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Abstract Kinase inhibitors are successful therapeutics in the treatment of cancers and autoim-
mune diseases and are useful tools in biomedical research. However, the high sequence and struc-
tural conservation of the catalytic kinase domain complicate the development of selective kinase 
inhibitors. Inhibition of off- target kinases makes it difficult to study the mechanism of inhibitors in 
biological systems. Current efforts focus on the development of inhibitors with improved selectivity. 
Here, we present an alternative solution to this problem by combining inhibitors with divergent 
off- target effects. We develop a multicompound–multitarget scoring (MMS) method that combines 
inhibitors to maximize target inhibition and to minimize off- target inhibition. Additionally, this 
framework enables optimization of inhibitor combinations for multiple on- targets. Using MMS with 
published kinase inhibitor datasets we determine potent inhibitor combinations for target kinases 
with better selectivity than the most selective single inhibitor and validate the predicted effect and 
selectivity of inhibitor combinations using in vitro and in cellulo techniques. MMS greatly enhances 
selectivity in rational multitargeting applications. The MMS framework is generalizable to other non- 
kinase biological targets where compound selectivity is a challenge and diverse compound libraries 
are available.

Editor's evaluation
This study presents a valuable finding on a multi- compound- multitarget scoring (MMS) method 
that combines inhibitors to maximize target inhibition and to minimize off- target inhibition. The 
strategy may enable the optimization of inhibitor combinations for multiple on- targets. The evidence 
supporting the claims of the authors is solid. The work will be of interest to pharmacology scientists 
working in both academic and industrial sectors.

Introduction
The off- target effects of pharmacologic compounds against unintended targets represent a major 
challenge in biomedical research. The off- target activity of compounds is difficult to appreciate 
without extensive study (Cichońska et al., 2021; Santos et al., 2017; Wauson et al., 2013; Lin et al., 
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2019; Dahlin et  al., 2017) and may complicate interpretation of observed phenotypes in experi-
mental systems (Lin et al., 2019; Giuliano et al., 2018; Palve et al., 2022; Emmerich et al., 2021). 
Human protein kinases are a major target for small molecule compounds but even relatively selective 
kinase inhibitors exhibit significant off- target activity in large screening campaigns (Santos et  al., 
2017; Fabian et al., 2005; Karaman et al., 2008; Davis et al., 2011; Elkins et al., 2016; Klaeger 
et al., 2017; Drewry et al., 2017; Deibler et al., 2017; Drewry et al., 2019; Wells et al., 2021; 
Figure 1a). The off- target activity of kinase inhibitors can yield misleading results. For example, the 
mechanism of clinically evaluated anti- cancer compound OTS167 was later found to be due to CDK11 
inhibition rather than the previously mischaracterized target MELK (Lin et al., 2019; Giuliano et al., 
2018). Therefore, improving selectivity through minimizing inhibitor off- target activity is an important 
prerequisite for studying human protein kinases with kinase inhibitors in biological systems.

Obtaining selective single compounds is limited by both identification of off- targets and the 
challenges of modifying compounds to reduce off- target effects. In addition to screening technol-
ogies (Miduturu et al., 2011; Jacoby et al., 2015; Nieman et al., 2023), promising computational 
approaches may help identify compound off- targets or strategies to target particular kinases (Sydow 
et al., 2022; Cichońska et al., 2021; Zhang et al., 2023). However, even after compound off- targets 
are identified, techniques to improve compound selectivity such as rigidification or ring closure may 

Figure 1. Inhibitor combinations can reduce off- target activity. (A) Selectivity of kinase inhibitors is limited. Fold activity is the PKIS2 activity of each 
PKIS2- 645 inhibitor against the kinase target it is maximally active against versus the target it is second most active against when screened at 1 µM in 
the DiscoverX KINOMEscan competitive displacement assay. No inhibitor has even twofold activity for its primary target versus its secondary target. 
PKIS2- 645 inhibitors with 100% activity against multiple targets were excluded from the analysis. (B) Illustrative inhibition profiles of three hypothetical 
kinase inhibitors with equal activity against a target of interest and different off- targets; a combination of the three inhibitors retains on- target inhibition 
while diluting off- target effects.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Compound activity is a function of potency and concentration.

https://doi.org/10.7554/eLife.86189
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not be generalizable across chemotypes or improve selectivity for structurally similar off- targets 
(Assadieskandar et al., 2018; Wu et al., 2021). Allosteric inhibitors designed for a particular kinase 
target or even kinase mutants can have excellent selectivity (Jia et al., 2016; Schoepfer et al., 2018; 
Wrobleski et al., 2019), but these compounds are hard to engineer and may still bind to multiple 
targets (Laufkötter et al., 2022; Mingione et al., 2023; Attwood et al., 2021). Given the difficulty 
of obtaining selective inhibition for a single kinase it is not surprising that selective inhibition of a set 
of kinases would be an even harder problem.

Rational multitargeting, the simultaneous inhibition of multiple targets, is a major objective in 
biomedical research and drug design (Sivakumar et al., 2020; Hopkins, 2008; Xiong et al., 2021). 
One goal is to enable rational polypharmacology, a simultaneous targeting of compensatory signaling 
pathways to potentiate drug action or inhibit mechanisms of drug resistance (Hammam et al., 2017; 
Bahcall et  al., 2022; Quereda et  al., 2019). However, targeting multiple kinases, either through 
combination therapy or nonselective compounds, often leads to inhibition of off- targets and toxicity 
(Ringheim et  al., 2021; Panagiotou et  al., 2022). Similarly, studying the effects of co- inhibiting 
multiple targets is difficult due to the off- target effects of compounds. A method to selectively inhibit 
multiple targets would be a valuable tool to understand mechanistic causes for synergistic toxicities 
and how to identify targets for polypharmacology.

The large chemical space of kinase inhibitors and the comprehensive off- target characterization 
(Santos et al., 2017; Fabian et al., 2005; Karaman et al., 2008; Davis et al., 2011; Elkins et al., 
2016; Klaeger et al., 2017; Drewry et al., 2017; Deibler et al., 2017; Drewry et al., 2019; Wells 
et al., 2021) of these compounds suggests that it would be possible to engineer combinations of 
inhibitors with shared effects at a kinase of interest but different off- target effects. These inhibitor 
combinations would dilute off- target activity, and improve selectivity for the target kinase (Figure 1b). 
In some cases, combinations of inhibitors might have better selectivity than any available single 
compounds. These combinations could be designed for studying single or sets of multiple target 
kinases. This rational multitargeting could provide a flexible strategy building on the utility of the 
otherwise rigid selectivity profiles of single chemical probes.

Here, we propose a multicompound–multitarget scoring (MMS) method to calculate the selec-
tivity of combinations of kinase inhibitors and identify the most selective combination of compounds 
to inhibit single or multiple target kinases. The off- target activity of combinations of compounds is 
calculated, the selectivity of these combinations is determined, and the concentrations of compounds 
in these combinations are optimized to further reduce off- target activity and maximize selectivity. 
We implement this approach for single and sets of multiple kinase targets using currently available 
chemogenomic datasets (Karaman et al., 2008; Davis et al., 2011; Klaeger et al., 2017; Drewry 
et al., 2017). We validate the predicted activity and selectivity of inhibitor combination using in vitro 
and in cellulo techniques. As predicted, we find that the benefit of combinations depends dramatically 
on the available inhibitor dataset to inform combinations. While we predict and find a modest speci-
ficity improvement for single kinases, we predict and confirm a more pronounced benefit for multiple 
kinase inhibition through inhibitor combinations. We expect that the utility of this method will improve 
as the number of characterized kinase inhibitors increases by providing larger specificity gains and 
benefitting more kinases. The MMS method is generalizable to other non- kinase compound–target 
interaction systems and may inform future strategies to reduce off- target effects.

Results
Data types and definitions
Numerous data types are used to quantify compound–target interactions (Tang et  al., 2018). We 
define the activity of an inhibitor as its fractional target occupancy at a given concentration. For 
example, occupation of 50% of Abl kinase molecules with imatinib at 10 nM would correspond to 
an imatinib activity of 50% at 10 nM. Inhibitor activities are cumulative: a mixture of kinase inhibitors 
that occupy 98% of Abl and 37% of Src kinases would have activities of 98% and 37% for Abl and Src, 
respectively. This inhibitor activity is a measure of target engagement and is nonlinear with respect 
to Kd, Kd

app, Ki, or EC50 values (Figure 1—figure supplement 1). For example, a compound with a Ki 
of 1 µM would report 50% inhibitor activity at 1 µM, while a second compound with a Ki of 0.1 µM 
would reach ~90% inhibitor activity at 1 µM concentration. It is advantageous to consider selectivity 

https://doi.org/10.7554/eLife.86189
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from this activity- scale perspective as log- fold differences in potency may have minor effects on the 
total percent of occupied targets if sites are already nearly fully saturated or unfilled (Figure 1—figure 
supplement 1).

