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Abstract Touch system function requires precise interactions between specialized skin cells 
and somatosensory axons, as exemplified by the vertebrate mechanosensory Merkel cell-neurite 
complex. Development and patterning of Merkel cells and associated neurites during skin organo-
genesis remain poorly understood, partly due to the in utero development of mammalian embryos. 
Here, we discover Merkel cells in the zebrafish epidermis and identify Atonal homolog 1a (Atoh1a) 
as a marker of zebrafish Merkel cells. We show that zebrafish Merkel cells derive from basal kerat-
inocytes, express neurosecretory and mechanosensory machinery, extend actin-rich microvilli, and 
complex with somatosensory axons, all hallmarks of mammalian Merkel cells. Merkel cells popu-
late all major adult skin compartments, with region-specific densities and distribution patterns. In 
vivo photoconversion reveals that Merkel cells undergo steady loss and replenishment during skin 
homeostasis. Merkel cells develop concomitant with dermal appendages along the trunk and loss of 
Ectodysplasin signaling, which prevents dermal appendage formation, reduces Merkel cell density 
by affecting cell differentiation. By contrast, altering dermal appendage morphology changes the 
distribution, but not density, of Merkel cells. Overall, our studies provide insights into touch system 
maturation during skin organogenesis and establish zebrafish as an experimentally accessible in vivo 
model for the study of Merkel cell biology.

Editor's evaluation
The authors describe and characterize the touch system in zebrafish as a new model to study Merkel 
cell development and maintenance. The study demonstrates that the zebrafish touch system shares 
many characteristics with its mammalian counterpart, including developmental origin, innervation, 
and molecular characteristics while allowing in vivo analysis of specification, development, and main-
tenance. This study is the foundation for future detailed cellular and molecular analyses of the touch 
sensory system and will be of interest to developmental biologists and neuroscientists studying stem 
cells, regeneration, and aging.

Introduction
Skin functions as our primary interface with the physical environment and can distinguish a range of 
tactile inputs with exquisite acuity. As the skin undergoes organogenesis, the epidermis transforms 
from a simple, uniform epithelium into a complex, diverse tissue. During these dramatic changes, the 
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skin develops regionally specialized sensory structures and becomes innervated by specific types of 
somatosensory neurites (reviewed by Jenkins and Lumpkin, 2017). Interactions between somatosen-
sory neurites and cutaneous cell types regulate diverse tactile responses (reviewed by Handler and 
Ginty, 2021). Altered tactile sensitivity during early mammalian development has been associated 
with neurodevelopmental disorders (reviewed by Orefice, 2020), underscoring the importance of 
understanding the cellular and molecular basis of touch system development and function.

Merkel cells (MCs), a specialized mechanosensory cell type found in the vertebrate epidermis 
(reviewed by Hartschuh et al., 1986), densely populate many highly sensitive regions of skin (Lacour 
et  al., 1991). MCs have several defining cellular characteristics that distinguish them from other 
epidermal cell types: they are relatively small, extend actin-rich microvilli, contain cytoplasmic gran-
ules reminiscent of synaptic vesicles, and form contacts with somatosensory axons (Hartschuh and 
Weihe, 1980; Mihara et al., 1979; Smith, 1977; Toyoshima et al., 1998). In mammals, a subset of 
cutaneous somatosensory axons known as Aß slowly adapting type I low-threshold mechanoreceptors 
(SAI-LTMRs) innervate MCs, forming the MC-neurite complex. MCs detect mechanical inputs via the 
cation channel Piezo2 (Ikeda et al., 2014; Maksimovic et al., 2014; Woo et al., 2014) and play an 
active role in touch sensation by releasing neurotransmitters to activate neighboring neurites (Chang 
et al., 2016; Chang and Gu, 2020; Hoffman et al., 2018). Genetic ablation of rodent MCs indicates 
they are required for specific aspects of touch system function, including promoting the static phase 
of the slowly adapting response of Aß SAI-LTMRs and sensory tasks such as texture discrimination 
(Maricich et al., 2012; Maricich et al., 2009).

Molecular control of MC development has primarily been studied in rodent hairy skin (reviewed by 
Oss-Ronen and Cohen, 2021). While this system has been useful for understanding many aspects of 
MC development and function, the rodent system also has several significant limitations that warrant 
additional models to improve the understanding of MCs. First, vertebrates have diverse types of skin, 
and MCs are found in both hairy and glabrous (non-hairy) skin, as well as mucocutaneous regions such 
as the gingiva and palate (Hashimoto, 1972; Lacour et al., 1991; Moayedi et al., 2021). Importantly, 
MC populations within different skin compartments share similar transcriptional profiles (Nguyen 
et al., 2019). Thus, the establishment of complementary genetic systems in different types of skin 
could help reveal both shared and divergent principles of MC development. Second, because in 
utero development of mammalian skin limits access to the developing touch system—combined with 
technical limitations of imaging intact mammalian skin—the dynamics of MC development and inner-
vation remain essentially unknown. Third, unbiased screens for regulators of MC development would 
be difficult or impractical in rodents due to the prohibitive cost of animal housing and difficulty of 
visualizing MCs in situ.

Anamniote model systems, such as the genetically tractable zebrafish, provide the potential to 
overcome these limitations. Interestingly, despite the different tactile environments encountered by 
terrestrial and aquatic vertebrates, MCs have been described by transmission electron microscopy 
(TEM) in a wide variety of anamniotes, including teleost (ray-finned) fish, lungfish, and lamprey (Fox 
et al., 1980; Lane and Whitear, 1977; Whitear, 1989; Whitear and Lane, 1981). Here, we iden-
tify and characterize a population of zebrafish epidermal cells that we propose are bona fide MCs. 
Our studies establish the zebrafish as a promising new model to investigate the developmental and 
cellular biology of MCs.

Results
Ultrastructural identification of presumptive MCs in the adult epidermis
Given the presence of cells with the ultrastructural characteristics of MCs in several teleosts (Lane and 
Whitear, 1977; Whitear, 1989), we reasoned that the zebrafish epidermis may contain similar cells. 
Whitear, 1989 defined five ultrastructural criteria for the identification of vertebrate MCs: (1) a rela-
tively small volume of cytoplasm; (2) an association with a nerve fiber; (3) the presence of cytoplasmic 
granules; (4) desmosomal attachments to neighboring cells; and (5) peripheral microvilli.

We previously demonstrated that somatosensory axons densely innervate the epidermis above 
scales (Rasmussen et al., 2018), dermal appendages that cover the adult zebrafish trunk (Figure 1A). 
By TEM, we found that many of the axon endings in the scale epidermis arborize between keratinocyte 
membranes (Rasmussen et al., 2018). Interestingly, however, we identified additional axon-associated 
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epidermal cells that were distinct from the large, cuboidal keratinocytes that comprise most of the 
epidermis based on several characteristics. The cells appeared relatively small and spherical with a low 
cytoplasmic-to-nuclear ratio compared to neighboring keratinocytes (Figure 1B and C; Figure 1—
figure supplement 1), contained cytoplasmic vesicles that in some instances localized adjacent to 
axon contacts (Figure 1B’), and formed desmosomal-like attachments with neighboring keratinocytes 

Figure 1. The adult scale epidermis contains atoh1a+ Merkel cells (MCs). (A) Illustration of the adult zebrafish trunk anatomy showing the organization 
of epidermis, scales, and dermis. Scales are flat bony discs arranged in an overlapping, imbricated pattern and coated on their external surface by 
epidermis. (B) Transmission electron microscopy (TEM) of a presumptive MC from the scale epidermis. Dotted boxes indicate regions of magnification 
in B’–B’’’. (B’) Magnification of B showing cytoplasmic granules (g, brackets) juxtaposed to a putative axon (a) contact containing a mitochondrion 
(m). (B’’ and B’’’) Magnifications of B showing desmosomal-like (d, arrows) attachments between keratinocytes (B’’) and between a presumptive MC 
and keratinocyte (B’’’). (C and C’) TEM of a presumptive MC from the scale epidermis showing a microvillar process (p, arrowhead). (D) Illustration 
of a cross section of the scale epidermis based on TEM observations. Periderm cells (superficial epidermis; dark blue) are located in the uppermost 
epidermal stratum, and basal keratinocytes (light blue) are located in the lowermost epidermal stratum. MCs containing cytoplasmic granules, 
extending microvillar processes, and contacting axons localize between keratinocytes. (E) Lateral confocal micrograph of the trunk epidermis in an adult 
expressing reporters for keratinocytes (Tg(actb2:LOXP-BFP-LOXP-DsRed)) and atoh1a-expressing cells (Tg(atoh1a:nls-Eos)). Dotted boxes indicate 
areas of magnification in E’ and E’’. (E’) Magnification of E showing atoh1a+ hair cells (HCs) and progenitors within neuromasts (nm) of the posterior 
lateral line. (E’’) Magnification of E showing atoh1a+ MCs scattered throughout the scale epidermis. (F) Lateral and reconstructed cross sectional 
confocal micrographs of the trunk in an adult expressing reporters for keratinocytes (Tg(actb2:LOXP-BFP-LOXP-DsRed)) and atoh1a-expressing cells 
(Tg(atoh1a:nls-Eos)) and stained with Alizarin Red S (ARS) to label the mineralized scale matrix. Note that atoh1a+ MCs localize to the epidermis above 
scales (arrowhead). (G) Lateral confocal micrograph of the scale epidermis in an adult expressing reporters for keratinocytes (Tg(krt4:DsRed)) and F-actin 
within atoh1a+ MCs (Tg(atoh1a:Lifeact-EGFP)). Note that all atoh1a+ MCs extend multiple microvilli. (G’) Magnification of G with arrowheads indicating 
individual microvillar processes on the surface of MCs. (G’’) Reconstructed cross section along the yellow line in G. MCs localize to the upper epidermal 
strata as diagrammed in D. Note that Tg(krt4:DsRed) (blue) preferentially labels keratinocytes in the upper epidermal strata, but not in the basal cell 
layer. Scale bars: 1 µm (B and C), 0.1 µm (B’–B’’’), 0.5 µm (C’), 50 µm (E–E’’ and F), 10 µm (G), and 5 µm (G’ and G’’).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. TEM characterization of presumptive MC and adjacent keratinocytes.

