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This supplementary material provides detailed model descriptions and proofs for the analytical arguments
presented in the main text. The document is organized into many fice folders (and many sub-folders), as
described below. A PDF version of the file is also provided for easy accessibility.

Organization of the results

Read me file (this file)

Folder 1: Simple enzymatic networks

Folder 2: Multisite modification (double site ordered phosphorylation model with common enzymes)
Folder 3: Multisite modification - enzyme combinations (double site ordered phosphorylation model with
different enzyme combinations acting on each modification site)

Folder 4: Beyond multisite modification (coupled covalent modifications and cascaded enzymatic networks)
Folder 5: Modeling approaches for biphasic responses within canonical network motif interactions

Folder 6: Biphasic responses in Erk Model

Each folder if presented with a Read_Me file that serves as a preamble to indicate the nature of results within
and each file is accompanied with detailed instructions on how to run the code in Maple.

Key insight relevant to biphasic dose response

In the following documents, in order to establish the presence or absence of biphasic responses in steady
state concentration of a given variable with a dose parameter, we use the mathematical definition of the
behavior. This main tenet of the behavior forms an important part of the proofs that follow and is
highlighted here.

If a system is capable of exhibiting biphasic response in a variable 'x' as a dose parameter 'p' is changed, then
it requires that there exists a feasible steady state of the system satisfying the model description (the system of
ODEs and the conservation equation), which also simultaneously satisfies the following mathematical
expression

o
p 0
This arises from the fact that, for a biphasic behavior to exist, there has to naturally exist a peak

concentration of the variable 'x' where the gradient of the steady state curve is zero. The absence of such a
point indicates the absence of biphasic response in the system.

An enzymatic network has two natural 'doses' from the perspective of the maximally modified substrate; the
total substrate in the system and the total amount of kinase (the enzyme effecting the modifications).
Enzymatic networks are capable of exhibiting biphasic responses in the modified form (or the maximally
modified form) with change in both doses. Both of these biphasic dose responses are of interest as they belay
simple intuitive expectations of the system to behave monotonically with change in dose. These different
biphasic responses shown in the substrate are simply labelled as enzyme biphasic or substrate biphasic from
here on within this text (refering to scenarios where the enzyme or the substrate is the dose, respectively).



Simple enzymatic network motifs

In this folder we detail analytical results pertaining to simple enzymatic network motifs (covalent
modification cycle and protein-protein interaction model), specifically their capacity to exhibit biphasic
responses (in steady state dose response). The study of these networks and the results provide an emerging
synthesis on the different kinds of biphasic responses that can be seen in signaling systems and the minimal
ingredients required to generate or enable such responses.



Covalent modification network
[single modification/demotification of a protein]

In this file we prove that the simple covalent modification network with a kinase and a phosphatase effecting
the modifications and demodification (phosphorylation and dephosphorylation) is incapable of presenting
any biphasic dose response behavior in the modified substrate form. More specifically, we show the

1. absence of enzyme biphasic response in concentration of Ap with changing total kinase
concentration

2. absence of substrate biphasic response in concentration of Ap with changing total substrate
concentration

Detailed definitions of these two different classes of biphasic behavior are described in the manuscript (see
Read_Me file on page 1). We reiterate that should a biphasic behavior exist in the steady state concentration
of the modified substrate form (Ap) with respect to any parameter 'p' (total enzyme amount or the total
substrate amount), then there exists steady state concentrations of the variables where the following
mathematical expression is necessarily satisfied.

dAp
ap

dA4p d4p
This takes the form 9K = 0 for enzyme biphasic and Fy 0 for substrate biphasic response.
Total Total

In this file, we begin by describing the mathematical model for a covalent modification network. Then by
solving the system of ODEs at steady state, we obtain equations relating the steady state concentrations of the
different variables and using these we proceed to show the absence of both biphasic dose response behaviors
(subsection 1 and 2).



Covalent modification network: We first describe the mathematical model of a covalent modification
network.

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart > with (LinearAlgebra) : with (Student[ LinearAlgebra]) : with (VectorCalculus) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text (Models
and Methods section). Here dA represents d[A]/dt and similarly in the case of the other variables. At steady
state thus, the right hand sides of each of these expressions will be equal to zero.

dd =k -ApP —k, -A-K+k, -AK
ddp =k -AK+k , - ApP —k,,-Ap-P :

dAK = ka~A-K— (k + k )-AK:
ubl 1
dApP = kbz-Ap~P - (kubZ + kz) -ApP :

dK =~k ~A-K+ (k +k)~AK:
ubl 1
dP = —kb2~Ap-P + (kubZ + kz) “ApP :

The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, PCon and KCon for the substrate and the respective enzymes. Each of
these expressions is always equal to zero (both in the transient and at steady state).