The activity of inhibitors or combinations of inhibitors against off- target kinases are communi-
cated in some figures as probability density functions (pdfs) (e.g. Figure 3f, Figure 4—figure supple-
ment 1b, Figure 5f, Figure 5—figure supplement 1b). These plots treat off- target kinase activity 
as a probability rather than a single value to account for error in the calculation of the activity of 
inhibitor combinations. The Ki, Kd, or EC50 of a compound or mixture of compounds for a single 
off- target kinase is used to calculate off- target compound activity given the concentration of the 
compound(s) required to reach minimum threshold on- target activity for all target kinase(s). This 
minimum on- target kinase threshold is 90% activity unless otherwise indicated. This single calculated 
off- target activity value is set as the mean of a Gaussian with an area under the curve of 1. The cumu-
lative pdf as communicated in figures is the sum of all off- target Gaussians for a particular inhibitor 
or inhibitor combination.

The term fold- error is used to describe the accuracy of predicted Kd or EC50 values for inhibitor 
combinations. Fold- error is the predicted or observed value (whichever is larger) divided by the other, 
such that fold- error is always greater than or equal to 1, where a fold- error of 1 represents a perfectly 
accurate prediction.

We focus our analyses on a subset of quality kinase inhibitor datasets: Karaman et al., 2008, Davis 
et al., 2011, PKIS2- 645 (Drewry et al., 2017), and Klaeger et al., 2017. These datasets are further 
described in Materials and methods: Dataset sources. Drewry et al. tested 645 inhibitors at 1 µM 
against 406 human protein kinases in a competitive displacement assay for inclusion in the Protein 
Kinase Inhibitor Set 2 (PKIS2) (Drewry et al., 2017). We refer to this set of 645 inhibitors as PKIS2- 645 
inhibitors and percent displacement in that assay as PKIS2 activity.

The MMS method
The MMS method calculates the most selective way of obtaining on- target activity for a target or set 
of targets and may nominate combinations of inhibitors rather than single inhibitors for maximal selec-
tivity (Figure 2). The five subsections of this method description correspond to the five components 
of Figure 2. Additional description is provided in Materials and methods.

First, sufficiently potent inhibitors and combinations of inhibitors are identified. A threshold of 90% 
PKIS2 activity or a Ki/Kd/Kd

app of 111 nM against the target is used to define an inhibitor as sufficiently 
potent.

Second, an off- target activity range of interest is selected. For example, high off- target effects 
greater than 50% activity may be important in a particular experimental context. Similarly, medium 
off- target effects can be quantified as those greater than 30% activity and low off- target effects would 
include all activities. Depending on the user preferences, a parameter (μ) is chosen that defines the 
shape of the penalty distribution: a probability distribution that differentially weighs off- target inhib-
itor activity ranges. This penalty distribution is limited in this work to one of three shapes: tight (μ 
= 200), medium (μ = 700), or broad (μ = 1200), which emphasize high, high and medium, or high, 
medium, and low off- target activities, respectively (Figure 2—figure supplement 1c).

Third, the cumulative activity of a single inhibitor or a mixture of inhibitors is calculated for each 
off- target kinase at the concentration of the inhibitor(s) required for 90% on- target activity. This is 
represented in the off- target distribution for a given inhibitor/inhibitor mixture as the kinome- wide 
probability to inhibit any kinase as a function of inhibitor activity. Numerous metrics describe the 
selectivity of single compounds (Karaman et al., 2008; Klaeger et al., 2017; Graczyk, 2007; Cheng 
et al., 2010; Uitdehaag and Zaman, 2011; Uitdehaag et al., 2012; Bosc et al., 2017; Wang et al., 
2022); we implement an information- theoretic metric (JSD score) that best describes selectivity (see 
Materials and methods). The JSD score is the Jensen–Shannon distance between the off- target distri-
bution and the penalty distribution. This score ranges from 0 to 1 and describes the overlap between 
the two distributions. A high score (closer to 1) represents high selectivity: only a few off- targets are 
in penalized activity ranges and susceptible to potent inhibition. The JSD score has similar behavior 
to other selectivity metrics (Figure 2—figure supplement 2), good reproducibility, and performs well 
across different underlying structures for the penalty distribution (Figure 2—figure supplement 1a; 
Figure 2—figure supplement 1b).

https://doi.org/10.7554/eLife.86189
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Figure 2. Multicompound–multitarget scoring (MMS) predicts optimally selective inhibitor combinations. (1) 
Combinations of sufficiently potent inhibitors are identified and enumerated where i is the number of inhibitors 
in a combination and c is a unique combination of inhibitors for each i. (2) A user- selected distribution shape (e.g. 
Poisson pmf) and associated user- selected parameters generate a penalty distribution, which defines what range 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.86189
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Fourth, the concentrations of inhibitors in every combination are optimized to maximize the JSD 
score. Concentrations of pairs of compounds are varied and the entire combination is rescored, and 
the highest scoring concentration variations are advanced through additional optimization rounds 
until the score no longer improves. An upper and lower limit can be enforced on the concentration 
range that the method will sample to enforce solubility limits, compound availability, toxicities due 
to reactive chemical groups, or other relevant experimental factors. Finally (fifth), the highest scoring 
single inhibitor and combination of inhibitors are compared (ΔJSD score). If the score of the combi-
nation is better, defined by both a statistical increase across technical replicate calculations and a 
minimum improvement in the magnitude of the ΔJSD score, then that combination of inhibitors is 
predicted to reduce off- target effects relative to the most selective single inhibitor.

To illustrate the scale of the JSD and ΔJSD scores we calculate the selectivity of imatinib for ABL1- 
nonphosphorylated (JSD score = 0.980) and ABL1- phosphorylated (JSD score = 0.959) using Kd values 
from the Davis et al. dataset and the medium penalty distribution (Figure 2—figure supplement 3). 
The ΔJSD score of 0.021 arises from the ~19- fold change in imatinib affinity (ABL1- nonphosphorylated 
Kd = 1.1 nM, ABL1- phosphorylated Kd = 21 nM Davis et al., 2011).

The MMS approach and JSD scoring are designed to promote flexibility in user studies. The 
penalty distribution is used to score off- target effects in a user- defined activity range. Settings can be 
adjusted to meet desired thresholds for on- target potency, with different thresholds for target kinases 
depending upon the biological context or experimental questions being studied. Mixture selectivity 
can be optimized for global selectivity against all off- target kinases, certain subsets, or with different 
weights across off- target sets.

Inhibitor combinations outscore single inhibitors with increasing 
simulated inhibitor set sizes
First, we set out to understand how the repertoire of inhibitors affects our ability to predict useful 
inhibitor combinations. We simulate sets of inhibitors using PKIS2- 645, a large dataset of relatively 
selective compounds (Drewry et al., 2017; Figure 3a). The average activity distribution of PKIS2- 
645 compounds against all kinases reflects the average selectivity of PKIS2- 645 compounds. Inhib-
itors simulated from this PKIS2- 645 distribution have similar selectivity to true PKIS2- 645 inhibitors 
(Figure  3—figure supplement 1). We generate two other activity distributions, one representing 
hypothetical inhibitors with slightly reduced selectivity and a third that has non- zero activity and is 
the least selective of the three (Figure 3a). Importantly, the probability of reaching threshold (90%) 
on- target activity is comparable between these three profiles (Figure 3a). We also construct a profile 
for binary inhibitors which either do or do not have potent (90%) activity against a target (Figure 3a). 
Sets of simulated inhibitors against 100 kinase targets are bootstrapped from these parent selectivity 
distributions; these simulated sets contain selectivity diversity due to random sampling and the overall 
profiles match expected trends of the parent profiles (Figure 3—figure supplement 1).

The JSD score of the best single inhibitor increases with increasing set size; as more compounds 
are generated there is a higher likelihood of simulating a highly selective inhibitor (Figure  3b). 
Consequently, the improvement in ΔJSD score for inhibitor combinations either remains constant 
or decreases with increasing inhibitor set size (Figure 3c). This effect is not specific to a particular 
penalty distribution shape (Figure 3e). Additionally, the minimum threshold imposed on ΔJSD scores 

of off- target activity will be penalized and by how much. (3) The cumulative activity of combinations of inhibitors is 
calculated, and (4) the relative concentration of inhibitors is adjusted to maximize the Jensen–Shannon distance 
(JSD) score. (5) The highest scoring combination of inhibitors is compared to the most selective single inhibitor. If 
the combination has a higher score (positive ΔJSD), then it is predicted to be maximally selective.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Variation of primary method parameters.

Figure supplement 2. Comparison of Jensen–Shannon distance (JSD) scores with other selectivity scoring 
methods.

Figure supplement 3. Imatinib selectivity for ABL1- nonphosphorylated versus ABL1- phosphorylated quantified 
with Jensen–Shannon distance (JSD) scores.

Figure 2 continued

https://doi.org/10.7554/eLife.86189
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corresponds to the magnitude of improvement in off- target profiles (Figure 3f). Importantly, as the set 
of inhibitors becomes larger and the combinatorial possibilities grow, the percentage of kinase targets 
that can be more selectively inhibited with a combination of inhibitors increases for all four of these 
selectivity profiles (Figure 3d). This suggests that, as more compounds are studied and aggregated 
into larger datasets, the utility of MMS to predict selective inhibitor combinations that outperform 
single inhibitors will improve.