Figure supplement 2. Characterization of atoh1a reporter transgenes in larvae.

Figure supplement 3. MCs in the adult epidermis express Sox2.

Figure supplement 3—source data 1. Datasheet for Figure 1—figure supplement 3.

https://doi.org/10.7554/eLife.85800
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(Figure 1B’’ and B’’’). Furthermore, the cells extended spike-like microvillar processes that contacted 
adjacent cells (Figure 1C and C’). Thus, based on established TEM criteria, we identified presumptive 
MCs in the adult scale epidermis.

atoh1a reporters label MCs in the adult epidermis
To date, a lack of genetically encoded reagents has hindered in-depth study of anamniote MCs. Since 
the TEM studies of Whitear and colleagues decades ago, molecular markers have been identified that 
distinguish mammalian MCs from other epidermal cells. For example, keratins, most notably keratin 
8 and keratin 20, have been used extensively as markers of mammalian MCs (Moll et al., 1995; Moll 
et  al., 1984). However, teleost keratins have undergone extensive gene loss and duplication and 
are not orthologous to mammalian keratin genes (Ho et al., 2022). Thus, we considered alternative 
molecular markers to label zebrafish MCs. Expression of Atoh1 uniquely identifies MCs in rodent skin 
and is necessary and sufficient for MC development (Morrison et al., 2009; Ostrowski et al., 2015; 
Van Keymeulen et  al., 2009). The zebrafish genome contains three genes (atoh1a, atoh1b, and 
atoh1c) encoding Atoh1 homologs (Chaplin et al., 2010; Kani et al., 2010). To determine if the adult 
epidermis contained cells expressing an Atoh1 homolog, we focused on characterizing the expres-
sion pattern of atoh1a due to the availability of an enhancer trap line that expresses a nuclear local-
ized version of the photoconvertible fluorescent protein Eos (nls-Eos) from the endogenous atoh1a 
locus (Tg(atoh1a:nls-Eos); Pickett et al., 2018). Confocal imaging of the adult trunk revealed that 
Tg(atoh1a:nls-Eos) labeled hair cells of the posterior lateral line, which formed tight clusters within 
neuromasts in interscale regions (Figure 1E and E’). In addition to atoh1a+ cells of the lateral line, we 
identified a second, spatially distinct population of atoh1a+ cells dispersed across the scale surface 
(Figure 1E, E’’ and F). Reconstructed cross sections showed that this population of atoh1a+ cells 
resided within the epidermis above scales (Figure 1F), in a similar axial position to the cells we iden-
tified by TEM.

The numerous, actin-rich microvilli that emanate from the MC surface morphologically distinguish 
them from other epidermal cells (Lane and Whitear, 1977; Toyoshima et al., 1998; Yamashita et al., 
1993). To determine whether the dispersed epidermal atoh1a+ cells extended microvilli, we created 
an atoh1a enhancer trap line that expresses Lifeact-EGFP, a reporter for filamentous actin (Riedl et al., 
2008). Similar to Tg(atoh1a:nls-Eos), Tg(atoh1a:Lifeact-EGFP) labeled hair cells of the lateral line and 
inner ear in larvae (Figure 1—figure supplement 2). atoh1a+ cells were notably absent from regions 
above the larval eye, yolk sac, or caudal fin (Figure 1—figure supplement 2), where neuroepithelial 
cells (NECs), a morphologically distinct population of sensory cells, have been described in larval 
skin (Coccimiglio and Jonz, 2012). Confocal microscopy of the scale epidermis in Tg(atoh1a:Lifeact-
EGFP) adults revealed actin-rich microvilli densely decorating atoh1a+ cells in close proximity to 
neighboring keratinocytes (Figure 1G), further suggesting that the epidermal atoh1a+ cell population 
in the trunk shared key characteristics with the candidate MCs identified by TEM. Immunostaining for 
Sox2, a transcription factor required for murine MC maturation (Bardot et al., 2013; Perdigoto et al., 
2014), demonstrated that the epidermal atoh1a+ cells expressed Sox2 (Figure 1—figure supple-
ment 3). Together, these results define molecular and cellular properties of a previously uncharacter-
ized epidermal cell population in zebrafish and identify genetic reagents for the study of this cell type. 
Anticipating the conclusion of our analysis below, we shall hereafter refer to the epidermal atoh1a+ 
cells as MCs, with the majority of the analyses completed on trunk MCs unless stated otherwise.

Somatosensory axons innervate zebrafish MCs, which display 
neurosecretory and mechanosensory characteristics
We next sought to determine whether zebrafish MCs displayed other key characteristics of MCs 
defined in mammals, including innervation by somatosensory axons and expression of neurosecretory 
and mechanosensory machinery.

Our ultrastructural observations suggested that cutaneous axons innervate MCs (Figure  1B). 
Staining scales with zn-12, a monoclonal antibody that labels several types of peripheral axons 
(Metcalfe et al., 1990), revealed that >90% of MCs were tightly associated with axons (Figure 2A 
and C). To determine the type of axon(s) innervating MCs, we examined expression of genetically 
encoded somatosensory axon reporters that we previously characterized in adult scales (Rasmussen 
et al., 2018). Analysis of reporters for three somatosensory neuron-expressed genes (p2rx3a, p2rx3b, 

https://doi.org/10.7554/eLife.85800


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Neuroscience

Brown, Horton et al. eLife 2023;12:e85800. DOI: https://​doi.​org/​10.​7554/​eLife.​85800 � 5 of 28

and trpa1b; Kucenas et al., 2006; Palanca et al., 2013; Pan et al., 2012) demonstrated that somato-
sensory axons innervated up to 99% of MCs (Figure 2B and C). Consistent with ultrastructural anal-
yses of MCs in the skin of other teleosts (Whitear, 1989), some axons formed ring-like structures that 
wrapped around MCs with MC-axon contacts containing varicosities or swellings (Figure 2B, inset 
and Figure 2D-F; Video 1). Additionally, we observed examples of axons forming both bouton- and 

Figure 2. Somatosensory axons innervate Merkel cells (MCs) in the adult epidermis. (A) Lateral confocal 
micrograph of the scale epidermis from an adult expressing an MC reporter immunostained for peripheral 
axons (zn-12). (B) Lateral confocal micrograph of the scale epidermis showing that somatosensory peripheral 
axons (Tg(p2rx3b:EGFP)) innervate MCs. Inset of dotted region shows axonal varicosities adjacent to an MC 
(arrowheads). (C) Quantification of MC innervation in the scale epidermis (17–30 mm standard length [SL]). Each 
dot represents measurements from an individual scale. Innervation frequencies: zn-12, 91% (284/311 cells; N=3 
adults); Tg(p2rx3a>mCherry), 86% (196/228 cells; N=4 adults); Tg(p2rx3b:EGFP), 99% (225/228 cells; N=4 adults); 
Tg(trpa1b:EGFP), 96% (217/225 cells; N=9 adults). Error bars represent 95% CIs. (D–F) High-magnification confocal 
micrographs showing examples of somatosensory axons forming extended, ring-like contacts with MCs within the 
scale epidermis. (G) Three-dimensional (3D) reconstruction of an axon (zn-12 immunostaining, arrowheads) forming 
a bouton-like ending (asterisk) that terminates in close proximity to an MC. DAPI staining labels epidermal nuclei. 
(H) 3D reconstruction of a single somatosensory axon (Tg(p2rx3a>mCherry)) that forms en passant-like contacts 
(asterisks) with multiple MCs. Scale bars: 10 μm (A and B), 5 μm (D–H).

The online version of this article includes the following source data for figure 2:

Source code 1. ImageJ macro used for Figure 2C.

Source data 1. Datasheet for Figure 2C.

https://doi.org/10.7554/eLife.85800
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en passant-like contacts with MCs (Figure 2G and 
H; Figure 1D).

Based on our observation that MCs contained 
cytoplasmic granules (Figure 1B), we postulated 
that they would display neurosecretory charac-
teristics. We began by staining scales with an 
antibody against synaptic vesicle glycoprotein 2 
(SV2), which labels secretory vesicle membranes 
in zebrafish and mammalian neuronal and endo-
crine cells (Buckley and Kelly, 1985; Jonz and 
Nurse, 2003). Essentially all MCs contained 
SV2-positive structures (Figure  3A), suggesting 
they express neurosecretory machinery that may 
contain neurotransmitter(s). Indeed, immunos-
taining revealed that MCs expressed serotonin 
(5-hydroxytryptamine; 5-HT) (Figure  3B), similar 
to mammalian MCs (Chang et al., 2016; English 
et al., 1992; García-Caballero et al., 1989) and 
zebrafish NECs (Coccimiglio and Jonz, 2012). 
Both 5-HT and SV2 appeared in a speckled 
pattern within MCs (Figure 3A and B), consistent 
with a vesicular localization.

