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Functional imaging of conduction 
dynamics in cortical and spinal axons
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Abstract Mammalian axons are specialized for transmitting action potentials to targets within 
the central and peripheral nervous system. A growing body of evidence suggests that, besides 
signal conduction, axons play essential roles in neural information processing, and their malfunctions 
are common hallmarks of neurodegenerative diseases. The technologies available to study axonal 
function and structure integrally limit the comprehension of axon neurobiology. High-density micro-
electrode arrays (HD-MEAs) allow for accessing axonal action potentials at high spatiotemporal 
resolution, but provide no insights on axonal morphology. Here, we demonstrate a method for elec-
trical visualization of axonal morphologies based on extracellular action potentials recorded from 
cortical and motor neurons using HD-MEAs. The method enabled us to reconstruct up to 5-cm-long 
axonal arbors and directly monitor axonal conduction across thousands of recording sites. We recon-
structed 1.86 m of cortical and spinal axons in total and found specific features in their structure and 
function.

Editor's evaluation
This work provides fundamental new insight into fine axonal morphologies based solely on extra-
cellular action potential recordings. They provide compelling evidence of fine resolution in mapping 
functional connections between neurons. The work may have broad use in neurobiology, bioengi-
neering, stem cell biology, as well as tissue engineering in functional characterization.

Introduction
Axons are neuronal processes specialized for the conduction of action potentials (APs). Cortical axons 
serve as communication cables between various types of neurons that are synaptically connected and, 
accordingly, arranged in multiple layers to receive, process, and convey neural information between 
different regions in the brain. Motor neurons located in the ventral horn of the spinal cord project their 
axons outside the central nervous system (CNS) and are responsible for the contraction of effector 
muscles in the periphery. Spinal axons are specialized to innervate and precisely control different types 
of muscle fibers, thus ensuring refined coordination of complex body movements (Stifani, 2014).

Mainly due to difficulties to experimentally access axonal conduction, axonal information processing 
has been neglected, and axons are classically seen as conductive cables that do nothing more than 
faithfully transmit APs in an all-or-none, ‘binary’ fashion (Hodgkin and Huxley, 1952). Later studies 
have challenged this view and suggested that axons have much more complex roles than tradition-
ally thought (Alcami and El Hady, 2019). Contrary to classical concepts, reports show that, besides 
conducting binary APs, hippocampal and cortical axons can also transmit analog currents in a passive 
fashion (Shu et al., 2006; Alle and Geiger, 2008). It has been shown that analog currents integrate 
with ongoing axonal APs, changing their waveforms and, consequently, affecting synaptic transmis-
sion in a graded, ‘analog’ manner (Shu et al., 2006; Alle and Geiger, 2006; Zbili and Debanne, 
2019). Additionally, it was found that axons modulate the waveforms of APs contingent on neuronal 
activity and, accordingly, adjust the synaptic release (Geiger and Jonas, 2000). Moreover, during 
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high-frequency regimes of neuronal activity, axons are able to reduce their conduction velocities by 
more than 20% and, thereby, tune the timing of AP arrival at synapses (Radivojevic et al., 2017). 
Taken together, these findings suggest that axons passively and actively process APs to tune the 
amount of information transmitted by synapses, but also imply that axons play a crucial role in the 
temporal coding of the neural information.

Morphological complexity of mammalian axons generally depends on their downstream targets’ 
spatial disposition. Thus, for example, cortical neurons form extensively branched axons to convey 
APs to numerous postsynaptic neurons located in different cortical layers and regions in the brain. Due 
to their small diameter of 0.08–0.4 μm (Debanne, 2004) and absence of surrounding myelin sheaths, 
cortical axons provide relatively low conduction velocities of 0.1–2 m/s (Radivojevic et  al., 2017; 
Bakkum et al., 2013), which are, nevertheless, sufficient to ensure rapid communication between 
closely spaced neurons. As opposed to cortical neurons, motor neurons transmit signals to distant 
targets outside the CNS and, for that purpose, develop considerably longer (up to 1  m), thicker 
(0.5–10 μm), and myelinated axons that provide considerably higher conduction velocities of up to 
100 m/s (Debanne et al., 2011; Saliani et al., 2017).

Despite being acknowledged as reliable conduction cables, axons can in certain cases fail to prop-
agate APs faithfully. Such cases are referred to as conduction failures and are attributed to particular 
axonal morphology. For instance, experimental and theoretical studies suggest that conduction fail-
ures are likely to occur at axonal branching points and local swellings due to abruptly increased axon 
diameter (Debanne, 2004). In addition, the AP propagation fidelity and temporal precision depend 
on axon diameter, biophysical properties of various types of ion channels, and thermodynamic noise 
inherent to their gating dynamics (Faisal and Laughlin, 2007; Faisal et al., 2005; White et al., 2000). 
According to theoretical studies, thin distal axons (diameter <1 μm) are prone to ‘channel noise’, 
which can introduce variability in axonal AP waveforms (Neishabouri and Faisal, 2014), increase 
the jitter of AP propagation (Radivojevic et  al., 2017; Faisal and Laughlin, 2007), and compro-
mise the reliability of the conduction itself (Faisal and Laughlin, 2007; Skaugen and Walløe, 1979; 
Schneidman et al., 1998). Besides geometrical factors, neuronal activity can also affect AP conduc-
tion, which is consistent with our previous finding that high-frequency neuronal activity increases the 
jitter of AP propagation in cortical axons (Radivojevic et al., 2017).

Ultrastructural aberrations and malfunctioning conduction in human axons are often early hall-
marks of neurodegenerative diseases. For instance, in Alzheimer’s disease (AD), abnormal protein 
aggregates cause local swellings in axons which have been shown to reduce conduction velocity and 
even block AP propagation (Blazquez-Llorca et al., 2017). Human post-mortem studies suggest that 
axonal degeneration may be the earliest feature of Parkinson’s disease and, therefore, an appropriate 
target for early therapeutic interventions (Burke and O’Malley, 2013). Motor neuron degeneration 
is the hallmark of amyotrophic lateral sclerosis (ALS), where axonal dysfunction begins long before 
symptom onset and motor neuron death (Suzuki et al., 2020).

Comprehension of axon neurobiology in health and disease is generally limited by the technolo-
gies available to study axonal function and structure integrally. The whole-cell patch-clamp technique, 
complemented with fluorescence microscopy, is commonly used to correlate electrophysiological data 
with the morphological properties of the neuron. Namely, a patch-clamp pipette can inject fluorescent 
dyes directly into the neuron and, therefore, allow visualization of the axonal arbor during the elec-
trophysiological experiment. However, patch-clamp is typically limited to recording APs from a single 
axonal site (Shu et al., 2006; Alle and Geiger, 2006; Forsythe, 1994) and does not allow for tracking 
AP propagation across axons. Moreover, the technique is invasive and destructive, which constrains 
the duration of a recording session to about an hour. Alternatively, fluorescent indicators sensitive to 
voltage (Peterka et al., 2011) or calcium (Grienberger and Konnerth, 2012) can be used to observe 
axonal AP propagation and, at the same time, to visualize axonal morphology. However, fluorescent 
indicators exhibit photobleaching and phototoxicity and may perturb the physiology of the cell to the 
point of affecting AP conduction (Peterka et al., 2011). Complementary-metal-oxide-semiconductor 
(CMOS)-based high-density microelectrode arrays (HD-MEAs) have been designed to record extra-
cellular APs from neuronal cultures (Müller et  al., 2015) and allow tracking axonal signals across 
hundreds of microelectrodes (Radivojevic et al., 2017; Bakkum et al., 2013). Thanks to a low-noise 
CMOS design, HD-MEAs enable detection of APs across entire arbors of cortical axons, including tiny 
axon terminals (Radivojevic et al., 2017). HD-MEAs provide noninvasive access to axonal APs and 

https://doi.org/10.7554/eLife.86512
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impose no constraints on the duration of the recording sessions. Nevertheless, HD-MEA technology 
does not provide direct insights into axonal morphology. It has to be complemented with auxiliary 
optical techniques to allow correlation between axonal function and structure. Live-cell imaging tech-
niques can be used to optically visualize axonal morphologies directly on HD-MEA surfaces (Radivo-
jevic et al., 2017; Bakkum et al., 2013; Bullmann et al., 2019). These techniques, however, entail 
introduction of fluorescent reporters into the cell, which induces chemotoxicity, phototoxicity, and cell 
death (Icha et al., 2017).

Our objective was to enable the reconstruction of axonal morphologies based solely on extracel-
lular APs recorded from in vitro mammalian neurons using the CMOS-based HD-MEA system. The 
present study reports a method for tracking AP propagation across tens-of-millimeter-long nonmyelin-
ated axonal arbors of primary cortical and motor neurons cultured on HD-MEAs. The method allows 
for label-free electrical visualization of axonal conduction trajectories and, at the same time, provides 
noninvasive access to axonal APs waveforms recorded across hundreds of microelectrodes. Using the 
developed method, we investigated (I) morphological features of cortical and spinal axons, (II) fluctu-
ations in AP amplitudes across axonal arbors, and (III) temporal dynamics of the axonal conduction.

Results
We developed a method for the automatic reconstruction of axonal morphology based on extra-
cellular APs recorded from cortical and motor neurons using the HD-MEA system (Figure 1A). The 
reconstructed morphology is here referred to as ‘functional morphology’, and it reveals the location 
of the axon initial segment (AIS), axonal trunk, and higher-order branches (Figure 1B). The method 
was used to trace extracellular APs propagating across axonal arbors of cortical (Figure 1—video 1) 
and motor neurons (Figure 1—video 2). The experimental design and overview of the method are 
outlined in Figure 2 and are described below.

Experimental design and overview of the method
We cultured rat primary cortical (Figure 2—figure supplement 1) and motor neurons (Figure 2—
figure supplement 2) on a CMOS-based HD-MEA system that comprises 26,400 densely packed 
microelectrodes (Figure  2—figure supplement 3). The cultures were grown in monolayers with 
estimated thicknesses of ~5–40 and ~5–50 μm for cortical and motor neuron cultures, respectively 
(Figure  2—figure supplement 4). Both cortical and motor neuron cultures yielded cell densities 
of ~500–2000 neurons per mm2 (Figure 2—figure supplement 4). The cultures matured in controlled 
conditions (see Methods), and their extracellular electrical activity was recorded between 12 and 24 
days in vitro (DIV). Mature neurons grew their axonal arbors efficiently across sensing areas of the 
HD-MEA chips and provided a tight interface between axons and microelectrodes (Figure 2—figure 
supplement 5). The relative proximity of axons to the sensing area varied across axonal arbors within 
ranges of ~1–13 and ~1–18 μm for cortical and motor neurons, respectively (Figure 2—figure supple-
ment 5).