Figure 3. Simulated inhibitor combinations reduce off- target effects for single targets. (A) Simulated activity profiles for four inhibitor types. The average 
selectivity profile of PKIS2- 645 compounds was smoothed to generate the hypothetical reduced selectivity (RS) and least selective (LS) profiles, and 
the binary inhibitor profile reflects hypothetical compounds with either potent (>90%) or zero activity. (B) As more inhibitors are simulated, increasingly 
selective single inhibitors are obtained. (C) The improvement in Jensen–Shannon distance (JSD) score either remains constant or decreases as the 
window for improvement narrows (max JSD = 1). (D) As more inhibitors are simulated, mimicking larger datasets, more kinase targets are predicted 
to be more selectively inhibited by a combination over the most selective single inhibitor for each target. (E) The improvement in off- target profiles is 
not specific to the shape of the penalty distribution used to calculate the JSD score. Here, three different simulated sets of 600 inhibitors generated 
from the PKIS2- 645 parent profile are considered for 100 kinase targets. Points represent single kinase targets from three separate simulations, and the 
average and standard deviation of the number of kinase targets that could be significantly improved across these simulations are indicated in the figure 
text. (F) The absolute threshold used in JSD scoring corresponds to the magnitude of the improvement in selectivity; a higher threshold (0.005) selects 
combinations that are more selective relative to the best single inhibitor compared to combinations at a lower JSD threshold (0.001). In all cases, results 
from simulated analyses using three sets of 600 inhibitors are presented. The blue and red lines represent the average off- target profiles for all targets 
with ΔJSD scores greater than the indicated thresholds. Larger or left- shifted spaces between the red (average of the best single compounds) and blue 
(average of the best combinations) lines indicates a larger improvement in selectivity. The dotted vertical line at 50% activity in the plots scored using 
the tight penalty distribution indicate the approximate end of that penalty distribution.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Simulated inhibitors sets have selectivity diversity and overall profiles that match parent profiles.

https://doi.org/10.7554/eLife.86189
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Inhibitor combinations are predicted to improve selectivity over 
the most selective single inhibitors for single kinase targets using 
chemogenomic datasets
We consider the optimal combination of inhibitors for all unique single targets in PKIS2- 645 (Drewry 
et al., 2017) (max i = 3, where i is the number of different kinase inhibitors), Klaeger et al., 2017 with 
243 clinically evaluated inhibitors (max i = 6), Karaman et al., 2008 with only 38 inhibitors (max i = 5), 
or Davis et al., 2011 with 72 inhibitors (max i = 5) (Figure 4). Using the PKIS2- 645 inhibitors, selective 
inhibition of 24 unique targets (6%), can be significantly improved given both statistical and absolute 
ΔJSD cutoffs (Figure 4) with just two or three inhibitors instead of the most selective single inhibitor.

Limiting off- target effects for a subset of kinases may be an experimental goal. We consider whether 
it is possible to improve on the selectivity of PKIS2- 645 compounds for the Eph receptor tyrosine 
kinase family which are promising targets in immunotherapy but contain high intrafamily structural 
homology (Darling and Lamb, 2019). Some PKIS2- 645 compounds have relatively low PKIS2 activity 
(<30%) against EPH kinases, but the flexibility of the MMS method allows such off- target effects to 
be adequately scored with the broad penalty distribution. A combination of inhibitors improves the 
selectivity for the unique inhibition of EPHA2, EPHA3, EPHA4, and EPHA5 (Figure 4—figure supple-
ment 1). This case illustrates how selectivity can be optimized for selected kinase subsets and the 
flexibility of user- defined penalty distributions.

MMS analyses of the Davis et al. and Karaman et al. datasets also indicated improvements in selec-
tivity for 17 targets and 6 targets, respectively. (Figure 4). The Davis et al. dataset contains selectivity 
screening for kinase mutants in addition to wild- type constructs, including those of ABL, EGFR, FLT3, 
and KIT. Interestingly, multiple FLT3 alterations were found to be more selectively inhibited using a 
combination of inhibitors than a single inhibitor, and these inhibitors were different from those which 
were most selective for FLT3 (Table 1). Although this is a small sample size, it raises the intriguing 
possibility that this method may be useful in cases where selective single- compound targeting of 
clinically relevant mutations has not yet been actualized.

We investigate whether or not it is possible to reduce the off- target effects of clinically evalu-
ated inhibitors, using a dataset published by Klaeger et al. This comprehensive dataset includes Kd

app 
measurements for both kinase and non- kinase proteins but the data matrix is notably sparse in some 
areas. While PKIS2- 645 assigns PKIS2 activity for 53% of compound–kinase pairs and Davis et al. 
reports a non- zero Kd for 30% of compound–human kinase pairs, Klaeger et al. assigns a Kd

app to just 
6% of all compound–protein pairs which limits the effectiveness of off- target calculations. Never-
theless, single- target analysis suggested improvements in selectivity for kinases including EPHA5, 
CDK17, and PDK1 (Figure 4).

Single- target analysis from these datasets suggests that the single most selective inhibitor can be 
outperformed using a combination of just two or three inhibitors for some kinase targets. Not surpris-
ingly, since the datasets in Davis et al., Karaman et al., and Klaeger et al. were obtained using different 
inhibitor sets, kinases, and methodologies, the predictions for inhibitor combinations and their impact 
vary between datasets.

MMS prediction of cumulative compound activity is validated in cellulo
Next, we aimed to determine whether the MMS scoring framework applied to the in vitro PKIS2- 
645 dataset can predict inhibitor combinations with in cellulo activity. Compounds TPKI- 108, 
UNC10225285A, and UNC10225404A have validated on- target action against MAPK14 (p38- alpha), 
with experimentally determined Kds of 150, 140, and 250 nM, respectively (Drewry et al., 2017). 
These values matched the MMS 90% activity threshold of 111 nM well. MMS predicted that TPKI- 108 
was the most selective single inhibitor of MAPK14 (i = 1), but that a combination of all three could 
modestly improve selectivity further.

We studied the activity of these compounds against MAPK14 and major off- targets using the in- cell 
NanoBRET target engagement assay (Figure 5; Figure 5—figure supplement 1). We found that the 
EC50s of these compounds diverged from previously observed Kds. TPKI- 108 was slightly more potent 
(EC50 = 82 nM), while UNC10225404A (EC50 = 4.6 µM) and UNC10225285A (EC50 = 1.8 µM) were 
approximately an order of magnitude less potent in this assay (Figure 5a). Single- compound activity 
at off- targets also differed from singlicate screen PKIS2 activity values. For example, UNC10225404A 
had more than 90% PKIS2 activity against MAPK14 and only 18% PKIS2 activity against MAPK11 

https://doi.org/10.7554/eLife.86189
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Figure 4. Inhibitor combinations identified using chemogenomic data reduce off- target effects for single kinase targets. Combinations of two (i = 
2) or three (i = 3) inhibitors reduce off- target effects for some kinase targets across three chemogenomic datasets. Each point represents a single- 
target kinase that can be more selectively inhibited with a combination of inhibitors than with a single inhibitor. Scatterplot data are represented as 
the ΔJSD score using a tight penalty distribution (x- axis) versus the ΔJSD score using a medium penalty distribution (y- axis). Five technical replicates 
are performed for all analyses; significance was determined by an absolute improvement of greater than 0.001 in the average score across replicates, 
as well as statistical significance between the highest scoring i > 1 and i = 1 scores (t- test, two sided, n = 5, p < 0.05). The color scheme for denoting 
significance is the same as in Figure 3e.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Figure 4 continued on next page

https://doi.org/10.7554/eLife.86189
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(p38- beta). We found that the potency of UNC10225404A in the NanoBRET assay was quite similar 
against both proteins (MAPK14: EC50 = 4.6 µM, MAPK11: EC50 = 2.4 µM) (Figure 5a). About half 
(5/11) of the kinase off- targets with more than 50% PKIS2 activity at 1 µM with these compounds in 
the PKIS2- 645 screen were only poorly inhibited in the NanoBRET assay (EC50 > 50 µM for all repli-
cates). We also conducted NanoBRET target engagement assays using cell lysates in order to validate 
compound–target interactions past our conservative 50 µM detection cutoff for the in cellulo assay 
(Figure 5b). These data closely matched our in cellulo results and provided additional validation of 
lower potency off- target EC50s. These data suggest that different experimental techniques or the 
biochemical state of kinase proteins in different experimental formats may produce significant devia-
tions in observed compound–kinase activity measurements, both for singlicate PKIS2 activity data and 
even multiple- point Kd curves.

Next, we combined the three compounds in equimolar ratios and the cumulative activity of the 
mixture matched our predictions which were based on the single- compound NanoBRET EC50 values 
(Figure 5c–e). For example, given the average three in cellulo EC50 values of the single inhibitors 
against MAPK14, the cumulative activity of the equimolar combination is calculated to be EC50 = 
231 nM, very close to the average observed EC50 = 246 nM by NanoBRET. These calculations were 
performed using the protocol in the MMS method. This excellent matching was observed for all 
kinases for which the inhibitor combination potency could be calculated. These observations strongly 
support our hypothesis that the cumulative activity of a combination of compounds can be predicted 
given the activity of each single compound against both targets and off- targets of interest.

