-Fusion dynamics, behavioral flexibility, and inhibitory control in primates. 
Current Biology 18:1415–1419. DOI: https://doi.org/10.1016/j.cub.2008.08.020, PMID: 18804375

Aplin LM, Farine DR, Morand-Ferron J, Sheldon BC. 2012. Social networks predict patch discovery in a wild 
population of songbirds. Proceedings of the Royal Society B 279:4199–4205. DOI: https://doi.org/10.1098/​
rspb.2012.1591

Aplin LM, Farine DR, Morand-Ferron J, Cole EF, Cockburn A, Sheldon BC, Sih A. 2013a. Individual personalities 
predict social behaviour in wild networks of great tits (Parus major) . Ecology Letters 16:1365–1372. DOI: 
https://doi.org/10.1111/ele.12181

Aplin LM, Sheldon BC, Morand-Ferron J. 2013b. Milk bottles revisited: social learning and individual variation in 
the blue tit, cyanistes caeruleus. Animal Behaviour 85:1225–1232. DOI: https://doi.org/10.1016/j.anbehav.​
2013.03.009

Aplin LM, Farine DR, Morand-Ferron J, Cockburn A, Thornton A, Sheldon BC. 2015a . Counting conformity: 
evaluating the units of information in frequency-dependent social learning. Animal Behaviour 110:e5–e8. DOI: 
https://doi.org/10.1016/j.anbehav.2015.09.015

Aplin LM, Farine DR, Morand-Ferron J, Cockburn A, Thornton A, Sheldon BC. 2015b . Experimentally induced 
innovations lead to persistent culture via conformity in wild birds. Nature 518:538–541. DOI: https://doi.org/​
10.1038/nature13998, PMID: 25470065

Aplin LM, Sheldon BC, McElreath R. 2017. Conformity does not perpetuate suboptimal traditions in a wild 
population of songbirds. PNAS 114:7830–7837. DOI: https://doi.org/10.1073/pnas.1621067114, PMID: 
28739943

Aral S, Nicolaides C. 2017. Exercise contagion in a global social network. Nature Communications 8:14753. DOI: 
https://doi.org/10.1038/ncomms14753, PMID: 28418379

Banerjee A, Chandrasekhar AG, Duflo E, Jackson MO. 2013. The diffusion of microfinance. Science 
341:1236498. DOI: https://doi.org/10.1126/science.1236498, PMID: 23888042

https://doi.org/10.7554/eLife.85703
https://doi.org/10.7554/eLife.85703.sa1
https://doi.org/10.7554/eLife.85703.sa2
https://osf.io/6jrhz/
https://osf.io/6jrhz/
https://doi.org/10.1111/1365-2656.12887
http://www.ncbi.nlm.nih.gov/pubmed/30033518
https://doi.org/10.1126/science.1231976
https://doi.org/10.1016/j.cub.2008.08.020
http://www.ncbi.nlm.nih.gov/pubmed/18804375
https://doi.org/10.1098/rspb.2012.1591
https://doi.org/10.1098/rspb.2012.1591
https://doi.org/10.1111/ele.12181
https://doi.org/10.1016/j.anbehav.2013.03.009
https://doi.org/10.1016/j.anbehav.2013.03.009
https://doi.org/10.1016/j.anbehav.2015.09.015
https://doi.org/10.1038/nature13998
https://doi.org/10.1038/nature13998
http://www.ncbi.nlm.nih.gov/pubmed/25470065
https://doi.org/10.1073/pnas.1621067114
http://www.ncbi.nlm.nih.gov/pubmed/28739943
https://doi.org/10.1038/ncomms14753
http://www.ncbi.nlm.nih.gov/pubmed/28418379
https://doi.org/10.1126/science.1236498
http://www.ncbi.nlm.nih.gov/pubmed/23888042


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Beck et al. eLife 2023;12:e85703. DOI: https://doi.org/10.7554/eLife.85703 � 20 of 23

Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A. 2004. The architecture of complex weighted networks. 
PNAS 101:3747–3752. DOI: https://doi.org/10.1073/pnas.0400087101, PMID: 15007165

Barrett B, Zepeda E, Pollack L, Munson A, Sih A. 2019. Counter-culture: does social learning help or hinder 
adaptive response to human-induced rapid environmental change? Frontiers in Ecology and Evolution 7:183. 
DOI: https://doi.org/10.3389/fevo.2019.00183

Bates D, Maechler M, Bolker B, Walker S. 2015. lme4: Linear mixed-effects models using 'Eigen' and S4. 1.1-7. 
CRAN. https://CRAN.R-project.org/package=lme4