The CMOS-based HD-MEA system enabled us to map extracellular APs across entire cultures and 
to electrically identify individual neurons (Figure 2—figure supplement 6). Spontaneous neuronal 
activities were recorded across all microelectrodes for 2 min, and average amplitudes of the recorded 
voltage traces were used to produce network-wide activity maps (Figure 2—figure supplement 6A). 
Because extracellular APs with the largest amplitudes arise from the AIS (Bakkum et al., 2019), local 
maxima found within these maps indicated the location of individual neurons in the network (Radivo-
jevic et al., 2016).

We used spike-sorting algorithms to discern signals among individual neurons in the culture (see 
Methods). The dense arrangement of the microelectrodes allowed us to access the electrical activity of 
a single neuron at high spatial resolution (Figure 2—figure supplement 6A, Figure 2—videos 1 and 
2); however, overlapping signals recorded from multiple neighboring neurons were observed in most 
of the cases (Figure 2—figure supplement 6B). Spike-sorting procedures enabled us to discern APs 
among individual neurons reliably and extract relative times of their activities (‘spike times’) (Radivo-
jevic et al., 2017; Radivojevic et al., 2016; Jäckel et al., 2012). Sorted APs were then averaged 
over adjacent electrodes to reveal the spatiotemporal distribution of a single neuron’s activity. The 
spatiotemporal distribution of APs recorded from proximal neuronal compartments (near the AIS) is 

https://doi.org/10.7554/eLife.86512
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called an ‘extracellular AP footprint’. Electrical footprints reconstructed for eight neighboring neurons 
are presented in Figure 2—figure supplement 6C. Z-stack image series of the corresponding culture 
is shown in Figure 2—videos 1 and 2.

We used spike-triggered averaging for electrical imaging of axonal arbors (Figure  2—figure 
supplement 7). High-amplitude APs detected near the AIS were used to trigger the averaging of 
single voltage traces (‘single trials’) recorded across all electrodes in the array (Figure  2—figure 
supplement 7A). Because the AIS signal represents the first occurring (initial) trace of the neuron’s 
activity, the averaging reveals spatial and temporal shifts in propagating axonal signals (Figure 2—
figure supplement 7B). The spatiotemporal distribution of axonal signals reconstructed using spike-
trigger averaging is called an ‘axonal electrical image’. Axonal electrical images of three neighboring 
neurons are presented in Figure 2—figure supplement 7B and in Figure 2—video 3.

Figure 1. Reconstruction of axonal morphology based on neuronal electrical activity. (A) Contour map shows spatial distribution of extracellular action 
potentials (APs) recorded from a single cortical neuron. Average AP amplitudes are color-coded and presented through contour surfaces. Gray dots in 
the background represent locations of the recording electrodes. White-dashed-line circles superimposed over the contour map denote three magnified 
regions displayed on the right. Average AP waveforms obtained from proximal, middle, and distal axons are shown in the three denoted regions 
(labeled I, II, and III, respectively); color-coding is the same as in the contour map. Examples of AP waveforms recorded from the axon initial segment 
(AIS) and distal axons are shown at the bottom. (B) Functional morphology of axonal arbor reconstructed from APs displayed in (A). Branching orders of 
reconstructed neurites are color-coded. The AIS is depicted by a thick red line superimposed over the most proximal part of the axon. A filled dark-
brown circle represents putative location of the neuronal soma. Color-free contour map and recording electrodes are shown in the background (same as 
in A). Functional morphologies of cortical and spinal axons are also presented in Figure 1—videos 1 and 2, respectively.

The online version of this article includes the following video(s) for figure 1:

Figure 1—video 1. Functional morphologies of cortical axons displayed in real time.

https://elifesciences.org/articles/86512/figures#fig1video1

Figure 1—video 2. Functional morphologies of spinal axons displayed in real time.

https://elifesciences.org/articles/86512/figures#fig1video2

https://doi.org/10.7554/eLife.86512
https://elifesciences.org/articles/86512/figures#fig1video1
https://elifesciences.org/articles/86512/figures#fig1video2
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Figure 2. Experimental design and overview of the method. (A) Experimental design: (I) Brain cortices and spinal cords isolated (lime-green) from 
Sprague Dawley rat embryos were used as sources of primary cortical and motor neurons. Cells obtained from corresponding sources were seeded 
directly on high-density microelectrode arrays (HD-MEAs) to grow cortical and motor neurons in separate cultures. (II) The utilized HD-MEA system 
features 26,400 microelectrodes packed within an area of 3.85×2.1 mm2. Interelectrode distances of 17.5 μm provide density of 3264 microelectrodes per 
mm2. (III) The HD-MEA surface coated with cell-adhesive materials promoted neuronal growth over the sensing area and provided efficient electrode-
to-neuron contacts. (IV) Dedicated media and growth-promoting factors were used to develop and maintain the cultures in vitro over extended periods 
of time. (V) Mature cultures conveyed spontaneous electrical activities. Neuronal extracellular action potentials (APs) were recorded through HD-MEA 
recording channels at 20 kHz sampling rate. (B) Overview of the method: (I) Signal amplitudes sampled across an entire HD-MEA were used to produce 
network-wide activity maps (yellow-green contour map). Local peaks found in activity maps indicated locations of individual neurons in the network. (II) 
Spike-sorting of recorded signals enabled to discern activities between neighboring neurons and to extract their individual electrical profiles. Displayed 
electrical profiles (dark-, mint-, and lime-green waveforms) are referred to as ‘extracellular AP footprints’. (III) Array-wide spike-triggered averaging 
revealed spatiotemporal distribution of APs across axons of individual neurons (gray-scale signal map). Such representation of neuronal signals is 
referred to as an ‘axonal electrical image’. (IV) Dynamic thresholding was used to detect local peaks within the footprint. (V) Detected peaks were 
interlinked based on their spatial and temporal proximities to reconstruct axonal conduction trajectories.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. Complementary-metal-oxide-semiconductor (CMOS)-based high-density microelectrode array (HD-MEA).

Figure supplement 2. Culturing primary cortical neurons on the high-density microelectrode array (HD-MEA).

Figure supplement 3. Culturing primary motor neurons on the high-density microelectrode array (HD-MEA).

Figure supplement 4. Thickness and cell density of neuronal cultures grown on the high-density microelectrode array (HD-MEA).

Figure supplement 5. Disposition of cortical and spinal neurites with respect to the high-density microelectrode array (HD-MEA) surface.

Figure supplement 6. Electrical identification of individual neurons in the culture.

Figure supplement 7. Electrical imaging of axonal arbors.

Figure 2—video 1. Cortical culture grown on high-density microelectrode array (HD-MEA) surface – ×20 magnification.

https://elifesciences.org/articles/86512/figures#fig2video1

Figure 2—video 2. Cortical culture grown on high-density microelectrode array (HD-MEA) surface – ×40 magnification.

https://elifesciences.org/articles/86512/figures#fig2video2

Figure 2—video 3. Electrical imaging of axonal arbors.

https://elifesciences.org/articles/86512/figures#fig2video3

https://doi.org/10.7554/eLife.86512
https://elifesciences.org/articles/86512/figures#fig2video1
https://elifesciences.org/articles/86512/figures#fig2video2
https://elifesciences.org/articles/86512/figures#fig2video3
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We developed a method for reconstructing axonal functional morphologies based purely on 
features extracted from axonal electrical images. Adaptive thresholding was used to map signal 
peaks across axonal arbors (Figure 3), and the moving object tracking technique was used to recon-
struct axonal conduction trajectories (Figure 4). The method for reconstruction of axonal functional 
morphologies is described in the following two sections.

Adaptive thresholding enables mapping of axonal signal peaks in space 
and time
Adaptive thresholding applied to axonal electrical images enabled us to map AP peaks propagating 
across axonal arbors (Figure 3). Axonal electrical images were obtained by averaging 200 voltage 
traces per electrode. Time derivatives of averaged traces (μV/μs) were computed for each of the elec-
trodes, and the resulting data were divided into 400 consecutive timeframes (with 50 μs inter-frame 
intervals). Adaptive thresholds were next applied at each timeframe to detect AP peaks at different 
time points during axonal propagation.

Our thresholding technique generally utilized a ‘greedy algorithm’ principle (see Discussion). The 
algorithm allowed for recurrent adaptations of the threshold based on parameters updated along 
the detection process. High-amplitude APs were mapped first, and parameters obtained from the 
mapped locations were used to tailor the detection of low-amplitude signals in the later steps. The 
thresholds were initially determined based on electrical noise observed from the HD-MEA chip. Elec-
trical noise was estimated from voltage traces sampled across an entire array during periods when the 
observed neuron was inactive, and the noise was estimated for each neuron separately.

Adaptive thresholding involves three steps (Figure  3, Figure  3—videos 1–3). In the first step, 
a simple planar threshold, set to 9 STD of the estimated noise, was used to detect high-amplitude 
signal peaks (Figure 3A, Figure 3—video 1). A high threshold level allowed us to detect AP peaks 
far above the background noise. However, axonal APs with lower amplitudes remained undetected, 
leaving gaps along axonal conduction trajectories. In the second step, confined thresholds, set to 
2 STD of the estimated noise, were applied locally to detect low-amplitude AP peaks (Figure 3B, 
Figure 3—video 2). The confined thresholds were positioned on spatial and temporal coordinates 
of previously mapped peaks. The thresholds were confined spatially to 50 μm radii and temporally to 
periods encompassing three consecutive timeframes (tprevious, tcurrent, tnext, see Figure 3B). The spatio-
temporal confinement enabled us to detect low-amplitude signals in close proximity to previously 
mapped peaks and to fill local gaps along the conduction trajectories. The third step utilized the same 
detection strategy but with differently tuned parameters (Figure 3C, Figure 3—video 3). Namely, the 
threshold level was further lowered to 1 STD of the estimated noise, and the spatial confinement was 
broadened to a 100 μm radius. These parameters enabled the detection of low-amplitude APs near 
axon terminals.

A moving object tracking technique enables reconstruction of axonal 
conduction trajectories
We developed an algorithm for tracking mapped axonal signals across consecutive timeframes 
(Figure 4). The algorithm enabled us to reveal signal conduction trajectories and reconstruct func-
tional morphologies of cortical (Figure 1—video 1) and spinal axons (Figure 1—video 2).

Our tracking algorithm was designed to predict axonal conduction trajectories based on three 
factors: (I) spatiotemporal proximities of the mapped peaks, (II) topology of skeletonized axonal 
signal, and (III) conduction velocities estimated from previously reconstructed trajectories.