EC50 values from the in cellulo or lysed mode experiments were used to calculate inhibitor off- target 
effects if used at the minimum concentrations necessary to reach either 90%, 70%, or 50% on- target 
activity against MAPK14 (Figure 5f; Figure 5—figure supplement 1b). There is a modest increase in 
the selectivity of MAPK14 inhibition when using the combination of inhibitors over the most selective 
single compound, TPKI- 108, which is already highly selective. Although minor off- target effects are 
introduced as a result of adding more inhibitors, the combination slightly improves selectivity over the 
primary off- target MAPK11 compared to TPKI- 108.

These proof- of- concept experiments support our hypothesis that combinations of inhibitors can 
improve the selectivity of target inhibition by reducing high off- target effects. Even if such combinations 

Source data 1. Kinases with significant improvements in off- target effects using combinations of inhibitors by chemogenomic source dataset.

Figure supplement 1. Minor reduction in off- target effects for EPH family kinases.

Figure 4 continued

Table 1. FLT3 mutants are predicted to be more selectively inhibited with different inhibitor combinations than FLT3.
Multicompound–multitarget scoring (MMS) analysis was performed with the tight penalty distribution and the Davis et al., 2011 
dataset. Concentrations reflect the amount of each respective compound necessary to reach 90% activity against the target. More 
than one listed combination suggests that there are multiple similar options to improve selectivity relative to the most selective single 
inhibitor.

Target Best single compound
Concentration 
(90% activity) Highest scoring combination(s) Concentrations (90% activity)

FLT3 CHIR- 258/TKI- 258 5.76 nM AC220, CHIR- 258/TKI- 258, R406 3.90 nM, 1.92 nM, 2.13 nM

FLT3(D835H) BIBF- 1120 (derivative) 6.39 nM BIBF- 1120 (derivative), R406 3.19 nM, 2.93 nM

FLT3(D835Y) BIBF- 1120 (derivative) 3.78 nM ABT- 869, BIBF- 1120 (derivative), JNJ- 28312141 9.83 pM, 3.08 nM, 2.75 nM

BIBF- 1120 (derivative), JNJ- 28312141, Sunitinib 3.08 nM, 2.75 nM, 2.06 pM

FLT3(ITD) R406 4.86 nM BIBF- 1120 (derivative), JNJ- 28312141, R406 2.16 nM, 0.81 nM, 3.32 nM

BIBF- 1120 (derivative), LY- 317615, R406 2.21 nM, 1.78 nM, 3.41 nM

BIBF- 1120 (derivative), PKC- 412, R406 2.16 nM, 2.12 nM, 3.33 nM

FLT3(K663Q) PKC- 412 18.0 nM MLN- 518, PKC- 412, R406 2.05 nM, 10.9 nM, 1.85 nM

AC220, PKC- 412, R406 3.00 nM, 10.9 nM, 1.85 nM

FLT3(N841I) MLN- 518 261 nM ABT- 869, MLN- 518, PKC- 412 7.09 nM, 158 nM, 8.18 nM

https://doi.org/10.7554/eLife.86189
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Figure 5. Validation of compound combination predicted activity and selectivity. The cumulative activity of each compound and equimolar 
combinations of compounds were studied with the NanoBRET assay in cellulo (A) and in cell lysates (B). EC50 values were obtained for MAPK14 and 
those off- targets with high PKIS2 activity for any of the three single inhibitors. Error bars indicate the standard deviation. (C, D) The predicted cumulative 
activity of the three compounds, in their equimolar mixture, was calculated from the average EC50 values of the individual compounds using the same 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.86189
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add more unique off- targets, by dosing the compounds at the appropriate concentrations we expect 
that these minor off- target effects will be negligible. We observed that EC50 values in the NanoBRET 
format varied from Kd values and PKIS2 activity values determined in a separate experimental system. 
Consequently, predictions of cumulative compound activity would be most accurate if generated from 
single- inhibitor data based on the same experimental system. Importantly, the predicted cumulative 
activity of a combination of inhibitors very closely matched the observed activity in the NanoBRET 
assay. As predicted, the combination of three inhibitors modestly improved selectivity even over the 
already highly selective inhibitor TPKI- 108. We expect that, for targets that lack highly selective single 
inhibitors, or in cases of multiple on- targets, the magnitude of improvement in on- target selectivity 
will be greater.

MMS enables rational multitargeting by nominating inhibitor 
combinations
To our knowledge, no method has yet been developed to determine the selectivity of a set of inhibi-
tors, given the cumulative effects of those inhibitors at multiple targets and off- targets. Such a method 
may be of particular use to those who wish to target compensatory pathways or multiple components 
of the same pathway. We performed a small screen of kinase pairs using the Klaeger et al. dataset 
which contains clinically evaluated inhibitors to evaluate MMS for rational multitargeting. We identi-
fied kinase pairs for which sets of three or four inhibitors outscored the best single inhibitor given an 
on- target threshold of 90% activity for both target kinases. Interestingly, the predicted improvement 
in selectivity (as reflected by greater ΔJSD scores) was much greater than those observed for single 
targets in the same dataset. Targets approached or exceeded ΔJSD >0.01, a full order of magni-
tude greater than the 0.001 cutoff, suggesting that the magnitude of improvement in selectivity for 
multiple targets might be substantial (Figure 6a). We analyzed the Davis et al. dataset and again 
observed greater improvements in predicted selectivity when targeting just two kinases rather than 
one (Figure 6a). These results encouraged further validation of MMS multitarget predictions.

In order to validate out multitargeting approach we considered kinase target sets from the Davis 
et al. dataset. This dataset contains Kd values generated with a commercially available competitive 
displacement assay allowing predictions to be validated in the same assay format.

We selected a target set to study whether we could reduce high off- target effects in a translation-
ally relevant system: ABL1 in the context of an imatinib- resistance mutation (F317L) (Lyczek et al., 
2021; Jabbour et al., 2008), FYN, and LYN (Figure 6b; Figure 6b, c). FYN is a major downstream 
target of ABL1 in human leukemias (Ban et al., 2008; Singh et al., 2012) and LYN signaling promotes 
resistance to ABL1 inhibitors (Donato et al., 2003; Ingley, 2012; Ptasznik et al., 2004). We also 
selected the target pair CDC2L5 (CDK13) and TRKC (NTRK3) to test a large predicted improvement 
in global selectivity across a wide range of off- target activities (Figure 6c).

MMS analysis of the candidate trio ABL1(F317L), FYN, and LYN indicated that the most selec-
tive single inhibitor that was sufficiently potent against all three kinases was dasatinib. Masitinib was 
observed to be relatively selective although it lacked sufficient potency against all targets. MMS 
predicted that a mixture of masitinib, dasatinib, and PD- 173955 (Mixture A) could be engineered to 
reduce high off- target effects versus dasatinib alone (ΔJSD tight penalty distribution = 0.023) while 
potently inhibiting all three kinases (Figure 6c). We tested our compound stocks in the same commer-
cial assay format as Davis et al. We found that the observed Kd values differed by less than fourfold 

protocol in the multicompound–multitarget scoring (MMS) method. (E) Predictions matched observed EC50 values. Data plotted as mean and includes 
individual points, error bars indicate the standard deviation. (F) Calculation of the off- target profiles of the inhibitor combination and the individual 
inhibitors suggests that the combination modestly improves selectivity for MAPK14 over the most selective single inhibitor, TPKI- 108. The off- target 
activity of the inhibitors is calculated based upon their EC50s (lysed mode) for each off- target kinase, at the concentration needed to reach 90%, 70%, or 
50% on- target activity against MAPK14. The variance of the Gaussians used to generate probability density functions (pdfs) is the same as was used in 
the MMS scoring method (2.5) and the activity scale is shown between 0% and 100%.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. NanoBRET in cellulo and lysed mode compound and compound combination activity.

Figure supplement 1. Compound combination activity and selectivity in cellulo and in lysed mode NanoBRET.

Figure 5 continued
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from the values published 12 years ago, indicating a high reproducibility of the commercial assay. 
Updated Kds were used to adjust masitinib, dasatinib, and PD- 173955 to final molar ratios of 5340 
to 1.00 to 37.8, respectively. Mixture A was tested in the same assay format as Davis et al. against 
ABL1(F317L)- phosphorylated, ABL1(F317L)- nonphosphorylated, FYN, LYN, and a subset of off- targets 
potently inhibited by dasatinib alone. Mixture A Kd values were within twofold of predictions for the 
four on- targets, and passed the 90% activity (111 nM) threshold (Figure 6d).