Do zebrafish MCs exhibit properties consistent with mechanosensory function? To address this 
question, we began by staining scales with AM1-43, an activity-dependent fluorescent styryl dye that 
labels a variety of sensory cells, including mammalian MCs (Meyers et al., 2003) and hair cells of the 
zebrafish lateral line (Corey et al., 2004). Following a short preincubation, AM1-43 robustly stained 
MC membranes and punctate structures reminiscent of vesicular compartments (Figure 3C), sugges-
tive of ion channel expression in MCs (Meyers et al., 2003). Mammalian MCs express the mechan-
ically activated cation channel Piezo2, which is required for MC mechanosensory responses (Ikeda 
et al., 2014; Maksimovic et al., 2014; Woo et al., 2014). Hybridization chain reaction (HCR) with 
an antisense probeset against piezo2 labeled MCs in adult scales (Figure 3D). We confirmed this 
staining pattern by performing fluorescent in situ hybridization (FISH) with a previously described 
piezo2 probe (Faucherre et al., 2013; Figure 3—figure supplement 1). Together, these data suggest 
that somatosensory peripheral axons innervate adult MCs, which possess neurosecretory and mech-
anosensory properties.

MCs arise from basal keratinocyte precursors
What are the precursors of MCs in zebrafish? Analysis of MC progenitors have come to conflicting 
results in avians and rodents: quail-chick chimeras suggest a neural crest origin for avian MC (Grim 
and Halata, 2000), whereas Cre-based lineage tracing studies in mouse demonstrate an epidermal 
origin (Morrison et al., 2009; Van Keymeulen et al., 2009).

To investigate a possible neural crest origin, we crossed a Cre driver expressed in neural crest 
progenitors (Tg(sox10:Cre); Kague et al., 2012) to a reporter transgene that stably expresses DsRed 
upon Cre-mediated recombination from a quasi-ubiquitous promoter (Tg(actb2:LOXP-BFP-LOXP-
DsRed); Kobayashi et al., 2014; Figure 4A). DsRed+ neural crest-derived cell types, such as Schwann 
cells, appeared along scales, indicative of successful recombination (Figure  4B). However, we 
observed <0.5% co-labeling between the neural crest lineage trace and an MC reporter (Figure 4B’ 
and F). Based on these results, we concluded that zebrafish MCs likely derive from a non-neural crest 
lineage.

To investigate a possible epidermal origin, we considered basal keratinocytes, an epidermal-
resident stem cell population, the most likely candidate progenitors. To follow this lineage, we engi-
neered a transgene to express a tamoxifen-inducible Cre recombinase from regulatory sequences 
of ΔNp63 (TgBAC(ΔNp63:Cre-ERT2)), a basal keratinocyte marker (Bakkers et al., 2002; Lee and 
Kimelman, 2002). We crossed this transgene to the Cre reporter transgene and treated embryos 
with 4-hydroxytamoxifen (4-OHT) at 1 day post-fertilization (dpf) to induce Cre-ERT2 activity, which 

Video 1. Three-dimensional (3D) reconstruction of 
somatosensory axon and MC interactions. 3D rotation 
of somatosensory axons (green) and photoconverted 
MCs (green and magenta) in the adult scale epidermis. 
Arrows indicate axonal varicosities in close proximity to 
MCs. Scale bar: 4 µm.

https://elifesciences.org/articles/85800/figures#video1

https://doi.org/10.7554/eLife.85800
https://elifesciences.org/articles/85800/figures#video1
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resulted in permanent DsRed expression in basal keratinocytes and their derivatives (Figure 4C and D; 
Figure 4—figure supplement 1). After raising 4-OHT-treated animals to adulthood, we observed vari-
able (2–81%) co-labeling between the basal keratinocyte lineage trace and MC reporters (Figure 4D’ 
and F). We note that our lineage tracing strategy did not label all basal keratinocytes (Figure 4D; 
Figure  4—figure supplement 1), suggestive of incomplete Cre-ERT2 induction and/or transgene 
recombination. Consistent with the latter possibility, a recent analysis demonstrated Tg(actb2:LOXP-
BFP-LOXP-DsRed) has a low recombination efficiency compared to other Cre reporter transgenes 
(Lalonde et al., 2022). To estimate the local recombination efficiency in imaged regions, we thresh-
olded the DsRed channel and calculated the fraction of skin cells labeled (Figure 4E). Importantly, the 
proportion of MCs labeled by the basal keratinocyte lineage trace was not significantly different from 
the local recombination efficiency (Figure 4G–H). These observations support a basal keratinocyte 
origin of most or all zebrafish MCs.

Figure 3. Merkel cells (MCs) in the adult epidermis express neurosecretory and mechanosensory machinery. (A and B) Anti-SV2 (A–A’’) or anti-5-
hydroxytryptamine (5-HT) (B–B’’) immunostaining of the scale epidermis from an adult expressing an MC reporter. Insets of dotted regions show the 
punctate localization of SV2 and 5-HT staining in MCs (arrowheads), consistent with a vesicular localization. 96% of MCs (178/185) were SV2+. 98% of 
MCs (326/332) were 5-HT+. Cells analyzed from n=3 scales from N=2 adults (25–27 mm standard length [SL]). DAPI labels epidermal nuclei. (C) Scale 
epidermis from an adult expressing an MC reporter stained with AM1-43. 98% of MCs (90/92) were AM1-43+. Cells analyzed from n=6 scales from N=2 
adults. Inset of dotted region shows puncta within an MC labeled by AM1-43 (arrowheads). AM1-43 has been reported to stain neurites innervating MCs 
in murine whisker vibrissae (Meyers et al., 2003). However, our AM1-43 staining regimen did not strongly label cutaneous axons, although we cannot 
exclude low levels of staining. (D) Scale epidermis from an adult expressing an MC reporter stained with hybridization chain reaction (HCR) probes 
against piezo2 and an anti-GFP antibody. 99% of MCs (310/314) were piezo2+. Cells analyzed from n=7 scales from N=2 adults. Arrowheads indicate 
examples of positive staining within an MC. Scale bars: 5µm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. MCs in the adult epidermis express piezo2.

https://doi.org/10.7554/eLife.85800
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Figure 4. Merkel cells (MCs) derive from the basal keratinocyte lineage. (A) Schematic of Cre-based neural crest 
lineage tracing strategy. (B) Confocal micrograph of the scale epidermis in an adult expressing neural crest lineage 
(Tg(sox10:Cre); Tg(actb2:LOXP-BFP-LOXP-DsRed)) and MC (Tg(atoh1a:Lifeact-EGFP)) reporters. Brackets denote 
Schwann cells associated with a nerve along a scale radius. (C) Schematic of Cre-based basal keratinocyte lineage 
tracing strategy. (D) Confocal micrograph of the scale epidermis in an adult expressing basal keratinocyte lineage 
(TgBAC(ΔNp63:Cre-ERT2); Tg(actb2:LOXP-BFP-LOXP-DsRed)) and MC (Tg(atoh1a:Lifeact-EGFP)) reporters, which 
was treated with 4-hydroxytamoxifen (4-OHT) at 1 day post-fertilization (dpf). Arrowheads indicate MCs labeled by 
the basal keratinocyte lineage reporter. Note that recombination is not complete, possibly explaining why not all 
MCs express the lineage reporter. (E) Workflow to calculate percentage of MCs expressing lineage reporter and 
percentage of total cells expressing lineage reporter. (F) Boxplots of the percentage of MCs expressing the lineage 
tracing reporters diagrammed in panels A and C. Each dot represents an individual scale. Overall percentage of 
MCs expressing lineage trace reporters: sox10/Lifeact, 0.3% (1/323 cells; N=6 adults, 27.5–31 mm standard length 
[SL]); ΔNp63/Lifeact, 29.7% (299/1005 cells; N=6 adults, 21–26 mm SL); ΔNp63/nls-Eos, 32.3% (386/1195 cells; N=4 
adults, 20–30 mm SL). A one-way ANOVA (F=12.06; p<0.001) with Tukey’s post-hoc honestly significant difference 
(HSD) test was used to compare groups. **, p<0.01; ***, p<0.001. (G and H) Paired dot plots of the percentage 
of MCs expressing the indicated atoh1a reporter and the basal keratinocyte lineage reporter compared to 
the percentage of all cells in the field of view expressing DsRed. Statistical analyses were performed using the 
Wilcoxon test. Scale bars: 20 µm.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Datasheet for Figure 4F.

Source data 2. Datasheet for Figure 4G and H.