Beck KB, Farine DR, Kempenaers B. 2021. Social network position predicts male mating success in a small 
passerine. Behavioral Ecology 32:856–864. DOI: https://doi.org/10.1093/beheco/arab034, PMID: 34690546

Boogert NJ, Lachlan RF, Spencer KA, Templeton CN, Farine DR. 2018. Stress hormones, social associations and 
song learning in zebra finches. Philosophical Transactions of the Royal Society of London. Series B, Biological 
Sciences 373:20170290. DOI: https://doi.org/10.1098/rstb.2017.0290, PMID: 30104435

Boyd R, Richerson PJ. 1988. Culture and the evolutionary process. University of Chicago Press.
Bulmer MG, Perrins CM. 1973. Mortality in the great tit Parus major. Ibis 115:277–281. DOI: https://doi.org/10.​

1111/j.1474-919X.1973.tb02646.x
Cairns SJ, Schwager SJ. 1987. A comparison of association indices. Animal Behaviour 35:1454–1469. DOI: 

https://doi.org/10.1016/S0003-3472(87)80018-0
Canteloup C, Hoppitt W, van de Waal E. 2020. Wild primates copy higher-ranked individuals in a social 

transmission experiment. Nature Communications 11:459. DOI: https://doi.org/10.1038/s41467-019-14209-8, 
PMID: 31974385

Cantor M, Chimento M, Smeele SQ, He P, Papageorgiou D, Aplin LM, Farine DR. 2021. Social network 
architecture and the tempo of cumulative cultural evolution. Proceedings. Biological Sciences 288:20203107. 
DOI: https://doi.org/10.1098/rspb.2020.3107, PMID: 33715438

Centola D, Macy M. 2007. Complex contagions and the weakness of long ties. American Journal of Sociology 
113:702–734. DOI: https://doi.org/10.1086/521848

Centola D. 2018. How behavior spreads: The science of complex contagions. Princeton. DOI: https://doi.org/10.​
23943/9781400890095

Chimento M, Barrett BJ, Kandler A, Aplin LM. 2022. Cultural diffusion dynamics depend on behavioural 
production rules. Proceedings. Biological Sciences 289:20221001. DOI: https://doi.org/10.1098/rspb.2022.​
1001, PMID: 35946158

Claidière N, Messer EJE, Hoppitt W, Whiten A. 2013. Diffusion dynamics of socially learned foraging techniques 
in squirrel monkeys. Current Biology 23:1251–1255. DOI: https://doi.org/10.1016/j.cub.2013.05.036, PMID: 
23810529

Coussi-Korbel S, Fragaszy DM. 1995. On the relation between social dynamics and social learning. Animal 
Behaviour 50:1441–1453. DOI: https://doi.org/10.1016/0003-3472(95)80001-8

Csardi G, Nepusz T. 2006. The igraph software package for complex network research, interjournal, complex 
systems 1695. Igraph. http://igraph.org

Danchin E, Nöbel S, Pocheville A, Dagaeff A-C, Demay L, Alphand M, Ranty-Roby S, van Renssen L, Monier M, 
Gazagne E, Allain M, Isabel G. 2018. Cultural flies: conformist social learning in fruitflies predicts long-lasting 
mate-choice traditions. Science 362:1025–1030. DOI: https://doi.org/10.1126/science.aat1590, PMID: 
30498121

Ekman J. 1989. Ecology of non-breeding social systems of parus. Prize E (Ed). The Wilson Bulletin Wilson Bull. p. 
263–288.

Evans JC, Silk MJ, Boogert NJ, Hodgson DJ. 2020. Infected or informed? social structure and the simultaneous 
transmission of information and infectious disease. Oikos 129:1271–1288. DOI: https://doi.org/10.1111/oik.​
07148

Evans JC, Hodgson DJ, Boogert NJ, Silk MJ. 2021. Group size and modularity interact to shape the spread of 
infection and information through animal societies. Behavioral Ecology and Sociobiology 75:163. DOI: https://​
doi.org/10.1007/s00265-021-03102-4, PMID: 34866760

Farine DR. 2013. Animal social network inference and permutations for ecologists in R using asnipe. Methods in 
Ecology and Evolution 4:1187–1194. DOI: https://doi.org/10.1111/2041-210X.12121

