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Abstract Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait anal-
ysis is used in clinical practice to inform diagnosis and monitor disease progression or interven-
tion response. However, clinical gait analysis relies on subjective visual observation of walking as 
objective gait analysis has not been possible within clinical settings due to the expensive equip-
ment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital 
insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole 
measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. 
To achieve this, we constructed a machine learning model, trained on force plate data collected in 
participants with knee arthropathy and controls. This model was highly predictive of force plate data 
from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area 
under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset 
containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing 
that digital insole-derived gait characteristics are comparable to traditional gait measurements, we 
next showed that a single stride of raw sensor time-series data could be accurately assigned to each 
subject, highlighting that individuals using digital insoles can be identified by their gait character-
istics. This work provides a framework for a promising alternative to traditional clinical gait analysis 
methods, adds to the growing body of knowledge regarding wearable technology analytical pipe-
lines, and supports clinical development of at-home gait assessments, with the potential to improve 
the ease, frequency, and depth of patient monitoring.

Editor's evaluation
This study presents a valuable dataset and tool that can aid in arthropathies' assessment, potentially 
enabling such evaluation to be done outside the lab. There is convincing evidence supporting the 
comparison between the force plate and insole data but the evidence for distinguishing disease 
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signatures is inconclusive and would need further development. This work will be of interest to phys-
ical therapists, clinicians, and researchers in the field of lower limb joint diseases.

Introduction
Gait assessment plays several roles in clinical practice and research for many musculoskeletal and 
orthopedic diseases, such as diagnosis, guiding treatment selection, and measuring intervention 
response. (Lord et al., 1998). Knee osteoarthritis (OA) contributes to altered gait as individuals try to 
avoid knee pain and cartilage contact stress (i.e., weight shift or joint loading onto the non-affected 
limb) (Iijima et  al., 2019; Kaufman et  al., 2001). Those with knee OA commonly have increased 
lateral trunk lean toward the ipsilateral limb, along with non-significantly increased trunk/pelvic flexion 
and resultant significant alterations in external hip adduction moments (Iijima et al., 2019). Clinically, 
gait is examined in knee OA through clinical visual observation of walking, which is subjective and 
dependent on expertise. Beyond visual observation, gait has been traditionally objectively assessed 
in specialized gait laboratories with expensive equipment, such as force platforms, with or without 
a motion-tracking system. However, gait laboratories are generally not available or feasible within 
clinical settings due to cost, need for highly trained staff to operate equipment, and the size of equip-
ment. Wearable sensors offer an alternative approach to assessment of gait in those with knee OA 
(Mills et al., 2013) as they can be deployed within any environment or setting (Stern et al., 2022), are 
relatively low-cost, and can provide outcomes automatically without the need for highly experienced 
or trained staff.

Vertical ground reaction force (vGRF) is a gait characteristic that is impaired within knee OA as 
it relates to the bilateral weightbearing capabilities of the patient (i.e., greater peak vGRF) (Creaby 
et al., 2013; Davis et al., 2019; Trentadue et al., 2021). Traditionally, vGRF is objectively examined 
using force plates, which can provide three components of force (vertical, anterior-posterior, and 
medio-lateral) (Creaby et al., 2013; Davis et al., 2019; Trentadue et al., 2021). Force plate signals 
can provide information on gait characteristics, postural stability, as well as direction, strength, and 
duration of stance phase (Arslan et al., 2019; Whittle, 2007). However, force plates only capture 
intermittent data on vGRF (single or several steps) within controlled experiments that do not repre-
sent real-world overground walking. Technological development has led to digital insoles (wearables) 
that can capture vGRF and other gait characteristics that are relevant to knee OA assessment, which 
could be used within free-living environments (Stern et al., 2022). The data generated from digital 
insoles may allow for phenotyping information to characterize patients with knee OA. However, clin-
ical application of wearable digital insoles for gait analysis in knee OA is limited by a paucity of 
analytical validation data (including face, criterion, and construct validity), such as comparison of gait 
outcome measures in those with knee OA to ‘gold-standard’ laboratory references (e.g., force plate 
outcomes) (Goldsack et al., 2020; Rochester et al., 2020).

Gait quantitation generates dense raw sensor time-series data with nonlinear relationships that 
make analysis and interpretation challenging. As a class, digital gait data analysis pipelines suffer from 
a lack of well-established analytical methods compared to other biomarker data types (Wipperman 
et al., 2022; Crouthamel et al., 2021; Horst et al., 2019). Recently, there is interest in developing 
more streamlined (‘light-weight’) gait algorithms and data processing pipelines using machine learning 
(ML) to automate and process large volumes of novel digital data obtained from wearable devices 
(Celik et al., 2022; Godfrey et al., 2018). An ML framework may be used as a tool to evaluate the 
digital gait outcome quality and consistency, as well as how well these data can be used as potential 
clinical trial endpoints. Selection of the appropriate modeling modalities for a particular clinical ques-
tion is challenging (Horst et al., 2019; Slijepcevic et al., 2022). The selection of classical ML versus 
deep learning methods may be influenced by the structure and size of the data. For example, deep 
learning models are better suited to handle high-throughput, multimodal data streams, such as raw 
sensor time series (Alias, 2018; Briouza et al., 2021), but typically require larger datasets than clas-
sical statistical or ML methods (in terms of both features and sample size). Finally, clinical wearable 
data may be collected over several seconds to minutes, and longer in passive monitoring settings; 
thus, appropriate understanding of large dataset processing is important. Collectively, both data type, 
size, and model selection are key components of a comprehensive wearable sensor data analysis 
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pipeline and should be considered when evaluating clinical research pipelines with large heteroge-
neous datasets.

This study aimed to assess the face validity of measuring vGRF using digital insoles compared to 
the standard laboratory reference of force plates in control adults and those with knee arthropathy. 
We also aimed to clinically validate the measurement of gait with digital insoles in those with knee 
arthropathy through (1) development of a novel ML framework (based on ‘gold-standard’ force plate 
data) for application within digital insoles to detect knee arthropathy status and (2) processed digital 
insole-derived gait outcomes and raw sensor signals to identify disease-specific gait patterns in knee 
arthroscopy. Clinical validity is the ability to provide clinically meaningful outcome measures, including 
the detection of disease-specific patterns relative to controls, and the identification of subject-specific 
gait patterns.

Results
Platform-agnostic visualization of knee arthropathy signatures from 
vGRF data
vGRF is the major and clinically relevant component of the ground reaction forces generated from 
walking and can be measured using force plates or digital insoles. We obtained vGRF data from the 
three studies: the GaitRec Force Plate study of subjects with knee injuries (N = 625) and controls (N = 
211) and two digital insole studies in controls (N = 22) and subjects with knee OA (N = 40), respectively 
(Figure 1, Figure 2—figure supplement 1). We plotted raw and normalized vGRF values recorded 
by force plate and digital insole devices and observed by visual inspection that the means of vGRF 

eLife digest The way we walk – our ‘gait’ – is a key indicator of health. Gait irregularities like 
limping, shuffling or a slow pace can be signs of muscle or joint problems. Assessing a patient’s gait is 
therefore an important element in diagnosing these conditions, and in evaluating whether treatments 
are working.

Gait is often assessed via a simple visual inspection, with patients being asked to walk back and 
forth in a doctor’s office. While quick and easy, this approach is highly subjective and therefore impre-
cise. ‘Objective gait analysis’ is a more accurate alternative, but it relies on tests being conducted 
in specialised laboratories with large-scale, expensive equipment operated by highly trained staff. 
Unfortunately, this means that gait laboratories are not accessible for everyday clinical use.