Figure supplement 1. Validation of basal keratinocyte lineage tracing strategy.

https://doi.org/10.7554/eLife.85800
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MCs continuously turn over in adult skin
The longevity and turnover of murine MCs are controversial. Several studies concluded that MC 
numbers fluctuate with hair cycle stages (Marshall et al., 2016; Moll et al., 1996; Nakafusa et al., 
2006), while another found no correlation (Wright et  al., 2017). To determine the turnover rate 
of zebrafish MCs, we photoconverted small regions of the scale epidermis in Tg(atoh1a:nls-Eos) 
adults and tracked individual cells over time. Exposure to UV light irreversibly photoconverts nls-
Eos, allowing us to distinguish pre-existing cells (containing photoconverted nls-Eos) from newly 
added cells (without photoconverted nls-Eos; Figure 5A–C). By longitudinally tracking individual fish 
over the course of 28 days, we found a decrease of ~15% of the photoconverted MCs every 7 days 
(Figure 5D). In addition to the gradual loss of MCs over time, we noted a steady addition of new MCs 
(Figure 5C’), resulting in a nearly constant total cell number (Figure 5E). Thus, MCs undergo constant 
cell loss and renewal in adult skin, albeit at a slower rate than atoh1a-expressing hair cells of the lateral 
line (Cruz et al., 2015).

MCs are widely distributed across the body, in compartment-specific 
patterns
MCs localize to specific regions of mammalian skin, such as in crescent-shaped touch domes adja-
cent to hair follicles in hairy skin and at the bottom of rete ridges in glabrous skin (Boot et al., 1992; 
Fradette et  al., 1995; Iggo and Muir, 1969; Lacour et  al., 1991). To determine the distribution 
pattern of zebrafish MCs, we used confocal microscopy to survey multiple regions of the adult skin. 

Figure 5. Homeostatic replacement of Merkel cells (MCs) in the adult epidermis. (A) Illustration of the photoconversion experiment showing the 
epidermis (blue), non-converted MCs (green), and converted MCs (magenta) after exposure of a region of the scale epidermis to UV light. (B and C) 
Representative images of MCs labeled by Tg(atoh1a:nls-Eos) at 0 (B) or 7 (C) days post-conversion (dpc) from a single adult. Cyan dotted box indicates 
the photoconverted region. White dotted box indicates the area magnified in B’ and C’. (B’ and C) Numbers label examples of individual cells present 
at 0 and 7 dpc. Arrows indicate examples of newly added cells, which appear green due to the presence of non-converted nls-Eos (green) and absence 
of converted nls-Eos (magenta). (D and E) Boxplots of the percentage of photoconverted MCs remaining compared to 0 dpc (D) and the total number 
of MCs (converted+non-converted) present at each day compared to 0 dpc (E). Each dot represents an individual fish. N=5–8 fish (24–32 mm standard 
length [SL]). Scale bars: 50 μm.

The online version of this article includes the following source data for figure 5:

Source data 1. Datasheet for Figure 5D and E.

https://doi.org/10.7554/eLife.85800
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In addition to the MCs found on the trunk, MCs 
appeared in the epidermis above the eyes, gill 
covers (opercula), and fins (Figure 6A–F). While 
MC morphology was similar across the skin 
compartments (Figure  6G–J), MC densities and 
spatial distributions varied across skin compart-
ments (Figure  6B). For example, MCs were 
distributed relatively uniformly across the cornea, 
although this spatial pattern was not specifically 
quantified (Figure 6C). By contrast, in the caudal 
fin, MCs localized to the epidermis above bony 
rays and in the medial regions of the interray 
epidermis between bony rays (Figure 6F). Along 
the trunk, MCs appeared in patches, similar to the 
pattern of dermal scales beneath the epidermis 
(Figure 6E). Altogether, our results demonstrate 
that MCs are widely distributed across the adult 
zebrafish skin and localize in specific patterns in 
each skin compartment.

Trunk MCs develop concomitant 
with dermal appendage 
morphogenesis
To examine the mechanisms that generate a 
compartment-specific MC pattern, we focused 
on the trunk skin because of its molecular and 
cellular similarities to murine hairy skin (Aman 
et  al., 2018; Harris et  al., 2008). Both during 
ontogeny and at post-embryonic stages, murine 
MCs associate with primary (guard) hairs, a 
subclass of dermal appendages (Jenkins et  al., 
2019; Nguyen et  al., 2018; Perdigoto et  al., 
2016). Based on these studies in mice, and our 
previous work showing that epidermal diversifi-
cation and somatosensory remodeling coincides 
with scale development in zebrafish (Rasmussen 
et  al., 2018), we postulated that MCs would 
appear during squamation (scale formation).

Zebrafish post-larval development is staged 
by standard length (SL) in millimeters (mm; 
Parichy et  al., 2009). Squamation begins 
at  ~9  mm SL (Figure  7A; Aman et  al., 2018; 
Harris et  al., 2008; Sire et  al., 1997a). Using 
reporters that label MCs and scale-forming 
osteoblasts, we rarely observed MCs in the 
epidermis prior to 8 mm SL (Figure 7B and F). 
Between 8 and 10 mm SL, MCs appeared at a 
low density along the trunk (Figure 7C and F). 
MC density rapidly increased from 10 to 15 mm 
SL, a period of active scale growth (Figure 7D, 

E and F). The density and number of MCs positively correlated with scale area (Figure 7G and H), 
although this trend was less pronounced at stages less than 10 mm SL (Figure 7—figure supple-
ment 1). These data indicate that MC development coincides with dermal appendage growth 
along the trunk.

Figure 6. Merkel cells (MCs) are widely distributed 
across the skin, in compartment-specific patterns. (A) 
Illustration indicating the epidermal regions imaged 
in adult zebrafish. (B) Quantification of MC densities in 
the specified regions. Each dot represents an individual 
fish (N=8–18, 20–29.5 mm standard length [SL]). *** 
indicates p<0.001 using a one-way ANOVA (F=83.94; 
p<0.001) with post-hoc Tukey’s HSD test. (C–J) 
Lateral confocal micrographs of MCs in the different 
skin regions from animals expressing the indicated 
reporters. The regions imaged are indicated in A. 
Note that MCs expressing Tg(atoh1a:Lifeact-EGFP) 
have a similar morphology across skin compartments 
(G–J). nm, neuromasts of the posterior lateral line. 
Scale bars: 50 μm (C–F) and 10 μm (G–J).

The online version of this article includes the following 
source data for figure 6:

Source data 1. Datasheet for Figure 6B.

https://doi.org/10.7554/eLife.85800
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Figure 7. Merkel cells (MCs) develop concomitant with dermal appendage morphogenesis. (A) Abbreviated zebrafish developmental timeline relative 
to standard length (SL) in millimeters. Developing scales are drawn in magenta below the approximate corresponding stage. (B–E) Representative 
lateral confocal micrographs of MCs and osteoblasts along the trunk at the indicated stages. Note that MCs increase in number and density as scale-
forming osteoblasts develop below the epidermis. nm, neuromast of the posterior lateral line. (F) Quantification of MC density according to SL. Each 
dot represents an individual fish. Data represent n=81 scales from N=52 fish. Line indicates segmented linear regression (breakpoint = 8.27 mm SL). 
(G and H) Quantification of the number (G) or density (H) of MCs relative to scale area. Each dot represents an individual scale. Data represent n=62 
scales from N=18 fish. Dot colors represent animal SL as indicated in the legend. Shading indicates a 95% CI around the linear regression lines in G and 
H. Correlation coefficients (R2): 0.08 (F, slope 1), 0.68 (F, slope 2), 0.73 (G), and 0.31 (H). F-statistics: 3.5 (F, slope 1), 83.9 (F, slope 2),164.6 (G), and 28.31 
(H). p-values: 0.07 (F, slope 1), <0.05 (F, slope 2), and <0.05 (G and H). Scale bars: 50 μm.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Datasheet for Figure 7F.

Source data 2. Datasheet for Figure 7G and H.

Figure supplement 1. MC number and density in relation to juvenile scale size.

https://doi.org/10.7554/eLife.85800
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Ectodysplasin signaling promotes trunk MC development
Since the appearance of MCs in the trunk epidermis tightly correlated with scale growth, we exam-
ined the consequences of blocking signals required for dermal appendage morphogenesis on MC 
development. Ectodysplasin (Eda) signaling regulates the formation of many types of skin append-
ages, including mammalian hair follicles and zebrafish scales (Biggs and Mikkola, 2014; Harris et al., 
2008). To determine whether MC development required Eda-dependent signals, we measured MC 
density in animals homozygous for a presumptive null allele of eda that does not develop scales 
(edadt1261/dt1261; hereafter eda–/–; Harris et al., 2008). Immediately prior to squamation, we found that 
there was no difference in MC density between eda mutants and sibling controls (Figure 8A, B and 
G). However, after the onset of squamation, eda mutants had significantly fewer MCs, a difference 
that persisted into adulthood (Figure 8C–G). In addition to the decrease in cell density, we observed 
a dramatic change in the spatial distribution of MCs across the epidermis in eda mutants compared to 
controls (Figure 8H). Specifically, in siblings, MCs appeared in patches corresponding to the location 
of the underlying scales (Figure 8C and H). By contrast, the MCs that developed in eda mutants were 
distributed relatively uniformly across the trunk (Figure 8D and H). Although we found a decrease in 

Figure 8. Loss of Eda signaling decreases Merkel cell (MC) density in trunk, but not facial skin. (A–F) Representative confocal images of MCs in the 
trunk of animals of the indicated genotypes at the indicated stages. Dotted yellow lines indicate posterior scale boundaries. nm, neuromasts of the 
posterior lateral line. (G) Quantification of MC density in the trunk skin relative to standard length (SL). Gray shading indicates a 95% CI around the linear 
regression lines. The difference between genotypes was significant above 12.5 mm SL (p<0.05, Johnson-Neyman Technique). Each dot represents an 
individual fish (N=16–18 fish/genotype). (H) Histograms of the distribution of trunk MCs along a rectangular segment encompassing three scales in a 
sibling and an identically sized region in an eda mutant (18–19 mm SL). (I) Boxplots of MC densities in the epidermis above the cornea or operculum in 
animals of the indicated genotypes. ns, not significant (cornea, p=0.21; operculum, p=0.14; Mann-Whitney test). Scale bars: 50 μm (A–F).