ACon == A + Ap + ApP + AK—ATmI :
KCon =K+ AK—K_
Total

PCon := P + ApP — PTotaI :

Now we begin solving the system of equations to obtain equations relating the steady state concentrations of
the variables. Primarily to obtain relationships between steady state concentration of variables as a function
of concentrations of Ap and the free kinase concentration K. For this purpose we use an inbuilt Maple
command solve as shown with the example below.

k,AK

kub] + k1

assign (solve({dApP, dA}, {ApP, A})) :

AK = solve(dAK, AK) =

Once this is done, we again solve for the steady state of phosphatase and the substrate involved in the
covalent modification cycle using the conservation expression for the enzyme (PCon),

P := solve(PCon, P) :

Now having solved for the steady state of the system in terms of Ap and K, the only two equations that
remain (which define the steady state of the system) are the conservation equations for the kinase and the
substrate (KCon and PCon) respectively (see below).

ACon

Ap Py Ky (kuhl + k/)
k

(kpp AP +hy + k) KK,

kaAp P, Ap P k. k

Total Total "2 b2

—4 @
ky, Ap + ky + Ky, (Ko AP +ky+ k) k) Toral

+ Ap +
bl



KCon
Ap Pk k

Total "2 b2
K+ —K ?2)
(kbz Ap + k, + kub2) k, Total

V¥ 1. Enzyme biphasic
Now in order to show the absence of enzyme biphasic response in Ap with total enzyme concentration,
we proceed with a proof by contradiction. As mentioned earlier, for enzyme biphasic in Ap to exist, for

some steady state of the system, F) o 0 must be satisfied. Thus, we begin with the assumption that
Total
such a biphasic exists, satisfying the condition.

Now, differentiating ACon with respect to Ky.,; provides the following

dACon 0 dA4Con 0K d4Con  dd4p

dKTotal K aKT otal 6Ap a1<Total

dKCon 0KCon dKCon 0K 0KCon  0Ap

k. V=9Kk t 9Kk 9K T “ddp K
Total Total Total Total

With the assumption that there exists a biphasic behavior in the substrate with changing total substrate
amounts, these equations simplify as shown below

d4Con K
dK 9K
Total
K
1= 55—
Total
\ 4 Note
dKCon d4Con
This reduction was possible since Wand —adp e finite and have non-zero denominators (as
ACon
shown below), allowing the product with “odp to be zero.
Pk k. (k,  +k
szmpll}fv(dzjf(KCon,Ap)) _ Total "2 b2 ( ub2 2_7)
(khZ Ap + kZ + kub]) kl
simplify (diff (ACon, Ap)) =
! (Aszk k k242 [K((Ap—i— P ] k + “ ] k
2
(Koo AP+ ky + kypy)" Ky ke, L 2 ! 2 "
Pk (k +k )
Total "2 ubl 1 2
L + 2 ] (kubZ + kZ) k/)Z + Kkl kbl (ku/)l + kZ) )
oK dA4Con
The above equation indicates that F) o is equal to 1. From this, we can observe that —gK must be

Total
zero to satisfy the first expression (obtained from differentiating ACon). However as seen below, we can
see that this is not possible for any feasible steady state of the system.




Ap P ko by (K T K)

(khz Ap +k,+ kubl) K? ky &y

simplify (diff (ACon, K) ) = —

This is a contradiction and thus enzyme biphasic behavior in Ap with total enzyme concentration
| (Krotap) s not possible.

V¥ 2. Substrate biphasic

Now in order to show the absence of substrate biphasic response in Ap with total substrate concentration,

we proceed with a proof by contragiction. As mentioned earlier, for substrate biphasic in Ap to exist, for
A

some steady state of the system, 94 =0 mustbe satisfied. Thus we begin with the assumption that
Total
such a biphasic exists, satisfying the condition.

This implies that differentiating ACon with respect to Ay ,; provides the following

dACon 0 dA4Con dACon 0K d4Con  dA4p
=0 = + . + .
d4 Total 94 Total ok a4 Total 6Ap 4 Total
dKCon dKCon 0K dKCon  d4p
i 97 Tk 94 T aap o4
Total Total Total

With the assumption that there exists a biphasic behavior in the substrate with changing total substrate
amounts, these equations simplify as shown below
dA4Con K

1= 9K ai__
Total

dKCon d4Con
This reduction was possible since Wand ~9dp are finite and have non-zero denominators (as

04 Con
shown below), allowing the product with “odp to be zero.

PTm‘al kZ kIJZ (kubZ + kZ)
2
(ka Ap + k2 + kubZ) k]

simplify (diff (KCon, Ap)) =
simplify (diff (ACon, Ap)) =
1
2
(kbz 4p + k.? + kuh2) Kk[ kbl
P k (k + k )
Total "2 ubl 1 P
2 ] (k14b2 + k2) ka + Kk] ka (kubZ + k.?) ]

PTuta/ kZ PTotal
Ap* Kk, k, k7 +2 | K| | 4p + 3 k,+ = k,,

The first expression indicates that



oK dA4Con

cannot be equal to 0 (since K itself is always positive, as
Total

shown below). However the second expression (obtained through differentiating KCon) contradicts this.

