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Abstract Orbitofrontal cortex (OFC) is classically linked to inhibitory control, emotion regula-
tion, and reward processing. Recent perspectives propose that the OFC also generates predictions 
about perceptual events, actions, and their outcomes. We tested the role of the OFC in detecting 
violations of prediction at two levels of abstraction (i.e., hierarchical predictive processing) by 
studying the event-related potentials (ERPs) of patients with focal OFC lesions (n = 12) and healthy 
controls (n = 14) while they detected deviant sequences of tones in a local–global paradigm. The 
structural regularities of the tones were controlled at two hierarchical levels by rules defined at a 
local (i.e., between tones within sequences) and at a global (i.e., between sequences) level. In OFC 
patients, ERPs elicited by standard tones were unaffected at both local and global levels compared 
to controls. However, patients showed an attenuated mismatch negativity (MMN) and P3a to local 
prediction violation, as well as a diminished MMN followed by a delayed P3a to the combined local 
and global level prediction violation. The subsequent P3b component to conditions involving viola-
tions of prediction at the level of global rules was preserved in the OFC group. Comparable effects 
were absent in patients with lesions restricted to the lateral PFC, which lends a degree of anatomical 
specificity to the altered predictive processing resulting from OFC lesion. Overall, the altered magni-
tudes and time courses of MMN/P3a responses after lesions to the OFC indicate that the neural 
correlates of detection of auditory regularity violation are impacted at two hierarchical levels of rule 
abstraction.

Editor's evaluation
This important study demonstrates that the orbitofrontal cortex is involved in the detection of 
local auditory prediction errors. The methods and procedures are convincing, although the precise 
functional meaning of the reported effects remains to be specified. This work will be of interest 

RESEARCH ARTICLE

*For correspondence: 
olgerta.asko@psykologi.uio.no

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 22

Preprinted: 04 January 2023
Received: 23 January 2023
Accepted: 28 January 2024
Published: 09 February 2024

Reviewing Editor: Maria Chait, 
University College London, 
United Kingdom

‍ ‍ Copyright Asko et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.86386
mailto:olgerta.asko@psykologi.uio.no
https://doi.org/10.1101/2023.01.04.521570
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Asko et al. eLife 2024;13:e86386. DOI: https://doi.org/10.7554/eLife.86386 � 2 of 29

to neuropsychologists and cognitive neuroscientists working on the prefrontal cortex, predictive 
processing, auditory perception, and electrophysiology.

Introduction
The orbitofrontal cortex (OFC) is linked to multiple high-level cognitive processes, including inhib-
itory control (Godefroy et  al., 1999; Harlow, 1993; Picton et  al., 2007), goal-directed attention 
(Badre and Wagner, 2004; Luu et al., 2000; Walton et al., 2004), temporal context memory (Duarte 
et al., 2010; Shimamura et al., 1990), and working memory (WM) maintenance (Llorens et al., 2019; 
Barbey et  al., 2011; D’Esposito et  al., 2000), all supporting pivotal involvement of the OFC in 
decision-making (Bechara et al., 2000a; Ernst et al., 2002; Hebscher and Gilboa, 2016; Ullsperger 
and von Cramon, 2004). Extensive research has highlighted a key role of the OFC in outcome moni-
toring and evaluation (e.g., Walton et al., 2004; Ullsperger and von Cramon, 2004; Wallis, 2012), 
and the signaling of reward value (Howard and Kahnt, 2021; Schoenbaum et al., 2009; Schoenbaum 
et al., 2011; Wikenheiser and Schoenbaum, 2016). Patients with OFC damage typically demonstrate 
difficulty in learning from previous errors, often combined with reduced sensitivity to future conse-
quences (Bechara et al., 2000a; Bechara et al., 2000b; Floden et al., 2008; Stuss et al., 2000). 
However, studies using tasks where outcomes do not have a clear emotional or motivational value 
support the idea that the OFC forms representations of the environment that extend beyond reward 
(Schoenbaum et al., 2011; McDannald et al., 2014; Stalnaker et al., 2014). A recent proposal is 
that OFC generates specific predictions about impending events, such as their identity and features, 
and uses relevant contextual and temporal attributes to allow continuous updating of rules (Schuck 
et al., 2016; Stalnaker et al., 2015; Wilson et al., 2014). This emerging view of OFC in monitoring 
the environment requires predicting events and outcomes but also noticing violations of expectation, 
that is, prediction errors (PEs) (Petrides, 2007). Notably, animal (Sul et al., 2010; Thorpe et al., 1983; 
Wallis and Rich, 2011) and human (Nobre et al., 1999; Schultz and Dickinson, 2000; Tobler et al., 
2006) studies have reported a role of the OFC in signaling PEs, but its involvement in the generation 
of PEs at different levels of content and temporal complexity remains largely unknown.

Noticing violations of expectation may occur across all levels of extended brain systems in a hierar-
chical manner, such that higher-level structures predict inputs from lower-level ones through top-down 
connections, and error signals are sent back via bottom-up connections to update the current model 
of the environment (Bar, 2009; Clark, 2013; Friston, 2010; Rao, 2005). According to the predic-
tive coding hypothesis, the brain continually formulates predictions about sensory inputs and tests 
them against incoming sensory signals, wherein the bottom-up information represents the interaction 
between the prediction and the actual sensory input (i.e., PE) (Clark, 2013; Friston, 2005; Mumford, 
1992). Predictive coding computational models have implicated the prefrontal cortex (PFC) in higher-
order predictions and PE processing (Chennu et  al., 2016; Garrido et  al., 2008; Garrido et  al., 
2009a; Phillips et al., 2015; Phillips et al., 2016). However, studies addressing the role of subregions 
of PFC in predictive processing are sparse. The dorsal part of medial PFC (dmPFC) is thought to be 
specialized for reporting error as a deviation from predicted events (Alexander and Brown, 2011). 
The ventral part of medial PFC (vmPFC), that is, OFC, has been proposed to integrate perceptual 
input from cortical and subcortical areas, together with memories of previous stimuli, to determine 
the current task context (Wilson et al., 2014). DmPFC and OFC subregions likely interact (Alexander 
and Brown, 2014), but the nature of the interplay and the specific role of the OFC remains to be 
delineated.

Numerous electrophysiological studies have used the predictive coding framework to explain 
event-related potentials (ERPs), including the mismatch negativity (MMN) and the P3 complex, as 
PE signals (Chennu et al., 2016; Garrido et al., 2009a; Chennu et al., 2013; Doricchi et al., 2021; 
Garrido et al., 2007; Lieder et al., 2013; Wacongne et al., 2011; Hoy et al., 2021). The fronto-
centrally distributed MMN is usually elicited by an infrequent tone that differs in its acoustic properties 
(e.g., pitch, loudness) from a monotonous sequence of preceding frequent tones and persists in the 
absence of overt attention (Näätänen et al., 1978; Näätänen et al., 2007). Within the predictive 
coding framework, the MMN is interpreted as an early PE signal arising from prediction violation due 
to a top-down predictive contribution (Garrido et al., 2009a; Garrido et al., 2007; Parmentier et al., 
2011; Winkler, 2007). In agreement with a hierarchical model transmitting predictions in a top-down 
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fashion to lower sensory areas are the findings of fMRI, scalp- and intracranial EEG studies showing 
MMN generators in the superior temporal planes bilaterally (i.e., primary auditory cortices and supe-
rior temporal gyri), in bilateral prefrontal cortices (i.e., inferior frontal gyri), as well as the inferior 
circular sulcus of the insula (Garrido et al., 2009a; Phillips et al., 2015; Phillips et al., 2016; Opitz 
et al., 2002; Doeller et al., 2003; Liebenthal et al., 2003; Molholm et al., 2005; Shalgi and Deouell, 
2007; Deouell, 2007; Garrido et al., 2009c; Nourski et al., 2018; Blenkmann et al., 2019). The P3 
complex (P3a and P3b), sensitive to the detection of unpredictable auditory events, is elicited after 
the MMN (Chennu et al., 2013; Doricchi et al., 2021; Wacongne et al., 2011; El Karoui et al., 2015; 
Kompus et al., 2020). The earlier and more fronto-centrally distributed P3a is evoked by infrequent 
or novel stimuli (Polich, 2007) and is typically interpreted as reflecting an involuntary attentional reori-
enting process (Escera and Corral, 2007). The P3b, with a centro-posterior maximum, is associated 
with context updating in WM (Polich, 2007; Donchin and Coles, 1988; Chao et al., 1995) and allo-
cation of attentional resources to stimulus evaluation, (Picton, 1992) and is dependent on conscious 
awareness (Sergent et al., 2005; Del Cul et al., 2007; Bekinschtein et al., 2009).