The tracking procedure involved three iterative steps (Figure 4, Figure 4—videos 1–3). (I) Direct 
interconnection – the closest signal peaks found within a 100 μm Euclidean distance and mapped 
in two consecutive timeframes were interconnected via direct links (Figure 4A, Figure 4—video 1). 
Direct interconnection revealed fragments of axonal conduction trajectories but failed to reconstruct 
axonal branching forks in most cases. Reconstructed fragments were used to calculate axonal conduc-
tion velocities. Obtained velocities served as criteria to tailor the tracking procedure in the next two 
steps. (II) Skeletonization-assisted interconnection – consecutive signal peaks that could not be inter-
connected directly, but were found within a 200 μm Euclidean range, were interconnected via skele-
tonized remnants of the axonal signal (Figure 4B, Figure 4—video 2). Signal amplitudes extracted 
from the corresponding electrical images were averaged over two consecutive timeframes (Δt=100 μs) 

https://doi.org/10.7554/eLife.86512
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Figure 3. Detection of action potentials (APs) propagating across axonal arbors. (A) A simple threshold enables detection of high-amplitude signal 
peaks. (Left) 3D graph shows planar threshold (red semitransparent plane) applied to a section of neuronal signal (3D gray-lined mesh) reconstructed 
for a single timeframe. 2D profiles of the reconstructed signal are projected on the graph’s side planes (gray-filled hills). Signal cutouts found above 
the threshold are projected on the graph’s bottom (red-line bordered white patches). Detected signal peaks are denoted by cyan circles projected 
perpendicularly from top to the bottom of the graph. Axonal contour shown at the graph’s bottom was estimated by observing spatial movements of 
the signal peaks over consecutive timeframes (also see Figure 6—videos 1 and 2). (Middle) Simple planar threshold was set to 9 STD of the estimated 
noise; background noise was sampled across all electrodes during periods when the neuron was inactive. (Right) Spatiotemporal distribution of the 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.86512


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Radivojevic and Rostedt Punga. eLife 2023;12:e86512. DOI: https://​doi.​org/​10.​7554/​eLife.​86512 � 8 of 30

and mapped over interconnection areas. Obtained maps were next skeletonized to infer propagation 
trajectory between the consecutive signal peaks. Conduction velocities estimated in the previous step 
were used as criteria for the selection of optimal propagation trajectories. Trajectories whose veloc-
ities deviated from previously estimated values by more than 50% were discarded. Skeletonization-
assisted interconnection enabled reconstruction of some, but not all, axonal branching forks. It was 
designed to predict axonal trajectories over consecutive (continuous) signal peaks but could not 
predict trajectories between discontinuous signal peaks. Axonal conduction velocities estimated from 
the reconstructed trajectories served as criteria to tailor the tracking procedure in the next step. (III) 
Indirect interconnection – discontinuous signal peaks mapped in every other timeframe and found 
within a 400 μm Euclidean range were indirectly interconnected (Figure 4C, Figure 4—video 3). The 
propagation trajectory between the discontinuous signal peaks was reconstructed using remnants 
of skeletonized signals. Signal amplitudes extracted from the corresponding electrical images were 
averaged over three consecutive timeframes (Δt=150 μs) and mapped over interconnection areas. 
Obtained maps were next skeletonized to infer propagation trajectory between signal peaks found 
in the first and third timeframe. Conduction velocities estimated in the previous steps were used as 
criteria for selecting optimal propagation trajectories and predicting spatial coordinates of data for 
the second timeframe. Reconstruction of axonal trajectories over discontinuous signal peaks revealed 
axonal branching forks that could not be reconstructed in the previous steps.

Performance of the method for reconstructing axonal functional 
morphology
The Bayes optimal template-matching technique was used to estimate the algorithm’s performance 
for detecting axonal AP peaks (Figure 5). The technique can reliably discriminate axonal APs from the 
background noise (Radivojevic et al., 2017) and therefore provide a ground truth for the validation 
of the algorithm. Herein, template-matching was used to discriminate between ‘false peaks’ caused 
by the noise and ‘true peaks’ that resulted from axonal electrical activity (Figure 5A). Discrimination 
criteria were based on similarities (‘matching’) between waveforms of averaged signals (‘templates’) 
and corresponding single trials. High similarities were expected in cases of accurate axonal signals 
(APs) and low similarities in cases where signals were derived from the background noise. We 
constructed templates for each signal peak in an electrical image. Constructed templates were next 
compared with waveforms of corresponding single trials, and a percentage of ‘matching’ trials was 
computed for each of the peaks. Signal peaks that yielded a match of >70% were classified as true 
peaks. Classified (true and false) peaks were used as the ground truth to estimate performances of the 
algorithm for detecting axonal AP peaks (Figure 5B and C). Data obtained from 20 cells (10 cortical 
and 10 motor neurons) were used for this analysis.

detected AP peaks (blue-cyan circles) superimposed over axonal contour (same as in the left panel). Timing of the detected peaks is color-coded. 
AP waveforms recorded at the numbered locations in the upper-right axonal branch are shown on the side. Black-dashed arrows indicate direction 
of the propagating APs. Red circles denote signal peaks that were not detected by the simple threshold. (B, C) Adaptations of the threshold based 
on spatial and temporal coordinates of previously detected peaks enabled detection of low-amplitude signals. (Left) Locally applied thresholds 
(red semitransparent circles) were centered on XY coordinates of previously detected peaks (gray circles projected perpendicularly from top to the 
bottom of the graph); local thresholds are adapted to detect neighboring peaks at preceding and succeeding timeframes. Neuronal electrical activity 
reconstructed for a single timeframe (3D gray-lined mesh) is projected on the graph’s side planes (tcurrent); signal profiles of preceding and succeeding 
timeframes are also projected (tprevious, tnext). Signal cutouts found above the threshold are projected on the graph’s bottom (red-line bordered white 
patches). Newly detected peaks are denoted by cyan circles projected on the graph’s bottom plane. Axonal contour same as in (A). (Middle) Detection 
fields of local thresholds are 50 μm (in B) and 100 μm (in C) in radius, and are set to 2 STD (in B) and 1 STD (in C) of the estimated noise. (Right) Same as 
in (A); note newly mapped peaks detected near proximal axon. Peak detection strategies are comprehensively demonstrated in Figure 3—videos 1–3.

The online version of this article includes the following video(s) for figure 3:

Figure 3—video 1. Mapping signals across axonal arbor – step 1.

https://elifesciences.org/articles/86512/figures#fig3video1

Figure 3—video 2. Mapping signals across axonal arbor – step 2.

https://elifesciences.org/articles/86512/figures#fig3video2

Figure 3—video 3. Mapping signals across axonal arbor – step 3.

https://elifesciences.org/articles/86512/figures#fig3video3

Figure 3 continued

https://doi.org/10.7554/eLife.86512
https://elifesciences.org/articles/86512/figures#fig3video1
https://elifesciences.org/articles/86512/figures#fig3video2
https://elifesciences.org/articles/86512/figures#fig3video3
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Figure 4. Reconstruction of axonal functional morphology. (A) Direct interconnection of mapped action potential (AP) peaks. (Left-middle) Closest 
signal peaks found within a 100 μm Euclidean range (pink-dashed circles) and mapped in two consecutive timeframes (current and preceding peak) 
were interconnected via direct links (rectilinear white lines). Axonal APs reconstructed for the current timeframe is shown in the background (contour 
map); average signal amplitude is color-coded (gray scale). (Right) Axonal conduction trajectories revealed by direct interconnection; timing of the 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.86512
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The performance of the algorithm for the detection of axonal AP peaks is shown in Figure 5B. We 
estimated the performance of the three detection steps (see Figure 3) with varying threshold levels. 
We were able to detect 45%, 74%, and 98% of the actual peaks after the first, second, and third steps, 
respectively. We observed no false peak detections for thresholds set to 9, 2, and 1 STD of the noise 
in first, second, and third steps, respectively. The detectability of AP peaks across axonal arbors of 
cortical and motor neurons is shown in Figure 5C.

Axonal conduction trajectories, obtained from stimulation-triggered neuronal activity, were 
applied to estimate the performance of the algorithm for tracking axonal AP peaks (Figure 6). The 
key concepts of the stimulation protocol used in this study are presented in Figure 6—figure supple-
ment 1 and described in the Methods section. We used targeted stimulation to reveal and verify 
the same axon’s conduction trajectory by altering its conduction’s direction (Figure 6A, Figure 3—
video 3). Stimulation-triggered APs were mapped spatially across all microelectrodes and tempo-
rally over discrete timeframes (with 50 μs inter-frame interval) to produce the movie. Observing the 
spatial movements of AP peaks in consecutive movie frames enabled us to track axonal conduction in 
different directions visually and to reconstruct axonal conduction trajectories (as shown in Figure 6A 
and Figure 6—videos 1 and 2).

The algorithm’s performance for tracking axonal conduction is shown in Figure 6B. We estimated 
the performance of the three tracking steps (see Figure 4) with varying diameters of corresponding 
interconnection areas. We could interconnect 70%, 85%, and 91% of the mapped AP peaks after the 
first, second, and third steps, respectively. We observed no false links when using the interconnection 
areas with diameters of 100, 200, and 400 μm in first, second, and third steps, respectively. The effi-
ciency of the signal tracking across axonal arbors of cortical and motor neurons is shown in Figure 6C.

Functional morphologies of cortical and spinal axons
The reconstructed functional morphologies revealed axonal arbors of cortical and motor neurons 
and indicated positions of their AISes and somas (Figure 7). They further provided insights into total 
axonal lengths, the spatial distribution of axonal branching points and terminals, lengths of inter-
branching segments and their branching orders. We used electrical images to extract areas occupied 
by axonal electrical activity (‘active areas’).

Representative examples of functional morphologies reconstructed for cortical and motor neurons 
are shown in Figure 7A, and displayed in Figure 7—video 1. The reconstructed arbor of the cortical 
axon yielded a total length of 27.12  mm, comprising 101 inter-branching segments and 53 axon 
terminals. Axonal electrical activity was detected on 7295 electrodes, occupying an active area of 
2.23 mm2. The axonal arbor of the motor neuron yielded a total length of 15.26 mm, comprising 43 

propagating AP is color-coded (blue-cyan). (B) Skeletonization-assisted interconnection of mapped signal peaks. (Left-middle) Signal peaks found 
within a 200 μm Euclidean range (pink-dashed circles) and mapped at two consecutive timeframes (current and preceding peak) are interconnected 
via remnants of the skeletonized signal (irregular white lines) – signal averaged over the two consecutive timeframes (Δt=100 μs) is skeletonized to infer 
directionality of the propagating signal. Axonal signal averaged over the two consecutive timeframes is shown in the background (contour map); signal 
amplitude is color-coded (gray scale). (Right) Axonal conduction trajectories reconstructed using direct and skeletonization-assisted interconnection; 
timing of the propagating signal is color-coded (blue-cyan). (C) Indirect interconnection of mapped signal peaks. (Left-middle) Signal peaks that were 
mapped at every other timeframe and found within a 400 μm Euclidean range (pink-dashed circles) were interconnected indirectly – the signal averaged 
over three consecutive timeframes (Δt=150 μs) was skeletonized to interconnect peaks mapped in first and third timeframe (irregular white line); data 
for the second timeframe was predicted based on the conduction velocity observed in previously reconstructed trajectories. Axonal signal averaged 
over the three consecutive timeframes is shown in the background (contour map); signal amplitude is color-coded (gray scale). (Right) Functional axonal 
morphology reconstructed using direct, skeletonization-assisted and indirect interconnection; timing of the propagating APs is color-coded (blue-cyan). 
Direct, skeletonization-assisted and indirect interconnections of mapped signal peaks are demonstrated in Figure 4—videos 1–3.