Farine DR, Aplin LM, Sheldon BC, Hoppitt W. 2015. Interspecific social networks promote information 
transmission in wild songbirds. Proceedings. Biological Sciences 282:20142804. DOI: https://doi.org/10.1098/​
rspb.2014.2804, PMID: 25673683

Farine DR, Sheldon BC. 2015. Selection for territory acquisition is modulated by social network structure in a 
wild songbird. Journal of Evolutionary Biology 28:547–556. DOI: https://doi.org/10.1111/jeb.12587, PMID: 
25611344

Farine DR, Whitehead H. 2015. Constructing, conducting and interpreting animal social network analysis. The 
Journal of Animal Ecology 84:1144–1163. DOI: https://doi.org/10.1111/1365-2656.12418, PMID: 26172345

Firth JA, Sheldon BC. 2016. Social carry-over effects underpin trans-seasonally linked structure in a wild bird 
population. Ecology Letters 19:1324–1332. DOI: https://doi.org/10.1111/ele.12669, PMID: 27623746

Firth JA, Sheldon BC, Farine DR. 2016. Pathways of information transmission among wild songbirds follow 
experimentally imposed changes in social foraging structure. Biology Letters 12:20160144. DOI: https://doi.​
org/10.1098/rsbl.2016.0144, PMID: 27247439

Firth JA. 2020. Considering complexity: animal social networks and behavioural contagions. Trends in Ecology & 
Evolution 35:100–104. DOI: https://doi.org/10.1016/j.tree.2019.10.009

https://doi.org/10.7554/eLife.85703
https://doi.org/10.1073/pnas.0400087101
http://www.ncbi.nlm.nih.gov/pubmed/15007165
https://doi.org/10.3389/fevo.2019.00183
https://CRAN.R-project.org/package=lme4
https://doi.org/10.1093/beheco/arab034
http://www.ncbi.nlm.nih.gov/pubmed/34690546
https://doi.org/10.1098/rstb.2017.0290
http://www.ncbi.nlm.nih.gov/pubmed/30104435
https://doi.org/10.1111/j.1474-919X.1973.tb02646.x
https://doi.org/10.1111/j.1474-919X.1973.tb02646.x
https://doi.org/10.1016/S0003-3472(87)80018-0
https://doi.org/10.1038/s41467-019-14209-8
http://www.ncbi.nlm.nih.gov/pubmed/31974385
https://doi.org/10.1098/rspb.2020.3107
http://www.ncbi.nlm.nih.gov/pubmed/33715438
https://doi.org/10.1086/521848
https://doi.org/10.23943/9781400890095
https://doi.org/10.23943/9781400890095
https://doi.org/10.1098/rspb.2022.1001
https://doi.org/10.1098/rspb.2022.1001
http://www.ncbi.nlm.nih.gov/pubmed/35946158
https://doi.org/10.1016/j.cub.2013.05.036
http://www.ncbi.nlm.nih.gov/pubmed/23810529
https://doi.org/10.1016/0003-3472(95)80001-8
http://igraph.org
https://doi.org/10.1126/science.aat1590
http://www.ncbi.nlm.nih.gov/pubmed/30498121
https://doi.org/10.1111/oik.07148
https://doi.org/10.1111/oik.07148
https://doi.org/10.1007/s00265-021-03102-4
https://doi.org/10.1007/s00265-021-03102-4
http://www.ncbi.nlm.nih.gov/pubmed/34866760
https://doi.org/10.1111/2041-210X.12121
https://doi.org/10.1098/rspb.2014.2804
https://doi.org/10.1098/rspb.2014.2804
http://www.ncbi.nlm.nih.gov/pubmed/25673683
https://doi.org/10.1111/jeb.12587
http://www.ncbi.nlm.nih.gov/pubmed/25611344
https://doi.org/10.1111/1365-2656.12418
http://www.ncbi.nlm.nih.gov/pubmed/26172345
https://doi.org/10.1111/ele.12669
http://www.ncbi.nlm.nih.gov/pubmed/27623746
https://doi.org/10.1098/rsbl.2016.0144
https://doi.org/10.1098/rsbl.2016.0144
http://www.ncbi.nlm.nih.gov/pubmed/27247439
https://doi.org/10.1016/j.tree.2019.10.009


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Beck et al. eLife 2023;12:e85703. DOI: https://doi.org/10.7554/eLife.85703 � 21 of 23

Firth JA, Albery GF, Beck KB, Jarić I, Spurgin LG, Sheldon BC, Hoppitt W. 2020. Analysing the Social Spread of 
Behaviour: Integrating Complex Contagions into Network Based Diffusions. arXiv. https://​arxiv.​org/​abs/​2012.​
08925