Early PFC lesion studies using simple oddball tasks showed diminished MMN elicited by deviant 
tones within sequences of standard tones (Alho et al., 1994; Alain et al., 1998). In the same vein, 
PFC injury reduced the amplitude of the frontal P3a to unexpected novel auditory stimuli, whereas the 
parietally distributed P3b to detected deviants remained intact (Knight, 1984; Knight and Scabini, 
1998; Løvstad et al., 2012). Løvstad et al., 2012 reported attenuation of the P3a to unexpected 
novel environmental sounds after damage to either lateral PFC (LPFC) or OFC. Moreover, Solbakk 
et al., 2021 showed that the N2b-P3a complex elicited by unexpected auditory sensory outcomes of 
self-initiated actions in OFC patients did not differ as clearly from the response to expected outcomes 
as for the healthy controls. Altogether, these findings indicate that OFC integrity might be necessary 
for the generation of the auditory MMN and P3a, and support the idea that the OFC is involved in 
predicting different types of perceptual events and outcomes, and in noticing violations of expectation.

Given the suggested involvement of OFC in predicting perceptual events and noticing violations 
of expectation, this study investigated whether the OFC is involved in the detection of PEs while 
processing auditory stimuli at two levels of abstraction. To this aim, we manipulated both the local 
and global auditory features of the environment using a novel variant of the oddball paradigm orig-
inally devised by Bekinschtein et al., 2009. The paradigm allows probing of hierarchical predictive 
processing by simultaneously violating expectations at two processing levels and timescales: A low 
‘local’ level with a short timescale (i.e., tone-onset asynchrony: 150 ms) and a higher ‘global’ level 
with a longer timescale (i.e., sequence-onset asynchrony: seconds). At the local level, the regularity 
is determined by the transition probability (i.e., the probability with which a given stimulus follows 
another) between tones within sequences, while at the global level, the regularity is established by 
the transition probability between sequences as they unfold over a longer time frame. The factorial 
(2 × 2) structure of the paradigm enables measuring predictive processing at one level along with 
the feedforwarding of PEs to the next level, as well as the interaction between processing levels (i.e., 
PEs at both local and global levels). By dissociating neural responses elicited at hierarchical levels of 
acoustic regularity, the paradigm has provided evidence for hierarchical stages in auditory processing 
linked to the MMN and P3 complex in the healthy human brain (Chennu et al., 2016; Chennu et al., 
2013; Wacongne et al., 2011; Kompus et al., 2020). We first extended knowledge about the elec-
trophysiological modulations (i.e., ERPs) elicited by auditory deviance processing at the ‘local’ and 
‘global’ levels by studying the interaction of these processing levels with the new ‘local + global’ 
level condition in a cohort of healthy adults. We then examined the impact of OFC injury on these 
ERP markers by comparing healthy adults to patients with OFC lesions. Based on previous findings in 
oddball tasks manipulating local levels only, we expected attenuated MMN amplitude following OFC 
lesions. Because the OFC has been implicated in generating predictions about perceptual events 
and actions, we also predicted dampened amplitudes of the P3 complex, which has been linked with 
deviance processing at a higher (i.e., ‘global’) hierarchical level.

Results
Scalp EEG recordings were obtained during an auditory local–global paradigm from a control group 
of healthy adults, a group of patients with lesions to the OFC (Figure 1) and a lesion control group 
of patients with lesions to the LPFC (Figure 1—figure supplements 2 and 3). The experiment had 
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regular and irregular blocks, where the most common sequence could be either regular (xxxxx) or 
irregular (xxxxy), building up global expectations (i.e., predictions). When the last tone in the sequence 
is different from the previous, it constitutes a local deviant. On rare occasions, deviant sequences 
were introduced, violating the global rule. Participants were asked to detect these global violations, 
which might simultaneously conform or not the local rules. In total, four key conditions were gener-
ated: control (predictable tones at both local and global levels), local deviant (local rule violations), 
global deviant (global rule violations), and local + global deviant (combined local and global rule 
violations). EEG-derived ERPs for the four conditions were analyzed and three condition contrasts 
were conducted to assess neuronal markers of deviance processing and isolate low- and high-level 
prediction violations: Control vs. local deviant, control vs. global deviant, and control vs. local + global 
deviant (see details in Figure 2). Behavioral data were collected through written reports of the number 
of rare sequences detected per task block. Amplitude and latency of time-locked responses to pairs 
of experimental conditions and group differences were compared using nonparametric cluster-based 
permutation tests and independent samples t-tests (see details in ‘Materials and methods’).

Behavioral performance
Participants performed the task properly with an average error rate of 9.54% (SD 8.97) for the 
healthy control participants, 10.55% (SD 6.18) for the OFC lesion group, and 6.37% (SD 5.79) for the 
LPFC lesion group. There was no statistically significant difference between the counts of rare tone 

Figure 1. Lesion reconstruction for the group with orbitofrontal cortex (OFC) damage. (A) Aggregate lesion overlay maps in axial view. The color code 
(from 0 to 100%) for the group overlay indicates the percentage of shared lesion coverage across patients. The redder the color, the greater the lesion 
overlap. Neurological convention: the right side of the brain is depicted on the right side of the image and vice versa. (B) Average percentage of 
damaged tissue within each Brodmann area (BA) per hemisphere. BAs with less than 2% damage are not presented.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Lesion reconstructions for the orbitofrontal cortex (OFC) group.

Figure supplement 2. Lesion reconstructions for the right lateral prefrontal cortex (PFC) group.

Figure supplement 3. Lesion reconstructions for the left lateral prefrontal cortex (PFC) group.

Figure supplement 4. Lateral prefrontal cortex (PFC) lesion by Brodmann areas (BA).

https://doi.org/10.7554/eLife.86386
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sequences of the CTR group compared to the OFC group [F(1, 24) = 0.11, p=0.75], or the LPFC group 
[F(1, 22) = 0.96, p=0.34]. Participants from the CTR and OFC groups had a trend-level lower error rate 
in the irregular block (CTR: 8.39 ± 8.24%; OFC: 7.50 ± 7.34%) compared to regular block (CTR: 10.69 
± 11.36%; OFC: 13.60 ± 10.97%) [F(1, 24) = 3.55, p=0.07]. There was no block × group (CTR vs. OFC) 
interaction effect [F(1, 24) = 0.73, p=0.40]. This was not the case when contrasting the LPFC with the 
CTR group for the two blocks (LPFC; irregular block: 6.56 ± 7.73%; regular block: 6.18 ± 6.24%). There 
was no block [F(1, 22) = 0.31, p=0.58], or block × group interaction effect [F(1, 22) = 0.61, p=0.44].

EEG results
Local deviance response: MMN and P3a components
Analysis of the local deviance response revealed that ERPs to local-level unpredicted tones (xy│xY 
trials) differed significantly from local-level predicted tones (xx│xX trials). Both groups showed condi-
tion differences corresponding to a negative cluster in the data at 67–128 ms (i.e., MMN) for the 
CTR group [t(13) = –6633.65, p=0.012, 61/64 channels] and at 73–131 ms for the OFC group [t(11) = 

Figure 2. Illustration of stimuli and experimental design. (A) On each trial, five or four complex tones of 50 ms duration each were presented with a 
fixed SOA of 150 ms. Two types of tones were used to generate these trials: tone A (composed of 440, 880, and 1760 Hz sinusoidal tones) and tone B 
(composed of 622, 1244, and 2488 Hz sinusoidal tones). (B) Each block started with 20 frequent sequences of tones to establish the block’s global rule. 
In regular xX blocks, standard sequences (75%) consisted of five repetitions of the same tone (i.e., xx│xX or control trials). These were interspersed with 
rare local deviant sequences (12.5% each) where the fifth sound was either different in frequency type (i.e., xy│xX or local + global deviant trials), or was 
omitted. The irregular xY blocks were similar, except that the standard sequences (75%) had a fifth sound differing in frequency type (i.e., xy│xY or local 
deviant trials), interspersed with rare (12.5%) local standard sequences (i.e., xx│xY or global deviant trials), or omission sequences. (C) By contrasting 
control (xx│xX) trials with local deviant (xy│xY), global deviant (xx│xY), and local + global deviant (xy│xX) trials, we isolated low-level, high-level, and 
combined low- and high-level prediction error (PE) responses, respectively. dur., duration; ITI, inter-trial interval; SOA, stimulus onset asynchrony.

https://doi.org/10.7554/eLife.86386
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–3734.49, p=0.035, 41/64 channels]. This was followed by a positive cluster at 143–313 ms (i.e., P3a) 
for the CTR group [t(13) = 24808.43, p<0.001, 60/64 channels], which extended from 145 to 344 ms 
for the OFC group [t(11) = 21796.75, p<0.001, 58/64 channels].

Testing for group differences was done in the time range of the MMN (i.e., 50–150 ms, based on 
the statistical analysis of the CTR and OFC group condition contrasts). Analysis of the response to 
local-level unpredicted tones (xy│xY trials) revealed a reduced MMN for the OFC patients compared 
to the CTR participants in a time window from 73 to 110 ms [positive cluster: t(25) = 1396.79, p=0.028, 
39/64 channels]. Group differences in the condition difference waveforms (i.e., xy│xY minus xx│xX 
trials) yielded similar results [t(25) = –1090.62, p=0.02]. However, the groups did not differ significantly 
in the time range (i.e., 140–350 ms) of the P3a (positive cluster: p=0.22, negative cluster: p=0.53). 
Latency analysis for the MMN and P3a did not show statistically significant differences between the 
two groups. See Figure 3 for a visual representation of the ERP waveforms of the CTR and OFC 
groups.