Ap PTma/ k] ka (kub] + k[)

(kAP +k,+ k) K2k, k,,

simplify (diff (ACon, K) ) = —

This is a contradiction and thus substrate biphasic behavior in Ap with total substrate concentration
| (Aqgga) is not possible.
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Protein-protein interaction model (PPI)
[adopted from Kholodenko et al 2015., Interface.]

In this manuscript we analytically show the propensity of the PPI model (first described by Kholodenko et
al., 2015) to exhibit biphasic behavior in the substrate form as the total enzyme concentration changes
(enzyme biphasic).

This has been computationally established in the manuscript by Kholodenko et al., 2015, and here we show
that this is analytically guaranteed in for the entire range of kinetic parameters due to the network structure
of the system.

We build on the computational result of Kholodenko et al., 2015 to show that

1. The PPI system does accommodate a biphasic behavior in the modified substrate form for the entire range
of kinetic parameters due to network structure.

2. We show that the full model (described using mass action kinetics without any assumptions on enzymatic
regimes such as the ones assumed in Kholodenko et al., 2015) is also capable of enzyme biphasic response
for any kinetic parameter choice while being incapable of substrate biphasic response in the modified
substrate form irrespective of kinetic parameters.

11



V¥ Protein-protein interaction model [model from Kholodenko et al., 2015]

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with (LinearAlgebra) : with (Student[ LinearAlgebra]) : with (VectorCalculus) :

The system is modeled as a set of ODEs using the kinetic nomenclature as described in Kholodenko et al.
,2015. Here dA represents d[A]/dt and similarly in the case of the other variables. At steady state thus,
the right hand sides of each of these expressions will be equal to zero.

dA =—k -A-B+k , -AB:
bl ubl
k, B kS-A-Bs
dB = —kb[~A'B +kub1'AB - m + m :
kB k,-A-Bs
dBs = —2—— 3 .
Kz +B K3 + Bs *
dAB ==k, -A-B —kubl-AB:

The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, BCon. Each of these expressions is always equal to zero (both in the
transient and at steady state).

ACon = ATOml —A —AB:

BCon =B —AB — B — Bs:
Total

Now we begin by solving the system of equations to obtain correlations between the steady state
concentrations of the variables. Primarily to obtain steady state correlations of variables as a function of
concentrations of B and the Bs. For this purpose we use an inbuilt Maple command solve as shown with

the example below.

kb]AB

kuhl

AB = simplify (solve(dAB, AB)) =
A = simplify ( (solve(dB,A))) :

k,B (K3+Bs)
(K2+B) k3Bs
k k., B? (K3+Bs)

A=

b1 "2
AB=—F—To 7
(K2 + B) kj Bs kub[

Note for positive concentrations of B and Bs, A and AB are positive as well. Thus this results in us
solving all ODEs and conservation equations describing the system, except for the conservation
expressions ACon and BCon.

ACon

bl 2

k,B (K, + Bs k  k, B*(K,+ Bs
o laB(KrE (K ) w
Total (K2+B) k3Bs (K2+B)k3Bskuhl :

BCon

12



k,, k, B? (Kj +Bs)

Br ™ (K, T BY K, Bk, B 1.2)

If we differentiate both these with respect to the total enzyme concentration (Ar,,)) in the system, we get

dACon - 04 Con + 04 Con 0B 4 04 Con 0Bs
d4 Total o4 Total o8 a4 Total 0Bs o4 Total
dBCon 0- 0BCon 0B + 0BCon 0Bs
d4 Total 08 04 Total 9Bs o4 Total
. . S . . . 0B
Now, in order for there to exist a biphasic response in B with total enzyme concentration, ———— must
Total

equal zero (the gradient at the peak concentration achieved by B in the dose response curve is zero).
Thus, we can simplify these expressions further as,