The online version of this article includes the following video(s) for figure 4:

Figure 4—video 1. Direct interconnection of mapped signal peaks.

https://elifesciences.org/articles/86512/figures#fig4video1

Figure 4—video 2. Skeletonization-assisted interconnection of mapped signal peaks.

https://elifesciences.org/articles/86512/figures#fig4video2

Figure 4—video 3. Indirect interconnection of mapped signal peaks.

https://elifesciences.org/articles/86512/figures#fig4video3

Figure 4 continued

https://doi.org/10.7554/eLife.86512
https://elifesciences.org/articles/86512/figures#fig4video1
https://elifesciences.org/articles/86512/figures#fig4video2
https://elifesciences.org/articles/86512/figures#fig4video3
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Figure 5. Performances of the algorithm for detection of axonal signal peaks. (A) Principle of the template-
matching demonstrated on data recorded from cortical axons: (Left) Extracellular action potentials (APs) were 
spike-sorted (see Figure 2—figure supplement 6) and reconstructed across an entire array (see Figure 2—
figure supplement 7) by averaging 100–200 single trials on each electrode. Reconstructed 3D signals were 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.86512
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inter-branching segments and 23 axon terminals. Axonal activity was detected on 6663 electrodes, 
occupying an active area of 2.04 mm2. We reconstructed functional morphologies for 50 cortical and 
50 motor neurons and analyzed morphological features of their axonal arbors, a total length of 1.04 m 
and 0.81 m of cortical and spinal axons, respectively.

We found that cortical and motor neurons grew axons comparable in their total lengths. However, 
ratios between axonal lengths and their corresponding active areas were significantly higher for cortical 
than spinal axons (Figure 7B). The average axonal lengths were 16.73±1.20 and 14.63±0.88 mm for 
cortical and motor neurons, respectively (p=0.25). The average sizes of active areas were 1.38±0.08 and 
1.61±0.08 mm2 for cortical and motor neurons, respectively (p=0.23). The average length-to-area 
quotients were 11.72±0.32 and 9.49±0.24 mm–1 for cortical and motor neurons, respectively (p<10–6).

We found cortical axons to develop branching points in more proximal parts of their arbors and 
to form shorter inter-branching segments as compared to spinal axons (Figure 7C). Average axial 
distances of axonal branching points were 0.27±0.01 and 0.43±0.01 mm for cortical and motor neurons, 
respectively (p<10–6). Average lengths of axonal inter-branching segments were 0.34±0.01  and 
0.48±0.01 mm for cortical and motor neurons, respectively (p<10–6).

We found significantly more axon terminals in cortical than in spinal axons; however, spinal axons 
projected their terminals at significantly greater distances as compared to cortical axons (Figure 7D). 
Average numbers of axon terminals were 29.92±1.64 and 17.82±1.03 for cortical and motor neurons, 
respectively (p<10–6). Average axial distances of axon terminals were 1.17±0.02 and 2.41±0.04 mm for 
cortical and motor neurons, respectively (p<10–6).

Signal amplitude fluctuations during axonal conduction
In addition to exposing the axonal structure, functional morphologies also reveal APs as propagating 
across axonal arbors (Figure 8). They allow observation of AP waveforms at any axonal location and 
mapping of AP amplitudes across entire arbors. Representative AP waveforms extracted from func-
tional morphologies of cortical and spinal axons are shown in Figure 8A, and displayed in Figure 8—
video 1. We investigated fluctuations in AP amplitudes across functional morphologies of 50 cortical 
and 50 spinal axons (same neurons as in Figure 7). The analysis included 45,232 data points obtained 
from 1.044 m of cortical axons and 36,286 data points obtained from 0.812 m of spinal axons.

We found that APs recorded from the most proximal parts of axons had much higher amplitudes 
than APs recorded from more distal axonal locations (Figure 8A–C). To further compare AP amplitudes 
across different cortical and spinal axon domains, we segregated the reconstructed morphologies into 

next transformed into derivatives (see Figure 3) and all available signal peaks were obtained. Obtained peaks 
(pale-gray circles) are superimposed over the contour of axonal morphology. (Middle) Voltage traces recorded 
at locations of two example peaks are shown at the top (denoted as 1 and 2); averaged templates (black traces) 
are superimposed over single recording trials (light-gray traces). Note weak similarities in waveforms between 
the template and single trials at location 1 (putative noise) as oppose to strong similarities at location 2 (putative 
axonal signal). Template-matching procedure: the waveform of the template is successively compared with 
waveforms of discrete recording trials to extract percentage of ‘matching’ trials within total number of trials. 
Examples of recording trials are presented continually within voltage traces (denoted as 1 and 2) and their relative 
positions are marked by circles: yellow and blue circles denote template mismatches and matches, respectively. 
Histogram below expresses separability between true and false peaks obtained from the template-matching; all 
obtained peaks (as shown in left) were used for this analysis. Data that yielded a match of >70% were considered 
true axonal signal. (Right) True and false peaks (blue and yellow circles, respectively) were classified using 
the template-matching technique. (B) Performance of the algorithm for AP peak detection. Histograms show 
percentages of true and false peak detections across the three thresholding steps (see Figure 3) with varying 
threshold levels. Percentages of true peak detections are exposed through violet, purple, and magenta ascending 
bars (steps I, II, and III, respectively); percentages of false peak detections are exposed through yellow descending 
bars. True and false peak detections are expressed as percentages of corresponding peaks detected by the 
template-matching. Note: no false peak detections were observed at thresholds set to 9, 2, and 1 STD of the noise 
in steps I, II, and III, respectively. Pie charts below show progress in the true peak detection across the three steps. 
(C) Detectability of signal peaks across arbors of cortical and motor neuron axons. Detectability for the three steps 
is expressed over axial distances from the putative axon initial segments (AISes). The bottom histogram shows 
spatial distribution of detected peaks. Data shown in (B, C) was obtained from 10 cortical and 10 motor neurons.

Figure 5 continued

https://doi.org/10.7554/eLife.86512
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Figure 6. Performances of the algorithm for reconstruction of axonal functional morphology. (A) Axonal 
conduction trajectories (black axonal contour) reconstructed from stimulation-triggered neuronal activities; 
electrical stimulation targeted three different axonal sites (yellow semitransparent circles); red dashed arrows 
indicate directions of axonal conduction triggered from the corresponding stimulation site. Stimulation-triggered 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.86512
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proximal and distal axons, primary trunks, and axonal trees. Proximal axons pertain to locations found 
within the first 0.2 mm of axial length; all other locations (axial distance >0.2 mm) were considered as 
distal (see Figure 8B, right). Primary trunk entails locations found in the axonal domain between the 
soma and the first branching fork, all other locations were assigned to the axonal tree (see Figure 8C, 
right).

APs recorded from proximal axons had significantly higher amplitude in cortical (44.58±4.81 µV) 
than in motor neurons (19.07±2.53 µV; p<10–6). On the contrary, APs recorded from distal axons had 
significantly smaller amplitude in cortical (1.50±0.10 µV) than in motor neurons (3.30±0.38 µV; p<10–6; 
Figure 8B).

Similarly, APs obtained from primary axonal trunks had significantly higher amplitude in cortical 
than motor neurons, whereas, APs obtained from axonal trees had significantly lower amplitude in 
cortical than motor neurons (Figure 8C). Average amplitudes of APs recorded from primary axonal 
trunks were 33.29±4.78 and 15.06±2.78 µV for cortical and motor neurons, respectively (p=0.002). 
Average amplitudes of APs recorded from axonal trees were 1.25±0.13 and 2.17±0.30 µV for cortical 
and motor neurons, respectively (p=0.024).

Temporal dynamics of axonal conduction
Functional morphologies carry information about times at which APs arrived at any axonal site and, 
as such, provide direct insights into temporal dynamics of axonal conduction (Figure 9). Axonal func-
tional morphology reveals time at which axonal conduction is initiated (‘initial time’) and allows to 
obtain times at which axonal APs arrive at axon terminals (‘arrival time’). It enables extraction of the 
interval between the earliest and the latest arrival time (‘interval of arrivals’) and inspection of the 
total duration of the axonal conduction (‘active timespan’) (see Figure 9A, left). Functional morphol-
ogies allow for the inspection of AP conduction dynamics across entire axonal arbors and over indi-
vidual axonal paths (see Figure 9A, right). Finally, structural and temporal parameters from functional 
morphologies enable computation of conduction velocities for any axonal segment.

We investigated temporal aspects of axonal conduction across functional morphologies of 50 
cortical and 50 spinal axons (same neurons as in Figure 7 and Figure 8). The analysis included 45,232 
data points obtained from 1.044 m of cortical axons and 36,286 data points obtained from 0.812 m 
of spinal axons.

action potentials (APs) were reconstructed across an entire array and presented across consecutive movie 
frames, enabling visual tracking and reconstruction of axonal conduction trajectories (see Figure 6—videos 1 
and 2). (B) Performance of the algorithm for reconstruction of axonal functional morphology. Histograms display 
percentages of true and false links established between mapped AP peaks using direct, skeletonization-assisted 
and indirect interconnection (see Figure 3). Percentages of true links are exposed through dark-gray, gray, and 
pale-gray ascending bars (steps I, II and III, respectively); percentages of false links are exposed through yellow 
descending bars. Percentages of true and false links obtained using different radii for interconnection of the peaks 
are shown for each of the steps. The percentages are expressed with respect to a total number of links found in 
the corresponding ground truth trajectory (as shown in A). Note: no false links were established within Euclidean 
range (radius) of 100, 200, and 400 μm in steps I, II, and III, respectively. Pie charts below show progress in the 
reconstruction of axonal morphology across the three steps. (C) Efficiency of the reconstruction (% of connected 
nodes) estimated for the three interconnection steps. Efficiencies are shown separately for cortical and motor 
neuron axons and are expressed over axial distances from the putative axon initial segments (AISes). The bottom 
histogram shows spatial distribution of connected nodes. Data shown in (B, C) was obtained from 10 cortical and 
10 motor neurons.

The online version of this article includes the following video and figure supplement(s) for figure 6:

Figure supplement 1. Targeted microstimulation of axons using the high-density microelectrode array (HD-MEA) 
system.