To better understand the nature of the ERP group differences revealed by the cluster-based permu-
tation tests, complementary analysis on the mean amplitudes of the MMN and P3a components was 
conducted. The MMN was defined as the most negative peak in a post-stimulus window of 50–150 
ms, and the P3a as the most positive peak in a post-stimulus window of 130–310 ms. The mean 
amplitude was calculated centered ±25 ms around individual peaks. The independent samples t-tests 
comparing the distinct components mean amplitudes between the two groups for the midline sensors 
revealed amplitude differences for the MMN [AFz (p=0.021), Fz (p=0.008), CPz (p=0.015), and Pz 
(p<0.001)] and for the P3a [AFz (p<0.001), Fz (p<0.001), FCz (p<0.001), and Cz (p=0.002)] (Supple-
mentary file 1a*).

Interestingly, responses to the standard tones predicted at both levels (xx│xX trials) did not diverge 
significantly between the OFC and the CTR group (positive cluster: p=0.79, negative cluster: p=0.51), 
or between the LPFC and the CTR group (positive cluster: p=1) (Figure 3—figure supplement 1). 
Analysis of the local deviance response in the time ranges of the MMN (i.e., 50–150 ms) and P3a 
(i.e., 140–350 ms) for the LPFC lesion control group did not reveal statistically significant differences 
between the LPFC and the CTR group (MMN, negative cluster: p=0.85; P3a, negative cluster: p=0.99) 
(Figure 3—figure supplement 2).

Global deviance response: P3b component
We examined the presence of only a high-level deviance response, that is, global deviance, by 
comparing globally unpredicted tones (global deviant: xx│xY trials) with globally predicted ones 
(control: xx│xX trials), while keeping the local-level predictions fulfilled. Results revealed a significant 
condition effect captured by a positive cluster at posterior electrodes, which lasted from 381 to 714 
ms for the CTR group [t(13) = 10521.05, p=0.009, 33/64 channels], and from 419 to 799 ms for the 
OFC group [t(11) = 13120.99, p=0.01, 51/64 channels]. This response was long-lasting with no well-
defined peak and had the classical posterior maximum scalp topography and latency of the P3b 
(Figure 4A).

No statistically significant differences between the two groups were found in the time window (i.e., 
380–800 ms, based on CTR and OFC group condition contrasts) of the P3b (positive cluster: p=0.61, 
no significant negative cluster was detected) (Figure 4B). Latency analysis for the P3b did not show 
statistically significant differences between the two groups. No significant differences were found 
between the LPFC and CTR groups in the time window of the P3b (i.e., 380–800 ms) (negative cluster: 
p=0.77) (Figure 4—figure supplement 1).

Local + global deviance response: MMN, P3a, and P3b components
The analysis of the local + global deviance response resulting from the comparison of tones unpre-
dicted at both local and global levels (local + global deviant: xy│xX trials) with tones predicted at 
both levels (control: xx│xX trials) revealed a condition effect for both groups. The CTR group showed 
a deviance response (i.e., two-peak and long-lasting MMN) induced by a deviant tone that is also 
unpredicted by the global rule, as indexed by a negative cluster with a frontal scalp distribution at 
71–186 ms [t(13) = –7229.33, p=0.016, 59/64 channels]. Moreover, the OFC patients showed a similar 
MMN to unpredicted deviant tones at 67–139 ms, which did not reach significance when comparing 
with predicted standard tones [negative cluster: t(11) = –3690.11, p=0.068]. Following the MMN, 
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Figure 3. Local deviance event-related potentials (ERPs). (A) Local deviance response CTR group. To the left are the healthy control participants’ grand 
average ERP waveforms at midline electrodes (from top to bottom: Fz, Cz, and Pz). ERPs from the processing of (standard) tones predicted at both 
levels (control: xx│xX trials) are in blue, and ERPs from the processing of (deviant) tones unpredicted at the local level (local deviant: xy│xY trials) are in 
red. Gray shaded bars indicate times when the electrode was part of a cluster showing significant within-group condition differences. At the bottom, the 
topographic scalp maps represent the statistical difference values for the t-contrast of the two experimental conditions computed for the time window 
corresponding to the cluster with significant differences. (B ) Group differences (CTR vs. OFC). To the right are the CTR and OFC grand average ERP 
waveforms at the same midline electrodes. ERPs from the processing of tones unpredicted at the local level (local deviant: xy│xY trials) are in red for CTR 
and in green for OFC. Orange shaded bars indicate times when the electrode was part of a cluster showing significant differences between the groups. 
At the bottom, the topographic scalp map represents the statistical difference values for the t-contrast of the two groups computed for the time window 
corresponding to the cluster showing differences. MMN and P3a latencies did not show statistically significant differences between groups. Dashed 
lines at −600, –450, −300,–150, and 0 ms depict tone onsets. Shaded areas around the waveforms represent the standard error of the mean (SEM). OFC, 
orbitofrontal cortex.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Predicted standard tone response.

Figure supplement 2. Local deviance response. group differences (CTR vs. LPFC).

https://doi.org/10.7554/eLife.86386
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Figure 4. Global deviance event-related potentials (ERPs). (A) Global deviance response CTR group. To the left are 
the healthy control participants’ grand average ERP waveforms at three midline electrodes (from top to bottom: 
Fz, Cz, and Pz). ERPs from the processing of (standard) tones predicted at both local and global levels (control: 
xx│xX trials) are in blue, and ERPs from the processing of (standard) tones unpredicted only at the global level 
(global deviant: xx│xY trials) are in red. Gray shaded bars indicate times when the electrode was part of a cluster 
showing significant within-group condition differences. At the bottom, the topographic scalp map represents the 
statistical difference values for the t-contrast of the two experimental conditions computed for the time window 
corresponding to the cluster showing significant differences. (B) Group differences (CTR vs. OFC). To the right are 
the CTR and OFC grand average ERP waveforms at the same midline electrodes. ERPs from the processing of 
standard tones unpredicted at the global level (global deviant: xx│xY trials) are in red for the CTR group and green 
for the OFC group. P3b latency did not show statistically significant differences between groups. Dashed lines at 

Figure 4 continued on next page
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a P3 complex (composed of a frontally distributed P3a and a posteriorly distributed P3b response) 
was observed in CTRs, as indexed by a positive cluster extending from around 188–684 ms [t(13) = 
42019.65, p<0.001, 63/64 channels]. A similar P3 complex was found for the OFC patients as indexed 
by a positive cluster from 217 to 710 ms [t(11) = 33590.81, p<0.001, 64/64 channels].

Group-level statistics performed on the MMN time window (i.e., 70–185 ms, based on CTR and 
OFC group condition contrasts) showed a trend-level reduced MMN for OFC patients compared 
to controls in a time window between 81 and 106 ms [positive cluster: t(25) = 588.31, p=0.066, 
34/64 channels]. Group differences in the difference waveforms (i.e., xy│xX minus xx│xX trials) yielded 
similar results [t(25) = –314.64, p=0.068]. Latency analysis showed that the MMN was not significantly 
delayed at midline electrodes [only a trend-level effect at FCz: t(24) = 2.26, p=0.033; and Cz: t(24) 
= 1.78, p=0.088 electrodes, which did not survive the false discovery rate (FDR) correction]. Group-
level statistics in the time window of P3a (i.e., 180–485 ms) revealed an attenuated P3a for OFC 
patients compared to CTR participants in a time window from 184 to 274 ms [negative cluster: t(25) 
= –3730.34, p=0.024, 59/64 channels], and from 329 to 479 ms [positive cluster: t(25) = 3063.91, 
p=0.03, 36/64 channels]. Latency analysis showed that the P3a emerged 60.82 ms later, on average, 
in the OFC compared to the CTR group. The latency difference was significant for all the midline elec-
trodes [Fz: t(24) = 4.91, p<0.001; FCz: t(24) = 4.64, p<0.001; Cz: t(24) = 4.75, p<0.001; CPz: t(24) = 
3.46, p=0.002; Pz: t(24) = 4.34, p<0.001]. Table 1 shows the 50% area latencies for MMN and P3a. No 
statistically significant differences between the two groups were found in the time window of the P3b 
(i.e., 450–710 ms) for both amplitude and latency analysis. Figure 5 illustrates these results.