\ 4 Note

TP . . 04 Con 0BCon -
This simplification was possible since g and —gp— are finite and have non-zero

denominators (see below)
((2 Ky B+ k) K, +k,, BZ) k, (K3 + Bs)
(K + 3)2 k,Bsk,,

simplify (diff (ACon, B)) = —

simplify (diff (BCon, B)) =

—ky k=i ky,) Bs — Kk, k) B =2 K, ((k Kyt kK, ) Bs

(K, + B)2k3 Bsk,, (((

— 2
+ K,k k) B—BsK2k k)

B 04 Con 0Bs
9Bs aATatal
_ 0BCon 0Bs
0Bs (')ATOM
. ACon . 0Bs o
Now since, “oBs s always positive (see below), ——— has to be non-zero. Which implies, in order

Total
. - . . . 0BCon
to achieve a biphasic response in B with total enzyme concentration, “oBs

must equal zero. This is in fact a sufficiency condition as well, since for any concentration of B satisfying
such a condition, we can suitably find a total substrate and enzyme concentration using ACon and BCon
at which they are steady state concentrations as well.

— 2 2
(K, + B) k Bk, +k, &, B*K,
2
(K, +B) k;BSk,,,

simplify (diff (BCon, Bs)) =

Solving this for the concentration of Bs, we obtain the following correlation between the concentration
of Bs and B, denoting the point at a biphasic peak achieved in the dose response curve of B with Ay ...
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Bs = simplify (solve (diff (BCon, Bs), Bs)[1])

\/ ubl K+B)K3k2k118

k ku/(K2+B)

Bs = (1.3)

Now thus, all that remains is to find a suitable total substrate and enzyme amount where this peak can
exist. This however is trivial to show, as for every choice of concentration of B, there exists a unique Bs,
A, AB (each identified using the relevant correlations between the steady state species concentrations)

ACon =
i ‘o \/kjkm (K2+B)K kzkm B
B 2%ub1 | 73 kjkub (K +B)
Toal J5Fm (KT B KRR,
\/ ub[ K+B)K?k2kblB]B
_ 3 ubl (K +B)
\/ ubl K +B)K kzkb]
BCon =
\/ (K +B)Kk2kaB
by by | K+ 7 K +B K +BYK Kk B
B _ ) ?ubI( ) _B_\/3ub1( ) 372 bl
Total \/k3 kuh/ (](Z'i‘B) K kzk” k3kub1 (K2+B)

And thus implies, that for every choice of underlying kinetics and for every feasible concentration of B
at the biphasic peak, there exits total amount of substrate and enzyme, where it is possible to observe a

enzyme biphasic response with total enzyme concentration (i.e. the behavior to guaranteed to occur for
any given underlying kinetics, provided there is flexibility on the total concentrations of the substrate).

Below, we illustrate a parameter set where the biphasic behavior is analytically predicted

k,, = 0.000662316 : k , = 0.000701878 : k, := 53.6473 :K2 = 1880.36 : k, := 2.98182 :K3 =
11.0657 :

B :=19.428458 :

simplify (AB) = 9.482758847
simplify (A) = 0.5172407784
simplify (Bs) = 6.109563569

A, = solve(ACon) =9.999999625

BT” solve(BCon) =35.02078042

Thus in this subsection, we have shown how the PPI model illustrated by Kholodenko et al., 2015, which
is a simple variation of a covalent modification system involving just an additional inactive complex
formation with the enzyme (albeit with specific regimes of enzyme action - see next subsection) is
capable of exhibiting enzyme biphasic dose response robustly in the entirety of intrinsic kinetic

| parameter space.

T Protein-protein interaction model [Full system|
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Note: In this subsection, we (re)model PPI network using mass action kinetic description. This kinetic
description for all reactions assumes no limitations on the regime of enzyme action (unlike the PPI model
described in Kholodenko et al., 2015 and used in the previous subsection) and thus is a more accurate
representation of the variation of the covalent modification system it is. Using this model, we show that
the PPI network is incapable of exhibiting substrate biphasic response, while (as shown in the previous
subsection) it is capable of exhibiting robust enzyme biphasic responses in the modified substrate form.

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with (LinearAlgebra) : with (Student[ LinearAlgebra]) : with (VectorCalculus) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text
(Models and Methods section). Here dA represents d[A]/dt and similarly in the case of the other

variables. At steady state thus, the right hand sides of each of these expressions will be equal to zero.

dA =k, ApP + k, -AK — k, -A-K:
dAp = kI-AK + kubz' (4ApK) + kub4' (ApP) — kbz' (4p) - (K) —kb4-Ap~P :

dAK = ka-A'K— (kubl + kl) ‘AK
dApK =k, Ap-K — (kubz) -ApK :
dApP = kb4-Ap~P — (kub4 + k4) ApP :

dK =~k AK+ (k, +k)AK =k, Ap K+ (k) ApK:
dP =~k Ap P+ (k,, + k) ApP:

The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, KCon and PCon for the substrate and the respective enzymes. Each of
these expressions is always equal to zero (both in the transient and at steady state).