Next, we selected a subset of off- targets for experimental Kd determination that were predicted to 
have less activity with Mixture A compared to dasatinib alone at the 90% on- target activity threshold. 
We report all off- target Kd values that were tested (Figure 6—source data 1). The predicted off- target 

Figure 6. Validation of multicompound–multitarget scoring (MMS) multitarget predictions. (A) MMS screens suggest that off- target activity reduction 
may be substantially greater for multiple kinase targets compared to single kinase targets with inhibitor combinations. (B) ABL1, FYN, and LYN represent 
a translationally interesting target set. (C) MMS predictions suggest that high off- target effects can be reduced for ABL1(F317L), FYN, and LYN relative 
to dasatinib, and that global off- target effects can be reduced for CDC2L5 and TRKC relative to AST- 487. Both dasatinib and AST- 487 are the most 
selective single compounds for their respective targets out of the set of compounds with a Kd of at worst 111 nM for all targets. Each point represents 
a single off- target kinase and the histograms summarize the adjacent dot plots. The lines in the dot plots represent the mean and the standard error of 
the mean. (D) Experimental Kd values closely match predicted on- target values, and both Mixtures A and B are potent against all target kinases. (E) The 
off- target effects of both Mixtures A and B are, on average, within fivefold of predicted Kd values. Each dot represents a single off- target kinase; 18 off- 
targets were considered for Mixture A and 20 off- targets were considered for Mixture B. Data plotted as mean and includes individual points, error bars 
indicate the standard deviation. (F) Top: Activity of dasatinib and Mixture A against 18 off- target kinases at the concentration of dasatinib (7.1 nM) and 
Mixture A (661 nM masatinib, 0.124 nM dasatinib, 4.69 nM PD- 173955) required to inhibit ABL(F317L)- nonphosphorylated, ABL1(F317L)- phosphorylated, 
FYN, and LYN by at least 90%. Bottom: Activity of AST- 487 and Mixture B against 20 off- target kinases at the concentration of AST- 487 (306 nM) and 
Mixture B (4.03 nM AST- 487, 226 nM ABT- 869, 40.0 nM EXEL- 2880/GSK- 1363089) required to inhibit CDC2L5 and TRKC by at least 90%. Each dot 
represents a single off- target kinase, and adjacent histograms summarize the dot plots. The lines in the dot plots represent the mean and the standard 
error of the mean.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Inhibitor combinations are potent and more selective than the most selective single compound for multiple targets.

Figure supplement 1. The theoretical error of Kd predictions for inhibitor combinations is limited by the maximum error in single- inhibitor Kd values.

https://doi.org/10.7554/eLife.86189
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Kds of Mixture A were, on average, less than fivefold different from observed Kd values (Figure 6e). 
The selectivity of Mixture A was excellent and greatly reduced off- target activity versus dasatinib 
(Figure 6f). The least potently inhibited on- target kinase of both dasatinib and Mixture A was FYN, so 
on- target activity against FYN was used as the baseline for calculating off- target selectivity. To calcu-
late the fold- selectivity advantage for each off- target the fold- selectivity of Mixture A is divided by 
the fold- selectivity of dasatinib (Figure 6—source data 1). On average, Mixture A was 28.7- fold more 
selective against tested off- target kinases compared to dasatinib.

MMS predictions suggested that the most selective single inhibitor for CDC2L5 and TRKC in the 
Davis et al. dataset with sufficient on- target activity for both kinases was AST- 487, but that a combi-
nation of AST- 487, ABT- 869, and EXEL- 2880/GSK- 1363089 (Mixture B) would substantially reduce 
off- target effects; the average activity across all off- targets was predicted to decrease by 7.5% (ΔJSD 
tight penalty distribution = 0.057, ΔJSD medium penalty distribution = 0.081) (Figure 6c). As previ-
ously, we retested our compound stocks in the commercial assay against CDC2L5 and TRKC and again 
found that all Kds were within fourfold of the originally reported values. These updated on- target Kd 
values were used to optimize the relative concentrations of the compounds and the on- target effect 
of Mixture B was tested against CDC2L5 and TRKC. Mixture B contained AST- 487, ABT- 869, and 
EXEL- 2880/GSK- 1363089 at molar ratios of 1.00 to 56.0 to 9.92. Predicted on- target Kds for Mixture B 
were similarly accurate as for Mixture A; they were within twofold of experimentally observed Kds for 
CDC2L5 and TRKC (Figure 6d). Kds were determined for a subset of off- targets that were predicted to 
have less activity with Mixture B compared to AST- 487 alone at the 90% on- target activity threshold. 
As for Mixture A, we report all of these experimentally determined off- target Kd values. Predicted 
off- target Kds for Mixture B were very accurate; on average there was a 2.6- fold difference between 
predicted and observed Kd values (Figure 6e). The observed selectivity of Mixture B was excellent 
(Figure  6f) and there was, on average, a 171- fold selectivity advantage to using Mixture B over 
AST- 487.

These data indicate that inhibitor combinations can more selectively inhibit kinase targets than 
available single inhibitors and that MMS predictions of cumulative target activity are very accurate.

Discussion
MMS nominates inhibitor combinations that optimize selectivity for kinase targets. This method imple-
ments JSD scoring, a new flexible metric to quantify selectivity that can accommodate any number 
of compounds or targets. Selectivity can be calculated for different ranges of off- target activity by 
selecting a penalty distribution for high, medium, and low activity off- targets.

Using MMS on several publicly available kinase inhibition datasets, we predict that up to 24 single 
kinases could be inhibited more selectively through a mixture of inhibitors than through the single 
most selective inhibitor (Figure 4). We validate the prediction experimentally for MAPK14, a medically 
relevant target in cells (Figure 5f). The number of kinases predicted to benefit from inhibitor mixtures 
is highly dependent on the dataset. Analyses with simulated data indicate that larger datasets, with 
greater combinatorial options, may improve the utility of MMS even as more selective single inhibitors 
become available (Figure 3d). Additionally, the usefulness of MMS is likely to improve as datasets 
include less selective inhibitors so that more inhibitors with orthogonal selectivity profiles can be 
combined. Our results demonstrate that MMS predicts cumulative compound activity accurately and 
improves selectivity even against several single kinase targets for which selective single inhibitors 
exist.

Our predictions with chemogenomic data suggest that much greater gains in selectivity are 
observed when combining inhibitors against multiple target kinases to enable rational multitargeting. 
The inhibition of multiple kinases is extremely clinically beneficial, for example, in the case of sorafenib, 
which inhibits the serine/threonine kinase RAF and the receptor tyrosine kinases VEGFR and PDGFR 
(Wilhelm et al., 2008). We consider two validation cases: a set of translational targets (ABL1(F317L), 
FYN, and LYN) for which we predict reduction of high- off- target inhibition, and CDC2L5 and TRKC 
kinases for which we predict a major reduction in global off- target effects.

We find that MMS predicts the experimentally observed Kds with high accuracy for on- targets (less 
than twofold difference) and only slightly lower accuracy for off- targets (three- to fivefold). Impor-
tantly, we observe that the inhibitor combination targeted at ABL1(F317L), FYN, and LYN (Mixture 
A) reduces the mean off- target inhibition from 82% using dasatinib to 30% (Figure 6f). We observe 

https://doi.org/10.7554/eLife.86189
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an even more pronounced effect for targeting CDC2L5 and TRKC: Mixture B reduces the mean off- 
target activity from 96% to 37% (Figure 6f). While these results demonstrate the proof of principle for 
rational multitargeting of kinases through inhibitor combinations, MMS currently cannot predict bene-
ficial drug inhibitor combinations for all kinases or kinase combinations because of the limited data-
sets available. For example, we base our predictions largely on the in vitro Davis et al. dataset which 
contains only 72 kinase inhibitors because it was to our knowledge the most complete dataset of Kd 
values which improve the accuracy of the MMS predictions. With the dramatic advances in cellular 
target engagement assays (e.g. kinobeads or NanoBRET) we expect that larger datasets will eventu-
ally emerge and allow MMS to find beneficial predictions for more kinases and kinase combinations.

Our in vitro validation studies of compound mixture cumulative activity were designed to reflect 
one accessible protocol in user MMS implementation. Individual inhibitors could be benchmarked 
against a small subset of target kinases, these updated Kd values could be used to refine the relative 
concentration of the inhibitors in mixtures, and mixtures could then be deployed in a system of study. 
We emphasize that the subsets of off- targets validated in this work do not describe the entire selec-
tivity landscape of the tested inhibitor combinations; these particular off- targets were selected to illus-
trate the improvement in selectivity enabled by inhibitor combinations. However, the good accuracy 
of our predictions across these off- targets leads us to conclude that predicted off- target selectivity 
gains for the entire ensemble of off- targets would be similarly accurate. In MMS applications where 
particular off- targets are critical, we suggest that users additionally benchmark individual inhibitors 
against those off- targets in order to ensure the highest accuracy of MMS off- target calculations and 
predictions.

Notably, MMS may propose combinations with chemical probes that are not the most selec-
tive or potent against a particular target. This work offers a fresh perspective on the utility of these 
compounds, and additionally highlights the value of high- quality and accessible compound–target 
datasets. MMS also provides a clear rationale for a new paradigm in compound development; a 
compound may not need be maximally selective for a desired target, but instead could be designed 
to have an off- target profile maximally orthogonal to those of other compounds.

Importantly, even in cases where using N inhibitors may be the most selective method of inhib-
iting an equal number (N) of kinases, the most selective inhibitor combination does not necessarily 
consist of the most selective single inhibitors against each respective kinase. MMS identifies the most 
selective inhibitor set in these cases, which might not be appreciated with other selectivity evaluation 
methods that score the selectivity of individual compounds.

Here, we detail the implementation of the MMS framework within the scope of direct target 
engagement for biomedical research. Extension of MMS to phenotypic cellular assays or in vivo 
models would require additional modeling including phosphoproteomics, pharmacodynamics, and 
pharmacokinetics. The global and high- off- target selectivity gains enabled by MMS lead us to hypoth-
esize that it would be advantageous to test MMS candidate combinations on cellular phenotypes. 
MMS may be of particular interest for rational multitargeting of therapeutic targets, such as kinases 
with compensatory signaling mechanisms or those at different stages of the same signaling pathway. 
Lastly, we note that MMS can be implemented for targets besides protein kinases, when minimizing 
off- target effects are desirable and multiple interventions against the same target are available.