To provide clarity regarding whether the MMN and P3a group differences revealed by the cluster-
based permutation tests are amplitude differences or outcomes of latency variations, complemen-
tary analysis of the mean amplitudes of the MMN and P3a components was conducted. The MMN 
was defined as the most negative peak in a post-stimulus window of 50–250 ms and the P3a as 
the most positive peak in a post-stimulus window of 150–350 ms. The mean amplitude was calcu-
lated centered  ±40 ms around individual peaks. The independent samples t-tests comparing the 
distinct components mean amplitudes between the two groups for the midline sensors revealed 
amplitude differences for the MMN [AFz (p=0.007), FCz (p=0.051), Cz (p=0.004), CPz (p=0.002), and 
Pz (p<0.001)], but not for the P3a (Supplementary file 1b). Thus, the group differences for the P3a 
elicited by the local + global deviance seem to be a by-product of latency differences.

Group-level statistics performed on the MMN, P3a, and P3b time windows did not show significant 
differences between LPFC patients and controls (MMN, positive cluster: p=0.74; P3a, positive cluster: 
p=0.52; P3b, positive cluster: p=0.46). See Figure 5—figure supplement 1.

A complementary analysis comparing the processing of local deviant with local + global deviant in 
the CTR group showed significant differences in both ERPs’ amplitude, negative cluster at 85–210 ms 
[t(13) = –8021.49, p=0.018] followed by positive cluster at 221–684 ms [t(13) = 35780.80, p<0.001] 
(Figure 5—figure supplement 2A), and latency (Supplementary file 1c). The OFC group analysis 
yielded similar results: a negative cluster at 85–231 ms [t(11) = –7984.18, p=0.014] succeeded by 
a positive cluster at 245–680 ms [t(11) = 18643.85, p<0.001]. Group-level statistics performed on 
the difference waveforms (i.e., local + global minus local deviant) revealed significant or trend-level 
differences in amplitude [positive cluster at 131–161 ms (t(25) = 466.94, p=0.066), negative cluster 
at 186–253 ms (t(25) = –2741.61, p=0.018), and positive cluster at 319–461 ms (t(25) = 1695.83, 
p=0.054)] (Figure 5—figure supplement 2B), and significant differences in latency (Supplementary 
file 1d).

In summary, in both groups, local-level deviant tones produced an early MMN followed by a fron-
tally distributed P3a. Local-level standard tones, which were unpredicted by the global rule, elicited 
only a posterior P3b. Local-level deviant tones in sequences unpredicted by the global rule produced 
a long-lasting MMN, followed by a P3 complex (frontal P3a and posterior P3b). In OFC patients, 
ERPs elicited by local-level standard tones, both predicted and unpredicted by the global rule, were 

−600, –450, −300, –150, and 0 ms depict tone onsets. Shaded areas around the waveforms represent the standard 
error of the mean (SEM). OFC, orbitofrontal cortex.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Global deviance response. group differences (CTR vs. LPFC).

Figure 4 continued

https://doi.org/10.7554/eLife.86386
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Figure 5. Local + global deviance event-related potentials (ERPs). (A) Local + global deviance response CTR group. To the left are the healthy control 
participants’ grand average ERP waveforms at midline electrodes (from top to bottom: Fz, Cz, and Pz). ERPs from the processing of (standard) tones 
predicted at both local and global levels (control: xx│xX trials) are in blue, and ERPs from the processing of (deviant) tones unpredicted at both levels 
(local + global deviant: xy│xX trials) are in red. Gray shaded bars indicate times when the electrode was part of a cluster showing significant within-group 
condition differences. At the bottom, the topographic scalp maps reflect the statistical difference values for the t-contrast of the two experimental 
conditions computed for the time window corresponding to the cluster with significant differences. (B) Group differences (CTR vs. OFC). To the right are 

Figure 5 continued on next page
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unaffected compared to healthy controls. However, patients showed an attenuated MMN to local-
level deviant tones, as well as attenuated MMN and delayed P3a to local + global-level deviant tones, 
while the P3b was unaffected. The LPFC group did not differ from the healthy controls on any ERP 
measures.

Discussion
We aimed to delineate the involvement of the OFC in detecting violations of predictions (i.e., PE) at 
the two hierarchical levels of the local–global paradigm. To this end, we studied the neurophysiolog-
ical markers of auditory deviance processing in patients with focal OFC lesions and healthy controls 
while occasionally violating their predictions at a local (i.e., between tones within sequences) and at 
a global (i.e., between sequences) timescale. By attending to tone sequences and counting any rare 
sequences, we expected that participants would extract the global rule that characterized deviant 
sequences. The reported counts suggest that patients accomplished the counting properly despite 
their brain damage. Moreover, their general intellectual ability and scores on standardized neuropsy-
chological tests did not differ significantly from the control group and were well within the normal range 
compared to normative data. This indicates that they did not have deficits in the types of learning, 
memory, psychomotor speed, and cognitive executive functioning tested (see Table 3). However, the 
ERP findings showed that processing of auditory stimuli that violated predictions at the local level was 
affected by the OFC lesion. OFC lesions also impacted processing of stimuli that violated predictions 
at both the local and global levels. On the other hand, processing of predicted stimuli at the local 
level (i.e., standard tones), even when these were unpredicted by the global rule, was preserved. 
Comparable effects were absent in patients with lesions restricted to the LPFC, which lends a degree 
of anatomical specificity to the altered predictive processing resulting from OFC lesions. These find-
ings indicate that the OFC plays a role in the detection of local and local + global auditory PEs, thus 
providing a novel perspective on the involvement of this region in predictive processing.

OFC lesions affect the processing of local-level deviants
At the local level (xy│xY), deviant auditory stimuli generated a low-level PE response indexed by two 
successive ERP components within an early 70–310 ms window, an MMN followed by a P3a. The 
ERP responses were comparable to those reported in previous studies using a similar experimental 
design (Chennu et al., 2016; Chennu et al., 2013; Doricchi et al., 2021; Wacongne et al., 2011; 
Bekinschtein et al., 2009). These studies have traditionally interpreted the short-term (i.e., local level) 
MMN as a bottom-up PE signal, which indexes the amount of information in each deviant event that 
is not explained away by top-down prediction signals. The P3a, which is sensitive to the local status 
of the deviant tone, has also been reported in previous scalp- (Chennu et al., 2016, Doricchi et al., 
2021, Kompus et al., 2020, Bekinschtein et al., 2009) and intracranial (El Karoui et al., 2015) EEG 
studies. It has been associated with the orienting of attention towards the unexpected local deviant 
stimulus, or the evaluation of its contextual novelty, that is, how novel the tone is when considered in 
a global context (Escera and Corral, 2007). The OFC patients had ERPs with similar morphology and 
scalp distribution as the controls, but the MMN amplitude was significantly attenuated. This damp-
ening of the MMN elicited by local-level deviants shows for the first time that the OFC is involved in 
low-level sensory processing of prediction violation.

the CTR and OFC grand average ERP waveforms at the same midline electrodes. ERPs from the processing of (deviant) tones unpredicted at both local 
and global level (local + global deviant: xy│xX trials) are in red for CTR and in green for OFC. Orange shaded bars indicate times when the electrode 
was part of a cluster showing significant differences between the groups. Vertical red lines indicate the 50% area latency for the CTR group while vertical 
green lines indicate the latency for the OFC group for the corresponding components (i.e., MMN and P3a). Asterisks (*) denote significant latency 
differences. At the bottom, the topographic scalp maps represent the statistical difference values for the t-contrast of the two groups computed for 
the time window corresponding to the cluster with observed differences. Dashed lines at −600, –450, −300, –150, and 0 ms depict tone onsets. Shaded 
areas around the waveforms represent the standard error of the mean (SEM). OFC,orbitofrontal cortex; MMN, mismatch negativity.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Local + global deviance response. group differences (CTR vs. LPFC).

Figure supplement 2. Local versus local + global deviance event-related potentials (ERPs).

Figure 5 continued
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OFC lesions affect the processing of local- and global-level deviants
Most studies using the local–global paradigm tested the global violation by pooling over all rare 
sequences of tones (i.e., xx | xY and xy | xX trials), which, as per our assumptions, contains two different 
types of PE signals. We split this classical global condition into local + global and global deviance (see 
‘Materials and methods’). The former requires detection of a deviant following a sequence of four 
identical tones (i.e., low-level PE) and concurrently identifying this rare sequence as a global deviant 
(i.e., high-level PE). The latter requires detection of a rare sequence of five identical tones as a global 
deviant (i.e., only high-level PE). The detection of local + global deviance evoked patterns of brain 
activity comprised of a ‘two-peak’ and long-lasting MMN (70–185 ms) followed by a sustained positive 
polarity ERP, consisting of a frontally distributed P3a and a posteriorly distributed P3b response. The 
‘two-peak’ appearance of the MMN, which was not present in response to the local deviance, may 
suggest overlapping of an ‘early MMN’ with a succeeding N2b component. The N2b has been associ-
ated with voluntary attention (Näätänen et al., 1978), contrary to the ‘early MMN,’ which is thought 
to reflect automatic and short-term processing of novelty (Pegado et al., 2010). In our study, the 
‘early MMN’ would reflect accumulation of evidence based on short-lived echoic memory representa-
tion or, in predictive coding terms, an automatic, low-level PE response. On the other hand, the N2b, 
along with P3a, may indicate a stronger influence of voluntary attentional resources engaged in the 
local + global deviance processing (i.e., low- and high-level PE), where an accumulation of evidence 
on longer timescales is required.