ACon = ATml —A —ApP —ApK —AK — Ap :

KCon = KTatal —AK —K — ApK :

PCon = P —F —ApP:

Now we begin by solving the system of equations to obtain correlations between the steady state
concentrations of the variables. Primarily to obtain steady state correlations of variables as a function of
concentrations of Ap and the ratio € (defined below). For this purpose we use an inbuilt Maple command

solve as shown with the example below.

k,,AK

kub[ + k[

assign (solve({dA, dApK, dApP}, {4, ApK, ApP}))

AK := solve(dAK, AK) =

K
We now introduce a new ratio, € = 7 (ratio of the free enzymes), Simultaneously we introduce the

following parameters (c,, ¢, €3, and c4). This is done for the sake of brevity and easy tractability of the
expressions obtained.

K:=¢€P:
k= (kH k) th,=cy (kubZ) thy = (K TR

15



After this simplification, we solve the conservation equation of the phosphatase for the steady state
concentration of the enzyme as shown below,

P := solve(simplify (PCon), P) :

Thus this results in us solving all ODEs and conservation equations describing the system, except for the
conservation expressions ACon and KCon.

. Apkk4f4
€ [L[
UK = Ap k4 C4 PTom/
k] (Ap c, + 1)
ApK = 62 ApepTotal
PR = Apc,+1
ApP = C4Ap PTolal
P ap e, +1

The steady state of the system is now defined by feasible solutions (of Ap and €) of the expressions
ACon and BCon (Note for positive concentrations of Ap and €, the remaining species concentrations are
positive as well).

ACon
A Aepkk4 ‘ Z;Ap Prow 24P Py AP ki €4 Pro —dp @
ota 16 pc4+1 Apc4+1 kl(Apc4+1)
KCon
K _ AP k4 C4 PTom/ _ EPTom/ _ CZAPGPTmal (2 2)
fol — k, (Apc,+ 1) Apc,+1 Apc,+1 :

V' Proof of absence of substrate biphasic response

Now, to show the absence of a substrate biphasic response in Ap with total substrate concentration, we
proceed with a proof by contradiction. In order for there to exist a substrate biphasic, the following
must be necessarily true at some steady state in the system (the gradient at the peak concentration
achieved by Ap in the dose response curve is zero)

04p

o4 Total

If we differentiate both conservation expressions with respect to the total enzyme concentration
(Ayg) in the system, we get

dACon 0 94 Con N 04Con  ddp N 94 Con 0
=0= . e
Total o4 Total aAp 04 Total ¢ 04 Total
dKCon 0 0KCon  0dp . 0KCon 0
dA Total aAp 04 Total de o4 Total

Since we begin with the assumption that there exists such a biphasic , we can simplify these
expressions further as

16



_ 04Con de

9
aATotaI
0= 0KCon 0€
d€ aATotL/zl
\ 4 Note
his simplificati ble si 04 Con 0KCon fini ih
This simplification was possible since adp an adp are finite and have non-zero

denominators (see below)
simplify (diff (ACon, Ap)) =

1
—Ap2 3 — . .2 J, R
€k[CI(APC4+1)2[ ek Ap(Ap‘fek1+2k4)°4+( 2‘1[[A”

PTotal k k4 PTotaI —k _ k P 1
T 1T €~k e, e ke, €l T
((—Ek1+k4) C4+6‘2€k1) P

ki (Apc4+1)2

Total

simplify (diff (KCon, Ap)) = —

. 0KCon | . 04Con .

Now since, ¢ I always negative (see below), —— g are finite and have non-zero
Total
denominators.
P (Ap c,+1 )
. . . . _ Total 2
simplify (diff (KCon, epsilon) ) = Ap ot I
— 2 . , 2 .
Ap ( P €k e, HAp ke, +k4‘4)

simplify (diff (ACon, epsilon) ) = 2k e (Ap T l)
171 4

This is a contradiction and thus substrate biphasic behavior in Ap with total substrate
|_ concentration (A, is not possible.

\ 4 Enzyme biphasic

The full model description of the PPI system is capable of exhibiting enzyme biphasic response. In
this subsection, we prove the existence of the behavior irrespective of kinetic parameter choice.