Materials and methods
MMS methodology
First, either a single kinase, or a group of multiple kinases, are defined as the target set. The inhibitors 
with potent activity against these targets, over a user- defined threshold, are divided into combina-
tions of i inhibitors, where i is the number of inhibitors in a single combination. We can enumerate 
c_i unique sets for each set of inhibitors with i unique compounds. If the target set contains multiple 
kinases, combinations that do not maintain 90% activity for all target kinases are eliminated. We use 
an inhibitor activity threshold of 90% for all experiments, which corresponds with a single- inhibitor Ki 
of at least 111 nM if compounds are dosed in a reference frame of 1 µM. Program settings also facili-
tate input of inhibitor Ki values, Kd values, or Kd

app values, which are treated equivalently.
Next, the user defines a penalty distribution. This is a probability distribution that differentially 

penalizes off- target effects, with a maximum at 100% activity and a left- skewed tail (Figure 2—figure 
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supplement 1c). We compare distributions based upon two common distributions shapes, either the 
(1) beta pdf or (2) the left- tail of the Poisson probability mass function (pmf), given by:
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The curvature of these distribution can be controlled by changing associated shape parameters. 
A ‘tight’ distribution will apply greater penalties to off- target activity in the corresponding x- axis 
range underlying the distribution, but will not penalize as wide a range of off- target activity as a more 
‘broad’ distribution with a long tail. We sample 100,000 points from each underlying distribution 
shape to generate the actual distributions used for calculating JSD scores.

We find that, for equivalent JSD scores generated by either the beta pdf or Poisson pmf, distribu-
tions, there is only a minimal difference in the performance (Figure 2—figure supplement 1). Repro-
ducibility is defined as the percentage of first- rank identical inhibitor sets obtained from technical 
replicates. Non- perfect reproducibility suggests that, given the associated uncertainty introduced into 
activity calculations, there may be multiple inhibitor combinations that achieve similar selectivity. For 
distributions based upon the Poisson pmf there is no correlation between result reproducibility and 
score, versus a minor correlation for the distributions based upon the beta pdf (Figure 2—figure 
supplement 1b). For this reason, the Poisson pmf shape is selected as the basis for all following anal-
yses. In this work, we alter the parameter µ to produce either tight (µ = 200), medium (µ = 700), or 
broad (µ = 1200), penalty distributions (Figure 2—figure supplement 1c).

User selection of penalty distribution parameters depends upon the off- target activity range that is 
most critical for a particular application. For example, if <50% off- target activity is not meaningful for a 
user- specific context, that user may opt to use a tight penalty distribution that is insensitive below that 
threshold. Alternatively, if a user wishes to consider all possible off- target activity, they might select a 
broad penalty distribution.

These penalty distributions all penalize off- target activity closer to 100% more than lower off- target 
activity, although the tight penalty distribution has the greatest penalties in the high off- target activity 
range. We allow users to include an additional penalty for high off- target activity in the 95–100% 
activity range. This high off- target penalty accounts for logarithmic fold changes in Ki, Kd, or Kd

app that 
are not readily apparent in the linear activity threshold scale, and does not affect method performance 
(Figure 2—figure supplement 1a).

Inhibitor combinations may only significantly improve selectivity when measured using particular 
penalty distributions; in these cases, it is important to consider context, interpretation, and user goals. 
We conduct analyses using two penalty distributions for all datasets: a tight penalty distribution and 
either a medium or broad penalty distribution, and recommend that similar complementary analyses 
should be performed in most user cases. A single distribution could be used when a particular known 
range of off- target effects is of interest; however, we suggest using at least two penalty distributions 
if such information is not known or accessible.

Once all inhibitor combinations and the penalty distribution have been generated, the cumulative 
activity of all inhibitors in a specific combination c_i against each off- target kinase is calculated. The 
cumulative activity or occupancy of a single target by multiple compounds is given by:

3. 

 

IT =

n∑
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Ij
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 where IT is the total inhibition of a kinase by n inhibitors, Ij is the concentration of 

an inhibitor j, and Kij is the Ki or Ki equivalent of inhibitor j against the target kinase. Activity is 
reported as a percentage of total target occupancy IT. We note that this is an approximation that 
does not include the effect of varying the concentration of ATP or the kinase. The equivalent 
combination Ki (or NanoBRET EC50) is given by:

4. 
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Having calculated cumulative activity at a single off- target from IT a Gaussian distribution whose 
mean is centered around this activity value is defined for subsequent analysis. The variance of this 
Gaussian can be defined by the user. Each individual Gaussian is sampled from 100 times, and these 
sampled off- target activity values across all Gaussians are combined into a single cumulative off- target 
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distribution. This cumulative off- target distribution and the penalty distribution are both normalized 
and binned by off- target activity. Intervals of 5% are commonly used for kinase activity profiles (Drewry 
et al., 2017). Additionally, a bin size of 5% activity is an analytical compromise; too small a bin size 
would make scoring overly sensitive to variations in noise sampling, and too large a range would be 
insensitive to functionally meaningful differences in off- target profiles.

The JSD score between the penalty distribution and the cumulative off- target distribution is calcu-
lated. The JSD score describes the overlap between these two normalized distributions. This metric 
falls between 0 and 1, describing either identical or entirely non- overlapping distributions, respec-
tively. A high score closer to 1, the product of minimal overlap between the off- target distribution and 
the penalty distribution, represents a selective inhibitor, or combination of inhibitors. Tight penalty 
distributions tend to produce higher scores than medium or broad distributions since a smaller activity 
range is included in JSD score calculation (Figure 2—figure supplement 1b). In some cases, there 
may be no off- target activity in the range that a particular penalty distribution covers. Consequently, a 
JSD score of 1 may sometimes reflect that a broader penalty distribution should be used.

The concentration of inhibitors in each combination c_i is then optimized to maximize the JSD 
score. Compound concentration optimization for a single combination of compounds is performed 
using a simple branch- and- bound approach. In the first step of each round, the concentration of every 
pair of compounds is varied by R1- fold, one up and one down, leading to a set size of new concen-
tration variations equivalent to the choose- two combination. The concentrations of all compounds in 
these new sets are reduced by iterative step sizes of R2 to reach minimum on- target activity, set to 
90% activity in this work. Then, the JSD score is calculated, and the top- scoring set of concentrations 
is used as the input for the next optimization round; all other concentration variations are culled. Opti-
mization continues until the JSD score can no longer be increased, and the highest scoring concen-
trations are selected.

Cutoffs can be used to limit negligibly small concentrations of inhibitors, and while we implement 
no maximum concentration cutoff in most analyses to account for compound solubility issues we 
note that such poorly potent compounds would not normally be included in MMS analyses since 
they would fail to reach 90% on- target activity in a reference frame of 1 µM. Decreasing this cutoff or 
changing the concentration reference frame could introduce these compounds, and is something that 
a user should consider should they choose to do so.

Lastly, the performance of the highest scoring single inhibitor at i = 1 is compared to the best 
performing combination for all other values of i. The maximum- scoring single inhibitor for the target(s), 
i = 1, represents the most selective single inhibitor. If a combination at i > 1 has a positive ΔJSD score 
(JSDi>1 > JSDi=1), at defined compound concentrations, then the combination would produce less 
off- target activity than the single most selective inhibitor while retaining potent activity against the 
target kinase(s). We conduct five technical replicates for each experiment in order to ensure statis-
tical significance, and use an additional absolute ΔJSD score cutoff of 0.001 to eliminate statistically 
significant but functionally insignificant results. Raising the ΔJSD score cutoff to 0.005 correspondingly 
increases the magnitude of the observed reduction in off- target activity (Figure 3f). It is necessary to 
conduct technical replicates since noise is introduced during the course of the method when Gauss-
ians centered on calculated off- target activity values are sampled to generate cumulative off- target 
distributions. Additionally, the penalty distribution is also resampled between runs.