Figure 6—video 1. Stimulation-aided reconstruction of axonal conduction trajectories.

https://elifesciences.org/articles/86512/figures#fig6video1

Figure 6—video 2. Visually tracked axonal conduction trajectories.

https://elifesciences.org/articles/86512/figures#fig6video2

Figure 6 continued

https://doi.org/10.7554/eLife.86512
https://elifesciences.org/articles/86512/figures#fig6video1
https://elifesciences.org/articles/86512/figures#fig6video2
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Figure 7. Functional morphologies of cortical and spinal axons. (A) Functional morphologies of a cortical (left) and motor neuron axons (right) 
reconstructed based on spontaneous neuronal activities. Branching orders of reconstructed neurites are color-coded; neuronal somas are presented 
by black-filled circles. Axon initial segments (AIS) are denoted by thick red lines near somas. Functional morphologies of the two neurons are also 
presented in Figure 7—video 1. (B) Axonal lengths and active areas. Histograms express density distributions of total axonal lengths, sizes of active 
areas, and length-to-area quotients. Charts express comparisons between the corresponding values obtained from cortical and motor neurons; 
horizontal black lines denote mean values, perpendicular black-dashed lines denote standard deviations. (C) Lengths of inter-branching segments and 
axial distances of branching points. (Up) Histograms express density distributions of lengths of inter-branching segments. (Down) Histograms express 
density distributions of axial distances of branching points (with respect to corresponding AIS). Charts on the right express comparisons between the 
corresponding values obtained from cortical and motor neurons; horizontal black lines denote mean values, perpendicular black-dashed lines denote 
standard deviations. (D) Quantity and axial distances of axon terminals. (Up) Histograms express density distributions of numbers of axon terminals per 
cell. (Down) Histograms express density distributions of axial distances of axon terminals (with respect to corresponding AIS). Charts on the right express 
comparisons between the corresponding values obtained from cortical and motor neurons; horizontal black lines denote mean values, perpendicular 
black-dashed lines denote standard deviations. Color-code: pale-gray color was used to mark data obtained from cortical neurons; dark-gray color 
was used to mark data obtained from motor neurons. Data shown in (B, C, D) was extracted from functional morphologies of 50 cortical and 50 motor 
neurons. ***p<0.001.

Figure 7 continued on next page

https://doi.org/10.7554/eLife.86512
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Cortical neurons had significantly shorter active timespans and higher synchronization of the arrival 
times as compared to motor neurons (Figure 9B). Active timespans were 4.60±0.33 and 7.40±0.32 
ms for cortical and motor neurons, respectively (p<10–6). Intervals of signal arrivals at axon terminals 
were 3.44±0.31 and 5.40±0.34 ms for cortical and motor neurons, respectively (p=0.0024). Variance 
of signal arrival times were 0.95±0.23 and 2.50±0.35 ms2 for cortical and motor neurons, respectively 
(p<10–4).

We next computed axonal conduction velocities using structural and temporal parameters obtained 
from the functional morphologies. Conduction velocities were calculated from axial distances versus 
AP propagation times (Figure  9A, right), and were computed over 100  µm long axonal chunks 
stepped by 17.5 µm.

We found cortical axons to exhibit significantly slower and more uniform conduction veloci-
ties compared to spinal axons (Figure  9C). Average conduction velocities were 0.46±0.01  and 
0.56±0.02 m/s for cortical and motor neurons, respectively (p<10–4). Variances of conduction velocities 
were 0.03±0.002 and 0.04±0.003 m/s for cortical and motor neurons, respectively (p<10–4).

Discussion
We developed a method for noninvasive functional imaging of unmyelinated mammalian axons in 
vitro using the CMOS-based HD-MEA system (Figure 1, Figure 1—videos 1–2). The method yields 
an axonal ‘functional morphology’, comprising multidimensional data derived from extracellular 
APs recorded during axonal conduction. Functional morphology contains information about axonal 
conduction trajectories mapped at high spatial and temporal resolution (Figure 3—videos 1–3 and 
Figure 4—videos 1–3). It allows the reconstruction of axonal ‘electrical morphology’ at different time-
points during the conduction and, at the same time, to expose waveforms of the propagating APs 
(Figure 8, Figure 8—video 1).

The presented method has been developed and validated on primary rodent cortical and motor 
neurons cultured directly over HD-MEA surfaces (Figure 2—figure supplements 1–3). The cultures 
matured within 2 weeks and exhibited spontaneous electrical activities (Figure  2—figure supple-
ment 6). They efficiently adhered to HD-MEA surfaces and formed monolayers that varied in local 
thicknesses and cell densities (Figure 2—figure supplement 4). Neurons developed complex axonal 
arbors and provided a tight interface between axons and microelectrodes. Because axons grew in a 
3D manner, their distances from the HD-MEA surfaces varied locally (Figure 2—figure supplement 
5), but remained within the sensing range of the microelectrodes (Obien et al., 2019).

Spontaneous electrical activity enabled us to map individual neurons in the cultures (Figure 2—
figure supplement 6) and expose the spatiotemporal distribution of APs recorded across their 
axonal arbors (Figure  2—figure supplement 7, Figure  2—video 3). Mapping individual neurons 
was possible, thanks to high-amplitude APs recorded at their AISes (Bakkum et al., 2019; Radivo-
jevic et al., 2016). The AIS signals broadly surpass the background noise and hence could be easily 
detected (Radivojevic et al., 2017). Because they colocalized with the AIS, local maxima found within 
activity maps (Figure 2—figure supplement 6A) indicate proximal regions of individual neurons in 
the network (Bakkum et al., 2019; Radivojevic et al., 2016). Owing to the high-density arrangement 
of recording microelectrodes (Figure 2—figure supplement 1; Ballini et  al., 2014), spike-sorting 
enabled discerning mixed signals recorded from neighboring neurons (Figure 2—figure supplement 
6B) and thereby extracting APs arising from individual neurons (Figure 2—figure supplement 6C). 
Averaging of extracted signals over all electrodes revealed the spatiotemporal distribution of a single 
neuron’s activity. Such signal representation was referred to as an ‘axonal electrical image’ (Figure 2—
figure supplement 7, Figure  2—video 3) and it carries information about neuronal subcellular 
elements (Bakkum et al., 2019; Radivojevic et al., 2016). Thus, the largest and the earliest signals 
in the footprint arise from the AIS, much smaller and fast propagating signals arise from axons, and 
slow back-propagating signals arise from the soma and proximal dendrites (Bakkum et al., 2019; 

The online version of this article includes the following video for figure 7:

Figure 7—video 1. Functional morphologies of cortical and spinal axons.

https://elifesciences.org/articles/86512/figures#fig7video1

Figure 7 continued

https://doi.org/10.7554/eLife.86512
https://elifesciences.org/articles/86512/figures#fig7video1
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Figure 8. Signal amplitude fluctuations during axonal conduction. (A) Action potential (AP) waveforms extracted from functional morphologies of 
cortical and motor neuron axons. (Left) Functional morphology of a single cortical neuron is displayed in gray; average AP amplitudes tracked across 
selected axonal path are color-coded; waveforms of axonal APs obtained from the denoted locations (numbered 1–13) are shown beside. (Right) 
Functional morphology of a single motor neuron is displayed in gray; average AP amplitudes tracked across selected axonal path are color-coded; 

Figure 8 continued on next page

https://doi.org/10.7554/eLife.86512
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Radivojevic et al., 2016). Thanks to the low-noise CMOS design, the HD-MEA chip allows detection 
of AP propagation across large portions of entire axonal arbors (Radivojevic et al., 2017). The soma 
and proximal dendrites provide minor contributions to the electrical image, typically masked by larger 
AIS signals (Bakkum et al., 2019). Owing to their low-amplitude extracellular signals, distal dendrites 
do not seem to be detectable with the HD-MEA system used here.

Adaptive thresholding applied to axonal electrical images enabled us to map extracellular APs 
propagating across axonal arbors (Figure 3, Figure 3—videos 1–3). Signal peaks were traced at high 
spatial and temporal resolution, thanks to the dense arrangement of the electrodes and high-frequency 
sampling rate (Ballini et al., 2014). The thresholding scheme was constructed to detect signals with 
various amplitudes while minimizing detection errors. Simple planar thresholds, set to 9 STD of the 
background noise, were used to detect high-amplitude signal peaks (Figure 3A, Figure 3—video 
1). Since these thresholds provided detection high above the level of the background noise, they 
could be applied across an entire array while yielding no detection errors. They, however, failed to 
detect low-amplitude signal peaks and only provided fragmentary detection. Instead, spatiotemporal 
confinement of low-level thresholds, contingent on coordinates of high-amplitude peaks, enabled 
the mapping of low-amplitude signals (Figure  3B, Figure  3—video 2). This was possible, thanks 
to the very nature of axonal conduction, which can be represented using a simplified Markov chain 
model (Gagniuc, 2017). Namely, because signal propagation in unmyelinated axons is continuous, it 
represents a cascade of successive events in which the probability of each event depends solely on 
the state attained in the preceding event. Therefore, there was a high probability of detecting signal 
peaks in the immediate spatiotemporal proximity of previously mapped peaks. While confining the 
reach of the thresholds to local areas minimized the influence of the background noise, temporal 
confinement to preceding and following timeframes excluded signals that occurred much earlier and 
later than the reference peak.

Further relaxation of the threshold confinements enhanced the detection of low-amplitude signals 
but inevitably increased the risk of detection errors (Figure 3C, Figure 3—video 3). In principle, our 
adaptive thresholding scheme followed a greedy algorithm paradigm (Cormen et al., 2022), and as 
such, it is vulnerable to detection errors. Generally, a greedy algorithm builds up a global solution 
stepwise by making the locally optimal choice at each step. However, erroneous solutions made at 
earlier steps can proliferate and thereby compromise the global solution (Gutin et al., 2002). There-
fore, carefully tuned thresholding parameters are key to the optimal detection of signal peaks.