Formica VA, Wood CW, Larsen WB, Butterfield RE, Augat ME, Hougen HY, Brodie ED. 2012. Fitness 
consequences of social network position in a wild population of forked fungus beetles (bolitotherus cornutus). 
Journal of Evolutionary Biology 25:130–137. DOI: https://doi.org/10.1111/j.1420-9101.2011.02411.x, PMID: 
22092581

Franz M, Nunn CL. 2009. Network-Based diffusion analysis: a new method for detecting social learning. 
Proceedings of the Royal Society B 276:1829–1836. DOI: https://doi.org/10.1098/rspb.2008.1824

Gajdon GK, Fijn N, Huber L. 2006. Limited spread of innovation in a wild parrot, the kea (nestor notabilis). 
Animal Cognition 9:173–181. DOI: https://doi.org/10.1007/s10071-006-0018-7

González-Avella JC, Eguíluz VM, Marsili M, Vega-Redondo F, San Miguel M. 2011. Threshold learning dynamics 
in social networks. PLOS ONE 6:e20207. DOI: https://doi.org/10.1371/journal.pone.0020207, PMID: 21637714

Granovetter M. 1978. Threshold models of collective behavior. American Journal of Sociology 83:1420–1443. 
DOI: https://doi.org/10.1086/226707

Guilbeault D, Becker J, Centola D. 2018. Complex contagions: A decade in review. Complex Spreading Phenom 
Soc Syst 3:25. DOI: https://doi.org/10.1007/978-3-319-77332-2

Hämäläinen L, Mappes J, Rowland HM, Teichmann M, Thorogood R. 2020. Social learning within and across 
predator species reduces attacks on novel aposematic prey. The Journal of Animal Ecology 89:1153–1164. 
DOI: https://doi.org/10.1111/1365-2656.13180, PMID: 32077104

Hasenjager MJ, Leadbeater E, Hoppitt W. 2021. Detecting and quantifying social transmission using network-
based diffusion analysis. The Journal of Animal Ecology 90:8–26. DOI: https://doi.org/10.1111/1365-2656.​
13307, PMID: 32745269

Haun DBM, Rekers Y, Tomasello M. 2012. Majority-biased transmission in chimpanzees and human children, but 
not orangutans. Current Biology 22:727–731. DOI: https://doi.org/10.1016/j.cub.2012.03.006, PMID: 
22503497

Heyes CM. 1994. Social learning in animals: categories and mechanisms. Biological Reviews of the Cambridge 
Philosophical Society 69:207–231. DOI: https://doi.org/10.1111/j.1469-185x.1994.tb01506.x, PMID: 8054445

Hinde RA. 1952. The Behaviour of the Great Tit (Parus major) and Some Other Related Species. Brill.
Hobaiter C, Poisot T, Zuberbühler K, Hoppitt W, Gruber T. 2014. Social network analysis shows direct evidence 

for social transmission of tool use in wild chimpanzees. PLOS Biology 12:e1001960. DOI: https://doi.org/10.​
1371/journal.pbio.1001960, PMID: 25268798

Hodas NO, Lerman K. 2012. How visibility and divided attention constrain social contagion. 2012 International 
Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing. 
249–257. DOI: https://doi.org/10.1109/SocialCom-PASSAT.2012.129

Hodas NO, Lerman K. 2014. The simple rules of social contagion. Scientific Reports 4:4343. DOI: https://doi.org/​
10.1038/srep04343, PMID: 24614301

Holekamp KE, Sakai ST, Lundrigan BL. 2007. Social intelligence in the spotted hyena (crocuta crocuta). 
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 362:523–538. DOI: 
https://doi.org/10.1098/rstb.2006.1993, PMID: 17289649

Hoppitt W, Laland KN. 2011. Detecting social learning using networks: a users guide. American Journal of 
Primatology 73:834–844. DOI: https://doi.org/10.1002/ajp.20920, PMID: 21246592

Hoppitt W, Laland KN 2013. Social learning. Princeton University Press.
Hoppitt WJE, Farine DR. 2018. Association indices for quantifying social relationships: how to deal with missing 

observations of individuals or groups. Animal Behaviour 136:227–238. DOI: https://doi.org/10.1016/j.anbehav.​
2017.08.029

Hoppitt W. 2020. ComplexNBDA. 0.1.0. GitHub Repository. https://github.com/whoppitt/complexNBDA
Kappeler PM, van Schaik CP. 2002. Evolution of primate social systems. International Journal of Primatology 