MMS reproducibility
Increasing the variance of the Gaussian derived from a single off- target activity calculation (using IT) 
decreases the reproducibility of program results but better accounts for uncertainty in data measure-
ments (Figure 2—figure supplement 1a). Program reproducibility is defined as the percentage of 
first- rank identical inhibitor sets obtained from a set of technical replicates – variability in results is 
introduced by increasing the variance of the noise distribution, in addition to resampling the penalty 
distribution between technical replicates. Consequently, program reproducibility decreases with 
increasing values of i to approximately 60% for combinations of i = 3 inhibitors; there is more vari-
ability in nominated inhibitor sets as the number of allowed inhibitors in a set increases. Imperfect 
reproducibility is an indication of uncertainty in the results, and suggests that other equally selec-
tive single inhibitors or inhibitor combinations may be available. Reproducibility is not a measure of 
method validity.

https://doi.org/10.7554/eLife.86189
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MMS limitations and assumptions
Data types used in MMS predictions require certain limiting assumptions. First, chemogenomic data 
are often derived from kinobead competition- based assays; inhibitors are assumed to be competitive 
inhibitors. Second, we make reasonable substitutions of Kd, Kd

app, or NanoBRET EC50 values for Ki 
values in cumulative activity calculations when Ki values are not available. However, other data types 
that do not describe target engagement, such as IC50 values from cellular proliferation assays which 
are related to a cellular phenotype, would not be appropriate substitutions for calculating cumulative 
compound activity. This is because the relationship between an observed cellular phenotype and 
target inhibition would also involve modeling the effects of inhibiting specific signaling pathways. 
Third, biochemical assays, such as kinobead assays used in PKIS2- 645, Karaman et al., and Davis et 
al., may not fully capture kinase dynamics or the role of regulatory domains in vivo. For this reason, 
calculations using these data should not be interpreted as a definitive prediction of in vivo kinase 
inhibition when treated with inhibitors. Similarly, we do not propose drug combinations for clinical 
applications since integration of pharmacokinetics and pharmacodynamics would be required. Fourth, 
kinetic effects of target engagement, such as target- specific phenotypes due to slow off- rates, are 
not considered. Lastly, unlike datasets that contain Ki, Kd, Kd

app, or EC50 values, performing inhibitor 
concentration optimization based upon singlicate screen PKIS2 activity values may have more false 
positives and negatives, and the measurements may not be as precise. Given an on- target activity 
threshold of 90%, a difference of a few PKIS2- activity- scale percentage points for inhibitors in the 
90–100% range would produce fold change differences in calculated dilutions once the inhibitor 
concentrations are recalibrated to 90% on- target activity. Consequently, we use equimolar ratios of 
inhibitors in combinations and do not perform concentration optimization steps in our analyses with 
PKIS2 inhibitors.

Major MMS settings
Penalty distribution parameters
Both a Poisson pmf and a left- tailed beta pdf can be set by program users, with control over the shape 
parameters using the μ parameter for the Poisson pmf or  α  and  β  parameters for the beta pdf. Both 
distributions are scaled from 0 to 100% activity with an area under the curve (AUC) of 1. We observe 
in our parameter scan tests (Figure 2—figure supplement 1) that both shapes give reasonably similar 
reproducibility per score, although there may be slightly better combinatorial resolution when using 
Poisson distributions for analyses in which a user wants to account more for lower off- target effects. 
Additionally, there is less of a correlation between JSD score and reproducibility for the Poisson pmf 
distribution. Due to this slight difference, we select the Poisson pmf distribution for this work. We 
sample from this distribution 100,000 times prior to JSD calculation; since the sampled values are 
normalized to an AUC of 1 regardless of their size this number can be increased if desired. We do not 
recommend making this number too small, as this may result in the penalty distribution having odd 
features, such as non- decreasing step magnitudes with decreasing activity values.

Additional high off-target activity penalty
This additional penalty actualizes one major goal of the method, to reduce high off- target activity, and 
helps account for the scaling differences at very high Kd or Ki values. For example, a single compound 
with a Ki of 52 nM against an off- target kinase has an estimated activity of 95.05%, while another 
compound with a Ki of 5.2 pM has an estimated activity of 99.99%, and while using a bin size of 5 
both would be penalized by the same amount if no variance was introduced to the calculations. This 
additional penalty is normalized, along with the underlying penalty penalty distribution, to an AUC of 
1. In multitarget analyses it may be necessary to increase this penalty above 0.1.

Distribution bin size
We opt to use a bin size of 5% activity to build our penalty and off- target distributions as a reasonable 
balance between competing technical limitations and limitations of results interpretation. Bins of 5% 
have been used previously for kinase activity profiles (Drewry et al., 2017). We note that using a 
larger bin size would mask changes that a user might find meaningful. Using a smaller bin size would 
be more responsive to fluctuations in the off- target distribution following the addition of sampled 
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noise measurements, and decrease the reproducibility of results. We find that using a 5% bin size is 
a good balance between a normative intuition of what constitutes a meaningful change in activity, 
and a desire to maintain reasonable reproducibility of results following the addition of noise in the 
program. We also note that, since each measurement is replaced by points sampled from Gaussians, 
the absolute cutoffs of the bins and activity measurements close to these values (e.g. 94.8 vs 95.2 for 
a bin cutoff of 95) do not constitute meaningful differences in the context of program scoring, since 
sampling will add a similar number of counts to each bin. The bins are primarily useful for smoothing 
variations in sampling within normative common- sense ranges.

Gaussian variance
The default variance for the Gaussian from which off- target activity values are sampled is 2.5, which 
complements the program bin size of 5% activity. Increasing the variance decreases the reproducibility 
of the results generated by the program, or increases the likelihood that alternate equally selective 
compounds or combinations of compounds will be identified. However, variability may be desirable 
as it reflects uncertainty in input data measurements and calculations.

On-target inhibition threshold
We maintain an on- target inhibition threshold of 90% activity which represents potent inhibition of 
target kinases. This threshold controls several points in the method, including how many compounds 
are initially selected either as single agents or for consideration in combinations, how far compound 
combinations are diluted if they have greater than threshold activity, and the minimum activity that 
must be maintained during compound concentration optimization steps. Decreasing this threshold 
increases the number of possible compound combinations and will increase processing time.

Optimization step size
We primarily use optimization steps of R1 = 5 and R2 = 1.1. We find that an R1 value of 2–5 is useful; 
larger R1 values decrease processing time but reduce the precision of the final concentrations that are 
identified by the method. Similarly, larger R2 values (>1.5) decrease processing time but also decrease 
accuracy. For example, identically selective compounds would yield the same JSD score if both are 
dosed at concentrations that reach 90% on- target activity, but one would have a lower score if it is 
dosed at a higher concentration and reaches 92% on- target activity. A lower R2 value ensures that all 
compounds or compound concentrations get as close as possible to the 90% on- target threshold and 
ensures accurate selectivity scoring.

Dataset sources
Karaman et al., 2008, Davis et al., 2011, and Drewry et al. PKIS2- 645, 2017 were generated using a 
competitive displacement assay, previously described in Fabian et al., 2005. This is the same commer-
cial assay used to validate multitarget predictions in this work. PKIS2- 645 reports single- concentration 
screening values, while Karaman et al. and Davis et al. both report Kds derived from multiple- point 
curves. PKIS2- 645 contains data for 645 inhibitors and 406 targets, Karaman et al. contains data for 
38 inhibitors and 317 targets, and Davis et al. contains data for 72 inhibitors and 442 targets. Klaeger 
et al. implemented a profiling campaign for 243 inhibitors against 343 targets using cell lysates, 
kinobeads, and quantitative mass spectrometry. Klaeger et al. note that kinase–inhibitor interactions 
scored using their kinobead assay were generally also observed in assays using recombinant proteins, 
but that the opposite was not necessarily true. These observations are relevant to our study because 
of the discrepancy in off- target coverage space between datasets. Klaeger et al. provide some inter-
pretation of these results, describing how there might be differences in the activation state of kinases 
between systems, or that there could be nonspecific binding of proteins at high concentrations from 
cell lysates in their assay.

Dataset preparation
The Karaman et al., Davis et al., and Klaeger et al. datasets of compound Kd or Kd

app (nM) were 
converted to activity values at a reference concentration of 1 µM using the approximation: activity = 
100%/[(Kd/1000 (M)) + 1]. A Kd of 100 nM corresponds to an activity approximation of 91%, just above 
the lower threshold of what is considered a potent compound (90%) in our analyses. The reference 
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frame of 1 µM does not influence JSD scoring and was only used to standardize input; activity values 
were converted back into the original Kd or Kd

app values by the program during calculations. The refer-
ence frame is related to the on- target threshold. For example, if a reference frame of 100 nM was 
selected instead, then compounds would need to be tenfold more potent to reach 90% activity and 
only compounds with on- target Kds better than 11.1 nM (rather than 111 nM in the reference frame 
of 1 µM) would be considered.

Single-target MMS analyses
Single- target analyses was performed as following. Program settings were: tight penalty distribution 
μ = 200, medium penalty distribution μ = 700, broad penalty distribution μ = 1200, sample size = 
100,000, optimization steps R1 = 5, R2 = 1.1, on- target threshold = 90, noise distribution variance = 
2.5, high off- target penalty = 0.1. Five technical replicates were performed. Significance was assessed 
by both statistical significance (t- test, p < 0.05) and an absolute JSD score cutoff. A cutoff of 0.001 was 
used for all analyses, except when indicated (at 0.005) during simulated data analysis. Kinase mutants 
in all datasets, while considered as targets for selectivity optimization, were excluded from all calcula-
tions of off- target distributions. FLT3 mutations were studied with R1 = 2, R2 = 1.1.

Multiple-target MMS analyses
A non- exhaustive screen of kinase target pairs from the Klaeger et al. dataset was performed using 
the following settings changes: optimization steps R1 = 3, R2 = 1.1, and high off- target penalty = 
0.3. Kinases with less than a 0.95 single- target JSD score using the medium penalty distribution were 
included in the analysis. A screen of kinase target pairs from the Davis et al. dataset was similarly 
performed: optimization steps R1 = 4, R2 = 1.1, and high off- target penalty = 0.3. Selected target 
sets were tested using smaller step sizes to increase the precision of concentration optimization and 
a conservative maximum concentration limit of 1 µM was implemented to avoid solubility limits for in 
vitro validation experiments.