In response, Wipperman et al. aimed to develop a low-cost alternative to the complex equipment 
used in gait laboratories. To do this, they harnessed wearable sensor technologies – devices that can 
directly measure physiological data while embedded in clothing or attached to the user. Wearable 
sensors have the advantage of being cheap, easy to use, and able to provide clinically useful informa-
tion without specially trained staff.

Wipperman et al. analysed data from classic gait laboratory devices, as well as ‘digital insoles’ 
equipped with sensors that captured foot movements and pressure as participants walked. The anal-
ysis first ‘trained’ on data from gait laboratories (called force plates) and then applied the method to 
gait measurements obtained from digital insoles worn by either healthy participants or patients with 
knee problems.

Analysis of the pressure data from the insoles confirmed that they could accurately predict which 
measurements were from healthy individuals, and which were from patients. The gait characteristics 
detected by the insoles were also comparable to lab-based measurements – in other words, the 
insoles provided similar type and quality of data as a gait laboratory. Further analysis revealed that 
information from just a single step could reveal additional information about the subject’s walking.

These results support the use of wearable devices as a simple and relatively inexpensive way to 
measure gait in everyday clinical practice, without the need for specialised laboratories and visits to 
the doctor’s office. Although the digital insoles will require further analytical and clinical study before 
they can be widely used, Wipperman et al. hope they will eventually make monitoring muscle and 
joint conditions easier and more affordable.

https://doi.org/10.7554/eLife.86132
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curves within each disease category are similar across platforms (Figure 2A), which highlights face 
validity of the digital insoles (i.e., the insole data appeared similar to the force plate data). Further-
more, we observed distinct patterns between control subjects and those with knee arthropathy when 
comparing the normalized vGRF values averaged by group (Figure 2A) or per individual (Figure 2B). 
Specifically, individuals with knee arthropathy from all evaluated datasets displayed a qualitatively 
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Figure 1. Overview of data sources and study participants, device types, data types, and clinical research questions. (A) Three datasets were used for 
analyses. The GaitRec force plate dataset (force plate data) contains N = 211 controls, who walked at three different walking speeds (slow, comfortable, 
and fast), and N = 625 knee injury subjects, who walked at a comfortable walking speed (Horsak et al., 2020). The second dataset is from a digital 
insole pilot study, where N = 22 controls walked at three different walking speeds (slow, comfortable, and fast). The third dataset is from a digital 
insole sub-study from a longitudinal clinical trial in knee osteoarthritis (OA), where N = 40 knee OA subjects performed a 3 min walk test (3MWT) at a 
comfortable walking speed at baseline (pretreatment) and at day 85 (on treatment). (B) Both force plates and digital insoles produce data collected 
during stance and swing phases of a person’s gait cycle. (C) Types of data produced by these devices include vertical ground reaction force (vGRF), 
derived gait characteristics, and raw sensor time series. (D) Clinical research questions addressed in this work include the derivation of gait disease 
signatures of knee OA and investigation of the individuality and consistency of gait patterns. Two analytical methods were used to evaluate these data. 
Support vector machine (SVM) models were used to analyze vGRF, derived gait characteristics, and raw sensor time-series flattened stride data. A one-
dimensional convolutional neural network (CNN) was used to analyze structured stride raw sensor time-series data.
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different gait signature than controls, with a ‘flatter’ vGRF curve shape during the middle of stance 
phase (we use the term ‘arthropathy’ to encompass both knee injury and OA).

Using a dimension reduction approach Uniform Manifold Approximation and Projection (UMAP) 
with normalized vGRF data from each subject in two dimensions, subjects at a population level sepa-
rated out by arthropathy status (knee arthropathies vs controls) rather than by measurement platform 
(Figure 2C). Thus, despite performing analysis on data collected from different devices at different 
sites, we could discern disease-relevant patterns in the vGRF data and show that the digital insole 
data recapitulated the force plate data.
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Figure 2. Machine learning (ML) model trained on knee injury subjects walking on force plates accurately classifies osteoarthritis (OA) patients wearing 
digital insoles. (A) Vertical ground reaction force (vGRF) curves derived from force plate and digital insole data for controls, and knee injury and knee OA 
patients, respectively. Left foot data are shown as mean of values (top panels) and mean of normalized z-scores (bottom panels) at each percent stance 
phase within each device and health status. Groups are color-coded as in (B) and (C). (B) vGRF curves for an individual’s left foot shown as heatmap 
rows, after data was z-transformed at each percent stance phase (as in A). Rows are hierarchically clustered within each group of subjects. (C) Uniform 
Manifold Approximation and Projection (UMAP) dimensionality reduction of the z-transformed left foot vGRF data. Each point represents a subject, and 
points are colored by phenotype, and shaped by device. (D) Schematic of machine learning model building of training/validation and testing sets. Two 
support vector machine (SVM) models were created, one for left knee injury (depicted) and one for right knee injury. The full force plate vGRF dataset 
with both controls (comfortable walking speed) and left or right knee injury subjects (comfortable walking speed, excluding subjects with knee injury 
on both joints) were split 85% into training/validation datasets, and 15% into a hold-out testing set. One model predicts control versus knee injury 
subjects using left foot data (of left knee injury subjects and all controls), and the other predicts using right foot data (of right knee injury subjects and 
all controls). These models were then applied on a separate, independent testing set of digital insoles vGRF data with N = 22 control subjects and N = 
38 patients with knee OA. (E) Receiver operating characteristic curve for SVM classification of force plate (85%) cross-validation (CV, training/validation) 
set, force plate (15%) hold-out test set, and the digital insole test set. (F) Precision-recall curve for SVM classification of the same groups in (E).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Heatmap representation of vertical ground reaction force (vGRF) data from GaitRec dataset for all joints with injuries and controls 
(Horsak et al., 2020).

Figure supplement 2. Variance explained in vertical ground reaction force (vGRF) with clinical and demographic characteristics of the participants.

Figure supplement 3. Model results from the right foot only data.

Figure supplement 4. Comparison between logistic regression, support vector machine, and XGBoost models.
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To investigate how the variation in the vGRF data may be partially explained by the clinical and 
demographic characteristics of the participants, we fit a series of linear models to each point along the 
vGRF curve, with arthropathy state (knee arthropathy or control), age, sex (male or female), and body 
weight as covariates in the model (Figure 2—figure supplement 2). For each linear model, repre-
senting the sum of squares for each category compared to the total sum of squares as a percentage 
of variation explained by that component, we observed that the arthropathy state is the major contrib-
utor to the vGRF signal for most of the vGRF curve, with age, sex, and body weight explaining a 
smaller proportion of the variance. We conclude that the dominant factor likely contributing to varia-
tion among participants to these signals is arthropathy state.

ML models trained on vertical ground reaction force plate data to 
classify control versus knee injury across different platforms
We next looked to quantify how well force plate data can identify disease using gait signatures and 
to understand if a wearable insole could detect similar characterizations. To differentiate controls 
versus knee arthropathies using vGRF data, we divided the complete vGRF force plate dataset into a 
training/validation set (85%) and a test set (15%) and trained a support vector machine (SVM) model 
to predict these classes (Figure 2D). The model indicated strong predictive power to classify control 
versus knee injury subjects using force plate data when evaluated using fivefold cross-validation of the 
training/validation dataset, a standard method of assessing model performance (left knee: area under 
the receiver operating characteristics curve [auROC] = 0.92 [SD = 0.03], area under the precision-recall 
curve [auPR] = 0.94 [SD = 0.03]; right knee: auROC = 0.94 [SD = 0.02], auPR = 0.96 [SD = 0.01]). The 
predictive power was also strong when assessed on the hold-out test dataset, which was not used for 
training of the SVM model (left knee: auROC = 0.95, auPR = 0.95; right knee: auROC = 0.93, auPR = 
0.95) (Table 1 and Figure 2—figure supplement 3).