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Datasheet for Figure 8G.

Source data 2. Datasheet for Figure 8I.

Figure supplement 1—source data 1. Datasheet for Figure 8—figure supplement 1D and E.

Figure supplement 1. eda mutants exhibit significantly decreased MC addition.

https://doi.org/10.7554/eLife.85800
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MC density in the trunk skin of the mutants, we observed no change in MC density in the corneal or 
opercular epidermis (Figure 8I), suggesting that the reduced density was specific to the trunk skin. 
eda mutants lack fins at the stages analyzed (Harris et al., 2008), precluding analysis of these regions 
in the homozygous mutants.

The decreased MC density in eda mutant trunk skin could be due to decreased cell addition, 
increased cell loss, or a combination of the two. Using in vivo photoconversion, we found that the 
rate of MC addition was significantly reduced in eda mutants compared to siblings (Figure 8—figure 
supplement 1A–D). Additionally, the rate of cell loss was higher in mutants compared to siblings, 
although this change was not statistically significant (Figure 8—figure supplement 1E). Thus, our 
observations indicate that the decrease in MC cell density in eda mutants is mainly due to reduced MC 
production. Together, these data suggest that Eda signaling, either directly or indirectly, is required 
for MC development, maintenance, and distribution along the trunk.

MC patterning is not predetermined along the trunk
Since blocking dermal appendage formation through loss of Eda signaling inhibited MC develop-
ment, we next examined the consequences of altering dermal appendage size and shape on MC 

Figure 9. Merkel cell (MC) patterning is not predetermined along the trunk. (A–D) Representative images of juvenile animals of the indicated genotypes 
expressing an MC reporter and stained with Alizarin Red S (ARS) to visualize scales (A and B) or co-expressing MC and keratinocyte (Tg(krt4:DsRed)) 
reporters (C and D). Dotted lines indicate scale boundaries. nm, neuromasts of the posterior lateral line. (E–H) Tracings of scale outlines (E and F) and 
density plots of MC position (G and H) from juvenile animals (n=43–49 scales/genotype from N=10–13 fish/genotype; 11.6–14.7 mm standard length 
[SL]) of the indicated genotypes. Scale tracings were aligned at the dorsal-ventral midpoint of the posterior scale margin. Note the variability in scale 
shape and size and corresponding increased spread of MC position in fgf8adhiD1Tg/+ juveniles compared to sibling controls. Scale bars: 100 μm (A–D) and 
200 μm (E–H).

The online version of this article includes the following source data and figure supplement(s) for figure 9:

Source data 1. Datasheet for Figure 9G, H, Figure 9—figure supplement 1E.

Figure supplement 1. fgf8adhiD1Tg/+ juveniles show altered dermal appendage size and shape, but not MC density.

Figure supplement 1—source data 1. Datasheet for Figure 9—figure supplement 1A–C.

Figure supplement 1—source data 2. Datasheet for Figure 9—figure supplement 1D.

Figure supplement 1—source data 3. Datasheet for Figure 9—figure supplement 1E.

https://doi.org/10.7554/eLife.85800
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patterning. Zebrafish scale morphogenesis is regulated by Fibroblast growth factor (FGF) signaling 
(Aman et al., 2018; Daane et al., 2016; De Simone et al., 2021; Rohner et al., 2009). To determine 
whether alterations to scale patterning impacted MC development, we examined animals heterozy-
gous for an allele of hagoromo (hag; fgf8adhiD1Tg/+), which results in fgf8a overexpression in the post-
embryonic skin due to a viral insertion near the fgf8a locus (Amsterdam et al., 2009). An independent 
allele of hag (fgf8adhi4000Tg/+) was previously shown to result in large, disorganized sheets of scale-
forming osteoblasts during squamation (Aman et al., 2018). fgf8adhiD1Tg/+ juveniles showed dramatic 
variability in scale size and shape, with both smaller and larger scales compared to the relatively 
uniformly patterned scales observed in sibling controls (Figure 9A–D; Figure 9—figure supplement 
1A–C). We found no significant differences in MC density between the genotypes (Figure 9—figure 
supplement 1D,E). Nevertheless, the distribution of MCs tracked with the altered scale size and 
shape in the mutants (Figure 9E–H), suggesting the MC pattern is not predetermined within the trunk 
skin compartment.

Discussion
Here, we discover a zebrafish epidermal cell type that we classify as an MC based on ultrastructural 
criteria (Whitear, 1989). We further present several lines of evidence that suggest zebrafish MCs 
share molecular, cellular, and lineage properties with mammalian MCs. First, we show that zebrafish 
MCs express the transcription factors Atoh1a and Sox2, the orthologs of which uniquely mark MCs in 
mammalian skin (Maricich et al., 2009; Bardot et al., 2013; Perdigoto et al., 2014; Ostrowski et al., 
2015; Van Keymeulen et al., 2009). Second, zebrafish MCs extend numerous short, actin-rich micro-
villi and complex with somatosensory axons, classic morphological hallmarks of MCs (Mihara et al., 
1979; Smith, 1977; Toyoshima et al., 1998). Our morphological observations support the interpreta-
tion that these cells are MCs rather than Merkel-like cells, which lack axon association and microvillar 
processes (reviewed by Halata et al., 2003). Third, Cre-based lineage tracing revealed that basal kera-
tinocytes give rise to zebrafish MCs, akin to studies in mouse (Morrison et al., 2009; Van Keymeulen 
et  al., 2009). Fourth, we demonstrate that zebrafish MCs contain neurosecretory machinery and 
express the neurotransmitter serotonin, the release of which has been proposed to regulate somato-
sensory responses to touch (Chang et al., 2016; Chang and Gu, 2020; English et al., 1992). Finally, 
we show that zebrafish MCs express the cation channel Piezo2, which is cell-autonomously required 
for MC mechanosensory function (Ikeda et al., 2014; Maksimovic et al., 2014; Woo et al., 2014). 
Importantly, our results extend previous histological studies of MCs in various teleost fish (Lane and 
Whitear, 1977; Whitear, 1989; Zachar and Jonz, 2012) by identifying the first genetically encoded 
reagents for the study of this cell type in zebrafish.

While our characterization revealed substantial similarities between mammalian and zebrafish 
MCs, we did observe anatomical differences in line with previous ultrastructural characterizations of 
teleost MCs (Lane and Whitear, 1977; Whitear, 1989). For example, the nuclei of mammalian MC 
are commonly lobulated (Boulais et al., 2009; Cheng Chew and Leung, 1994; Moll et al., 2005; 
Tachibana and Nawa, 2002). While we did not observe lobulation of zebrafish MC nuclei by TEM, we 
cannot rule out that serial sectioning or high-resolution reconstruction of nuclear shape would reveal 
lobulation. Mammalian MCs typically localize adjacent to basal keratinocytes (Boot et  al., 1992; 
Cheng Chew and Leung, 1994; Fradette et al., 1995; Mihara et al., 1979; Moll et al., 1996; Smith, 
1977), whereas zebrafish MCs appear in upper strata, typically beneath the periderm (Figure 1D and 
G’’). As the majority of the analyses completed here focused on MCs found in the trunk epidermis, 
it will be intriguing to determine whether all MCs in different skin compartments in the juvenile and 
adult zebrafish share similar properties.

Teleost MCs and somatosensory physiology
In mammalian skin, the MC-neurite complex regulates slowly adapting type I responses to light touch 
(Iggo and Muir, 1969; Ikeda et al., 2014; Maksimovic et al., 2014; Maricich et al., 2009; Woo et al., 
2014). Although physiological studies of somatosensory responses in adult zebrafish have not been 
reported, extracellular recordings in adult rainbow trout demonstrate that a subset of somatosen-
sory neurons exhibit slowly adapting responses to mechanical skin stimulation (Ashley et al., 2007; 
Ashley et al., 2006; Sneddon, 2003). We postulate that the slowly adapting responses to mechanical 

https://doi.org/10.7554/eLife.85800
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skin stimulation in adults require MCs. Nevertheless, the exact physiological roles of teleost MCs in 
regulating somatosensory responses and resulting behaviors remain unknown and will require the 
development of tools to selectively ablate and activate MCs. Interestingly, recordings from zebrafish 
Rohon-Beard neurons, a transient larval somatosensory population, suggest they have rapidly, but not 
slowly, adapting mechanosensory responses (Katz et al., 2021). Together these studies correlate with 
our finding that MCs develop at post-larval stages and suggest that the teleost somatosensory system 
undergoes significant functional maturation during the juvenile period.