Previous research showed that auditory sequences containing infrequent pitch deviations elicited 
both the MMN and P3 when participants were instructed to focus their attention on the local rule (i.e., 
deviant tones). However, when participants were asked to attend to the global rule (i.e., the deviant 
sequences as a whole), the MMN was no longer elicited, while the P3 was maintained (Sussman, 
2007). In the current study, participants were instructed to attend to the global rule, but the MMN 
was still evoked, and interestingly both the MMN and the P3a exhibited larger amplitudes and longer 
durations compared to those elicited by a local level violation (see Figure 5—figure supplement 2). 
In predictive coding terms, this response can be explained by positing a high-level prediction partially 
explaining away the low-level PE for the local level violation. This effect is consistent with previous 
studies (Wacongne et al., 2011; Kompus et al., 2020). indicating that violation of not only local 
but also global regularity is reflected in the MMN response. However, it stands in contrast to earlier 
studies suggesting that high-level violations are indexed uniquely by P3 responses (Chennu et al., 
2013; Wacongne et al., 2011; Bekinschtein et al., 2009; Cornella et al., 2012; Strauss et al., 2015). 
This finding refines earlier results by showing that local and global effects are not entirely independent 
but rather interact within an early time window. Consequently, low- and high-level PEs are dependent 
on- and interact with each other, providing support not only for a hierarchical model, but also for a 
predictive rather than a feedforward one.

The OFC patients showed the same pattern of ERP responses as the healthy controls, but the 
MMN amplitude was attenuated, while the latency of P3a was prolonged by ≈ 60 ms. Consequently, 
the OFC lesions affect not only the neural responses elicited by the local-level violation, but also 
the responses elicited by violations which are unpredicted at the global level, and therefore require 
integration of information over longer timescales and at a higher level of abstraction. To our knowl-
edge, only one previous study has reported reduced P3a amplitudes in OFC patients performing an 
auditory novelty oddball task (Løvstad et al., 2012) and no studies have reported latency effects. A 
larger number of studies have found reduced MMN to local-level auditory deviants after damage to 
the dlPFC, (Alho et al., 1994; Alain et al., 1998) while P3 reduction has been found in LPFC patients, 
indicating a deficit in the orienting response to unexpected and novel stimuli (Knight, 1984; Daffner 
et al., 2000; Daffner et al., 2003).

Preserved processing of global-level deviants
The detection of global deviance elicited a late posterior P3b and no earlier ERP responses. Another 
study using the same paradigm demonstrated only P3b-like responses elicited by sequences of five 
identical tones unpredicted by the global rule (Wacongne et al., 2011). A sequence of five identical 
tones eliciting a novelty signal when participants expected a different sequence was seen by the 
authors as suggestive that the brain operates as a multilevel predictive system with P3b reflecting 
a high-level PE. Although we expected that OFC lesions would affect the P3b as well, our results 
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showed unaffected P3b responses for both global and local  + global deviance detection. One 
possible explanation is that P3b is elicited by target detection and not deviance detection per se, that 
is, specifically linked to the detection of events that are salient or important to the current goal and 
memory-related processes (Polich, 2007; Polich and Criado, 2006; Walentowska et al., 2016). Note 
that as participants were instructed to count the total number of global deviations, these violations 
(i.e., xx│xY and xy│xX) were also the targets in the present study. Indeed, in oddball tasks, targets, but 
not other deviants, elicit large amplitude P3b responses associated with voluntary detection of infre-
quent and task-relevant stimuli (Soltani and Knight, 2000). Interestingly, when the same paradigm 
was used in patients suffering from disorders of consciousness, the P3 response to global novelty was 
only observed in patients who showed signs of consciousness (Bekinschtein et al., 2009; Faugeras 
et al., 2012; Faugeras et al., 2011). The P3b response in this task could thus reflect downstream 
processes related to conscious access per se (Sergent and Naccache, 2012; Aru et al., 2012) and 
not a high-level deviance detection signal. Moreover, lesions in the lPFC (Knight, 1984; Knight and 
Scabini, 1998; Løvstad et al., 2012) and the OFC (Løvstad et al., 2012) have been found to reduce 
the amplitude of the P3a but not the P3b, supporting normal target detection and suggesting that the 
OFC is not critical for P3b generation. Besides P3 potentials, early PE responses (60–220 ms) to global 
unexpected sequences have been observed using sequences of tones in scale (Volehaugen, 2021). 
Here, the response to global deviance (i.e., sequence of repetitive tones) is attenuated, and therefore, 
early effects of top-down prediction modulations might not be observable.

Lack of findings in the LPFC lesion group
Intracranial studies examining local- and global-level PE detection have pointed to the role of the 
inferior frontal gyrus (IFG) as a frontal source supporting top-down predictions in MMN generation 
(Phillips et al., 2016; Nourski et al., 2018; Dürschmid et al., 2016; Rosburg et al., 2005). Responses 
to global deviants but not local deviants (i.e., no MMN) have been observed in the LPFC, but not the 
IFG (El Karoui et al., 2015). Additionally, studies employing dynamic causal modeling of MMN have 
frequently modeled frontal sources encompassing the IFG (Garrido et  al., 2009a; Phillips et  al., 
2015). A review study highlighted the potential contributions of both IFG and middle frontal gyrus 
to MMN generation, suggesting that the specific source might vary depending on deviant character-
istics, such as pitch or duration (Deouell, 2007). Based on these findings, which implicate the LPFC 
in predictive processing and the generation of MMN, we expected to find altered neural responses 
following LPFC lesions. In an early LPFC lesion study (Alho et al., 1994), diminished MMN to local-
level deviants was reported, with the lesion cohort exhibiting a hemisphere ratio of 7/3 for left and 
right hemispheres, which is different from our cohort’s ratio of 4/6. Furthermore, all individuals in that 
study had infarcts in the middle cerebral artery, resulting in a more uniform lesion location compared 
to our cohort. Notably, the lesions observed in our LPFC group appeared to be situated in more supe-
rior brain regions and toward the MFG compared to the predominantly reported involvement of the 
IFG in previous studies. Another factor that might contribute to no effects is the heterogeneity of the 
lesions in our LPFC group (see Figure 1—figure supplements 1–4). Especially for the left hemisphere 
cohort, the individual lesions did not share a consistent anatomical location. The right hemisphere 
cohort showed a higher degree of lesion overlap, but overall, the lesions were not centered in the IFG 
area, with the highest overlap being in the MFG area. This variation in lesion location could potentially 
explain the lack of effects observed in the present study.

OFC and hierarchical predictive processing
In the context of predictive coding, the MMN is explained in terms of perceptual learning under hier-
archical generative models of auditory input (Friston, 2005; Baldeweg, 2006). MMN is viewed as a 
cortical driven PE signal, which can only be accounted for by postulating a top-down predictive contri-
bution (Friston, 2005; Garrido et al., 2009a; Garrido et al., 2007; Parmentier et al., 2011; Winkler, 
2007). Numerous studies have identified MMN generators in both the superior temporal planes and 
the PFC, (Opitz et al., 2002; Doeller et al., 2003; Liebenthal et al., 2003; Molholm et al., 2005; 
Shalgi and Deouell, 2007; Deouell, 2007; Jemel et  al., 2002), suggesting that it emerges from 
the deviant-induced suspension of neural adaptation within the primary auditory cortices, coupled 
with changes in temporo-frontal connections (Garrido et al., 2008; Garrido et al., 2009a; Phillips 
et al., 2015; Phillips et al., 2016; Garrido et al., 2009c). This perspective on the MMN supports the 
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existence of a hierarchy of internal models, wherein predictions are transmitted in a top-down manner 
to lower sensory areas. Within this framework, the observed changes in MMN responses following 
OFC damage show the role of this brain region in the neural circuitry underlying MMN generation 
and its contribution to the top-down process that modulates the deviance detection system in lower 
sensory areas. Specifically, the reduction in MMN amplitude in response to local prediction violations 
implicates a lesion-induced effect on sensory predictive signaling, possibly stemming from weaker 
formation of top-down predictions at the local level, that is, the weaker the prediction the lesser the 
mismatch reflected in the MMN response. Furthermore, the OFC lesion-related modulations extended 
to the processing of global regularities, as evidenced by the reduced MMN response accompanied 
by the delayed P3a response to violations involving both local and global predictions. The influence 
on ERPs indexing detection and attention to global-level violations might reflect a disturbance in the 
recurrent interactions between cortical regions (i.e., temporo-frontal connections), leading to weak-
ened predictions in OFC patients. It could possibly reflect a reduced connection between PEs at lower 
hierarchical areas and predictions at higher areas.