23:707–740. DOI: https://doi.org/10.1023/A:1015520830318
Kavaliers M, Colwell DD, Choleris E. 2005. Kinship, familiarity and social status modulate social learning about? 

micropredators? (biting flies) in deer mice. Behavioral Ecology and Sociobiology 58:60–71. DOI: https://doi.​
org/10.1007/s00265-004-0896-0

Kendal RL, Boogert NJ, Rendell L, Laland KN, Webster M, Jones PL. 2018. Social learning strategies: bridge-
building between fields. Trends in Cognitive Sciences 22:651–665. DOI: https://doi.org/10.1016/j.tics.2018.04.​
003, PMID: 29759889

Klump BC, Martin JM, Wild S, Hörsch JK, Major RE, Aplin LM. 2021. Innovation and geographic spread of a 
complex foraging culture in an urban parrot. Science 373:456–460 . DOI: https://doi.org/10.1126/science.​
abe7808, PMID: 34437121

Korner-Nievergelt F, Roth T, von Felten S, Guélat J, Almasi B, Korner-Nievergelt P. 2015. Bayesian Data Analysis 
in Ecology Using Linear Models with R, Bugs, and Stan Academic Press. DOI: https://doi.org/10.1016/
C2013-0-​23227-X

Krueger K, Farmer K, Heinze J. 2014. The effects of age, rank and neophobia on social learning in horses. 
Animal Cognition 17:645–655. DOI: https://doi.org/10.1007/s10071-013-0696-x, PMID: 24170136

Kulahci IG, Rubenstein DI, Bugnyar T, Hoppitt W, Mikus N, Schwab C. 2016. Social networks predict selective 
observation and information spread in ravens. Royal Society Open Science 3:160256. DOI: https://doi.org/10.​
1098/rsos.160256, PMID: 27493780

https://doi.org/10.7554/eLife.85703
https://doi.org/10.1111/j.1420-9101.2011.02411.x
http://www.ncbi.nlm.nih.gov/pubmed/22092581
https://doi.org/10.1098/rspb.2008.1824
https://doi.org/10.1007/s10071-006-0018-7
https://doi.org/10.1371/journal.pone.0020207
http://www.ncbi.nlm.nih.gov/pubmed/21637714
https://doi.org/10.1086/226707
https://doi.org/10.1007/978-3-319-77332-2
https://doi.org/10.1111/1365-2656.13180
http://www.ncbi.nlm.nih.gov/pubmed/32077104
https://doi.org/10.1111/1365-2656.13307
https://doi.org/10.1111/1365-2656.13307
http://www.ncbi.nlm.nih.gov/pubmed/32745269
https://doi.org/10.1016/j.cub.2012.03.006
http://www.ncbi.nlm.nih.gov/pubmed/22503497
https://doi.org/10.1111/j.1469-185x.1994.tb01506.x
http://www.ncbi.nlm.nih.gov/pubmed/8054445
https://doi.org/10.1371/journal.pbio.1001960
https://doi.org/10.1371/journal.pbio.1001960
http://www.ncbi.nlm.nih.gov/pubmed/25268798
https://doi.org/10.1109/SocialCom-PASSAT.2012.129
https://doi.org/10.1038/srep04343
https://doi.org/10.1038/srep04343
http://www.ncbi.nlm.nih.gov/pubmed/24614301
https://doi.org/10.1098/rstb.2006.1993
http://www.ncbi.nlm.nih.gov/pubmed/17289649
https://doi.org/10.1002/ajp.20920
http://www.ncbi.nlm.nih.gov/pubmed/21246592
https://doi.org/10.1016/j.anbehav.2017.08.029
https://doi.org/10.1016/j.anbehav.2017.08.029
https://github.com/whoppitt/complexNBDA
https://doi.org/10.1023/A:1015520830318
https://doi.org/10.1007/s00265-004-0896-0
https://doi.org/10.1007/s00265-004-0896-0
https://doi.org/10.1016/j.tics.2018.04.003
https://doi.org/10.1016/j.tics.2018.04.003
http://www.ncbi.nlm.nih.gov/pubmed/29759889
https://doi.org/10.1126/science.abe7808
https://doi.org/10.1126/science.abe7808
http://www.ncbi.nlm.nih.gov/pubmed/34437121
https://doi.org/10.1016/C2013-0-23227-X
https://doi.org/10.1016/C2013-0-23227-X
https://doi.org/10.1007/s10071-013-0696-x
http://www.ncbi.nlm.nih.gov/pubmed/24170136
https://doi.org/10.1098/rsos.160256
https://doi.org/10.1098/rsos.160256
http://www.ncbi.nlm.nih.gov/pubmed/27493780


