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Partial correlations are used to measure the strength of a relationship between two

variables while controlling for the effect of one or more other variables. In other

words, partial correlation is the correlation between two variables after removing the

effect of one or more independent factors on both variables.

In our manuscript, we used partial correlations to better understand the correlation

structure of our variables. This notebook is divided in 2 parts, the first one provides

an illustration of how partial correlations can be computed, and what the meaning of

negative partial correlations may be. The second part aims at evaluating the

statistical power we had to detect partial correlations as significant as those we

observed (a posteriori power analysis).

1. The computation of partial correlations

The partial correlation coefficient can be calculated as follows:

r_ab.c = (r_ab - r_ac.r_bc) / sqrt((1 - r_ac^2).(1 - r_bc^2))

where:

r_ab.c  is the partial correlation coefficient between a  and b ,

controlling for c .

r_ab  is the correlation coefficient between a  and b .
r_ac  is the correlation coefficient between a  and c .
r_bc  is the correlation coefficient between b  and c .

Even if the correlation between a  and b  is strong and positive, their partial

correlation could be 0 or even negative. Consider, for example, the case where the 3

vectors of measurements a , b , c  resulted from the combination of uncorrelated

random vectors x , y , z . Suppose that a = 0.5 x + 0.2 y + 0.1 z , b = 
0.5 x - 0.2 y + 0.1 z , and c = x . The measurements a and b will be

positively correlated because of the effect of x  and z . However, if we compute the
residuals of a and b after covarying the effect of c  (i.e., x ), their partial correlation
will be negative because of the opposite effect of y  on a  and b .

The code that follow demonstrate this example.

For more information on partial correlations see

https://en.wikipedia.org/wiki/Partial_correlation

https://en.wikipedia.org/wiki/Partial_correlation


Here we compute the partial correlations following the definition from the

introduction, computing the residuals, and then computing their correlation. The

partial correlation is negative, even though their correlation is positive:

correlation a~b: 0.501779198289467
partial correlation a~b|x: -0.8110773754985613

Here we use an alternative method for computing partial correlations exhaustively

among many variables. This is the method that is actually used in our paper. The

results for the 3 variables in the example is the same:

array([[ 1.        , -0.81207564,  0.92710747],
       [-0.81207564,  1.        ,  0.94327373],
       [ 0.92710747,  0.94327373,  1.        ]])

Finally, the plots show graphically that the correlation between a  and b  are

positive, but their partial correlation is negative:

Text(0.5, 1.0, 'a ~ b | x')

In [ ]: import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm

In [ ]: x = np.random.randn(50)
y = np.random.randn(50)
z = np.random.randn(50)

a = 0.5*x + 0.2*y + 0.1*z
b = 0.5*x - 0.2*y + 0.1*z
X = np.vstack((a, b, x)).T

In [ ]: # fit a ~ x, b ~ x
ax = sm.OLS(a, x).fit().resid
bx = sm.OLS(b, x).fit().resid
print(f"correlation a~b: {np.corrcoef(a, b)[0,1]}")
print(f"partial correlation a~b|x: {np.corrcoef(ax, bx)[0,1]}")

In [ ]: def partialcorr(X):
    C = np.cov(X, rowvar=False, bias=True)
    C_inv = np.linalg.inv(C)
    d = np.sqrt(np.diag(C_inv))
    P = -C_inv / np.outer(d, d)
    np.fill_diagonal(P, 1)
    return P

In [ ]: partialcorr(X)

Out[ ]:

In [ ]: plt.figure(figsize=(15, 5))
plt.subplot(131); plt.plot(x, a, 'o'); plt.title('a ~ x')
plt.subplot(132); plt.plot(x, b, 'o'); plt.title('b ~ x')
plt.subplot(133); plt.plot(a, b, 'o'); plt.title('a ~ b')

plt.figure(figsize=(5, 5))
plt.plot(ax, bx, 'o'); plt.title('a ~ b | x')

Out[ ]:



2. Statistical power

We used 9 different variables to study neuroanatomical diversity in our sample of 56

species. These variables are not independent, on the contrary, they vary following a

very strong pattern. This pattern captures their multivariate allometric scaling and is

represented by the 1st principal component of the variance-covariance matrix of the

9 variables. As we saw previously, the inversion of this matrix leads to the

simultaneous estimation of all partial correlations among our variables. We estimated

the significance of these partial correlations using the edge exclusion test introduced

by Whittaker (1990).

Here we use simulations to evaluate the statistical power we had to detect partial

correlations as large as those we observed.

In [ ]: # This is the variance-covariance matrix of our variables, which can also

C = np.array([
       [5.68999487, 3.75035486, 1.05249198, 0.78099597, 1.07278117, 0.763
       [3.75035486, 2.78186834, 0.7534478 , 0.57310966, 0.79035063, 0.570
       [1.05249198, 0.7534478 , 0.22899229, 0.17110868, 0.22659353, 0.157
       [0.78099597, 0.57310966, 0.17110868, 0.13481407, 0.172311,   0.121
       [1.07278117, 0.79035063, 0.22659353, 0.172311  , 0.24049524, 0.170
       [0.76312705, 0.57093027, 0.15711043, 0.12163194, 0.17068113, 0.129



The following function computes our power (a.k.a. sensitivity) to detect the partial

correlations implied by the variance-covariance matrix Ctarget , for a given
strength effect_start , and a given alpha (significance) threshold min_stars .
The function scans sample sizes from 20 to up to 100 species, running each time

1000 simulations. For every simulation we generate data using the variance-

covariance matrix Ctarget with the different sample sizes. Significance is estimated

using the edge exclusion test. We keep track of the number of true positives (where

the significance in of one partial correlation in the simulated data matches that of the

observed data), false negatives, false positives and true negatives. The function

returns a vector of sensitivity versus sample size, and specificity versus sample size

(another value that's useful for evaluating the behaviour of a test).