An alternative interpretation is that the MMN solely reflects a passive, bottom-up process of adap-
tation to repeated stimuli (i.e., stimulus-specific adaptation; SSA), and this adaptation, rather than 
predictive processing, could be altered in OFC patients (Auksztulewicz and Friston, 2016; Todorovic 
and de Lange, 2012; Carbajal and Malmierca, 2018; Garrido et al., 2009b). How could adaptation 
and predictive accounts be distinguished? Findings from animal models indicate that both SSA and PE 
signals contribute to the generation of MMN with responses to deviant (non-repeated) and standard 
(repeated) tones reflecting active predictive activity and not simply SSA in single neurons. Specifically, 
this predictive activity followed a hierarchical pattern that extended from subcortical structures to 
the auditory cortex (Parras et al., 2017). However, while mismatch responses in the auditory areas 
were mainly induced by stimulus-dependent effects (e.g., SSA), auditory responsiveness in the PFC 
was driven by unpredictability, yielding context-dependent, comparatively delayed, more robust and 
longer-lasting mismatch responses mostly consisting of PE signaling activity (Casado-Román et al., 
2020). Taking into consideration the anatomical distribution of SSA effects and the fact that in the 
present study the ERPs to standard tones were unaffected after OFC lesion, we suggest that SSA is 
intact and a specific disturbance in predictive processing is present in OFC patients. Note that OFC 
patients had a diminished MMN, but not an absolute absence of it, also pointing to a preserved SSA 
mechanism.

Temporal information derived from scalp- and intracranial ERP data provides valuable insights into 
the nature of the P3a and its role in predictive processing. P3a, typically considered a late stage of 
novelty processing, is intricately linked to the evaluation of the involuntary orienting response (Escera 
et al., 2000; Escera et al., 2001; Friedman et al., 2001). The component is also elicited when the 
novel stimulus is potentially task-relevant (Schomaker and Meeter, 2014a) and strongly dependent 
on the context in which it is presented (Schomaker et al., 2014b). Interestingly, the P3a has been 
source localized to the same anterior cingulate and PFC network that is involved in error processing 
(Wessel et al., 2012; Wessel et al., 2014). This is indicative that responses to novelty actually reflect 
PEs, which may result in a brain response that generates the P3a (Schomaker et al., 2014c). In terms 
of hierarchical predictive processing, the MMN traditionally signifies the local short-term deviance 
in a sequence of stimuli and the release of a PE signal. This signal contributes to the formation of 
global long-term predictions, which deal with the detection of local deviants across the entire pool of 
sequences, with the P3a indexing the PE signal. In the present study, the P3a was elicited in response 
to local regularity violation, where low-level perceptual expectation was violated, and in response 
to combined local and global regularity violation, where both perceptual and high-level conceptual 
expectations were violated, with the former being larger in amplitude and lasting longer. The more 
pronounced and later P3a response elicited by the joint violation of both expectations reflects a more 
global and integrative predictive system, which appears to be organized in several stages (Winkler 
et al., 2005) The observed delay in the P3a following OFC damage indicates the OFC’s role in a later 
stage of predictive processing, which is based on global long-term predictions, thereby giving rise to 
high-level PEs. The latency of the P3 wave usually increases with increases in perceptual processing 
demands (Johnson, 1986) and yields a discrete measure of cognitive processing speed (Duncan-
Johnson and Kopell, 1981). Moreover, latency change is generally considered a more reliable indi-
cator of disturbed cognitive functioning than amplitude change, the former being more difficult to 
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modify with changes in attention (Picton, 1992; Picton et al., 1992). Therefore, we posit that the 
alteration of P3a may result from a delay in detecting and processing violations of prediction (i.e., PE) 
at a higher level of abstraction. Overall, the alterations observed in the electrophysiological signatures 
of PE signals (i.e., MMN and P3a) following OFC lesions suggest that the OFC supports a mechanism 
that maintains an internal representational model (i.e., a predictive code) of the external environment 
with the final aim of predicting events.

Although experimental evidence, reinterpreted with predictive coding, suggests PFC contribution 
to a top-down modulation of auditory deviance detection in primary auditory cortices (Opitz et al., 
2002; Doeller et al., 2003), the role of the OFC in this process is rarely studied in humans. Our EEG 
findings are consistent with an intracranial EEG study in monkeys, (Chao et al., 2018), which reported 
the encoding of high-level PE and prediction update signals within the frontopolar PFC (BA 10) and 
the dlPFC. The ventrolateral PFC (BAs 44, 45, 47) is also implicated in the processing of complex 
auditory sequences (Wilson et al., 2017) and sequence-order PEs (Wilson et al., 2015), with studies 
employing the local–global paradigm showing high-level PEs confined to the ventrolateral PFC (Uhrig 
et al., 2014; Wang et al., 2015). Interestingly, some of the same brain areas (i.e., BAs 10, 47, 45) were 
damaged in our OFC cohort. Moreover, PET imaging revealed increased activity modulation in the 
OFC (i.e., BAs 11 and 13) in response to stimuli that deviated from expectation (Petrides et al., 2002) 
while a single-neuron study revealed selective responsiveness of neurons in BA 11 of macaques to 
novel but not familiar stimuli (Rolls et al., 2005). BA 11 within the OFC is proposed to capture novel 
information relative to current experience and expectations and to integrate this information to the 
higher cognitive processing occurring in the LPFC (Petrides, 2007).

The OFC is unique among areas in the PFC, connecting with all five sensory modalities and relevant 
memory and decision-making areas such as the hippocampus and striatum (Du et al., 2020). It might 
therefore be in a privileged position to generate predictions based on contextual and temporal struc-
ture in the environment, allowing quick adaptation to new rules (Stalnaker et al., 2015; Wilson et al., 
2014). Moreover, studies on time perception (Solbakk et al., 2021; Berlin et al., 2004) support the 
importance of an intact OFC in maintaining temporal information needed to sustain a stable map of 
task context for longer periods, ultimately optimizing predictions (Schuck et al., 2016; Schuck et al., 
2018). Our findings align with these reports, highlighting the OFC’s role in maintaining internal repre-
sentations of auditory sequences and generating robust PE signals when deviations occur.

Limitations and future directions
There are special challenges in interpreting ERP findings in brain lesion populations (e.g., Kutas et al., 
2012; Jaeger and Parente, 2008). Structural brain pathology linked to post-lesion changes in neural 
tissue and anatomy can introduce variations in electrical activity conduction and alter current flow 
patterns (Jaeger and Parente, 2008; Løvstad and Cawley, 2011; Voytek et al., 2010). To conclude 
that ERP differences between patient and control groups reflect functional disturbance in particular 
cognitive processes, and not primarily effects of structural brain damage, it is useful to demonstrate 
that they are specific to certain ERP components/stages of information processing and task condi-
tions (Kutas et al., 2012; Swaab, 1998). The altered ERP responses in the present study were limited 
to specific task conditions and did not manifest uniformly across all data. This condition-dependent 
pattern suggests that the observed group differences are related to the specific cognitive processes 
engaged during those task conditions, rather than being a global artifact of volume conduction. 
Additionally, the latency differences in scalp potentials observed particularly during the processing 
of local + global prediction violation further support the notion that these variations reflect genuine 
differences in cognitive processing (Hämäläinen et al., 1993).

Another constraint of our study is the heterogeneity of the LPFC lesion control group, character-
ized by diverse lesion locations and sizes along the anterior-posterior axis of the LPFC, which could 
obscure specific functional correlations when compared to the relatively more homogeneous OFC 
lesion group. Nonetheless, the LPFC group is valuable as it acts as a broader control for assessing 
the general effects of frontal brain damage, and by contrasting the LPFC group’s effects with those 
of the OFC group, we gain insight into the anatomical specificity of the cognitive processes affected. 
An additional challenge with focal lesion studies is to establish large patient cohorts. The group size 
of our study, which is relatively large compared to other studies of focal PFC lesions, does not allow 
us to perform exploratory lesion-symptom mapping analyses. A larger patient sample is required to 
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draw conclusions about specific OFC subregions' critical roles in PE detection and allow statistical 
approaches to lesion sub-classification and brain-behavior analysis (e.g., voxel-based lesion-symptom 
mapping; Bates et al., 2003; Lorca-Puls et al., 2018). Moreover, the moderate sample size in this 
study may result in inadequate statistical power to detect effects of OFC lesions in the behavioral 
performance (i.e., counting of global deviants) despite the altered neurophysiological responses. An 
effect of lesions on behavioral performance would have strengthened the claim of altered high-level 
predictive processing. Future studies exploring behavioral nuances of the paradigm, for example, 
measuring reaction times for correct deviant detection, might uncover lesion effects in participants’ 
deviant detection performance.