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Beck et al. eLife 2023;12:e85703. DOI: https://doi.org/10.7554/eLife.85703 � 22 of 23

Kulahci IG, Ghazanfar AA, Rubenstein DI. 2018. Knowledgeable lemurs become more central in social networks. 
Current Biology 28:1306–1310. DOI: https://doi.org/10.1016/j.cub.2018.02.079, PMID: 29628372

Kulahci IG, Quinn JL. 2019. Dynamic relationships between information transmission and social connections. 
Trends in Ecology & Evolution 34:545–554. DOI: https://doi.org/10.1016/j.tree.2019.02.007

MacIntosh AJJ, Jacobs A, Garcia C, Shimizu K, Mouri K, Huffman MA, Hernandez AD. 2012. Monkeys in the 
middle: parasite transmission through the social network of a wild primate. PLOS ONE 7:e51144. DOI: https://​
doi.org/10.1371/journal.pone.0051144, PMID: 23227246

McCullen NJ, Rucklidge AM, Bale CSE, Foxon TJ, Gale WF. 2013. Multiparameter models of innovation diffusion 
on complex networks. SIAM Journal on Applied Dynamical Systems 12:515–532. DOI: https://doi.org/10.1137/​
120885371

McDonald DB. 2007. Predicting fate from early connectivity in a social network. PNAS 104:10910–10914. DOI: 
https://doi.org/10.1073/pnas.0701159104, PMID: 17576933

Melnik S, Ward JA, Gleeson JP, Porter MA. 2013. Multi-Stage complex contagions. Chaos 23:013124. DOI: 
https://doi.org/10.1063/1.4790836

Muthukrishna M, Morgan TJH, Henrich J. 2016. The when and who of social learning and conformist 
transmission. Evolution and Human Behavior 37:10–20. DOI: https://doi.org/10.1016/j.evolhumbehav.2015.05.​
004

Naug D. 2008. Structure of the social network and its influence on transmission dynamics in a honeybee colony. 
Behavioral Ecology and Sociobiology 62:1719–1725. DOI: https://doi.org/10.1007/s00265-008-0600-x

Nunn CL, Thrall PH, Bartz K, Dasgupta T, Boesch C. 2009. Do transmission mechanisms or social systems drive 
cultural dynamics in socially structured populations? Animal Behaviour 77:1515–1524. DOI: https://doi.org/10.​
1016/j.anbehav.2009.02.023

Papastamatiou YP, Bodey TW, Caselle JE, Bradley D, Freeman R, Friedlander AM, Jacoby DMP. 2020. Multiyear 
social stability and social information use in reef sharks with diel fission-fusion dynamics. Proceedings. 
Biological Sciences 287:20201063. DOI: https://doi.org/10.1098/rspb.2020.1063, PMID: 32783522

Pasquaretta C, Levé M, Claidière N, van de Waal E, Whiten A, MacIntosh AJJ, Pelé M, Bergstrom ML, 
Borgeaud C, Brosnan SF, Crofoot MC, Fedigan LM, Fichtel C, Hopper LM, Mareno MC, Petit O, 
Schnoell AV, di Sorrentino EP, Thierry B, Tiddi B, et al. 2014. Social networks in primates: smart and tolerant 
species have more efficient networks. Scientific Reports 4:7600. DOI: https://doi.org/10.1038/srep07600, 
PMID: 25534964

Penndorf J, Aplin L. 2020. Environmental and life history factors, but not age, influence social learning about 
food: a meta-analysis. Animal Behaviour 167:161–176. DOI: https://doi.org/10.1016/j.anbehav.2020.07.001

Pike TW, Laland KN. 2010. Conformist learning in nine-spined sticklebacks’ foraging decisions. Biology Letters 
6:466–468. DOI: https://doi.org/10.1098/rsbl.2009.1014, PMID: 20129948

Psorakis I, Roberts SJ, Rezek I, Sheldon BC. 2012. Inferring social network structure in ecological systems from 
spatio-temporal data streams. Journal of the Royal Society, Interface 9:3055–3066. DOI: https://doi.org/10.​
1098/rsif.2012.0223, PMID: 22696481