The approach of multiple-moving object tracking enabled us to reconstruct axonal conduction 
trajectories through iterative associations of the mapped signal peaks (Figure 4, Figure 4—videos 
1–3). The tracking algorithm was designed to estimate inter-frame correspondences between the 
mapped peaks in a data-driven fashion. It operates within predefined spatiotemporal boundaries, but 
also directly learns data association criteria from sequences reconstructed along the tracking process. 
Thanks to strict boundaries, the algorithm discarded trajectories yielding conduction velocities that 

waveforms of axonal APs obtained from the denoted locations (numbered I–XII) are shown beside. Note difference in scalebars for AP waveforms 
obtained from proximal and distal axons. Data from the two neurons are also presented in Figure 8—video 1. (B) Axonal AP amplitudes versus axial 
distance from the axon initial segment (AIS). (Left-middle) Amplitudes of axonal APs versus axial distances of their recording sites are plotted for cortical 
and motor neurons; axial distances are expressed with respect to locations of the corresponding AISes. The black curves represent mean values of 
amplitudes over all data points. The bottom histograms show density distributions of axial distances from the corresponding AISes. (Right) Mean AP 
amplitudes obtained from proximal and distal axons are compared between cortical and motor neurons; comparisons are expressed using box plots. 
The bottom diagrams show criterium for discriminating proximal from distal axonal locations. AP amplitudes averaged over proximal and distal regions 
of each of the neurons were used in this analysis. (C) Axonal AP amplitudes versus axonal branching order. (Left-middle) Amplitudes of axonal AP 
versus branching order of corresponding axonal segments are plotted for cortical and motor neurons. The white circles (interconnected by black lines) 
represent mean values of amplitudes computed for discrete branching orders. The bottom histograms show density distributions of branching orders. 
(Right) Mean signal amplitudes obtained from primary axonal trunks and axonal trees are compared between cortical and motor neurons; comparisons 
are expressed using box plots. The bottom diagrams show criterium for discriminating primary axonal trunks from axonal trees. Color-code: pale-gray 
color was used to mark data obtained from cortical neurons; dark-gray color was used to mark data obtained from motor neurons. Data shown in (B, 
C) was extracted from functional morphologies of 50 cortical and 50 motor neurons. **p<0.01; ***p<0.001.

The online version of this article includes the following video for figure 8:

Figure 8—video 1. Action potential (AP) waveforms as traced across axonal functional morphologies.

https://elifesciences.org/articles/86512/figures#fig8video1

Figure 8 continued
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Figure 9. Temporal dynamics of axonal conduction. (A) (Left) Graphical representation of parameters that were used for the analysis of temporal aspects 
of axonal conduction. Thick gray contour represents simplified axonal morphology; neuronal somas are presented by gray-filled circles; a yellow line 
superimposed over a proximal axon represents the axon initial segment (AIS); blebs at the ends of four axonal branches represent axon terminals. 
Yellow-dashed arrows indicate directionality of axonal action potential (AP) propagation. Temporal parameters: initial time (t0) – time of the initiation 
of axonal conduction; arrival times (t1-4) – times at which axonal APs arrive at axon terminals; interval of arrivals – interval between the earliest and the 
latest arrival time; active timespan – timespan between initial time and the latest arrival time. (Right) Axonal AP propagation time versus axial distance 
from the AIS – comparison between cortical (graph on the left) and motor neurons (graph on the right). Yellow circles represent active timespans; 
gray curves in the background represent AP propagation times observed over individual axonal paths; thick black curves represent mean values of 
propagation times averaged over all axonal paths. (B) Temporal aspects of axonal conduction. (Up) Histograms express density distributions of active 
timespans for cortical and motor neurons. (Middle) Histograms express density distributions of intervals of arrivals for cortical and motor neurons. 
(Down) Histograms express density distributions of variances of arrival times for cortical and motor neurons. Charts on the right express comparisons 
between the corresponding values obtained from cortical and motor neurons; horizontal black lines denote mean values, perpendicular black-dashed 
lines denote standard deviations. (C) Axonal conduction velocities. (Up) Histograms express density distributions of average conduction velocities 
for cortical and motor neurons; average velocities are computed for individual cells. (Down) Histograms express density distributions of variances of 

Figure 9 continued on next page

https://doi.org/10.7554/eLife.86512
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are unlikely for mammalian axons. While such boundaries ensure the exclusion of slow-propagating 
dendrites (Bakkum et  al., 2019), they could also omit super-fast saltatory conduction inherent to 
myelinated axons (Debanne, 2004), which were most likely not present in our preparations. Owing 
to the data-driven refinement of the association criteria, the algorithm allowed customization of the 
tracking process for a specific neuron. Such customization provides applicability of the algorithm to 
axons with different conduction velocities, allowing observation of variations between neurons of the 
same or different types.

Considering the Markov model of axonal conduction, AP peaks mapped in immediate spatiotem-
poral proximities can be associated directly using a greedy nearest neighbor matching (Figure 4A, 
Figure 4—video 1). Due to the limited reach of the matching caliper, direct interconnection enabled 
only reconstruction of short fragments of the axonal conduction trajectory. Reconstructed fragments, 
in return, enabled estimation of the conduction velocity and thereby refining the association criteria. 
Because conduction velocities vary across a single axon (Radivojevic et al., 2017; Bakkum et al., 
2013), greedy matching was limited to peaks mapped closely over sections of the trajectory with rela-
tively constant conduction velocities. Relaxation of the association criteria could potentially extend the 
reach of the matching. However, it would inevitably introduce erroneous interconnections between 
spatially segregated peaks stretched over notably faster sections of the trajectory.

Skeletonization of an axonal electrical image enabled reproduction of conduction paths between 
distant peaks (Figure 4B, Figure 4—video 2). Because skeletal remnants reflect the spatiotemporal 
landscape of the axonal signals, they can optimize the association of mapped peaks graphically, thus 
sidestepping complex heuristic techniques needed for maintaining computational tractability. In 
general, topology and structural complexity of skeletal remnants depend on spatiotemporal bound-
aries within which the axonal signals were skeletonized. Narrow boundaries encompassing two consec-
utive timeframes captured brief sequences of the axonal conduction and yielded skeletal remnants 
with fairly simple structure. Simple remnants enabled interconnection of the peaks across consecutive 
timeframes, however, discontinuous peaks remained beyond their reach.

Skeletonization within wider spatiotemporal boundaries allowed interconnecting peaks across 
discontinuous timeframes (Figure 4C, Figure 4—video 3), but yielded more complex remnants, espe-
cially in regions where axons branched or intertwined. Complex remnants provided multiple possible 
solutions for the peak associations, thus aggravating the selection of an optimal conduction path 
between corresponding peaks. By restricting the skeletonization to three consecutive timeframes and 
using the refined association criteria, we could select the optimal path in most cases. However, further 
widening of the skeletonization boundaries increased the number of possible solutions exponentially 
and inevitably led to a deterioration of tracking performance.

The Bayes optimal template-matching technique was used to validate the algorithm for signal 
peak detection (Figure 5). We chose this technique because it has previously been demonstrated 
to provide reliable detection of extracellular APs recorded using the HD-MEA system (Radivojevic 
et al., 2017). It enables the detection of axonal APs within single recording trials and microsecond 
differences in axonal propagation (Radivojevic et  al., 2017; Franke et  al., 2015). Bayes optimal 
template-matching is sensitive enough to discriminate low-amplitude APs from the background noise 
(Radivojevic et al., 2017), and thus can be used to validate our algorithm.

Stimulation-triggered axonal activities allowed us to trace axonal conduction trajectories accurately 
and thus provided the ground truth for validation of our tracking algorithm (Figure 6, Figure 6—
videos 1 and 2). We have previously shown that both spontaneous and stimulation-triggered 
neuronal activities recorded by HD-MEAs can be used to outline axonal conduction trajectories (Bull-
mann et al., 2019; Radivojevic et al., 2016). Moreover, we demonstrated a congruence between the 
reconstructed trajectories and actual axonal morphology revealed optically (Radivojevic et al., 2017; 
Bakkum et al., 2013; Bullmann et al., 2019; Radivojevic et al., 2016).

conduction velocities for cortical and motor neurons; variances are computed for individual cells. Charts on the right express comparisons between the 
corresponding values obtained from cortical and motor neurons; horizontal black lines denote mean values, perpendicular black-dashed lines denote 
standard deviations. Color-code: pale-gray color was used to mark data obtained from cortical neurons; dark-gray color was used to mark data obtained 
from motor neurons. Data shown was extracted from functional morphologies of 50 cortical and 50 motor neurons. **p<0.01; ***p<0.001.

Figure 9 continued

https://doi.org/10.7554/eLife.86512
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Previous research on HD-MEA systems provided methods for the electrical imaging of axons 
(Radivojevic et al., 2017; Bakkum et al., 2013; Müller et al., 2015; Bullmann et al., 2019; Radivo-
jevic et al., 2016) but did not provide algorithms for the reconstruction of axonal morphology. There-
fore, optical imaging of axonal morphology or manual tracking of AP propagation was necessary to 
assign the recorded signals to their respective axonal locations (Radivojevic et al., 2017; Bakkum 
et al., 2013; Bullmann et al., 2019; Radivojevic et al., 2016). Recent studies have proposed algo-
rithms for deducing axonal arbors and propagation velocity based on extracellular APs (Yuan et al., 
2020; Buccino et  al., 2022). However, these algorithms have solely been validated on simulated 
morphologies, and no experimental validation has been done to assess their performances (Buccino 
et al., 2022). The present algorithm enables precise reconstruction of axonal electrical morphology 
and has been validated on experimental data obtained from cortical and motor neurons (see Figures 5 
and 6). The algorithm’s performances were investigated, and optimal parameters for accurate recon-
struction were identified. The algorithm’s adaptive functionality enables it to adjust and optimize its 
parameters in a data-driven fashion, which allows for customizing the tracking process for a specific 
neuron.

We investigated functional morphologies of cortical and spinal axons and found significant differ-
ences between their structures, AP amplitudes, and conduction dynamics (Figures 7–9), which poten-
tially reflect biological hallmarks of different neuronal subtypes. Although comparable in overall length, 
cortical and spinal axons exhibited substantially different functional morphologies. Cortical axons had 
a more complex branching pattern than spinal axons, but spinal axons projected their terminals to 
much longer distances than cortical axons. The amplitude of APs recorded from spinal axons was 
higher than those recorded from cortical axons. However, when comparing signals recorded from the 
AIS, cortical neurons displayed significantly higher amplitude than motor neurons. Cortical neurons 
had shorter active timespans and more synchronized arrival times than motor neurons, while cortical 
axons had slower and more uniform conduction velocities than spinal axons.

The structural complexity of cortical axons was reflected in their extensive branching, followed by 
the abundance of the axon terminals that were projected locally and distally (Figure 7, Figure 7—
video 1). Such morphological features of cortical axons can be attributed to their role in providing 
synaptic connectivity within local neuronal assemblies as well as across large neuronal networks, thus 
enabling higher-order operations performed in the brain (Buzsáki, 2010). Spinal motor neurons, 
however, have evolved much simpler morphology to provide fundamentally different biological roles. 
Motor neurons innervate and precisely control muscles in the periphery outside the CNS and are, 
for that purpose, equipped with the longest known axons in the body (Stifani, 2014). Our results 
obtained in in vitro conditions are consistent with such a notion. They indicate that spinal axons indeed 
have much simpler morphologies when compared to cortical axons, yet still retain relatively long total 
lengths (Figure 7, Figure 7—video 1). We found that spinal axons had moderately branched arbors, 
but projected their axon terminals at great distances, thus resembling morphological adaptations 
observed in vivo. Thanks to their extensively branched axons, cortical neurons enabled the delivery 
of APs to numerous axon terminals, surprisingly synchronously and within short timespans. On the 
contrary, spinal axons with less branches at their disposal required considerably more time to forward 
their APs to axon terminals in a less synchronized fashion (Figure 9B). In this study, the assessment of 
the structural complexity of cortical and spinal axons relies entirely on their functional morphologies. 
It would be valuable for future studies to compare the morphological features obtained through elec-
trical and optical imaging.