To further assess generalizability of the model and understand if a digital insole could measure 
vGRF similarly to a force plate, we applied the model trained using vGRF force plate data to the 
separate, independent dataset derived from digital insole studies on individuals with knee OA and 
controls. An important assumption of this analysis was that knee OA and knee injury are represented 
similarly by vGRF curves as was shown earlier (Figure 1A–C). We found that for the digital insole an 
SVM model trained only on force plate data performed as well on the digital insole data (left knee: 
auROC = 0.93, auPR = 0.94; right knee: auROC = 0.93, auPR = 0.94) as it did on the hold-out force 
plate test data (Figure 2E and E; Table 1, and Figure 2—figure supplement 3).

Table 1. Force plate vertical ground reaction force (vGRF) control versus knee arthropathies support vector machine (SVM) 
classification model evaluation statistics (left foot/right foot).
An SVM model was trained on 85% of the force plate dataset vGRF data to predict control or knee arthropathies (knee injury or knee 
osteoarthritis) classes, with left foot vGRF data used to predict left knee arthropathies and right foot vGRF data used to predict right 
knee arthropathies. The model was evaluated using fivefold cross-validation, a hold-out force plate test set, and a digital insole test 
set. Area under the receiver operating characteristics curve (auROC) and area under the precision-recall curve (auPR) statistics are 
reported for the three models. F1 scores for each class for each model are also reported.

Per class binary classification metrics

auROC actual/mean (SD) auPR actual/mean (SD)

F1 score

Control Arthropathy

Left Right Left Right Left Right Left Right

Force plate fivefold cross validation 0.917 (0.034) 0.937 (0.023) 0.944 (0.029) 0.960 (0.015) 0.78 0.84 0.87 0.88

Force plate test set 0.949 0.935 0.955 0.950 0.78 0.76 0.87 0.87

Digital insole test set 0.928 0.925 0.937 0.938 0.89 0.83 0.95 0.90

SD, standard deviation.

https://doi.org/10.7554/eLife.86132
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Performance of derived gait characteristics of the digital insole versus 
vGRF and raw sensor time series for disease classification
A potential benefit of a digital insole relative to a force plate is that many more variables can be 
derived, thus enabling a more comprehensive assessment of gait. For instance, in addition to the 
vGRF curves, derived gait characteristics and raw sensor time-series data can be obtained using the 
50 sensors across both insoles (Figure 3A).

Time-series data measures different aspects of a stride, including force, angular velocity, and orien-
tation of the foot relative to gravity. The raw sensor time-series data can be evaluated as either struc-
tured strides, in which each stride is represented such that each sensor’s values are measured over 
time, or converted into flattened strides, in which all timepoints and sensors are concatenated into 
one representation (Figure 3A) providing a linear representation of a person’s stride.

To investigate how derived gait characteristics relate to each other, we clustered the values and 
their correlations across different walking speeds and disease status (OA vs control). Correlations 
within and between categories of parameters revealed that similar groups of parameters clustered 
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Figure 3. Derived gait characteristics from a digital insole measured across all subjects from the pilot study and knee osteoarthritis patients in the 
clinical trial. (A) Schematic of raw sensor time-series data from a digital insole. Data can be processed from the device in three ways: (1) vertical ground 
reaction forces (Figure 1); (2) derived gait characteristics on force, spatio-temporal, and center of pressure aspects; and (3) raw sensor time-series data 
from the 50 sensors embedded across both insoles. Each segmented stride of raw sensor time-series data can be analyzed as is (structured strides) or 
collapsed (flattened strides). (B) The derived gait characteristics (parameters) of the digital insole from all individuals in the pilot study were correlated 
against each other at the comfortable walking speed. Spearman correlation coefficients were computed and shown in a correlation matrix ranging from 
–1 (perfect anti-correlation) to +1 (perfectly correlation). Each parameter has a Spearman correlation coefficient of +1 with itself (red diagonal). The 
parameter, the foot from which it was generated, and its category are labeled on the left of the correlation matrix. (C) Heatmap representation of the 
average of each of the 82 digital insole parameters (rows) across all walks for each patient (columns) from the pilot study. Parameter values are shown as 
normalized z-scores (bounded within ± 3), calculated across all participants, and walking speeds. The heatmap is split by the three walking speeds (slow, 
normal, fast), and columns are clustered within each walking speed using hierarchical clustering with Euclidean distances. The 14 parameters strongly 
correlated with walking speed are indicated on the right of the heatmap.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Derived gait characteristics that are most discriminative of knee osteoarthritis (OA) versus controls include features shown in 
Supplementary file 1.

https://doi.org/10.7554/eLife.86132
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together (Figure 3B), including 14 derived gait characteristics strongly correlating with walking speed 
(|Spearman rho| > 0.7). We note that many other gait characteristics will be influenced by walking 
speed, and as such, we call out these as representing the subset most influenced by speed, defined 
by this threshold (|Spearman rho| > 0.7). Using a heatmap, where derived gait characteristics were 
normalized across both control and knee OA populations, we observed distinct patterns between 
derived gait characteristics at different walking speeds and disease status (Figure  3C). To further 
explore the relationship with walking speed, we performed a principal component analysis (PCA) 
dimensionality reduction on each data type. This analysis demonstrated that knee OA arthropathy 
state can be observed on a continuum related to walking speed. Compared to control subjects, 
participants with knee OA are walking more slowly as apparent across all data types, including vGRF 
(Figure 4A), derived gait characteristics (Figure 4B), and raw sensor time-series data (Figure 4C).

We revisited the question of whether gait data can be used to identify arthropathy status rela-
tive to control subjects for each of the three types of data collected by the digital insole: vGRF, 
summary parameters, and time-series data. Note that this analysis aims to classify whether a subject 
has knee arthropathy, rather than to determine the severity of arthropathy, which this study was not 
designed to assess. SVM models were trained on vGRF and assessed using both repeated five-fold 
cross-validation (r5FCV) and leave-one-out cross-validation (LOOCV), where models were evaluated 
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Figure 4. Different methods to analyze control subject versus knee osteoarthritis (OA) patient data from a digital insole enable refined classification of 
disease signatures. (A) Principal component analysis (PCA) dimensionality reduction of vertical ground reaction force (vGRF) data from all walks of pilot 
study subjects and baseline walks of knee OA clinical trial patients. Each dot represents data from a single subject at a given walking speed. (B) PCA 
dimensionality reduction of derived gait characteristic data from the digital insole, without the 14 speed-correlated derived gait characteristics. (C) PCA 
dimensionality reduction of raw sensor time series of each stride from all walks. Each dot represents data from a single stride and repeat strides from 
the same participant are shown. (D) Receiver operating characteristic curves for knee OA versus control (both at comfortable walking speed) prediction 
using only walking speed (speed), derived gait characteristics (excluding 14 speed-correlated features), raw sensor time series, and vGRF. Classification 
metrics were derived using leave-one-out cross-validation (LOOCV). The single derived gait characteristic speed separates out digital insole knee OA 
patients versus control subjects. (E) Precision-recall curves of the same comparisons in (D). (F) Classification accuracy using raw sensor time-series data 
from control subjects versus knee OA patients using subsets or all 50 sensors at each timepoint of the stride (0–100% of the stride). Timepoints start with 
the stance phase of the right foot and swing phase of the left foot, and end with the swing phase of the right foot and the stance phase of the left foot. 
Classification accuracy of 1.0 indicates perfect knee OA versus control classification using data from that timepoint.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Evaluation of all speed-independent characteristics for OA vs control classification.

https://doi.org/10.7554/eLife.86132
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by iteratively leaving one subject out, building a model, and evaluating where that subject would 
be classified compared to the true result (see ‘Methods’). This was also performed for derived gait 
characteristics, and raw sensor time-series (flattened strides) data independently (Figure 4D and E). 
Additionally, we used walking speed as a single variable predictor of knee OA (both control subjects 
and OA patients had been asked to walk at a self-paced comfortable walking speed). We found that 
walking speed alone was able to discriminate between knee OA subjects and controls (auROC = 
0.981, auPR = 0.983). vGRF with the digital insole also demonstrated high predictive power (LOOCV: 
auROC = 0.984, auPR = 0.990; r5FCV: auROC = 0.988, auPR = 0.992).