Psorakis I, Voelkl B, Garroway CJ, Radersma R, Aplin LM, Crates RA, Culina A, Farine DR, Firth JA, Hinde CA, 
Kidd LR, Milligan ND, Roberts SJ, Verhelst B, Sheldon BC. 2015. Inferring social structure from temporal data. 
Behavioral Ecology and Sociobiology 69:857–866. DOI: https://doi.org/10.1007/s00265-015-1906-0

R Development Core Team. 2020. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing. Vienna, Austria. https://www.R-project.org

Rendell L, Fogarty L, Hoppitt WJE, Morgan TJH, Webster MM, Laland KN. 2011. Cognitive culture: theoretical 
and empirical insights into social learning strategies. Trends in Cognitive Sciences 15:68–76. DOI: https://doi.​
org/10.1016/j.tics.2010.12.002, PMID: 21215677

Romano V, Shen M, Pansanel J, MacIntosh AJJ, Sueur C. 2018. Social transmission in networks: global efficiency 
peaks with intermediate levels of modularity. Behavioral Ecology and Sociobiology 72:1–10. DOI: https://doi.​
org/10.1007/s00265-018-2564-9

Rosenthal SB, Twomey CR, Hartnett AT, Wu HS, Couzin ID. 2015. Revealing the hidden networks of interaction in 
mobile animal groups allows prediction of complex behavioral contagion. PNAS 112:4690–4695. DOI: https://​
doi.org/10.1073/pnas.1420068112, PMID: 25825752

Sah P, Mann J, Bansal S. 2018. Disease implications of animal social network structure: a synthesis across social 
systems. The Journal of Animal Ecology 87:546–558. DOI: https://doi.org/10.1111/1365-2656.12786, PMID: 
29247466

Silk MJ, Croft DP, Tregenza T, Bearhop S, Lens L. 2014. The importance of fission-fusion social group dynamics in 
birds. Ibis 156:701–715.  DOI: https://doi.org/10.1111/ibi.12191

Somveille M, Firth JA, Aplin LM, Farine DR, Sheldon BC, Thompson RN, Torney C. 2018. Movement and 
conformity interact to establish local behavioural traditions in animal populations. PLOS Computational Biology 
14:e1006647. DOI: https://doi.org/10.1371/journal.pcbi.1006647

Thorogood R, Kokko H, Mappes J. 2018. Social transmission of avoidance among predators facilitates the 
spread of novel prey. Nature Ecology & Evolution 2:254–261. DOI: https://doi.org/10.1038/s41559-017-0418-x, 
PMID: 29255302

Toyokawa W, Gaissmaier W. 2022. Conformist social learning leads to self-organised prevention against adverse 
bias in risky decision making. eLife 11:e75308. DOI: https://doi.org/10.7554/eLife.75308, PMID: 35535494

van de Waal E, Borgeaud C, Whiten A. 2013. Potent social learning and conformity shape a wild primate’s 
foraging decisions. Science 340:483–485. DOI: https://doi.org/10.1126/science.1232769, PMID: 23620053

https://doi.org/10.7554/eLife.85703
https://doi.org/10.1016/j.cub.2018.02.079
http://www.ncbi.nlm.nih.gov/pubmed/29628372
https://doi.org/10.1016/j.tree.2019.02.007
https://doi.org/10.1371/journal.pone.0051144
https://doi.org/10.1371/journal.pone.0051144
http://www.ncbi.nlm.nih.gov/pubmed/23227246
https://doi.org/10.1137/120885371
https://doi.org/10.1137/120885371
https://doi.org/10.1073/pnas.0701159104
http://www.ncbi.nlm.nih.gov/pubmed/17576933
https://doi.org/10.1063/1.4790836
https://doi.org/10.1016/j.evolhumbehav.2015.05.004
https://doi.org/10.1016/j.evolhumbehav.2015.05.004
https://doi.org/10.1007/s00265-008-0600-x
https://doi.org/10.1016/j.anbehav.2009.02.023
https://doi.org/10.1016/j.anbehav.2009.02.023
https://doi.org/10.1098/rspb.2020.1063
http://www.ncbi.nlm.nih.gov/pubmed/32783522
https://doi.org/10.1038/srep07600
http://www.ncbi.nlm.nih.gov/pubmed/25534964
https://doi.org/10.1016/j.anbehav.2020.07.001
https://doi.org/10.1098/rsbl.2009.1014
http://www.ncbi.nlm.nih.gov/pubmed/20129948
https://doi.org/10.1098/rsif.2012.0223
https://doi.org/10.1098/rsif.2012.0223
http://www.ncbi.nlm.nih.gov/pubmed/22696481
https://doi.org/10.1007/s00265-015-1906-0
https://www.R-project.org
https://doi.org/10.1016/j.tics.2010.12.002
https://doi.org/10.1016/j.tics.2010.12.002
http://www.ncbi.nlm.nih.gov/pubmed/21215677
https://doi.org/10.1007/s00265-018-2564-9
https://doi.org/10.1007/s00265-018-2564-9
https://doi.org/10.1073/pnas.1420068112
https://doi.org/10.1073/pnas.1420068112
http://www.ncbi.nlm.nih.gov/pubmed/25825752
https://doi.org/10.1111/1365-2656.12786
http://www.ncbi.nlm.nih.gov/pubmed/29247466
https://doi.org/10.1111/ibi.12191
https://doi.org/10.1371/journal.pcbi.1006647
https://doi.org/10.1038/s41559-017-0418-x
http://www.ncbi.nlm.nih.gov/pubmed/29255302
https://doi.org/10.7554/eLife.75308
http://www.ncbi.nlm.nih.gov/pubmed/35535494
https://doi.org/10.1126/science.1232769
http://www.ncbi.nlm.nih.gov/pubmed/23620053