What are the subtypes of somatosensory neurons in fish, and how do they correspond to MC inner-
vation? Several studies have identified molecularly distinct subsets of somatosensory neurons through 
mRNA, protein, and transgene expression analysis in zebrafish larvae (Faucherre et al., 2013; Gau 
et al., 2017; Gau et al., 2013; Kucenas et al., 2006; Palanca et al., 2013; Pan et al., 2012; Patten 
et al., 2007; Slatter et al., 2005). Adult trout somatosensory neurons have been classified based on 
their responses to mechanical, chemical, and thermal stimuli (Ashley et al., 2007; Ashley et al., 2006; 
Sneddon, 2003). However, to date, a detailed molecular characterization of the diversity of somato-
sensory subtypes present in adult fish has not been performed. Our data suggest that somatosensory 
neurons expressing reporters for p2rx3a, p2rx3b, or trpa1b innervate MCs. Whether these neurons 
represent a dedicated class of MC-innervating neurons remains unknown. The development of Cre 
drivers for specific somatosensory subtypes (Bai et al., 2015; Li et al., 2011; Luo et al., 2009; Rutlin 
et al., 2014; Zylka et al., 2005) and single-cell transcriptional profiling (Sharma et al., 2020; Usoskin 
et al., 2015; Zeisel et al., 2018) has been fruitful in characterizing the diversity of somatosensory 
neurons in mammals. The application of these technologies to the teleost somatosensory system is an 
interesting avenue for further investigation.

MC lineage and homeostasis
The developmental lineage of MCs has been a long-standing question with both epidermal and neural 
crest origins posited (Hartschuh et al., 1986). Our Cre-based lineage tracing identified basal kerati-
nocytes as MC progenitors. These results extend previous studies in the zebrafish epidermis showing 
that basal keratinocytes serve as precursors for diverse post-larval cell types, including periderm and 
immune cells (Lee et al., 2014; Lin et al., 2019). Although previous work in mouse unambiguously 
identified keratin 14-expressing basal keratinocytes as MC precursors (Morrison et al., 2009; Van 
Keymeulen et al., 2009), the precise nature of murine MC progenitors varies across skin compart-
ments (Nguyen et  al., 2019). Future studies characterizing the molecular properties and cellular 
behaviors of zebrafish MC precursors will be informative for identifying conserved properties of skin 
stem cells.

The turnover of MCs in mammalian skin has been a source of controversy. Several studies reported 
that MC numbers fluctuate with the natural hair cycle in mouse (Marshall et al., 2016; Moll et al., 
1996; Nakafusa et al., 2006). By contrast, Wright et al., 2017 found no evidence for changes in 
MC density based on stages of the hair cycle and demonstrated that MCs could live for months. 
These types of analyses in murine skin have relied either on histology, which limits tissue sampling, 
or required the use of advanced (2-photon) microscopy in combination with hair shaving, a mild form 
of skin injury. Using photoconversion and confocal imaging, we non-invasively tracked individual MCs 
during normal skin homeostasis in vivo for weeks. We found that trunk MCs have a steady turnover in 
adult animals, with a half-life of approximately 1 month. Additionally, this further distinguishes MCs 
from hair cells in the adult lateral line, which have a shorter half-life (Cruz et al., 2015). Whether MC 
turnover varies at different stages of development, across skin compartments, or following skin insults 
will require further study.

MC distribution and patterning
Regionally specific sensory structures allow our skin to distinguish tactile inputs with remarkable acuity 
(Corniani and Saal, 2020). For example, MC densities vary greatly across human skin compartments, 
with the highest numbers found in particularly sensitive regions such as fingertips and lips (Boot et al., 
1992; Lacour et al., 1991). We observed that MCs populate several major skin compartments and 
have regional-specific densities in adult zebrafish, with the highest densities found in the face (corneal 
and opercular epidermis). We speculate this may bestow the juvenile and adult skin with the ability 

https://doi.org/10.7554/eLife.85800
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to detect innocuous tactile inputs across almost the entire body surface, with perhaps the greatest 
sensitivity along facial structures.

Although most studies of MC development have centered on the formation of MC aggregates in 
the touch domes of murine hairy skin, MCs are found in a range of distribution patterns in other types 
of skin. For example, MCs are found as dispersed, single cells arrayed across the skin of human toe 
pads (Boot et al., 1992). Similarly, we found that MCs have a dispersed, rather than clustered, pattern 
in all skin compartments examined. Few studies have addressed how MCs adopt specific distributions, 
and zebrafish presents a promising model to understand mechanisms of MC pattern formation in vivo.

Dermal appendages and MC development
Our developmental analysis showed that trunk MC density rapidly increases during dermal appendage 
morphogenesis. Previous genetic analysis in mouse hairy skin revealed that MC development requires 
Eda signaling (Vielkind et al., 1995; Xiao et al., 2016). We show that zebrafish eda mutants have 
decreased MC density in the trunk, but not the facial, skin. These observations suggest that MC devel-
opment in mouse and zebrafish likely share similar genetic pathways, akin to the shared molecular 
and cellular mechanisms that regulate dermal appendage formation (Aman et al., 2018; Biggs and 
Mikkola, 2014; Daane et al., 2016; Harris et al., 2008; Rohner et al., 2009). They further support a 
model whereby MC development requires compartment-specific signals, akin to recent observations 
on MC development in mouse hairy and glabrous skin (Nguyen et al., 2019). By taking advantage of 
the ability to image large skin areas in intact zebrafish, we show that eda mutants have altered MC 
distribution compared to controls. Furthermore, we use in vivo photoconversion to demonstrate the 
reduction in MC density is largely due to decreased production but also reflects slightly increased cell 
loss. Further investigations are required to determine whether Eda signaling directly regulates the 
differentiation of MC progenitors. Alternatively, since eda mutants lack scales (Harris et al., 2008) and 
have decreased epidermal innervation (Rasmussen et al., 2018), MC development may require scale- 
and/or somatosensory neuron-derived signals. Finally, we note that trunk MCs are not completely 
absent in eda mutants, suggesting that a subset of MCs develop independent of Eda signaling.

We found that a gain-of-function allele of fgf8a leads to a change in the overall size and shape of 
scales. Intriguingly, the MC distribution modifies to accommodate the altered scale size and shape in 
the fgf8a mutants but retains the same MC density as sibling controls. This result suggests that the 
number of MCs per scale is not predetermined but rather is titrated relative to appendage size. How 
are MCs able to populate the much larger scales in fgf8a mutants? Does the size of the MC progenitor 
domain expand with increases in scale size? Are MCs, or their progenitors, able to migrate to their 
final destination? Distinguishing between these possibilities will require tracking the behaviors of MCs 
and their progenitors in vivo.

Summary
Our results establish a promising new system to investigate MC biology. This model will allow for the 
identification of deeply conserved mechanisms used to regulate vertebrate MC biology. Furthermore, 
the advantages of zebrafish—such as non-invasive in vivo imaging, genetic and chemical screens, and 
high regenerative capacity—will complement the strengths of existing rodent models. Specifically, the 
ability to track individual cells over time has the potential to answer key and long-standing questions 
surrounding MC biology, including how the MC-neurite relationship is established, how MCs interact 
with neighboring cell types, and their progenitor dynamics. Addressing these questions, as well as 
potential novel insights provided by the zebrafish system, represent exciting directions for future 
research.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Serotonin (rabbit polyclonal) MilliporeSigma Cat #: S5545, RRID:AB_477522 (1:1000)

https://doi.org/10.7554/eLife.85800
https://identifiers.org/RRID/RRID:AB_477522
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Sv2 (mouse monoclonal)
DSHB; (Buckley and Kelly, 
1985) Cat #: SV2, RRID:AB_2315387 (1:50)

Antibody Anti-Sox2 (rabbit polyclonal) GeneTex Cat #: GTX124477, RRID:AB_11178063 (1:500)

Antibody

Anti-Fluorescein Polyclonal 
Antibody, POD Conjugated 
(sheep polyclonal) Roche Cat #: 11426346910, RRID:AB_840257 (1:2000)

Antibody Anti-GFP (rabbit polyclonal) Thermo Fisher Scientific Cat #: A11122, RRID:AB_221569 (1:1000)

Antibody zn-12 (mouse monoclonal)
Zebrafish International 
Resource Center Cat #: zn-12, RRID:AB_10013761 (1:200)

Antibody
Anti-Rabbit Alexa Fluor 647 (goat 
polyclonal) Thermo Fisher Scientific Cat #: A32733, RRID:AB_2633282 (1:500)

Antibody
Anti-Mouse Alexa Fluor 647 
(goat polyclonal) Thermo Fisher Scientific Cat #: A32728, RRID:AB_2633277 (1:500)

Antibody
Anti-Rabbit Alexa Fluor 568 (goat 
polyclonal) Thermo Fisher Scientific Cat #: A-11036, RRID:AB_10563566 (1:500)

Antibody
Anti-Mouse Alexa Fluor 568 
(goat polyclonal) Thermo Fisher Scientific Cat #: A-11031, RRID:AB_144696 (1:500)

Antibody
Anti-Rabbit Alexa Fluor 488 (goat 
polyclonal) Thermo Fisher Scientific Cat #: A32731, RRID:AB_2633280 (1:500)

Commercial assay 
and kit TSA Plus Cyanine 5 Akoya Biosciences Cat #: NEL705A001KT (1:50)

Sequence-based 
reagent

piezo2 in situ probe (originally 
referred to as piezo2b) Faucherre et al., 2013 N/A