For derived gait characteristics, we wanted to understand whether aspects of gait other than walking 
speed could be used to correctly classify whether a subject had knee OA relative to a control as this 
would suggest potential for broader applicability if disease-specific features in addition to changes 
in speed could be detected with digital insoles. Using derived gait characteristics that excluded the 
14 characteristics strongly correlated to walking speed, we found even better classification accuracy 
(LOOCV: auROC = 0.997, auPR = 0.988; r5FCV: auROC = 0.996, auPR = 0.986). The most important 
discriminating parameters included takeoff dynamics, max force (N), mean COP velocity (mm/s), and 
gait line-associated parameters (sd x and sd y of gait line start point [mm]) (Supplementary file 1, and 
Figure 3—figure supplement 1). Flattened strides from raw sensor data, which is also independent 
of walking speed as each stride was interpolated to a consistent 100 timepoints, also were predictive 
(LOOCV: auROC = 0.997, auPR = 0.998) (Figure 4—figure supplement 1).

Finally, we sought to evaluate the contribution of each sensor at each timepoint along individual 
segmented strides to the disease classification accuracy. We trained additional SVM models on subsets 
of sensor type at each timepoint (Figure 4F) and found that classification accuracy for control versus 
knee OA depends on the type of sensor, the timepoint along a stride, and the foot (left vs right). 
Measurements of pressure and force from a foot had greater mean classification accuracy during the 
stance phase of that foot.

Deriving individual gait signatures using convolutional neural net 
latent representations of raw sensor time-series data or derived gait 
characteristics
To determine the extent to which walking patterns are specific to an individual, subjects were split 
50:50 into training and testing sets and stratified by disease status (Figure 5A). We then trained a 
one-dimensional convolutional neural net (CNN) on structured strides of training set individuals and 
subsequently applied the CNN model on structured strides of testing set individuals. For each stride, 
we extracted the 60 features in the last connected (penultimate) layer of the CNN (Figure 5B). This 
layer directly precedes the final output of the CNN model predicting the individual from which the 
stride came, and thus these 60 features constitute a gait ‘fingerprint’ learned by the CNN model. 
These features were learned by the CNN to distinguish individuals, and thus these patterns (captured 
in the latent features) can subsequently be used for classification of new subjects, previously unseen 
by the model.

To visualize the latent representation of strides from the CNN, a UMAP clustering of these latent 
features from each stride indicated that this representation captured the individual identity of partic-
ipants (Figure 5C) as strides from the same individuals clustered together in both the training and 
testing sets.

We sought to quantify the individuality of each of the three representations of gait: derived gait 
characteristics from each walk, raw (flattened) time series of each stride, and CNN latent features of 
each stride. To do so, we calculated the distance between all pairs of test set walks/strides in such 
representation against each other (see ‘Methods’). These distances are displayed in both heatmaps 
(Figure 5D, top) and boxplots (Figure 5D, bottom). An ideal representation to quantitate individu-
ality would have low distances between walks/strides from the same person and high distances for 
between walks/strides from different people (Figure 5—figure supplement 1).

Subjects within their class (control or knee OA) displayed similar gaits; therefore, we separated out 
comparisons of subjects to their same class versus comparisons to the other class (with other control, 
with other OA). All three representations had significant differences in distances when comparing 
strides from the same subjects versus strides from different subjects (p<0.001, t-test). The CNN latent 
representation was best at minimizing distances of strides from the same subjects while maximizing 

https://doi.org/10.7554/eLife.86132
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Figure 5. Latent convolutional neural net (CNN) representation of raw sensor time-series data from digital insoles: identifying subject-specific patterns 
of human gait. (A) Pilot study subjects and knee osteoarthritis (OA) clinical trial patients were split 50:50 into training and testing sets, stratified by 
disease status, for the first CNN model investigating the individuality of gait patterns. (B) A CNN was trained on segmented structured strides from the 
digital insole in the training set, to predict from which subject the stride came. The activation of the last fully connected layer in the CNN consists of 
60 features and represents the model’s latent representation of gait. (C) Uniform Manifold Approximation and Projection (UMAP) clustering of these 60 
latent features for each stride captures the individuality of participants in both the training and testing sets. Each dot represents a single stride, colors 
represent each participant, and shapes represent participants’ health status (C = control). Intra- and inter-subject clustering and separation is greater 
in the training set, as expected, and is present in the testing set as well. (D) Distances (in arbitrary units) between each pair of walks (for derived gait 
parameters) or strides (for time series) from the testing set shown as heatmaps for each of the three methods (top panels). Subject of the walk/stride are 
color identified along the edge. Boxplot of mean distance of each walk/stride with other walk/strides from the same individual, and with walk/strides 
from other individuals separated by disease class (bottom panels). Distances are faceted by the disease class of the individual. A good representation 
has low distance for ‘with self’, and high distance for ‘with other’ classes.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Example heatmap of a good representation that has low distance between all pairs of walks/strides from the same participant 
and high distance between all pairs of walks/strides from different participants.

https://doi.org/10.7554/eLife.86132
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the distances of strides from different subjects from the same class, as measured by Cohen’s d effect 
size, suggesting that the CNN latent representations best capture gait individuality, and as such was 
used for follow-up analysis.

Evaluation of individual gait signatures after training on raw sensor 
time series from multiple days
A second CNN model was trained on combined data from both timepoints in the R5069-OA-1849 
clinical trial, where input data was labeled only by participant and not by timepoint. We call the first 
model trained only on day 1 data an ‘individuality’ model, and the second model trained on both day 
1 and day 85 a ‘consistency’ model (Figure 6A).

We tested both models on days 1 and 85 by evaluating the distance of the CNN penultimate 
layer of all strides with each other. Figure 6B plots the distance for the consistency model on both 
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Figure 6. Training across multiple days increases consistency of convolutional neural network (CNN) model latent representation. (A) Knee osteoarthritis 
(OA) clinical trial participants were split 50:50 into training and testing sets containing both day 1 (baseline) and day 85 (on treatment) data, for the 
second CNN model investigating the consistency of gait patterns. (B) Distances (in arbitrary units) between pairs of strides in the latent representation 
from the consistency CNN model in the training and testing sets, shown as heatmaps. Strides from the same person are arranged next to each other, 
with strides from day 1 listed first then strides from day 85. Color along the edge indicates each person. (C) Boxplots of mean distance of each stride 
with other strides from the same person on the same day, from the same person on different days, and from other people, for both the individuality 
model (Figure 5) and consistency model (A–B). Distances are shown using the different models in both the training and testing sets.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Boxplots of mean distance (in arbitrary units) of each stride with other strides from the same person on different days for both 
the convolutional neural network (CNN) individuality model (Figure 5) and CNN consistency model (Figure 6A and B) in both the training and testing 
sets.

https://doi.org/10.7554/eLife.86132
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the training (left) and testing set (right) participants. For each participant, day 1 and 85 strides are 
arranged next to each other, and the cross-day distance within each participant is shown in squares 
closest to the diagonal.