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Beck et al. eLife 2023;12:e85703. DOI: https://doi.org/10.7554/eLife.85703 � 23 of 23

Voelkl B, Noë R. 2008. The influence of social structure on the propagation of social information in artificial 
primate groups: a graph-based simulation approach. Journal of Theoretical Biology 252:77–86. DOI: https://​
doi.org/10.1016/j.jtbi.2008.02.002, PMID: 18342891

Watts DJ. 2002. A simple model of global cascades on random networks. PNAS 99:5766–5771. DOI: https://doi.​
org/10.1073/pnas.082090499, PMID: 16578874

Whiten A, Mesoudi A. 2008. Establishing an experimental science of culture: animal social diffusion experiments. 
Philosophical Transactions of the Royal Society B 363:3477–3488. DOI: https://doi.org/10.1098/rstb.2008.0134

Whiten A. 2021. The burgeoning reach of animal culture. Science 372:eabe6514. DOI: https://doi.org/10.1126/​
science.abe6514, PMID: 33795431

Wild S, Allen SJ, Krützen M, King SL, Gerber L, Hoppitt WJE. 2019. Multi-network-based diffusion analysis 
reveals vertical cultural transmission of sponge tool use within dolphin matrilines. Biology Letters 15:20190227. 
DOI: https://doi.org/10.1098/rsbl.2019.0227, PMID: 31311483

Wilson ADM, Krause S, James R, Croft DP, Ramnarine IW, Borner KK, Clement RJG, Krause J. 2014. Dynamic 
social networks in guppies (poecilia reticulata). Behavioral Ecology and Sociobiology 68:915–925. DOI: https://​
doi.org/10.1007/s00265-014-1704-0, PMID: 25152559

Xue X, Pan L, Zheng M, Wang W. 2020. Network temporality can promote and suppress information spreading. 
Chaos 30:113136. DOI: https://doi.org/10.1063/5.0027758, PMID: 33261331

https://doi.org/10.7554/eLife.85703
https://doi.org/10.1016/j.jtbi.2008.02.002
https://doi.org/10.1016/j.jtbi.2008.02.002
http://www.ncbi.nlm.nih.gov/pubmed/18342891
https://doi.org/10.1073/pnas.082090499
https://doi.org/10.1073/pnas.082090499
http://www.ncbi.nlm.nih.gov/pubmed/16578874
https://doi.org/10.1098/rstb.2008.0134
https://doi.org/10.1126/science.abe6514
https://doi.org/10.1126/science.abe6514
http://www.ncbi.nlm.nih.gov/pubmed/33795431
https://doi.org/10.1098/rsbl.2019.0227
http://www.ncbi.nlm.nih.gov/pubmed/31311483
https://doi.org/10.1007/s00265-014-1704-0
https://doi.org/10.1007/s00265-014-1704-0
http://www.ncbi.nlm.nih.gov/pubmed/25152559
https://doi.org/10.1063/5.0027758
http://www.ncbi.nlm.nih.gov/pubmed/33261331

	Social learning mechanisms shape transmission pathways through replicate local social networks of wild birds
	Editor's evaluation
	Introduction
	Materials and methods
	Study system
	Social networks
	Simulations
	Data summary statistics

	Results
	Relationship between individual social behaviour and order of acquisition
	Relationship between social network size and pathways of behavioural diffusion
	Probability of social spread

	Discussion
	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References