Materials and methods
Participants
In total, 12 patients with lesions in the OFC and 14 healthy control participants (CTR) were enrolled in 
the experiment. We also included a lesion control group, which consisted of 10 patients with unilateral 
lesions to the LPFC; four in the left and six in the right hemisphere (see Figure 1—figure supplements 
2 and 3 for LPFC lesion reconstructions). Among the OFC group, 10 had bilateral damage and 2 had 
unilateral damage. All patients were in the chronic phase of recovery, that is, at least 2 years’ post-
tumor resection or trauma. Details about the OFC lesions are provided in Table 2 and Figure 1—figure 
supplement 1, while details about the LPFC lesions are available in Figure 1—figure supplement 
4 and Supplementary file 1e. CTRs were recruited by advertisement and personal contact, whereas 
patients were recruited through the Department of Neurosurgery at Oslo University Hospital. Inclu-
sion of patients was based on the presence of focal frontal lobe lesions as indicated on pre-existing 
structural CT and/or MRI scans.

The two study groups did not differ significantly regarding sex, age, or years of education. IQ was 
estimated based on the Verbal Comprehension and Matrices subtests of the Wechsler Abbreviated 
Scale of Intelligence (WASI) (Wechsler, 1999). The Digit Span test from the Wechsler Adult Intelli-
gence Scale Third Edition (WAIS-III) (Wechsler and Psychological Corporation, 1997) was included 
as a measure of auditory memory span and WM. Verbal learning and memory were assessed with 
the California Verbal Learning Test Second Edition (CVLT-II) (Delis et al., 2000). Two tests from the 
Delis-Kaplan Executive Function System (D-KEFS) (Delis, 2001) were included: the Trail Making Test 

Table 2. Characteristics of lesions to the orbitofrontal cortex (OFC).

Etiology Lesion size (cm3) BA (left hemisphere) BA (right hemisphere)

OFC Total L R

1 Olfactory meningioma 43.0 23.2 19.8 10, 11 10, 11

2 Traumatic brain injury 24.9 6.4 18.5 11 10, 11, 47

3 Traumatic brain injury 157.4 59.8 97.6 8–11, 32, 45–48 6, 8–11, 24, 32, 44–48

4 Olfactory meningioma 117.9 56.4 61.5 9–11, 32, 46, 47 10, 11, 32, 45–47

5 Olfactory meningioma 6.6 3.2 3.4 11 11

6 Olfactory meningioma 8.6 3.1 5.4 11 10, 11

7 Olfactory meningioma 8.8 1.3 7.5 11 11, 47

8 Olfactory meningioma 3.7 3.7 0 10, 11 _

9 Olfactory meningioma 85.7 55.1 30.6 9–11, 25, 32, 46, 47 10, 11, 47

10 Olfactory meningioma 109.0 48.8 60.3 10, 11, 32, 46, 47 9–11, 32, 45–47

11 Low-grade glioma 6.4 0 6.4 _ 10, 11

12 Olfactory meningioma 32.6 10.1 22.5 11 10, 11, 25

Etiology, size (L, left; and R, right hemisphere), and affected Brodmann areas (BA) for each hemisphere. The sign 
‘_’ is used when no lesion was present in a given hemisphere. Lesions that comprise <0.2 cm3 in any given BA are 
not reported.
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(TMT), which involves visual scanning, processing speed, and WM, and the Color-Word Interference 
Test (CWIT), which measures processing speed, inhibition of cognitive interference (i.e., the classical 
Stroop effect), and mental switching. Group means and statistical comparisons on neuropsychological 
test measures are reported in Table 3. The OFC group did not differ significantly from controls on any 
of the neuropsychological measures. The lesion control group (i.e., LPFC) also did not differ signifi-
cantly from the control group regarding sex, age, years of education, or any of the neuropsychological 
measures (Supplementary file 1f).

All participants gave written informed consent before participating in the study. Healthy controls 
received 400 NOK (approximately 50 USD) for participation in the entire research project (neuropsy-
chological assessment, EEG recording, and MRI scanning). Patients participated in conjunction with 
clinical follow-ups at the hospital’s outpatient clinic. Their travel and accommodation expenses were 
covered. The study design and protocol were approved by the Regional Committees for Medical and 

Table 3. Demographics and neuropsychological performance measures per group.

Demographics CTR SD OFC SD F-value p-value Stat.

N 14 12

Gender (females: males) 8:6 8:4

Age years (range) 47.6 (34–66) 10.3 47.9 (27–61) 11.7 0.002 0.96 ns

Education years (range) 16.1 (13-21) 2.0 15 (9–21) 3.1 1.30 0.27 ns

Neuropsychological tests

Total IQ 115.4 10.3 112.2 8.5 0.73 0.40 ns

Digit Span total 14.8 2.9 15 3.8 0.013 0.91 ns

 � Digit Span – forward 8.5 1.5 8.8 2.1 0.09 0.77 ns

 � Digit Span – backward 6.3 1.8 6.3 2.2 0.005 0.94 ns

Trail Making Test (TMT) U-value

 � TMT 2 – number 
sequencing

30.6 10.1 33.8 14.6 92.00 0.71 ns

 � TMT 3 – letter 
sequencing

27.9 10.5 30.3 9.9 97.50 0.49 ns

 � TMT 4 – number-letter 
switching

73.8 27.1 72.9 35.4 72.00 0.56 ns

Color-Word Interference 
Test (CWIT)

 � CWIT 1 – color naming 31.2 6.1 30.3 4.4 75.00 0.89 ns

 � CWIT 2 – word reading 22.4 3.3 22.1 3.7 69.00 0.65 ns

 � CWIT 3 – inhibition 52.0 9.0 52.3 11.0 76.50 0.94 ns

 � CWIT 4 – inhibition/
switching

58.2 11.9 60.8 18.3 74.50 0.85 ns

California Verbal Learning 
Test (CVLT-II)

 � Total learning trial 1–5 57.7 12.4 51.6 8.5 49.50 0.12 ns

 � Short-term free recall 15.2 1.2 14.8 1.4 66.50 0.54 ns

 � Long-term free recall 13.7 2.6 13.1 2.2 66.00 0.54 ns

Comparison of the age, years of education, IQ, and Digit Span Test between the two groups (one-way ANOVA). 
Comparison of the non-normally distributed raw test scores, Trail Making Test (TMT), Color-Word Interference 
Test (CWIT) and the California Verbal Learning Test 2nd Edition (CVLT-II) between the two groups (non-parametric 
independent samples Mann–Whitney U-test). Values given are means, with standard deviation (SD).
CTR, healthy control group; OFC, group with lesion to the orbitofrontal cortex; ns, the statistical test was not 
significant.
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Health Research Ethics, South-East Norway, as part of a larger study. The study was conducted in 
accordance with the principles stated in the Declaration of Helsinki.

Lesion mapping
Lesion mappings were based on structural MRI scans obtained after study inclusion and verified by 
the neurologist and the neurosurgeon in the research group (RTK and TRM). Lesions were manually 
outlined on fluid-attenuated inversion recovery (FLAIR) sequence images (1 × 1 × 1 mm3 resolution) 
for each participant’s brain using MRIcron2 (https://www.mccauslandcenter.sc.edu/mricro/mricron/). 
High-resolution T1-weighted images were used to help determine the borders of the lesions when 
required. Each participant’s brain was extracted from the T1 image using the FSL Bet algorithm (FSL3) 
and then normalized to the Montreal Neurological Institute MNI-152 template space using the Statis-
tical Parametric Mapping software (SPM12: https://www.fil.ion.ucl.ac.uk/spm/) unified segmentation 
and normalization procedures, while including the drawn lesions as masks. In addition, the transforma-
tion matrix was applied to the individual participant’s FLAIR and lesion mask images. Figure 1 depicts 
the aggregate lesion reconstructions for the OFC group and the average percentage of damaged 
tissue within each Brodmann area (BA) per hemisphere (see Figure 1—figure supplement 1 for indi-
vidual lesion reconstructions).

The local–global paradigm and procedures
Two tones composed of three sinusoidal tones (tone A: 440, 880, and 1760 Hz; tone B: 622, 1244, 
and 2488 Hz) were synthesized. Each tone was 50 ms long, with 7 ms rise and fall times. Sequences of 
four or five such tones were delivered with a fixed stimulus onset asynchrony (SOA) of 150 ms. Each 
sequence’s SOA was randomly drawn from a uniform distribution between 1350 and 1650 ms. Three 
different types of sequences were presented: (i) sequences comprised by five identical tones AAAAA 
or BBBBB (jointly denoted by xx), (ii) sequences comprised by four identical tones and a fifth different 
tone AAAAB or BBBBA (jointly denoted by xy), or (iii) sequences comprised by four identical tones 
AAAA_ or BBBB_ (jointly denoted by xo). Two block types were defined in the present set of analyses: 
regular (xX) and irregular (xY). Each block of trials started with the repetition of 20 identical sequences 
of tones to establish the block’s global rule, followed by 100 test trials. Block xX: 75% xx sequences 
referred to as xx│xX trials and 12,5% xy sequences referred to as xy│xX trials. Block xY: 75% xy 
sequences referred to as xy│xY trials and 12,5% xx sequences referred to as xx│xY trials. 12.5% of 
xo sequences were included in Block xX and Xy (see Figure 2B).