Figure 6C shows stride distances for within subject from the same day, within subject from different 
days, and within other subjects. Within the training set, the consistency model, which was trained 
on both day 1 and 85 strides, produced lower distances than the individuality model, which was 
trained on only day 1 strides, in comparing strides within self from different days (p<0.001, paired 
t-test) (Figure 6—figure supplement 1). Importantly, within the testing set, the consistency model 
produced lower distances than the individuality model in comparing strides within self from different 
days (nominal p=0.033, paired t-test), suggesting that training across multiple days improves the 
ability of the CNN consistency model to identify features that remain consistent across multiple visits. 
The results also show additional capacity for model improvement with respect to consistency of gait, 
as in the consistency model, the distances of the data to oneself were lower amongst strides from the 
same day versus different day in both training and testing participants (nominal p<0.001 and nominal 
p=0.004, respectively, t-test).

Discussion
This study investigated whether gait data derived from a wearable digital insole appears to be accu-
rate in comparison to a gold-standard laboratory reference technology (force plates) and whether it 
can answer questions of clinical interest (with the ultimate clinical goal of yielding useful endpoints). 
Overall, the digital insoles appeared to have face (analytical) validity for vGRF measurement in knee 
OA and controls (qualitatively appears to provide similar results to force plate data), and various 
insole-derived gait outcomes demonstrated early clinical validity as they provided clinically mean-
ingful outcome measures for knee OA.

To address the question of how to estimate disease-specific patterns, we tested whether vGRF 
data allowed for detection of knee arthropathy relative to control subjects with any device. We built 
an ML model using force plate vGRF data and tested the model on an independent force plate test 
dataset. We then extended the analysis to the data from the digital insole. We observed consistent 
disease versus control differences in vGRF curves with both technologies, such that these models were 
able to distinguish knee arthropathy subjects from their respective control groups. The predictive 
performance of the ML model on data collected from a different device at different physical loca-
tions and experimental conditions suggests that the model was robust and generalizable (not overfit). 
While our analysis may be confounded by variables like age, our results imply that disease status is the 
major signal we observe. Our results suggest that vGRF data likely reflect true differences between 
control and knee arthropathy subjects, suggesting that digital insoles may be used to screen for knee 
arthropathy and potentially other diseases that impact gait.

We next sought to identify how different types of digital gait outcomes beyond vGRF (where the 
digital insole attempts to replicate exactly what is measured on a force plate) can be utilized. To 
provide additional insight into the advantages of utilizing wearable devices, we investigated alter-
native data types generated by wearable devices. Findings confirmed that speed-independent gait 
characteristics play an important role in identifying patients with knee arthropathy and controls. 
Specifically, evaluation of derived gait characteristics from the digital insole highlighted walking speed 
as an important determinant of knee OA classification, which is expected (Zeni and Higginson, 2009); 
however, when derived gait characteristics highly correlated with speed were removed, the model 
still successfully detected knee OA subjects. Despite walking speed being a prognostic biomarker for 
mortality and a clinically meaningful outcome measure, it lacks the ability to detect disease-specific 
impairments or potential improvements with intervention (i.e., speed is the accumulation of other gait 
characteristics, and more specific gait characteristics can be mapped to specific underlying musculo-
skeletal, neurological, or cardio-pulmonary impairment) (Morris et al., 2016; Zhou et al., 2022). This 
highlights that in addition to alterations in speed there are additional gait characteristics in knee OA 
that differentiate them from controls.

Distinguishing between control and disease subjects, where effect sizes are expected to be large, 
may have important clinical implications. However, it remains to be seen whether wearable devices 
can successfully detect disease severity where effect sizes are smaller. Our study was not designed 
to investigate smaller effect size differences, so future studies are needed to evaluate this further. If 
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future studies show this is feasible, this data would be important to determine disease progression 
or evaluate the impact of therapeutic interventions, and could have utility in clinical practice, as well 
as serve as an endpoint tool for clinical trials. A strength of using digital insoles over other lower cost 
technology (e.g., Inertial Measurement Units, or IMUs) is that they can accurately capture the gait 
cycle and weight transfer/bearing in OA patients, which was our primary clinical focus here. Unlike 
IMUs that require algorithms to estimate the initial and final contact of the foot (Paraschiv-Ionescu 
et al., 2020), digital insoles provide additional information such as the ability to determine when the 
foot is actually on the ground via raw pressure sensor data, thereby improving the accuracy of gait 
event detection and proceeding outcomes. This is the reason why digital insoles are often used for 
analytical validation of IMU algorithms in clinical populations (Mazzà et al., 2021). Although digital 
insoles may not be as hardwearing as IMUs (i.e., capacitors may deteriorate over time, so are not 
recommended for free-living assessment) (Vu et al., 2020), they are useful clinical tools for active 
mobility tasks in an OA population as they provide gait- and pressure-related metrics that are relevant 
for this clinical condition. Alternatively, in free living settings (e.g., passive monitoring with wearables 
over hours/days/weeks), digital insoles may have issues with device placement and sensor deteriora-
tion (Vu et al., 2020), unlike IMUs that have been shown to be comfortable and have high acceptance 
across various clinical populations (Keogh et al., 2023). The objectivity of the data also makes these 
suitable for endpoint tools. For example, derived gait characteristics could represent reliable regis-
trational endpoints in clinical research, given that they describe objective aspects of gait with clinical 
relevance (e.g., total distance walked in meters, or maximum force applied during a 3 min walk in 
Newtons).

Finally, evaluation of raw time-series data from digital insoles demonstrated that data from a single 
stride could identify individual subjects. However, the interpretation of time-series data remains 
challenging, particularly when analyzed with deep learning methods. In current clinical trial settings, 
derived gait characteristics may be a simpler approach. Nevertheless, our finding that raw time-series 
data contain subject-specific latent features suggests that potentially useful gait features, beyond the 
disease signatures studied here, may exist in this data.

Collecting additional timepoints from individuals may permit the model to learn more consistent 
subject-specific gait patterns. Individual subject gait patterns have been reported previously (Horst 
et  al., 2019; Horst et  al., 2016; Schöllhorn et al., 2002), and understanding their quantification 
may be useful in clinical development for precision medicine applications. Subject-level gait patterns 
and the ability to identify unique signatures of an individual’s gait may enable improved monitoring 
of treatment responses on a per-subject as well as on a population-wide level. Training datasets with 
participant data from multiple visits improve the ability of the model to detect gait features that 
remain consistent, or that change, with time. Collection and training on additional timepoints beyond 
the 2 d in our study may result in models that better learn gait features to consistently identify an 
individual across time.