We found that extracellular APs recorded from proximal axons near the putative AIS exposed 
disproportionately larger amplitudes than signals obtained from other axonal parts (Figure  8, 
Figure 8—video 1). It has been previously shown that the AIS is the dominant contributor to the 
neuron’s extracellular electrical landscape (Bakkum et al., 2019), which can be attributed to the high 
densities of voltage-gated ion channels expressed in the AIS (Kole et al., 2008; Hu et al., 2009; 
Lorincz and Nusser, 2010). Interestingly, we found that APs obtained from proximal axons had signifi-
cantly higher amplitudes in cortical than in motor neurons (Figure 8B and C). The relatively low AP 
amplitudes at the AIS in motor neurons could result from the potentially disrupted organization of the 
AIS in unmyelinated motor neurons. Such disruption pertains to altered distribution and combination 
of voltage-gated ion channels as well as incomplete segregation of the AIS, para-AIS, and juxtapa-
ra-AIS compartments inherent to myelinated spinal axons (Duflocq et al., 2011). The diameter, length, 

https://doi.org/10.7554/eLife.86512
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and positioning of the AIS in relation to recording electrodes may also substantially impact shaping 
the extracellular AP profile (Bakkum et al., 2019; Kumar et al., 2022), which in turn can influence 
the AP amplitude. We found that signals obtained from distal axons and axonal trees had significantly 
lower amplitudes in cortical than motor neurons (Figure 8B and C). This difference could be explained 
by the fact that spinal axons have a considerably larger diameter than cortical axons (Saliani et al., 
2017). As such, they engage a greater number of voltage-gated ion channels and create stronger 
transmembrane currents during an AP electrogenesis (Stein and Pearson, 1971). However, a compre-
hensive modeling study that incorporates biophysical, structural, and spatial parameters is necessary 
to explain the observed differences in AP amplitudes between cortical and spinal axons. Large diam-
eters of spinal axons could also explain their significantly faster conduction velocities compared to 
cortical axons (Figure 9C). In general, axonal diameter and the presence of myelin sheaths are crucial 
factors that control conduction velocity in mammalian axons (Debanne et al., 2011; Waxman, 1980). 
On the one hand, conduction velocity of unmyelinated axons is proportional to the square root of the 
axon diameter (Hodgkin and Huxley, 1952). On the other hand, myelination provides a fundamen-
tally different mechanism of AP propagation known as ‘saltatory’ conduction (Huxley and Stämpeli, 
1949). In this case, myelin sheaths spatially restrict the distribution of voltage-gated ion channels to 
nodes of Ranvier and thus impose discontinuous AP propagation up to 100-fold faster than propaga-
tion in unmyelinated axons (Debanne et al., 2011; Saliani et al., 2017). The culture protocols used in 
this study do not support the formation of myelin sheaths around axons. Therefore, it is unlikely that 
complete myelination occurred in our cultures. Namely, the myelination of primary neurons in vitro 
requires either supplement that supports well-balanced development of both neurons and myelin-
producing cells (Pang et al., 2012) or, in the case of motor neurons, co-culture with a feeder layer 
of Schwann cells (Hyung et al., 2015). In both cases, the timely addition of specific neurotrophic 
factors is required to initiate the myelination program. The culture media used in this study were not 
specifically designed to support the growth of myelin-producing cells, and no myelination-promoting 
factors were included in the media. The protocols did not involve co-culturing motor neurons with 
Schwann cells that would provide myelination. Moreover, motor neurons were grown in a culture 
medium containing NT3, a neurotrophic factor known to significantly inhibit myelination in vitro (Chan 
et al., 2001). Finally, we did not detect any saltatory high-speed signal conduction in any recorded 
neurons, suggesting that myelin sheaths were not formed around the axons. We, however, cannot 
exclude potential cases where axons were partially myelinated. Moreover, incomplete myelinization 
or discontinuous distribution of voltage-gated ion channels could explain relatively large variances of 
conduction velocities in spinal axons (Figure 9C).

Generally, standard deviations of the data presented in Figures 7–9 could result from morpho-
logical and biophysical differences between various neuronal subtypes that may have existed in 
our cultures. Thus, for example, developed cortical cultures comprise excitatory glutamatergic and 
inhibitory GABAergic neurons which are known to differ in size and morphological complexities 
(Björklund et  al., 2010). Even greater diversity of neuronal subtypes can be found among motor 
neurons, including alpha, beta, and gamma motor neurons that are structurally specialized to inner-
vate different muscle fiber types in the body (Stifani, 2014). However, another question is to what 
extent such specializations can be recapitulated in vitro and whether electrophysiological parameters 
observed in cultures allow for discriminating between neuronal subtypes.

The presented method for functional imaging of cortical and spinal axons provides direct insights 
into the biophysical properties of axonal conduction. It allows investigation of interdependences 
between axonal function and structure, noninvasively and over extended periods. Functional morphol-
ogies contain data obtained from large portions of axonal arbors and, as such, allow studying the 
fidelity of signal conduction in different axonal elements, including conduction failures at branching 
points (Debanne, 2004) and signal attenuation in tiny axon terminals (Faisal and Laughlin, 2007). 
They also allow the inspection of activity-dependent modulation of extracellular AP waveforms 
(Radivojevic et al., 2017; Lewandowska et al., 2016) and analysis of consequent changes in times at 
which modulated signals arrive at axon terminals (Radivojevic et al., 2017). Owing to its noninvasive 
nature, the method enables the study of structural and functional changes in axons over long periods. 
Thus, for example, comparative analysis of functional morphologies obtained at different timepoints 
allows investigation of biophysical changes during axonal outgrowth and pathfinding – developmental 
processes that guide axons toward specific targets and enable wiring within neuronal networks (Myers 
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et al., 2011; Uesaka et al., 2005). Complemented with techniques for electrical microstimulation (see 
Figure 6—figure supplement 1), the method can be used to study activity-dependent axonal plas-
ticity, including structural alteration such as the positional shift of the AIS (Grubb and Burrone, 2010; 
Kumar et al., 2022) as well as functional adaptations that involve changes in axonal conduction veloc-
ities (Bakkum et al., 2013). Because the HD-MEA system allows observing electrical activities across 
entire neuronal networks (see Figure 2—figure supplement 6), the method can serve as a comple-
mentary tool for studying the functional interplay between network dynamics and plastic adaptations 
in axons (Grubb and Burrone, 2010; Kuba et al., 2010).

In summary, the presented method is designed for specific tissue-on-a-chip platforms and may 
serve as an attractive tool for pharmacological and preclinical studies of neurodegenerative diseases 
(Ronchi et al., 2021). The key potential of the method lies in its ability to gain multilevel knowledge of 
neuronal functionality, which may serve as a valuable asset in drug discovery and safety pharmacology. 
The method holds great potential for developing disease-specific bioassays, especially considering 
the advent of human induced pluripotent stem cell technology that allows for utilizing patient-derived 
neurons.

Methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain background (Rattus 
norvegicus) Sprague Dawley rat Charles River Laboratories Strain Code: 400 –

Cell line (Rattus norvegicus) Cortical; Spinal This paper  � – Primary

Antibody
Anti-Map2
(Chicken Polyclonal) Abcam ab5392 IHC (1:1000)

Antibody
Anti-β-III tubulin
(Rabbit Polyclonal) Abcam ab18207 IHC (1:500)

Antibody
Anti-mCherry
(Mouse Monoclonal) Abcam ab125096 IHC (1:500)

Antibody
Alexa Fluor 488
(Goat Anti-Chicken Polyclonal) Abcam ab150173 IHC (1:200)

Antibody
Alexa Fluor 488
(Donkey Anti-Rabbit Polyclonal) Abcam ab150073 IHC (1:200)

Antibody
Alexa Fluor 594
(Goat Anti-Mouse Polyclonal) Abcam ab150116 1 IHC (:200)

Recombinant DNA reagent pAAV-hSyn-mCherry Addgene Plasmid # 114472 –

Peptide, recombinant protein Human recombinant laminin BioLamina LN211 –

Software, algorithm Spyking Circus Yger et al., 2018 Spyking Circus Version 1.0.1

Animal use
All experimental protocols were approved by the Uppsala Animal Ethical Committee under animal 
license C97/15 and follow the guidelines of the Swedish Legislation on Animal Experimentation 
(Animal Welfare Act SFS 2009:303) and the European Communities Council Directive (2010/63/EU).

HD-MEA and signal processing
A CMOS-based HD-MEA system (MaxWell Biosystems AG) was used for extracellular neuronal 
recording and stimulation (Figure 2—figure supplement 1). The array comprises 26,400 platinum 
microelectrodes (9.3×5.45 μm2) packed within an area of 3.85×2.10 mm2, providing a density of 3150 
electrodes per mm2 (17.5 μm center-to-center pitch). Owing to a flexible switch matrix technology, up 
to 1024 readout and/or stimulation channels could be routed to the desired electrodes and reconfig-
ured within a few milliseconds. On-chip circuitry was used to amplify (0–80 dB programmable gain), 
filter (high pass: 0.3–100 Hz, low pass: 3.5–14 kHz), and digitize (8-bit, 20 kHz) the neuronal signals. 
Digitized signals were sent to a field-programmable gate array board and further streamed to a 
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host PC for real-time visualization and data storage. Recorded signals were up-sampled to 200 kHz 
following the Whitaker-Shannon interpolation formula. Python 3.7 and Matlab R2020a were used for 
data analysis and to design experimental protocols.

Cortical cultures
We used a culturing protocol for the long-term maintenance of neural cultures (Hales et al., 2010: 
Figure 2—figure supplement 2). Minor adaptations were introduced to the protocol to constrain 
culture growth to the sensing area of the array and maintain optimal growth media conditions during 
long-term experimentation (Radivojevic et  al., 2016). Cortices from embryonic day 18 Sprague 
Dawley rat were dissociated enzymatically in trypsin supplemented with 0.25% EDTA (Thermo Fisher 
Scientific) and physically by trituration. The remaining cell aggregates and debris were filtered using 
40 µm cell strainer (Corning). For cell adhesion, a layer of 0.05% polyethyleneimine (Sigma-Aldrich) 
in borate buffer (Chemie Brunschwig), followed by a layer of 0.02 mg/ml human recombinant laminin 
(BioLamina) in DPBS containing Ca2+ and Mg2+ (Thermo Fisher Scientific) was deposited on the elec-
trode array. To constrain culture growth to the electrode array, a cell drop containing ~50,000 cells and 
covering ~4 mm2 was seeded in the center of the array. The plating media were changed to growth 
media after 24 hr and regularly changed every 6 days. Plating media consisted of Neurobasal, supple-
mented with 10% horse serum (HyClone), 0.5 mM GlutaMAX, and 2% B27 (Thermo Fisher Scientific). 
The growth media consisted of DMEM, supplemented with 10% horse serum (HyClone), 0.5  mM 
GlutaMAX, and 1 mM sodium pyruvate (Thermo Fisher Scientific). Cultures were maintained inside an 
incubator under controlled environmental conditions (36°C and 5% CO2). The culturing chambers were 
sealed with an ~1 mm layer of light mineral oil (Sigma-Aldrich) floating above the growth medium. The 
sealing provided selective permeability to gases, such as O2 and CO2, and prevented evaporation and 
consequent changes in the growth media’s osmolarity during long-term experiments.