Sequence-based 
reagent

atoh1a gRNA, 5’-GGA GAC TGA 
ATA AAG TTA TG-3’ Pickett et al., 2018 N/A

Sequence-based 
reagent

Mbait gRNA, 5’-GGC TGC TGC 
GGT TCC AGA GGT GG-3’ Kimura et al., 2014 N/A

Sequence-based 
reagent Zebrafish piezo2 HCR v3.0 probe Molecular Instruments N/A Used at 2 pmol

Chemical compound 
and drug MS-222 MilliporeSigma Cat #: E10521

Chemical compound 
and drug (Z)–4-Hydroxytamoxifen (4-OHT) MilliporeSigma Cat #: H7904 Used at 10 μM

Strain and strain 
background (Danio 
rerio) AB (Wild-Type)

Zebrafish International 
Resource Center ZIRC Cat# ZL1, RRID:ZIRC_ZL1

Genetic reagent 
(Danio rerio)

Tg(actb2:LOXP-BFP-LOXP-
DsRed) Kobayashi et al., 2014

Tg(actb2:LOXP-BFP-LOXP-DsRed)sd27Tg, 
ZFIN: ZDB-TGCONSTRCT-141111–5

Genetic reagent 
(Danio rerio) Tg(atoh1a:nls-Eos) Pickett et al., 2018

Tg(atoh1a:nls-Eos)w214Tg, ZFIN: ZDB-
TGCONSTRCT-190701–2

Genetic reagent 
(Danio rerio) Tg(atoh1a:lifeact-EGFP) This study Tg(atoh1a:lifeact-EGFP)w259Tg

Genetic reagent 
(Danio rerio) TgBAC(ΔNp63:Cre-ERT2) This study TgBAC(ΔNp63:Cre-ERT2)w267Tg

Genetic reagent 
(Danio rerio) Tg(sox10:Cre) Kague et al., 2012

Tg(Mmu.Sox10-Mmu.Fos:Cre)zf384, 
ZFIN: ZDB-TGCONSTRCT-130614–2

Genetic reagent 
(Danio rerio) Gt(ctnna-citrine) Trinh et al., 2011

Gt(ctnna-citrine)ct3aGt, ZFIN: ZDB-
ALT-111010–23

 Continued on next page
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent 
(Danio rerio) Tg(sp7:mCherry) Singh et al., 2012

Tg(Ola.Sp7:mCherry-Eco.NfsB)pd46Tg, 
ZFIN: ZDB-TGCONSTRCT-120503–4

Genetic reagent 
(Danio rerio) Tg(p2rx3a>mCherry) Palanca et al., 2013

Tg(Tru.P2rx3a:LEXA-VP16,4xLEXOP-
mCherry)la207Tg, ZFIN: ZDB-
TGCONSTRCT-130307–1

Genetic reagent 
(Danio rerio) Tg(trpa1b:EGFP) Pan et al., 2012

TgBAC(trpa1b:EGFP)a129Tg, ZFIN: ZDB-
TGCONSTRCT-120208–2

Genetic reagent 
(Danio rerio) Tg(p2rx3b:EGFP) Kucenas et al., 2006

Tg(p2rx3b:EGFP)sl1Tg, ZFIN: ZDB-
TGCONSTRCT-070117–110

Genetic reagent 
(Danio rerio) Tg(krt4:DsRed) Rieger and Sagasti, 2011

Tg(krt4:DsRed)la203Tg, ZFIN: ZDB-
TGCONSTRCT-120127–5

Genetic reagent 
(Danio rerio) edadt1261 Harris et al., 2008 edadt1261, ZFIN: ZDB-ALT-090324–1

Genetic reagent 
(Danio rerio) fgf8adhiD1Tg/+ Amsterdam et al., 2009 fgf8adhiD1Tg/+, ZFIN: ZDB-ALT-010427–4

Software and 
algorithm FIJI http://fiji.sc RRID:SCR_002285

Software and 
algorithm Imaris Bitplane RRID:SCR_007370

Other Fetal bovine serum Gibco Cat #: 10082–139

Other Normal goat serum Abcam Cat #: ab7481, RRID:AB_2716553

Other DAPI MilliporeSigma Cat #: 508741 Used at 5 ng/μl

Other AM1-43 Biotinium Cat #: 70024 Used at 15 μm

Other Alizarin Red S ACROS Organics Cat #: 400480250 Used at 0.01%

Other Proteinase K Thermo Fisher Scientific Cat #: 100005393 Used at 0.1 mg/ml

Other Hoechst 3342 Thermo Fisher Scientific Cat #: H3570 Used at 5 ng/μl

 Continued

Materials availability
Strains and DNA constructs generated in this study are available from the corresponding author upon 
request.

Animals
Zebrafish
Zebrafish were housed at 26–27°C on a 14/10 hr light cycle. See Key resources table for strains used 
in this study. Animals of either sex were used. Zebrafish were staged according to SL (Parichy et al., 
2009). SL of fish was measured using the IC Measure software (The Imaging Source) on images 
captured on a Stemi 508 stereoscope (Zeiss) equipped with a DFK 33UX264 camera (The Imaging 
Source). All zebrafish experiments were approved by the Institutional Animal Care and Use Committee 
at the University of Washington (Protocol: #4439–01).

Creation of Tg(atoh1a:Lifeact-EGFP)
Tg(atoh1a:Lifeact-EGFP)w259Tg was generated by CRISPR-mediated knock-in as previously described 
(Kimura et al., 2014). A donor plasmid containing the Mbait, minimal hsp70l promoter, Lifeact-EGFP, 
and bgh poly(A) sequences was created using Gibson assembly. The insertion was targeted 372 bp 
upstream of the endogenous atoh1a coding sequence using a previously published guide RNA (gRNA; 
Pickett et al., 2018). The Mbait-hsp70l-Lifeact-EGFP plasmid, Mbait and atoh1a gRNAs, and Cas9 
protein were prepared and injected into single-cell embryos of the AB strain as previously described 
(Thomas and Raible, 2019). Larvae were screened for Lifeact-EGFP expression at 3 dpf and raised to 
adulthood. A founder adult was identified and outcrossed to generate a stable transgenic line.

https://doi.org/10.7554/eLife.85800
http://fiji.sc
https://identifiers.org/RRID/RRID:SCR_002285
https://identifiers.org/RRID/RRID:SCR_007370
https://identifiers.org/RRID/RRID:AB_2716553
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Creation of TgBAC(ΔNp63:Cre-ERT2) and induction with 4-OHT
The ΔNp63:Cre-ERT2 bacterial artificial chromosome (BAC) was created by modifying the previously 
generated BAC DKEY-263P13-iTol2-amp (Rasmussen et al., 2015). The predicted ΔNp63 start codon 
was replaced by a Cre-ERT2-pA-KanR cassette that contained a zebrafish codon-optimized Cre-ERT2 
(Kesavan et al., 2018) using a previously described protocol (Suster et al., 2011). TgBAC(ΔNp63:Cre-
ERT2)w267Tg was created by injecting tol2 mRNA, which was transcribed from pCS2-zT2TP (Suster 
et al., 2011), and BAC DNA into one-cell stage embryos and screening adults for germline trans-
mission. To activate Cre-ERT2, 1 dpf embryos were treated with 10 μM 4-OHT for 24 hr. 4-OHT was 
prepared as described (Felker et al., 2016).

Mutant identification and analysis
eda mutants and siblings were sorted by visible phenotype starting at 7 mm SL. Mutants were grown 
separately from siblings. fgf8adhiD1Tg/+ fish were identified based on altered scale patterning and/or 
pigmentation (Kawakami et al., 2000).

Imaging and photoconversion
Electron microscopy
Isolated scales were prepared for TEM as described (Sire et al., 1997b), with the following modifica-
tions: after dehydration, scales were treated with propylene oxide (PO), infiltrated with PO:Eponate 
12, and embedded in Eponate 12. Semithin sections (0.2 μm) stained with toluidine blue were used 
for orientation. Thin sections (50 nm) were placed on Formvar coated copper slot grids, stained with 
saturated uranyl acetate and Reynolds’ lead citrate, and examined on a JEOL 100 CX at 60 kV or a 
Philips CM100 at 80 kV.

Confocal image acquisition
Confocal z-stacks were collected using a A1R MP+ confocal scanhead mounted on an Ni-E upright 
microscope (Nikon) using a 16× water dipping objective (NA 0.8) for live imaging or 40× oil immer-
sion objective (NA 1.3) for fixed image acquisition. Images acquired in resonant scanning mode were 
post-processed using the ​denoise.​ai function in NIS-Elements (Nikon). For live imaging, zebrafish were 
anesthetized in a solution of 0.006–0.012%buffered MS-222 in system water for 5 min. Anesthetized 
fish were mounted in a custom imaging chamber, partially embedded in 1% agarose, and covered 
with MS-222-containing solution. For Video 1, a FLUOVIEW FV3000 scanning confocal microscope 
(Olympus) equipped with a 100× objective (NA 1.49) was used to collect a z-stack which was 3D 
rendered with Imaris (Bitplane).

Whole animal photoconversion
Prior to imaging, Tg(atoh1a:nls-Eos) zebrafish were exposed to light from a UV LED flashlight (McDoer) 
for 15 min in a reflective chamber constructed from a styrofoam box lined with aluminum foil. A similar 
lateral region of the trunk was imaged over subsequent days identified by approximate body position 
below the dorsal fin and relative to underlying pigment stripes.