This work highlights the potential utility of digital insoles for gait assessment in knee OA. However, 
the data such devices generate require clear hypothesis-driven validation to detect relevant signals 
just like research-grade instrumentation. Holistically, by showing that vGRF data from a digital insole 
replicate the standard clinical data generated from force plates, we demonstrated criterion validity 
of vGRF data from digital insoles, meaning that digital insoles can to some degree replicate a clin-
ical standard (the criterion). We further demonstrated the external validity within the digital insole 
study of the disease gait signature across both methodologies (force plate and digital insole) using 
an ML approach, with a training set built entirely on force plate data and evaluated on both force 
plate and digital insole data collected elsewhere. Analytical strategies that maximize both clinical 
understanding and generalizability to other studies are of course standard for biomedical research. 
However, we go beyond this step, and further attempt an analytical approach to maximize construct 
validity—how close a digital biomarker reads out the ‘construct’ it is intended to measure—even at 
the expense of face validity (the degree to which a measure is intuitively interpretable), for a partic-
ular clinical question. Here, the fact that raw sensor data lacks face value interpretability but improves 
upon our ability to ascertain subject-specific gait patterns may inform us that these digital biomarker 
data contain disease or subject-specific information that could be leveraged in alternative clinical 
circumstances.
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Study limitations
Limitations of this analysis include the small sample size in the pilot study of controls, in addition to 
the fact that subjects in this study were not demographically and clinically matched with the OA study. 
Further, the OA study did not control for knee-only OA on one or both joints, thus making this popu-
lation heterogeneous and limiting generalizability. Despite this, we were able to show favorable clas-
sification performance for these control subjects relative to their force plate counterparts. The study 
design also did not specifically account for familiarization with the insoles. While this study only looked 
at knee arthropathies, future work will be focused on a broader set of gait-affecting diseases. The 
study’s analytical approach, which focused solely on regular walking patterns and excluded outliers 
and irregular patterns in the insole gait data, may limit the comprehensiveness of the findings; future 
research should aim to collect more diverse walking data per subject to include nonregular patterns. 
Additionally, the insoles are currently only capable of providing vGRF outcome measures, but medial 
and lateral GRF would also be useful outcomes for OA as these also relate to pain and OA severity 
(Costello et al., 2021). Technology developments would be required to develop a wearable system 
that would be capable of capturing comprehensive GRFs during walking in OA and should be an area 
of future research. Only two repeat timepoints were used for subject-level classification in the knee 
OA group, but we demonstrated a modeling approach to reliably compute an individual’s gait consis-
tency. In the future, this would ideally be performed on data collected at more than two timepoints. In 
addition, full analytical validation of the digital insoles was not possible as force plate and insole data 
was not collected simultaneously, and therefore evaluation of criterion and concurrent validity was not 
possible. Future work should help determine gait outcome measures for accuracy and error.

Conclusions
This work outlines a framework for an integrated analysis of digital insole data to answer clinical and 
research questions relevant to digital biomarker development. To identify disease signatures, we built 
an ML model using only data from force plates, the clinical standard, and analyzing data from a digital 
insole, we showed comparable disease classification. This platform-agnostic analysis demonstrates 
that ML approaches can help support and validate digital biomarkers and may yield digital endpoints 
of clinical utility. In addition, the finding that our models can identify individual gait patterns suggests 
that data generated from a digital insole may have unforeseen future applications such as the poten-
tial to detect changes in individual gait patterns, which may provide better understanding of the 
impact of a therapeutic intervention for that individual. Ultimately, this work helps support the aspi-
ration that digital technology may provide value in the healthcare delivery setting, aiding in accurate 
diagnosis or longitudinal monitoring of disease progression or of response to treatment.

Methods
Study design
The objectives were to characterize data from a wearable insole device (Moticon), demonstrate their 
utility relative to a clinical standard, and investigate optimal analytical methods and data types for 
the analysis relevant to clinical questions of interest. Three datasets were integrated for analysis 
(Figure 1). The GaitRec force plate vGRF dataset contained force plate control subjects (N = 211) and 
knee injury subjects (N = 625) (Horsak et al., 2020).

Volunteers were used as control subjects (N = 22) from a pilot study conducted between July 2019 
and August 2019 to evaluate the usability of a digital insole to measure gait (Table 2). The date of first 
visit for the first volunteer in the pilot study was July 6, 2019, and last volunteer was August 5, 2019. 
Those pregnant or with a body mass index above 40 kg/m2 were excluded from the study. Volunteers 
were recruited internally within the Regeneron facility located in Tarrytown, NY, and were provided 
consent prior to participation. The pilot study did not require IRB approval because the research was 
not subject to the Common Rule (45 CFR Sec 46.104) or FDA regulations and did not meet the defi-
nition of ‘Human Research’ under New York law.

As part of a clinical trial evaluating the impact of a novel pain therapeutic in moderate to severe 
knee OA (R5069-OA-1849; NCT03956550), a sub-study of the digital insole was performed to collect 
data for gait assessment in knee OA patients (results from the clinical trial are published separately) 
(Somersan-Karakaya et al., 2023). This information is available publicly in the protocol in Section 
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8.2.6.6, Moticon Digital Insole Device Sub-Study for Gait Assessments. All patients in this sub-study 
were enrolled at two study sites in the United States and Moldova, and the study was conducted 
between June 2019 and October 2020. The date of first enrollment in the R5069-OA-1849 trial June 
17, 2019, and last patient visit was October 29, 2020. The sub-study targeted to enroll approxi-
mately 13 patients per treatment group to obtain data on at least 10 patients per treatment group 
for a total of approximately 30 patients across the entire sub-study. The treatment groups were as 
follows: patients were randomized in a 1:1:1 ratio to receive a low dose of REGN5069 at 100 mg 
IV every 4 weeks (Q4W), and a high dose of REGN5069 at 1000 mg IV Q4W, or matching placebo 
Q4W. Eligible participants were men and women ≥40 years of age with a clinical diagnosis of OA of 
the knee based on the American College of Rheumatology criteria with radiological evidence of OA 
(Kellgren–Lawrence score ≥ 2) at the index knee joint as well as pain score of ≥4 in Western Ontario 
and McMaster Universities Osteoarthritis Index (WOMAC) pain sub-scale score. The WOMAC score is 
a self-administered questionnaire consisting of 24 items divided into three subscales, where the pain 
sub-score is assessed during walking, using stairs, in bed, sitting or lying, and standing upright. The 
study protocol received Institutional Review Board and ethics committee approvals from Moldova 
Medicines and Medical Device Agency and National Ethics Committee for Moldova, and the Western 
Institutional Review Board.

Study procedures
In the pilot study, each participant walked straight along a hallway with a hard tile floor at three 
different qualitative speeds for ~12 times at each speed (~36 walks total). For each walking trial, 

Table 2. Baseline characteristics and gait assessments of subjects in the digital insole pilot study and 
patients with knee osteoarthritis (OA) in the R5069-OA-1849 clinical trial digital insole sub-study.
Note that this table represents the total subjects enrolled with data used in any analysis of this study. 
Specific Ns are given where relevant and reflect subsets of these subjects.

Controls Pilot study (N=22) 
Cross-sectional

Knee osteoarthritis Clinical trial (N=44 
enrolled in sub-study, N=43 data collected) 
Longitudinal

Age (years)

 � Mean 39 62.75

 � Median 35 63

 � Range 19–85 52–77

Sex

 � Female 11 28

 � Male 11 8

Body Mass Index (kg/m2)

 � Mean 26.2 34.5

 � Median 26.0 34.8

 � Range 20.1–37.0 26.6–38.9

Arthropathy class N/A K-L2-3: N=23 K-L4: N=13

Walk test Walk straight for 30 s 3 min walk test (3MWT)

Walking speed 3 speeds (comfortable, fast, slow) 1 speed (comfortable)

Number of walk test 
performed

~12 times (at each speed) 1 time at baseline and 1-time on-treatment (day 
85)

Total length of gait 
evaluation

20 min 3 min

K-L, Kellgren–Lawrence.
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participants wore the digital insole inside their own shoes and were prompted to walk at a normal 
or comfortable speed, walk fast as if they were in a hurry (fast speed), or walk slow as if they were at 
leisure (slow speed). Prior to the walking trials, each participant was instructed to practice walking 
around to get accustomed to the insole. Participants’ clinical and demographic information was also 
collected prior to walking trials.

In the R5069-OA-1849 clinical trial, a total of N = 44 OA patients were enrolled into a sub-study of 
a 259-patient clinical trial. Patients were required to bring the same pair of shoes to the study site to 
perform a 3MWT with the digital insole. Each patient performed the task twice, once at baseline and 
the other 85 d later post-treatment.