Eph family analysis
PKIS2- 645 was reduced to only the data for the EPH kinase family, such that only off- target effects for 
other EPH kinases would be considered for each respective on- target EPH kinase. These data were 
analyzed using the single- target protocol, with a tight penalty distribution (μ = 200), and a broad 
penalty distribution (μ = 1200), instead of the medium penalty distribution (μ = 700), in order to 
capture changes in low off- target effects.

Comparison of JSD scoring with other selectivity scoring metrics
There are multiple approaches to score selectivity (Karaman et  al., 2008; Klaeger et  al., 2017; 
Graczyk, 2007; Cheng et al., 2010; Uitdehaag and Zaman, 2011; Uitdehaag et al., 2012; Bosc 
et al., 2017; Wang et al., 2022). We consider two different approaches to scoring selectivity: rela-
tive selectivity terms (e.g. partition index, CATDS score, and entropy score) that compare on- target 
inhibition relative to off- target inhibition; and non- relative terms (e.g. Gini coefficients, Window score, 
and S- score) that describe inhibitor behavior toward a set of targets without the definition of on- and 
off- targets. Relative selectivity scores do not distinguish between inhibitors with many moderate off- 
target activities and those that have a few high- off- target activities balanced with many low off- target 
activities. Similarly, non- relative terms like Gini coefficients do not discriminate between off- target 
assignments that yield equivalent scores even if a larger number of off- targets have relatively high 
off- target activity. In other words, a compound may not be useful if it has a small set of high off- target 
effects, even if the average inhibition of all off- targets is quite low. A window score (Bosc et  al., 
2017) or S- score (Karaman et al., 2008) integrate user- defined compound affinity ranges, since only 
certain magnitudes of off- target effects may be meaningful in the context of an experimental setting. 
However, these two scoring methods cannot differentiate between low and high off- target effects 
within set thresholds.

Our goal was to design a selectivity metric that would score off- target activity in the context of user- 
defined on- target activity. JSD scoring fulfils these criteria. Additionally, by integrating user- defined 
penalty distributions, off- target activities of different magnitudes can be more precisely scored than 
with other selectivity scoring metrics. These two features make the JSD score the ideal metric for 
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determining the most selective combination of inhibitors for a given target or set of targets in a partic-
ular user- defined experimental setting.

The JSD score was calculated for all single- compound single- target interactions with ≥90% on- target 
activity across the PKIS2- 645, Davis et al., and Klaeger et al. datasets, using the tight, medium, and 
broad penalty distributions (Figure 2—figure supplement 2). A simple relative selectivity factor was 
calculated for each of these compound–target interactions: the activity against the target divided by 
the total activity of the compound at all possible targets. CATDS scores, while specific to the kinobead 
based assay employed by Klaeger et al., describe the decrease in compound binding for a target rela-
tive to the total reduction in compound binding across all possible targets, at a particular compound 
concentration. The CATDS score has, in general principle, the same structure as the simple relative 
selectivity factor.

JSD scoring is able to parse the selectivity of compound–target interactions among the set with 
poor relative selectivity factors (Figure  2—figure supplement 2). In other words, a promiscuous 
compound may still be relatively specific at some targets; JSD scoring identifies these cases while 
the relative selectivity scoring metric does not perform as well. Compounds that have high relative 
selectivity factors also have very high JSD scores (Figure 2—figure supplement 2). Fold- differences 
in the selectivity of a compound at off- targets may not affect the activity of a compound at those off- 
targets if off- target sites are already nearly empty (Figure 1—figure supplement 1). In other words, 
there may only be a very minor advantage to using an extraordinarily selective compound instead of 
an already very selective compound. While relative selectivity factors would strongly suggest using 
one compound over another, JSD scoring correctly identifies that there may be no or only minimal 
improvement possible.

Gini coefficients and S- scores (50% activity) were calculated for each inhibitor included in JSD 
scoring (Figure 2—figure supplement 2). A high Gini coefficient suggests high selectivity, while a low 
S- score suggests high selectivity. Unlike JSD scores or the simple relative selectivity factor, these scores 
are not target specific; the same score is assigned to all interactions made by the same compound 
producing horizontal striations on the associated plots. The striations are more pronounced for anal-
yses with the Davis et al. and Klaeger et al. datasets since on- target concentration optimization was 
performed resulting in greater differences in off- target profiles after compound concentrations had 
been calibrated. High JSD scores are possible for some compound–target pairs even if the compounds 
score poorly with these selectivity metrics since using nonselective compounds at the optimal concen-
tration for their most potently inhibited targets can still produce relatively selective outcomes.

NanoBRET target engagement assay
The assay was performed as described previously (Vasta et al., 2018). In brief, full- length kinase ORF 
(Promega) cloned in frame with a NanoLuc- vector (as indicated in table below) was transfected into 
HEK293T cells using FuGENE HD (Promega, E2312) and proteins were allowed to express for 20 hr. 
Serially diluted inhibitor and NanoBRET Kinase Tracer (as indicated in the table below) were pipetted 
into white 384- well plates (Greiner 781 207) using an ECHO 550 acoustic dispenser (Labcyte). The 
corresponding transfected cells were added and reseeded at a density of 2 × 105 cells/ml after tryp-
sinization and resuspension in Opti- MEM without phenol red (Life Technologies). The system was 
allowed to equilibrate at 37°C for 2 hr and 5% CO2 prior to BRET measurements. To measure BRET, 
NanoBRET NanoGlo Substrate + Extracellular NanoLuc Inhibitor (Promega, N2160) were added as per 
the manufacturer’s protocol, and filtered luminescence was measured on a PHERAstar plate reader 
(BMG Labtech) equipped with a luminescence filter pair (450 nm BP filter (donor) and 610 nm LP 
filter (acceptor)). Competitive displacement data were normalized and then plotted using GraphPad 
Prism 9 software using a normalized 3- parameter curve fit with the following equation: Y = 100/(1 + 
10(X − LogIC50)). For the PRKCQ assay, the protein was stimulated by adding a final concentration of 1 µM 
phorbol 12- myristate 13- acetate (Sigma #P8139) in dimethyl sulfoxide.

Target Nluc Placement Target Catalog No Tracer [Tracer], [M] Tracer Catalog No

MAPK14 C NV1661 K4 3.10E−08 N2540

PKN1 C Kind gift of Promega K16 1.30E−07 Kind gift of Promega

 Continued on next page
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Target Nluc Placement Target Catalog No Tracer [Tracer], [M] Tracer Catalog No

RPS6KA1 N NV1981 K10 6.30E−08 N2840

RPS6KA6 N NV2021 K10 1.30E−07 N2840

MAPK11 N NV1651 K4 1.30E−07 N2540

ABL1 N NV1011 K4 1.30E−07 N2540

BRAF C NV2481 K10 1.00E−06 N2840

CAMK1 N NV2531 K9 6.60E−07 N2830

JAK1 C Kind gift of Promega K10 2.50E−07 N2840

KIT C NV1491 K4 6.30E−08 N2540

LRRK2 C NV3401 K9 8.30E−09 N2830

PRKCQ C Kind gift of Promega K10 5.00E−07 N2840

Cell lines
HEK293T cells from ATCC (#CRL- 3216) were used in this work. Identity was confirmed via STR profiling 
by ATCC and the cells tested negative for mycoplasma.

In vitro compound and mixture activity profiling
Single compound and compound mixture Kds were obtained using the Eurofins DiscoverX KINO-
MEscan KdELECT kinase assay product. The same compound mixture stocks were used for target and 
off- target Kd determination to minimize sample variation. The Kd values for all targets and off- targets 
tested with inhibitor combinations are reported in Figure 6—source data 1. The average of two runs 
are reported as a single Kd value. Fold- error is defined as the maximum of either the predicted or 
observed Kd value divided by the other; a fold- error of 1 represents a perfect prediction.

The compounds used for in vitro assays in this work were:

Lot # Source CAS #

Dasatinib 118523 MedChemExpress 302962- 49- 8

PD- 173955 123657 MedChemExpress 260415- 63- 2

Masitinib (AB- 1010) 113139 MedChemExpress 790299- 79- 5

AST- 487 7302 MedChemExpress 630124- 46- 8

Foretinib (GSK- 1363089) 23056 MedChemExpress 849217- 64- 7

Linifanib (ABT- 869) 18201 MedChemExpress 796967- 16- 3

Fold-error simulation
Combinations of one, two, three, or four compounds are considered. Within each combination, the 
Kd of individual compounds is randomly varied by a fold- error between one and four. This fourfold 
reference limit was determined empirically from limited on- target compound Kd benchmarking. The 
cumulative Kd of the combination is calculated (the observed Kd) and compared to what the Kd of the 
combination would have been without the additional errors introduced (the predicted Kd). At each 
combination number one thousand cases are simulated. The distribution of fold- errors for the combi-
nation Kd predictions are illustrated in Figure 6—figure supplement 1.

Figure production
Figures in this work were made with Matplotlib (Hunter, 2007), GraphPad Prism, and KinMap (Eid 
et al., 2017). The Human Kinome dendrogram images were reproduced courtesy of Cell Signaling 
Technology.

 Continued
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