Regional photoconversion
After anesthetization and mounting as described above, the Tg(atoh1a:nls-Eos) reporter was photo-
converted using the stimulation program of NIS-Elements with the 405 nm laser at 14–18% power for 
30–45 s within a 500×500 pixel region of interest with an area of 67,055 µm2. The same lateral region 
of the trunk was imaged over subsequent days identified by body position under the dorsal fin, posi-
tion relative to underlying pigment stripes, and presence of photoconverted cells. Animals that died 
over the course of the experiment were excluded from further analysis.

Staining
Alizarin Red S staining
To visualize mineralized bone, live animals were stained for 15 min in a solution of 0.01% (wt/vol) 
Alizarin Red S dissolved in system water and subsequently rinsed 3×5 min in system water prior to 
imaging as described (Bensimon-Brito et al., 2016).

https://doi.org/10.7554/eLife.85800
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Antibody staining
Zebrafish were anesthetized in a solution of 0.012% MS-222 in system water for 5 min. Using metal 
forceps, up to 10 scales were removed from the lateral side of the trunk in the region below the 
dorsal fin. Scales were fixed in 4% paraformaldehyde (PFA)/PBS at 4°C overnight. Scales were washed 
4×5 min in 1× PBS +0.3% triton-X (PBST) at room temperature and then blocked for 1.5 hr with PBST 
containing 5% normal goat serum. Incubation with primary antibodies occurred at 4°C overnight, 
followed by 4×15 min washes in PBST. Scales were incubated in appropriate secondary antibodies 
for 2 hr at room temperature and washed 4×15 min in PBST. To label nuclei, scales were incubated 
with DAPI for 5 min at 4°C and washed in PBST 4×5 min at room temperature. Scales were mounted 
between a microscope slide and coverslip in Prolong gold. All steps were performed on a rotating 
platform.

AM1-43 staining
Scales were removed from adult Tg(atoh1a:nls-Eos) zebrafish as described above and placed into the 
center of a petri dish. 1 ml of L-15 media was added to the dish containing newly plucked scales no 
longer than 2 min after the scales had been removed. 1.5 µl of 10 mM AM1-43 was added to the dish 
for a final concentration of 15 µM AM1-43. Scales were incubated for 5 min in this solution to allow 
for incorporation. Prior to confocal imaging, regional photoconversion of nls-Eos was carried out as 
described above.

Fluorescent in situ hybridization
piezo2 antisense RNA was transcribed in vitro from a previously generated plasmid (Faucherre et al., 
2013) using SP6 and fluorescein-dUTP. The FISH protocol for adult zebrafish scales was previously 
described (Lin et  al., 2019). Briefly, scales from Tg(atoh1a:Lifeact-EGFP) adults were plucked and 
fixed in 4% PFA overnight at 4°C then washed three times with 1× PBS +0.1% Tween-20 (PBSTw). 
Scales were dehydrated in sequential washes of 75% PBSTw:25% methanol (MeOH), 50% PBSTw:50% 
MeOH, 25%PBSTw:75%MeOH, then placed in 100% MeOH at –20°C overnight. Scales were rehy-
drated in sequential washes of 25% PBSTw:75% MeOH, 50% PBSTw:50% MeOH, 75%PBSTw:25% 
MeOH, then washed 3× in PBSTw. Scales were treated with 0.1 mg/ml proteinase K for 5 min, then 
re-fixed in 4% PFA for 20 min. Scales were washed once in PBSTw, washed once in 50% PBSTw:50% 
hybridization buffer, then incubated in hybridization buffer for 2 hr at 65°C. Scales were incubated 
in hybridization buffer with probe (~1 ng/µl) overnight at 65°C. Scales were sequentially washed at 
65°C in 75% hybridization buffer:25% 2× SSC +0.1% Tween20 (SSCT), 50% hybridization buffer:50% 
2× SSCT, 25% hybridization buffer:75% 2xSSCT, followed by three washes at room temperature in 2× 
SSCT, followed by three washes in 0.2× SSCT. Scales were then washed 3× in 1× PBS +0.2% Triton 
X-100 (PBSTr), then blocked for 2  hr in PBSTr  +5%  fetal bovine serum. Scales were incubated in 
blocking buffer with an anti-fluorescein peroxidase (POD) conjugated antibody (1:2000) overnight at 
4°C. Scales were washed 6× in PBSTr, followed by staining with Tyramide Signal Amplification (TSA) 
Plus Cyanine 5 (1:50 dilution) for 10 min.

Following FISH, scales were incubated in PBSTr +10% NGS for 2 hr at room temperature. Scales 
were stained with an anti-GFP antibody (1:1000) in PBSTr +10% NGS overnight at 4°C. Scales were 
washed in PBSTr, then incubated in secondary antibodies (1:200) for 2 hr at room temperature. Scales 
were washed in PBSTr, stained with Hoechst (3.24 nM) for 10 min at room temperature, washed in 
PBSTr, mounted under coverslips in ProLong Gold, and imaged.

Hybridization chain reaction
A custom piezo2 probe set (set size: 20; amplifier: B3) was ordered using accession number 
XM_021468270.1. For HCR on adult zebrafish scales, minor alterations were made to a previously 
described protocol (Ibarra-García-Padilla et al., 2021). Briefly, scales from Tg(atoh1a:Lifeact-EGFP) 
adults were plucked and fixed in 4% PFA overnight at 4°C, with 20 scales per 1.5 ml tube. Scales 
were washed 3× in 1× PBS and then dehydrated and permeabilized with 2×10 min washes in 100% 
methanol. The samples were stored at –20°C overnight. To rehydrate the samples, a series of graded 
MeOH/PBSTw washes were used for 5 min each: 75% MeOH:25% 1× PBSTw, 50% MeOH:50% 1× 
PBSTw, 25% MeOH:75% 1× PBSTw, and finally 2× washes in 100% 1× PBSTw. To further permeabilize 

https://doi.org/10.7554/eLife.85800
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the scales, samples were incubated in 10 ug/ml Proteinase K diluted in 1× PBSTw for 10 min. Samples 
were quickly washed 3× in 1× PBSTw, and then post-fixed with 4% PFA for 20 min. After post-fixation, 
samples underwent 5×5 min washes with 1× PBSTw. Samples were then pre-hybridized with Molec-
ular Instruments HCR hybridization buffer at 37°C for 30 min. After pre-hybridization, samples were 
incubated with 2 pmol of the probe set diluted in hybridization buffer for 16 hr at 37°C. To remove 
the probe mixture solution, samples were washed 4× for 15  min each with probe wash buffer at 
37°C. Samples were washed 2× for 5 min with 5× SSC +0.1% Tween-20 and then treated with probe 
amplification buffer for 30 min at room temperature. Samples were washed into hairpin amplification 
buffer containing snap cooled amplifier hairpins and were incubated at room temperature, protected 
from light, overnight. Samples were then washed with successive 5× SSC +0.1% Tween-20 washes: 2× 
washes for 5 min, 2× washes for 30 min, and 1× wash for 5 min. Finally, samples underwent 3×5 min 
washes with 1× PBSTw. Anti-GFP staining was performed as described above.

Image analysis
Axon contact quantification
Innervation of Tg(atoh1a:nls-Eos)-expressing cells was scored using a custom ImageJ macro. The 
macro identified the centroid of each atoh1a+ cell using the ‘3D project’ function and then created a 
3D sphere that was 10% larger than the maximum nuclear diameter. A cell was scored as innervated if 
an axon passed within the sphere. In some cases, the Tg(atoh1a:nls-Eos) reporter was photoconverted 
prior to image acquisition as described above.

Cell density analysis
Maximum intensity projections of confocal z-stacks were converted to 8-bit images and thresh-
olded in ImageJ. Cell density was quantified using the ‘Analyze particles’ function of ImageJ. For 
low-magnification quantification of MC cell density across the trunk of fgf8adhiD1Tg/+ and siblings, 
tiled images were collected that included multiple scales per region. Cell density was quantified as 
described above using ImageJ. For high-magnification cell density quantification in the epidermis 
directly above scales, a small region centered in the epidermis of each full scale in view and posi-
tioned based on scale lobe was quantified. For scales with multiple lobes, a density measurement was 
collected from the center of each lobe and averaged.

Recombination efficiency analysis
Maximum intensity projections of the DsRed channel of confocal z-stacks for the basal keratinocyte 
Cre lineage tracing experiments were converted to 8-bit images and thresholded using the ‘Huang’ 
preset in ImageJ. The ‘%Area’ of the thresholded image was determined using the ‘Measure’ function 
and taken to represent recombination efficiency.

Statistical analysis
Statistical tests used are listed in individual figure legends. Plots were created using R or Python. N 
refers to either the number of individual fish or the number of individual scales where appropriate 
and is specified in figure legends. For boxplots, each graph possesses a black line within the box 
that represents the median, two hinges for the first and third quartiles, two whiskers that extend no 
further than 1.5× (interquartile range) from the adjacent hinge, and outlying points plotted individu-
ally beyond the whiskers. Segmented linear regression in Figure 7F was performed using the R func-
tion ‘segmented’ with parameter npsi = 1.
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