Equipment
Moticon digital insoles (Moticon Rego AG, Munich, Germany) were used to derive wearable gait 
outcomes from the participants. Each Moticon digital insole has a total of 25 sensors per foot: 16 
vertical plantar pressure sensors that assess force, a trial-axial accelerometer that measures accel-
eration, and a gyroscope that measures orientation and angular velocity. Each sensor captures data 
at 100Hz, and dedicated software computes several clinically relevant spatial and temporal-derived 
gait characteristics comparable to data generated in a gait lab. The Moticon digital insole computes 
vGRF in the same way as a force plate, generating comparable data outputs. In addition to vGRF 
data, derived gait characteristics summarizing a subject’s walk and raw sensor time-series data can be 
obtained.

vGRF data processing
To normalize the vGRF data across devices (due to the differing sampling frequencies of force plates 
and Moticon) and subjects, smoothing spline functions (scipy.interpolate.interp1d) were fit to vGRF 
time-series sensor data from both GaitRec force plate data and Moticon-computed vGRF data. vGRF 
curves were bounded by 0, and 100 evenly spaced timepoints across the curve were derived for each 
curve (to derive a % stance phase). All vGRF curves were normalized by participants’ body weight 
in Newtons. Within each device, the vGRF curves were further normalized using a z-transformation 
within each stance phase timepoint (Figure 2A).

Linear models to associate covaraites with vGRF signal
Using the GaitRec force plate dataset, consecutive linear models were fit at each of the 98% stance 
phase timepoints. We used disease (knee arthropathy or control), age, sex (male or female), and body 
weight as covariates in the model (linear model (lm) and ANOVA function, R), with each subsequent 
vGRF % stance phase timepoint as the dependent variable. Within each linear model, using the sum 
of squares for each category divided by the total sum of squares, we calculated the variance of each 
component’s contribution to the total variance, with the residuals indicating the unexplained variance 
in these models. The use of linear models at each of the 98 points during the % stance phase allowed 
us to examine the relationship between vGRF and the covariates (disease, age, sex, and body weight) 
at each specific point in time during the stance phase of walking. This is important as the relationship 
between these variables and vGRF may change throughout the stance phase.

Digital insole raw sensor time-series data processing
The digital insole collects 25 100-Hz measurements for each foot (50 measurements across both feet), 
comprising 16 measurements from 16 vertical plantar pressure sensors, 3 x,y,z measurements from an 
accelerometer, 3 x,y,z measurements from a gyroscope, 1 measurement of total force, and 2 x%,y% 
measurements of center of pressure. These raw sensor time-series sensor data for both the R5069-
OA-1849 clinical study and Regeneron pilot study was preprocessed with custom scripts written in 
Python 3.6.

For the following analysis, a ‘walk’ was defined as data captured by the digital insole while the 
subject completed the researcher’s walking task (typical duration of 180 s for the R5069-OA-1849 
clinical study and 25 s for the Regeneron pilot study). A ‘stride’ is defined as the data captured by the 
digital insole between the peak pressure of the right heel (the average of digital insole right pressure 
1 and 2 sensors) and the next peak pressure of the right heel. A typical stride duration is 1–2 s, highly 
dependent on individual walking speed.
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Data preprocessing for each subject was performed separately. First, each walk was segmented 
into individual strides. Since the digital insole did not collect data in regular intervals, each stride was 
interpolated for each of the 50 sensors to obtain 100 timepoints along the stride. Thus, each interpo-
lated stride consists of 50 vectors (one for each sensor), and each vector is 100 units long.

For the pilot study, walks from each subject were processed individually, treating slow, comfort-
able, and fast walks separately. Walks without all 50 features and walks with greater than 5% missing 
data were excluded. For the remaining walks, any missing data was linearly interpolated (scipy.inter-
polate.interp1d).

Each walk was then segmented into strides, and each stride was interpolated to 100 timepoints. 
To segment a walk, peaks were identified in the average time series of the Moticon right pressure 
sensors 1 and 2, located in the right heel using ​scipy.​signal.​find_​peaks with parameters width = 
10 and prominence = 5. The walk was segmented using the peaks, and the number of measurements 
in each segment was calculated. Segments that had that an outlier number of samples (outliers 
defined as 1.5 * iqr ± q3  or q1) were excluded, such that only regularly repeating segments, or 
strides, were analyzed. Each of the 50 features in each stride was then linearly interpolated (scipy.
interpolate.interp1d) to 100 time points. Only walks with at least 10 interpolated strides were further 
analyzed.

Under the assumption that an individual’s strides within a walk should be highly regular to each 
other, each stride’s Pearson r correlation with the means of the remaining strides was computed 
(stats.pearsonr), and any strides with an outlier Pearson r correlation (outliers defined as 1.5 * iqr ± 
q3 or q1) were excluded. This process was then repeated with the remaining strides to obtain a list 
of the Pearson r coefficients of each stride with the means of the other strides. The entire walk was 
excluded if the mean of the Pearson r coefficients fell below 0.9. This procedure was repeated one 
last time, across all walks by an individual at the same walking speed (slow, comfortable, fast). That is, 
each stride’s Pearson r correlation with the average of remaining strides in all walks at the same speed 
was computed. Again, assuming strides within a subject and within a given walking speed should be 
consistent with each other, strides with an outlier Pearson r correlation were excluded (outliers defined 
as 1.5 * iqr ± q3 or q1). Lastly, features dependent on body weight (i.e., pressure sensors and force 
sensors) were normalized by the subject’s mass.

For the R5069-OA-1849 clinical trial, data were processed similarly. OA patients had digital insole 
data collected for only two walks, on day 1 and on day 85, which were processed separately.

Derived gait characteristics and identification of those speed-
correlated
The digital insole derives 85 gait parameters from each walk. Of those, three are directly related to 
the length of the walk (walking distance and left and right center-of-pressure trace length) and were 
excluded from further analysis, leaving 82 derived gait characteristics.

Spearman correlations between these 82 parameters were calculated across all walking speeds 
(slow, comfortable, fast). The silhouette method was used to determine the optimal number of clus-
ters with the factoextra package in R with function fviz_nbclust with 100 bootstrapped samples. Since 
we were interested in understanding aspects of gait other than walking speed, we correlated all 
parameters against walking speed and conservatively removed 14 parameters that may be influenced 
by walking speed in any way (|Spearman rho| > 0.7). This allowed for an investigation into gait param-
eters less influenced by walking speed.

Dimensionality reduction
UMAP method for dimensionality reduction was applied using the R UMAP package with default 
parameters to the z-transformed vGRF data from both the force plate and digital insole datasets to 
investigate batch effects.

PCA of digital insole vGRF, derived gait characteristics, and raw sensor time series was performed 
using the prcomp function in the R stats package. Heatmaps of Moticon parameters are displayed per 
individual, averaged across all individual walks. All heatmaps displayed derived gait characteristics 
after z-transformation by row across all subjects. All clustering on heatmaps was unsupervised, within 
groups.
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ML model building
SVM models were built using vGRF, derived gait characteristics, and raw sensor time-series processed 
data using the sklearn package in Python. This model choice was also benchmarked against logistic 
regression and XGBoost models from the sklearn and xgboost packages in Python (Figure 2—figure 
supplement 4).

The force plate dataset was randomly split into 85% training and 15% hold-out test datasets. The 
85% training dataset was used for LOOCV and to construct a final trained model, which was then 
evaluated on the hold-out test dataset. The digital insole dataset was also used as an independent 
dataset for evaluating the model.

Model performance was evaluated using multiple methods. ROC and precision-recall curves were 
used to evaluate overall performance. Additionally, we quantitated the auROC curve, which is a 
standard measure of classification success and describes model performance regardless of baseline 
likelihood for either class. In addition, we quantitated the auPR and F1-scores, which are useful for 
evaluating datasets with class imbalances.

Subject-specific gait signatures
A second question we sought to investigate is whether we could determine subject-specific gait 
signatures. If we could train models to identify individual subjects from their walk, or from just a single 
stride, this may suggest that the gait data collected has at a minimum that ability to identify attributes 
beyond knee disease. We posed this question irrespective of disease state and rather focused on 
identifying the optimal method to determine an individual participant’s gait pattern.