Motor neuron cultures
Protocol for growing motor neuron cultures on HD-MEA surface is illustrated in Figure 2—figure 
supplement 3. Spinal cords isolated from embryonic day 14 Sprague Dawley rat were dissociated 
enzymatically in trypsin supplemented with 0.25% EDTA (Thermo Fisher Scientific) and physically 
by trituration. The remaining cell aggregates and debris were filtered out using 40 µm cell strainer 
(Corning). A density gradient medium composed of 15% OptiPrep (Sigma-Aldrich) in Leibovitz’s L-15 
medium (Thermo Fisher Scientific) was used to fractionate motor neurons. For cell adhesion, a layer of 
0.05% polyethyleneimine (Sigma-Aldrich) in borate buffer (Chemie Brunschwig), followed by a layer 
of 0.02 mg/ml human recombinant laminin (BioLamina) in DPBS containing Ca2+ and Mg2+ (Thermo 
Fisher Scientific) was deposited on the electrode array. To constrain culture growth to the electrode 
array, a cell drop containing ~50,000 cells and covering ~4 mm2 was seeded in the center of the array. 
The growth media consisted of Neurobasal supplemented with 20% MyoTonic differentiation medium 
(Cook MyoSite), 1% fetal bovine serum, 2% horse serum, 2% B27, 1% antibiotic-antimycotic, 0.2 mM 
gentamicin, 0.7 mM L-glutamine, 1.5 mM sodium pyruvate (Thermo Fisher Scientific), 0.8 nM brain-
derived neurotrophic factor, 0.2 nM glial cell line-derived growth factor, 0.2 nM ciliary neurotrophic 
factor, 1.5 nM neurotrophin 3 (NT3), 1.4 nM neurotrophin 4 (NT4, R&D Systems), and 1.3 nM human 
insulin-like growth factor 1 (hIGF-1, Thermo Fisher Scientific). The growth media were changed after 
24 hr and further regularly changed every 4 days. Cultures were maintained inside an incubator under 
controlled environmental conditions (36°C and 5% CO2). The culturing chambers were sealed with an 
~1 mm layer of light mineral oil (Sigma-Aldrich) floating above the growth medium.

Immunocytochemistry
Neuronal cultures were fixed in 4% paraformaldehyde (Thermo Fisher Scientific) in PBS (Sigma-Aldrich) 
at pH 7.4 for 15 min at room temperature, washed twice with ice-cold PBS, permeabilized with 0.25% 
Triton X-100 (Sigma-Aldrich) in PBS for 10 min and washed three times in PBS. Fixed cultures were 
exposed to phosphate-buffered saline with Tween 20 (1% bovine serum albumin and 0.1% Tween 
20 in PBS; Sigma-Aldrich) for 30 min to prevent unspecific binding of antibodies. The primary anti-
bodies Anti-Map2 (Abcam, ab5392), Anti-β-III tubulin (Abcam, ab18207), and Anti-mCherry (Abcam, 
ab125096), diluted in phosphate buffered saline with Tween 20 to ratios of 1:1000, 1:500, and 1:500 
respectively, were added and left overnight at 4°C on a shaker. Cultures were washed three times in 
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PBS for 5 min each time on the shaker. The secondary antibodies Alexa Fluor 488 (Abcam, ab150173), 
Alexa Fluor 488 (Abcam, ab150073), and Alexa Fluor 594 (Abcam, ab150116) diluted to ratio of 1:200 
in PBS with 1% BSA were added and left for 60 min in the dark at room temperature. Samples were 
washed three times in PBS for 5 min in the dark and then stored at 4°C. Cultures were immunostained 
with anti-β-III tubulin (Figure 2—figure supplements 4 and 5, Figure 1—videos 1 and 2), anti-Map2 
(Figure 2—figure supplements 6 and 7, Figure 2—videos 1–3), and a combination of anti-mCherry 
and anti-β-III tubulin antibodies (Figure 2—figure supplement 5).

Live imaging
Live-cell visualization of neurons was performed by transfection using pAAV-hSyn-mCherry plasmid 
from Karl Deisseroth (Addgene plasmid # 114472) and Lipofectamine 3000 (Thermo Fisher Scientific), 
jetPRIME (Polyplus) or TurboFect (Thermo Fisher Scientific) transfection reagent following the manu-
facturer’s protocols. Micrographs of cortical and motor neurons transfected using Lipofectamine 3000 
are shown in Figure 2—figure supplement 5.

Microscopy and 3D image reconstruction
A Nikon Eclipse LVDIA-N microscope, Nikon DS-Fi2 camera, and the Nikon NIS-Elements imaging 
software were used to produce micrographs. Epifluorescence microscopy was used to collect Z-stack 
image series from immunostained cultures shown in Figure  2—figure supplements 4 and 5 and 
Figure 2—videos 1 and 2. ImageJ and Matlab custom designed codes were used to create 3D surface 
plots (Figure 2—figure supplement 4) and to reconstruct 3D neuronal morphologies (Figure 2—
figure supplement 5) based on the intensities of immunofluorescent signals.

Network-wide activity mapping
Spontaneous extracellular APs were sampled across the entire microelectrode array by sequen-
tial scanning over 28 recording configurations. Up to 1024 randomly selected electrodes recorded 
neuronal activity in each configuration for 2 min. The average voltage traces, recorded by each elec-
trode, were used to reconstruct the network-wide activity map (Figure 2—figure supplement 6A). 
Since the largest extracellular APs occur near the AIS, and APs arising from axonal arbors have much 
smaller amplitude, regions with high-amplitude APs in the activity maps indicated the locations of the 
AISes (Radivojevic et al., 2017; Bakkum et al., 2019; Radivojevic et al., 2016).

Electrical identification of individual neurons
Simultaneous access to signals arising from the AIS region enabled us to reconstruct the spatio-
temporal distribution of extracellular APs, referred to as the ‘electrical footprint’ (Figure 2—figure 
supplement 6C). To obtain these signals, we used high-density recording configurations covering the 
AIS locations revealed in the activity maps (Figure 2—figure supplement 6A). In each configuration, 
blocks of 13×13 electrodes were connected to readout channels to sample neuronal activity for 2 min. 
Recorded signals were sorted by using the Spyking-Circus algorithm (Yger et al., 2018), and electrical 
footprints were reconstructed by using custom-designed Matlab code. Because the first-occurring 
(initial) trace found in the electrical footprint colocalizes with the neuron’s AIS, it was used to trigger 
the averaging of voltage traces recorded across an entire axonal arbor (see below).

Electrical imaging of axonal arbors
Array-wide averaging of voltage traces, synchronized with the initial trace (recorded from the AIS), 
reveals the spatiotemporal distribution of extracellular APs across an entire axonal arbor (Figure 2—
figure supplement 7 and Figure 2—video 3). The first step in obtaining these data was selecting 9 
electrodes that were closest to the putative AIS. We next designed multiple recording configurations 
covering the entire array – in each configuration, 9 of the 1024 readout channels were routed to the 
9 preselected electrodes, and remaining available channels were routed to randomly selected elec-
trodes. Each configuration was used to sample neuronal activity during 2 min. Signals recorded by the 
9 preselected electrodes in each configuration were sorted using the Spyking-Circus algorithm (Yger 
et al., 2018). Timestamps of the sorted signals were used to trigger the averaging of voltage traces 
recorded across all other electrodes in the array. The spatiotemporal distribution of averaged signals 
was reconstructed using a custom-designed Matlab code.
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Electrical stimulation of individual neurons in the network
Stimulation performances of the HD-MEA system allow for stimulating any neuron in the culture 
with subcellular spatial precision (Radivojevic et al., 2017; Bakkum et al., 2013; Radivojevic et al., 
2016; Ronchi et al., 2019). Key concepts of the stimulation protocols that were used in this study 
are presented in Figure  6—figure supplement 1. Extracellular electrical stimulations targeted at 
predefined axonal locations allow to experimentally control the direction of the axonal conduction 
(Radivojevic et al., 2016; Figure 6—figure supplement 1A). Electrical stimulation directed at the 
AIS was used to elicit orthodromic neuronal activation (Figure 6 – figure supplement 1A, left). Stim-
ulation directed at distal axons was used to elicit antidromic neuronal activation (Figure 6 – figure 
supplement 1A, right). All stimulation protocols utilized balanced positive-first biphasic voltage 
pulses, with phase durations of 200 μs, because of their proven effectiveness in electrical stimulation 
(Wagenaar et al., 2004). Stimuli were applied to one electrode at a time at a frequency of 4 Hz. 
Neuronal responses to orthodromic stimulations were estimated by observing APs recorded from 
distal axons (Figure 6 – figure supplement 1A, left). Responses to antidromic stimulation were esti-
mated by observing APs recorded from proximal axons and the AIS (Figure 6 – figure supplement 
1A, right). To find optimal parameters for stimulation of individual neurons in the network, we used 
approaches thoroughly described in our previous study (Radivojevic et al., 2016). In brief, we applied 
neuron-wide stimulation over a range of voltages to reveal sites with the lowest activation threshold 
(Figure 6—figure supplement 1B). Stimulation was applied at 4 Hz for voltages from ±10 to ±300 mV, 
with steps of ±10 mV. Each stimulation voltage was applied 60 times per site, and activation thresh-
olds were defined as the minimum voltage to trigger an AP in 100% of the trials. To get more detailed 
excitability profiles, the most sensitive sites were then stimulated with voltages stepped by ±1 mV 
(Figure 6—figure supplement 1C).

Statistical analysis
All quantitative data presented in Figures 7–9 are expressed as mean ± SEM. Numbers of biolog-
ical replicates (N) used for analyses presented in Figures  5–9 are denoted in the figures and are 
also stated in their legends. We used non-parametric tests for comparing distributions of parameters 
presented in Figures 7–9, since normal distribution of the underlying data could not be determined 
unequivocally. The two-sided Mann-Whitney U-test was applied and a p-value <0.05 was considered 
significant. Logarithmic scaling of graphs shown in Figure 8B and C was used to display a wide range 
numerical data in a compact way.
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