The experiment included two experimental sessions with 12 blocks in total (six blocks of trials in 
each session, and each block type was presented twice where tones A and B were swapped, making 
a total of 1440 trials). The experimental blocks (of ~3 min duration each) were randomized across 
sessions and participants, except that the first block of each session was always Block xX. The para-
digm enables the statistical contrast of trials that have the same physical stimulus properties but differ 
in their stimulus transition probabilities and therefore in their predictability. The task does not entail 
any symbolic reward and no performance feedback is provided. Sound presentation was controlled 
with MATLAB (R2018a, MathWorks Inc, Natick, MA), using the Psychophysics Toolbox version 3 
(Kleiner et al., 2007).

Participants were seated comfortably in a Faraday-shielded room in front of an LCD monitor with a 
60 Hz refresh rate placed at a distance of ~70 cm from the participant while presented with auditory 
stimuli. Stimuli were delivered through speakers on the side of the screen at a comfortable volume. 
Participants were instructed to attend to the auditory stimuli and count any rare/uncommon sequences. 
At the end of each block, participants reported this count in a data sheet before continuing the exper-
iment. Hence, we expected participants to attend to and extract the global rule that characterized 
deviant sequences.

EEG acquisition and preprocessing
EEG was recorded at a 1024  Hz sampling rate using a 64-channel Active Two system (BioSemi, 
Amsterdam, Netherlands) with active electrodes placed in accordance with the International 10–20 
system (Chatrian et al., 1985). In addition, six external electrodes were used, including two elec-
trodes placed above and below the right eye and two placed at the right and left outer canthus 
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(vertical and horizontal EOG channels, respectively). The last two electrodes were placed on the right 
and left earlobes for offline re-referencing.

We used the FieldTrip toolbox (Oostenveld et al., 2011) for MATLAB (R2018a, MathWorks Inc) 
for offline EEG data processing. EEG data were re-referenced to averaged earlobes, and the linear 
trend was subtracted. The continuous EEG data were then high-pass filtered back and forward (zero-
phase) with an infinite impulse-response (IIR) Butterworth filter (order: 3), half-amplitude cutoff at 
0.01 Hz. Spectral interference by power line noise was ameliorated by using the method of spec-
trum interpolation (Leske and Dalal, 2019), targeting the line noise frequency (50 Hz) and its first 
four harmonics. The continuous data were visually inspected, and noise-contaminated channels and 
segments were identified (e.g., large muscle artifacts). The sample information of the noisy segments 
was saved for later rejection of epochs overlapping with these segments. Bad channels were removed 
before running an independent component analysis (ICA). The ICA was used to identify and then 
manually remove blinks and horizontal eye movements (ocular components) in the non-epoched data. 
Rejected channels were subsequently interpolated from the neighboring electrodes using spherical 
spline interpolation (Perrin et al., 1989).

To ensure the validity of the neural data analysis, potential sources of bias were assessed between 
the healthy control participants and the OFC lesion group. Specifically, no significant differences were 
observed between the two groups in terms of the number of noisy channels, the number of clean trials 
(i.e., trials remaining after removing the noisy segments from the data), or the number of blinks across 
the task blocks and the experimental conditions (see Supplementary file 1g).

Data analysis
Behavioral analysis
Behavioral data were collected in the form of a written report of the number of rare/uncommon 
sequences of tones detected (i.e., global deviants) per block. For each participant, we computed and 
reported the average percentage of errors over blocks, which is the deviation (positive or negative) 
relative to the actual number of presented global deviants.

Statistical analysis of ERPs
The preprocessed data were segmented into epochs of –2400 ms to 1800 ms relative to the onset 
of the last tone presentation and used for further analyses. Epochs in the habituation phase (i.e., first 
20 trials) of all blocks were excluded from further analysis. ERPs were calculated by averaging the 
stimulus-locked epochs for each condition. Prior to averaging, epochs were downsampled to 512 Hz 
and baseline corrected relative to the mean activity –600 to –150 ms before the onset of the last tone.

To investigate deviance processing, we hypothesized an internal model with two hierarchical levels 
forming predictions and generating PEs that interact within and across levels – based on the hierar-
chical predictive coding model of local and global novelty proposed by Chao et al., 2018. In accor-
dance with the predictive coding theory, on control (xx│xX) trials, the fifth tone ‘x’ is predicted by a 
low-level prediction, and thus no PE should be elicited. In contrast, on local deviant (xy│xY) trials, 
enhanced low-level PEs arise because the last tone ‘y’ violates the transition probability established 
by the prior sequence of xxxx. High-level predictions anticipate these local violations, and thus high-
level PEs are not expected to be elicited. On global deviant (xx│xY) trials, presumably only high-level 
PEs occur, caused by the unpredicted absence of tone ‘y’, or more precisely, the absence of low-level 
PEs is unpredicted by the high level. Finally, on local + global deviant (xy│xX) trials, PEs arise at a low 
level of processing since the expected tone ‘x’ is replaced by the tone ‘y’. In addition, these PEs, not 
anticipated by the global rule, activate a higher hierarchical level and elicit high-level PEs.

EEG-derived ERPs for the four conditions of interest (i.e., control, local deviant, global deviant, 
and local + global deviant) were separately averaged to assess the neuronal markers of deviance 
processing. Furthermore, we evaluated three main condition contrasts. By contrasting control (xx│xX) 
and local deviant (xy│xY) trials, we isolated the local deviance or low-level PE response, which arises 
when only local regularities are violated (i.e., a local deviance response predicted by the global rule). 
Contrasting control and global deviant (xx│xY) trials isolated the global deviance, or high-level 
PE response, unaffected by local deviancy (i.e., a response to a stimulus that is unpredicted by the 
global rule but predicted at the local level). Finally, by contrasting control and local + global deviant 
(xy│xX) trials, we examined the local + global deviance response, or the combined effect of low- and 
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high-level PE, that occurs when both local and global regularities are violated (i.e., a local deviance 
response that is unpredicted by the global rule) (Figure 2C).

Pairs of experimental conditions were compared using a non-parametric cluster-based permutation 
method implemented in the FieldTrip toolbox, addressing the multiple comparisons issue (Maris and 
Oostenveld, 2007). Cluster statistics were obtained by summing the t-values that were adjacent in 
space and time above and below a threshold level (two-sided t-test with alpha level 0.05). The cluster 
p-value was then obtained by comparing the cluster statistic to a null distribution statistic obtained 
by randomly switching condition labels within average participant responses 1000 times. The clus-
ters were considered as significant when the sum of t-values exceeded 97.5% or were below 2.5% 
of the null distribution. First, cluster-based permutation dependent samples t-tests were computed 
between 0 and 800 ms after the onset of the fifth tone for all the main condition comparisons. Tests 
were computed for the CTR and OFC groups separately. In a second step, to check for differences in 
the ERPs between the two main study groups, we ran the same cluster-based permutation approach 
contrasting each of the four conditions of interest between the groups using independent samples 
t-tests. The cluster-based permutation independent samples t-tests were computed in the latency 
range of each component, which was determined based on the maximum range for both groups 
combined. The latency range for each group and component was based on the time frames derived 
from the statistical analysis of task condition contrasts.

We estimated component latencies using the 50% area latency method (Luck, 2014; Liesefeld, 
2018), which calculates the time point when an ERP component reaches 50% of its area under the 
curve. Area latency reflects the median latency, which is considered a more reliable measure than the 
traditional peak latency (Luck, 2014; Liesefeld, 2018). The component area was defined as the entire 
time window of the ERP component. To avoid missing component activity in individuals, we selected 
a broad time window (i.e., local deviance MMN: 50–150 ms and P3a: 140–350 ms; local + global devi-
ance MMN: 50–220 ms for the CTR and 50–250 ms for the OFC group, P3a: 180–450 ms for the CTR 
and 180–500 ms for the OFC group, P3b: 380–800 ms; global deviance P3b: 380–800 ms). To assess 
group differences in component latencies, independent samples t-tests were performed for each 
component of interest and each condition for the five midline electrodes (i.e., Fz, FCz, Cz, CPz, and 
Pz). To account for the multiple comparisons problem, we performed FDR correction (Benjamini and 
Hochberg, 1995) across channels.

To provide clarity regarding the nature of the observed ERP group differences (i.e., whether they 
are amplitude differences or outcomes of latency variations), we conducted complementary analyses 
on mean amplitudes of the ERP components for the conditions where significant group differences 
were observed. The mean amplitudes were calculated centered around the individual peaks for each 
component (see Supplementary file 1d and e ).

Conclusion
We tested the role of the OFC in detecting violations of prediction (i.e., PEs) at two hierarchical levels 
of task structural complexity. Our critical finding is that low-level PEs (i.e., processing of stimuli that 
are unpredicted at the local level) and combined low- and high-level PEs (i.e., processing of stimuli 
that are unpredicted at both the local and global levels) were impacted by the OFC lesion as reflected 
in the altered MMN and P3a components. We suggest that the OFC likely contributes to a top-down 
predictive process that modulates the deviance detection system in lower sensory areas. The study 
sheds new light on the poorly explored involvement of the OFC in hierarchical auditory predictive 
processing.
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