We begin with the assumption that there exists an enzyme biphasic response in Ap to total kinase
concentration. We know that in order for there to exist an enzyme biphasic, the following must be
necessarily true at some steady state in the system (the gradient at the peak concentration achieved by
Ap in the dose response curve is zero)

04p

KT otal

If we differentiate both conservation expressions with respect to the total enzyme concentration

(A
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Tota) 1N the system, we get

dACon o~ 04Con  dAp N 94Con e

dKTmal aAp aI(T.')tal d¢ aI(Tmal

dKCon o~ 0KCon N 0KCon  34p 4 0KCon e
dKTotal aI<T0tal aAp aI<Total de aI{Total

Since we begin with the assumption that there exists such a biphasic, we can simplify these
expressions further as

_ 04Con de
d¢ a1<Total
- 0KCon e
de aI(Total
\ 4 Note

04Con 0BCon

W an W are finite and have non-zero

This simplification was possible since

denominators (see below)
simplify (diff (ACon, Ap)) =

1 PT()tulj
423 — ) 5 B Proa
€k[c[(Apc4+1)2[ Ap©ek, Ap(ApL[€k1+2k4)c4+( 2([Ap+ 3 k,

4PTotaI i k
+72 c,e—k,jc,—c 16(62€PT0W+1)
simplify (diff (KCon, Ap))
_((—6k1+k4)c’4+c26k1)P

kI(Apc4+l)2

Total

(2.2.1.1)

. 0KCon . (S S
Now since, ¢ Is always negative (see below), K has to be non-zero. Which implies, in
Total

04Con
order to achieve a biphasic response in Ap with total enzyme concentration, o

must equal zero. This is in fact a sufficiency condition as well, since for any concentration of € and
Ap satisfying such a condition, we can suitably find a total substrate and enzyme concentration using
ACon and KCon at which they are steady state concentrations as well.

P (Ap c,+1 )
. . . _ Total 2
simplify (diff (KCon, €)) = T oape, 1
) 04Con . . . .
Solving 3¢ =0 for the concentration of Ap, we obtain the following correlation between the

concentration of Ap and €, denoting the point at a biphasic peak achieved in the dose response curve
of Ap with Ky
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2 —
C] C2 € k1 PTotaI C4 k4

2
¢k,

Ap = simplify (solve (diff (ACon, €), Ap)[2]) =

Now thus, all that remains is to find a suitable total substrate and enzyme amount where this peak can
exist. This however is trivial to show, as for every choice of concentration of € (when Ap is positive

here), there exists a unique AK, ApK, ApP (each identified using the relevant correlations between the
steady state species concentrations)

c 2.2.1)
ACon =
2 — —
A _ C’ZPZ'otalE k] c] k4 64 _ (C’ZPTtIE k C k ¢ ) PTom/
Total c, €k, c, cPT”ekc —k,c,
c, k +1
¢, k,
, 2 2
_ ¢ (LZ PT)ta/e k[ 1 k4 C4) 6PTotaI 2 Tuml€ k L k ¢ ) Total
c,P_ €k c —k,c = k c —k ¢,
Czk 2" Total 11 44+ Ck 2 Tatal 1 +1
474 c4k4 c,
2 —
. CZ PTntuIE kl C‘[ k4 (34
2
¢y k4
KCon =
2 —
K _ (CZ PTotaI€ kI CI k4 04) PTotal _ €PTota/
2 — 2 —
Toral C2 PTutal€ kl C] k4 C4 CZ PTntalE k] Cl k4 C4
ek, " +1 - +1
€4y Cuy
¢ (CszzlG k1c k4c4)€PTmal
c, P €k c —k,c
24 2" Towl ;]{ AT
€%y

And thus implies, that for every choice of underlying kinetics and for every feasible concentration of
€ (and Ap) at the biphasic peak, there exits total amount of substrate and enzyme, where it is possible
to observe a enzyme biphasic response with total enzyme concentration (i.e. the behavior to

guaranteed to occur for any given underlying kinetics, provided there is flexibility on the total
concentrations of the substrate).

Below, we illustrate a parameter set where the biphasic behavior is analytically predicted (and this is
shown and confirmed computationally in figure 2)

k =1k, =1k, =1k =20:k =1k =1k =1:k, =1:c =

1 4 b1 b2 Y ubl ub2 ub4 1
TR T "R
k,+k,, (6= k,, (O = k,+k,,

PTotal =

Ap = 1.139478030 : epsilon = 2 :

simplify (AK) = 0.3629514268
simplify (4) = 0 5697390150

simplify (ApK) = 29.03611414
simplify (ApP) = 0.3629514266
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= solve(ACon) = 31.47123404
= solve(KCon) = 30.67316271

4 Total =

Total :
Thus, in this subsection we have shown how for every choice of underlying kinetics the PPI model

(without any assumptions on regime of enzyme action) is capable of exhibiting enzyme biphasic in
Ap dose response with changing total kinase concentration.
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Double site phosphorylation system (DSP)

[common kinase and common phosphatase]
Features and requirements of obtaining biphasic response in the maximally
modified substrate

In this file we analytically study the presence of enzyme and substrate biphasic in the maximally modified
substrate form. In doing so we establish the following key results with regard to the behavior.