       [0.1646759 , 0.11573696, 0.03739531, 0.02511677, 0.03669998, 0.022
       [0.12895582, 0.09413106, 0.02805883, 0.01699588, 0.02990122, 0.017
       [0.23629373, 0.16357597, 0.04728047, 0.03265633, 0.04789162, 0.032
    ])

In [ ]: # cov2pcor: covariance to partial correlations
def cov2pcor(C):
    C_inv = np.linalg.inv(C)
    d = np.sqrt(np.diag(C_inv))
    P = -C_inv / np.outer(d, d)
    np.fill_diagonal(P, 1)
    return P

In [ ]: # edge_exclusion_test
from scipy.stats import chi2

def edge_exclusion_test(C, n):
    m = cov2pcor(cov2cor(C))
    mt = m[np.triu_indices(len(m), 1)]
    edges = -n * np.log(1 - mt**2)
    res = chi2.sf(edges, df=1)
    resu = np.around(res, decimals=4)
    # print(resu.shape)

    rows, cols = (len(m), len(m))
    M = [[0 for i in range(cols)] for j in range(rows)]
    for ind, (row, col) in enumerate(zip(*np.triu_indices(len(m), 1))):
        M[row][col] = resu[ind]
        M[col][row] = "***" if resu[ind] <= 0.001 else "**" if resu[ind] 
    return M

In [ ]: n_stars = lambda s: s.count('*')

def power_for_effect_size(Ctarget, effect_stars=3, min_stars=1):
    sensitivity, specificity = [], []
    for n_samples in range(20, 105, 5):
        TP, FP, TN, FN = 0, 0, 0, 0
        for _ in range(1000):
            D = np.random.multivariate_normal(np.zeros(9), Ctarget, n_sam
            C2 = np.cov(D)
            P2 = cov2pcor(C2)
            res2 = edge_exclusion_test(C2, n_samples)
            for s, s2 in zip(sum(res, []), sum(res2, [])):



                if type(s) != str:
                    continue
                if n_stars(s) >= effect_stars:
                    if n_stars(s2) >= min_stars:
                        TP += 1
                    else:
                        FN += 1
                if n_stars(s) < effect_stars:
                    if n_stars(s2) >= min_stars:
                        FP += 1
                    else:
                        TN += 1
        sensitivity.append(TP/(TP+FN)*100)
        specificity.append(TN/(FP+TN)*100)
    return sensitivity, specificity

In [ ]: # pca2cov: pca to covariance matrix
def pca2cov(vecs, vals):
    return np.dot(vecs, np.dot(np.diag(vals), vecs.T))

In [ ]: # power to detect partial correlations in the observed data
power_large, _ = power_for_effect_size(C, 3, 1)
power_medium, _ = power_for_effect_size(C, 2, 1)
power_small, _ = power_for_effect_size(C, 1, 1)

# create a variance-covariance matrix with weakened allometry
test_vals = vals.copy()
test_vals = vals**0.5
g = np.prod(vals)/np.prod(test_vals)
test_vals = test_vals*g**(1/len(test_vals))
C1 = pca2cov(vecs, test_vals)
P1 = cov2pcor(C1)

# power to detect partial correlations in the data with weakened allometr
m_power_large, _ = power_for_effect_size(C1, 3, 1)
m_power_medium, _ = power_for_effect_size(C1, 2, 1)
m_power_small, _ = power_for_effect_size(C1, 1, 1)

In [ ]: plt.figure(figsize=(16, 6))

x = np.arange(20, 105, 5)

plt.subplot(121)
plt.plot(x, power_large, 'o-', label='large effect size')
plt.plot(x, power_medium, 'o-', label='medium effect size')
plt.plot(x, power_small, 'o-', label='small effect size')
plt.xlabel('Sample size')
plt.ylabel(f'Power')
plt.xlim(15, 105)
plt.ylim(30, 105)
plt.grid("on")
plt.legend(loc=4, bbox_to_anchor=(0.95, 0.05))
plt.tight_layout()
plt.plot([56, 56], [30, 105], 'k--')
plt.text(54, 60, 'N=56', horizontalalignment='center', verticalalignment=
plt.title('a. Power to detect the observed effect size')

plt.subplot(122)
plt.plot(x, m_power_large, 'o-', label='large effect size')



Text(0.5, 1.0, 'b. Power to detect data with weaker allometry')

plt.plot(x, m_power_medium, 'o-', label='medium effect size')
plt.plot(x, m_power_small, 'o-', label='small effect size')
plt.xlabel('Sample size')
plt.ylabel(f'Power')
plt.xlim(15, 105)
plt.ylim(30, 105)
plt.grid("on")
plt.legend(loc=4, bbox_to_anchor=(0.95, 0.05))
# tight display
plt.tight_layout()
plt.plot([56, 56], [30, 105], 'k--')
plt.text(54, 75, 'N=56', horizontalalignment='center', verticalalignment=
plt.title('b. Power to detect data with weaker allometry')

# plt.savefig('../data/derived/supp.fig.power.svg', dpi=300)

Out[ ]:

In [ ]:  