We approached this question via two approaches commonly used in clinical research settings 
(Horst et al., 2019; Chau, 2001a; Chau, 2001b; Schöllhorn, 2004). The first is regarding the individ-
uality of human gait patterns. We sought to understand which methodology is best suited to identify 
generalizable patterns of any person’s gait. The second is understanding which methodology captures 
features of a specific individual’s gait that have consistency with time. By analogy, a facial recognition 
software should identify people regardless of whether they wear hats or sunglasses. To learn that 
these accessories are not stable features of an individual, ML models would need to be trained on 
images of the same individuals with and without such accessories; that is, trained on these individuals 
across multiple timepoints. Similarly, we sought to understand whether training on the same indi-
viduals across multiple timepoints improves the ability of our models to detect features that identify 
individuals consistently with time.

CNN model for control versus OA classification
For the control versus OA model, model performance was determined using LOOCV. A CNN was 
trained using all strides from all but one participant, after which the model was evaluated on all strides 
of that left-out participant. Each participant was used as a left-out test participant in one model, such 
that for N participants, there were N different CNN models each trained on the other N-1 participants. 
Each stride was labeled as to whether it came from a control or an OA participant.

For each CNN model, strides from the N-1 training participants were split into an 80% training set 
and a 20% validation set. Each feature within each stride was scaled into 0 min to 1-max range across 
the 100 interpolated timepoints. The normalized data from each stride was then used as the input to 
the following CNN architecture: (Functions in italics from the Python [v3.9.7] PyTorch [v1.8.0.post3] 
package ​torch.​nn were used with the default parameters unless otherwise noted.)

•	 First 1D convolution layer with 50 in channels, 64 out channels, and a convoluting kernel of size 
3 (Conv1d).

•	 Element-wise rectified linear activation unit (relu in ​torch.​nn.​functional).
•	 1D max pooling with a sliding window kernel of size 2 (MaxPool1d).
•	 Dropout with 0.2 probability (Dropout).
•	 Second 1D convolution layer with 64 in channels, 128 out channels, and a convoluting kernel 

of size 3.
•	 Element-wise rectified linear activation unit.
•	 1D max pooling with a sliding window kernel of size 2.
•	 Dropout with 0.2 probability.
•	 Flatten data to a linear vector of 2944 elements.
•	 First fully connected layer with 2944 in channels and 120 out channels (Linear).

https://doi.org/10.7554/eLife.86132


 Tools and resources﻿﻿﻿﻿﻿﻿ Medicine | Neuroscience

Wipperman, Lin, Gayvert et al. eLife 2024;12:e86132. DOI: https://doi.org/10.7554/eLife.86132 � 19 of 24

•	 Element-wise rectified linear activation unit.
•	 Dropout with 0.2 probability.
•	 Second fully connected layer with 120 in channels and 32 out channels.
•	 Element-wise rectified linear activation unit.
•	 Dropout with 0.2 probability.
•	 Third fully connected layer with 32 in channels and 1 out channel.
•	 Logistic sigmoid function (sigmoid in torch).

Binary cross entropy loss (BCELoss) was used as the loss function, and stochastic gradient decent 
(SGD in ​torch.​optim) with a learning rate of 0.001 and momentum of 0.9 was used as the optimizer. 
Data was loaded into the CNN in batches of 32 with shuffling (DataLoader in ​torch.​utils.​data), and 
backward propagation and parameter optimization were conducted in such batches. Models were 
trained for 10 epochs, and model parameters from the epoch with the best accuracy on the valida-
tion set were chosen as the final model parameters. The model was then tested on the strides of the 
left-out participant. Model predictions for whether each stride from the left-out participant was from a 
control or an OA participant were aggregated across the N CNN models, and the overall classification 
performance was computed.

CNN model for subject classification and latent representation
As the digital insoles produced high-frequency raw sensor time-series data, we analyzed whether such 
structured strides (50 measurements along 100 interpolated timepoints for each stride) contained 
informative subject-specific gait features. To utilize the temporal aspect of the data, we constructed a 
one-dimensional CNN in which the model could interpret the relationship between sequential time-
points for each sensor. This temporal relationship in the input data was lost in our previous analysis, in 
which the stride was flattened and interpreted by SVM.

For the individuality and consistency CNN models, the model was trained to identify the subject 
from which a stride came. However, the purpose of using the CNN model was not to classify training 
subjects based on their strides, but rather to extract activation of the penultimate fully connected 
layer for the model’s latent representation of the ‘gait fingerprint’ of a stride. As such, once the CNN 
model was trained on participants in the training set, the model was then applied to participants in the 
hold-out testing set and latent representations for each stride were extracted.

To train the CNN model, strides from the training participants were split into a 64% training set, 
a 16% validation set, and a 20% final validation set. A similar CNN architecture was used as before, 
except now rather than a binarized control versus OA output, the model outputs the subject label. As 
such, the model architecture differed starting from the second fully connected layer:

•	 Second fully connected layer with 120 in channels and 60 out channels.
•	 Element-wise rectified linear activation unit.
•	 Dropout with 0.2 probability.
•	 Third fully connected layer with 60 in channels and 23 out channels.

The CNN model was trained in the same manner as before, except multi-class cross entropy loss 
(CrossEntropyLoss) was used as the loss function. As before, the model was trained for 10 epochs, 
and model parameters from the epoch with the best accuracy on the validation set were chosen as 
the final model parameters. The final validation set was then used to check the final model’s perfor-
mance. A forward hook (register_forward_hook in ​torch.​nn.​modules) was attached to the penultimate 
fully connected layer, to extract activation of that 60-element layer for a new stride inputted into the 
model.

Evaluation of subject individuality across different representations
Models were constructed for each data type to predict individual subjects in the training set and then 
applied on the testing set. Next, distances between each pair of walks/strides were calculated within 
a subject, within other subjects with the same disease status, and within other subjects with a different 
disease status.

Each feature was first z-scored (centered and scaled to unit variance, using scale function in base R), 
and Euclidean distances between all walks/strides in the testing set were calculated using dist function 
in the R stats package. To compare across representations with differing number of features, distances 
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were divided by the square root of the number of features. The mean distance between every two 
participants (including with oneself) was then calculated.

To evaluate models for subject individuality, each participant-to-participant comparison was cate-
gorized into the groups of control within-self, OA within-self, control with another control, OA with 
another OA, or one control with one OA. Significance of difference in distances between participant 
categories was analyzed with t-tests in the R stats package. Effect sizes as Cohen’s d were computed 
with the R effsize package. Throughout, assumptions of the t-test were checked through creation 
of univariate histograms of each variable to qualitatively test for normality (i.e., does the data look 
Gaussian).

Evaluation of CNN models of subject individuality and consistency
Digital insole sensor data from both baseline (day 1) and on-treatment timepoints (day 85) of OA 
participants in the R5069-OA-1849 clinical trial was used to evaluate whether training on data from 
2 d instead of just 1 d improves the consistency of the CNN representation of participants. A second 
consistency CNN model was trained on combined data from both timepoints for training set partic-
ipants, where input data was labeled only by participant identity and not by timepoint. For compa-
rability, both the individuality and consistency CNN models used the same split of train and test 
participants. Both models were given day 1 and day 85 of testing set participants, and the distance 
between all stride pairs as represented by the penultimate CNN layer was calculated as before.

To evaluate models for consistency, each participant-to-participant comparison was then catego-
rized into the groups of within-self same day, within-self different day, or subject with another subject. 
Only OA participants were analyzed for consistency as only they were assessed on two different days. 
Significance of difference in distances between the CNN individuality and consistency models across 
the same participant comparisons was analyzed with paired t-tests in the R stats package.
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