Enzyme biphasic response (biphasic behavior in the dose response curve of App as Ky, changes)

1. The maximally modified substrate is incapable of exhibiting enzyme biphasic response irrespective of
parameter values.

Substrate biphasic response (biphasic behavior in the dose response curve of App as A .., changes)

1. Substrate biphasic response is possible in App for any kinetic regime (i.e. for any choice of underlying
kinetics the system is capable of exhibiting substrate biphasic dose response at some total concentration of
enzymes)

We note that the key signature of biphasic behavior in the dose response curve of the system is the presence
of a steady state of the system that satisfies the following condition.

ddpp L
K =0 (for enzyme biphasic)
Total
dApp L
=0 (for substrate biphasic)
dA
Total
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Model DSP: We first describe the model of double site phosphorylation with common kinase and common
phosphatase enzyme action.

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart . with (LinearAlgebra) : with (VectorCalculus) : with (Student[ LinearAlgebral) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text. Here dA
represents d[A]/dt and similarly in the case of the other variables. At steady state thus, the right hand sides of
each of these expressions will be equal to zero.

dd =k ApP + k , -AK —k -4-K:

dAp =k -AK + k;-AppP +k ,,- (ApK) +k , - (ApP) —k, ,-(Ap)-(K) —k, ~Ap-P:

dApp = k, ApK + k ,.-AppP — k, .-App-P:

dAK =k, -A-K — (k +k )~AK:

ubl 1
dApK = ka-Ap-K— (kub2 + kz) -ApK :
dAppP =k, ,-App-P — (kub3 + k3) AppP :
dApP = kb4~Ap-P - (kub4 + k4) “ApP :

dK ==—k, A K+ (kubl + k]) AK —k,, Ap K+ (kubZ + k2) ApK :
dP = —kb3 App P + (kub3 + k3) AppP —kb4Ap P+ (kuM + k4) ApP :

The model is also associated with conservation conditions which are described below. Here we store the

conservation expressions as ACon, PCon and KCon for the substrate and the respective enzymes. Each of
these expressions is always equal to zero (both in the transient and at steady state).

ACon == A + Ap + App + AK + ApK + AppP + ApP — 4
PCon := P + AppP + ApP — P
KCon = K+ AK + ApK —

Total :

Total :

Total :

We now solve the system described at steady state to obtain expression linking the steady state concentrations
of the various species. Here we use the Maple command solve to solve the equations for a given variable as

shown below. We pursue this to finally obtain the steady state concentrations of most species in terms of App
and a ratio € (defined below).

assign (solve( {dAK, dApK, dAppP, dApP}, {AK, ApK, AppP, ApP}))
assign (solve({dA, dAp}, {A,Ap}))

Further we now introduce a ratio, € = K/P (defined as the ratio of the free enzymes). Simultaneously we
introduce the following parameters (c,, ¢,, c3, and c,). This is done for the sake of brevity and easy

tractability of the expressions obtained.

ky = cl'(kl + kuhl) thy, =y (kz + kubZ) :
kg = ey (b H k) TRy = ey (R T k)

Once this is done, we again solve for the steady state of the phosphatase using the conservation expression
for the enzyme (PCon).
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P = simplify (solve(PCon, P)) =

PTotal € kZ c2

o, k, (Appcg+1)e+c4c3Appk3

This results in the following expressions for the steady state concentrations of the various species in terms of
the steady state substrate concentration App and €

~ k4c4c3Appk3

Ap =

AK =

ApK =

AppP =

ApP =

2
€k,c,k, c,
¢, App k3

€k2c2

ke, c;dpp ki Pr,

k] (czk2 (chper 1) €+c463Appk3)
czchppkjeP

Total
czkz (chpp + 1) €+c, c,App k3
¢;App Pr €k, )

62k2 (chpp + l) €+c4c3Appk3
c,csApp ki Py
azkz (chpp + 1) €+c, c,App k3

Note that when App and € are positive, steady state concentrations of the other variable concentrations are
positive as well. Thus we have solved the system of equations at steady state to arrive at expressions linking
the steady state concentrations of the variables with that of App and €. We now have two expressions, ACon
(or ACon_Red if we are working in the enzyme limiting regime - see below) and KCon - the conservation of
the substrate and kinase, whose solution for the variables define the steady state of the system.

Y Enzyme biphasic response

¥ Impossibility of enzyme biphasic behavior in the limiting enzyme regime

In this subsection we show that the DSP model is incapable of enzyme biphasic behavior in the
maximally modified substrate form when the enzymes are limiting (where the total substrate
concentration is significantly higher than the total enzyme concentration). Thus in such a regime, the
conservation expressions for the substrates can be written as shown below (ACon_Red = 0)

ACon_Red = A + Ap + App _ATotal:

As noted earlier, the biphasic behavior is characterized by the following condition being satisfied for
some steady state of the system,

dApp
dK.

Total

We now have two remaining conservations, KCon =0 & ACon_Red =0 (see below) whose solutions
to the variables App and € define the steady state of the system.

k4c4chppk3 chpka
2k o . .
€k,c,k, c, €k,c,

ACon_Red = + App — A4

Total
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KCon =
2

€ Pk N kye e App ks Pro

czkz (C3App + 1) €+ c4c3App k3 k] (czkz (C3App + 1) €+ c4c3App kj)

czchppk3€P

+ Total K
e, k, (chpp + 1) €tc,c,Appk, Total

If we differentiate both these with respect to the total kinase in the system, we get

dACon_Red 0 04Con_Red  04pp N 04Con_Red  0€
dKTatal aAp P aKTotal de aI<Toml

dKCon 0 0KCon N 0KCon  0dpp . 0KCon 0

dKTotaI aI<Total aAp P aKT otal de aKTotal

Now in order to show the absence of an enzyme biphasic response in this regime of enzyme action,

we use a proof by contradiction. If we are to assume that there exists a biphasic response, then
dApp
dK

Total

=0 for some steady state.

This results in the above expressions being simplified as follows.

_ 04Con_Red de
0= de '
_ 0KCon de
T 9 K

Total

K
Total

A 4 Note

0ACon_Red 0KCon

0App > 04pp
. . . 0dpp

non-zero denominatorss, and thus the products involving Pk can be zero.
Total

This simplification is possible since the functions are finite and always have

simplify (diff (ACon_Red, App)) =

(( (Apz k[ 022 + ( (PTm‘al +2 Ap) k! + PTotal kz) (Bp d2

(Ap ¢, +Bpd,+ l)sz1 ¢,p,
+ 1), +k (Bpd,+ 1)2) Ke, +pP, c k (Bpd,+ 1))p1
—d,Bp Pp 0, ¢, Kk, CI)

simplify (diff (KCon, App) ) =
(czdl (p1 +p2) Ap2+2pzczAp +p, (Bp dz+ 1)) dzBpPTmal
B (Apcz-‘erdZ-‘rl)zApzpldI

04ACon_Red
However we know that ~— 3¢ isnon-zero (see below).
¢, App k3 (01 Ekl +2 c4k4)

3
€ k202k1 ¢,

simplify (diff (ACon_Red, €)) = —
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0e
This implies that 9K is zero. However this leads to a contradiction as
Total

0KCon 0 ) 0KCon
="3c 3K - (Note that the denominator of e lisnon-zero as well).
Total

Hence our assumption must be wrong.

Thus enzyme biphasic behavior in App with K, is impossible when total substrate
| concentration is significantly higher than total enzyme concentrations.

V Presence and necessary analytical condition (involving catalytic constants) for biphasic behavior
to exist

In this subsection, we analytically show the presence of enzyme biphasic (in the full system) and
extract kinetic constraints that enable (and preclude) biphasic behavior. As noted earlier, the biphasic
behavior is characterized by the following condition being satisfied for some steady state of the
system.

0App
0K

Total

=0

We now have two remaining conservations, KCon =0 & ACon =0 (see below) whose solutions to the
variables App and € define the steady state of the system.

ACon =
kyc,c;App ky c; App k, kyc e App ks Pr,
€k,c k c, ek,c, +App + k, (02k2 (chpp + 1) €+c,c,App k3)
N c,c;App ks ey N ¢ App Pry €Ky ¢,
ek, (chpp + 1) €+c4chppk3 e, k, (c3App + 1) €tc,c App k3
n cy 3 App k3 Pry 4
e, k, (chpp+ l) €tc,c,Appk, Total
KCon =

2
€ Pk N kye s App ks Pro
czkz (C3App + 1 ) €+ c4c3App k3 k] (Czkz (C3App + 1 ) €+ c4c3App ks)

c,c, App k3 epP

Total K
e, k, (chpp-i- 1) €tc,c,Appk, Total

+

If we differentiate both these with respect to the total kinase concentration in the system, we get

dACon 0 04Con  0App N 94 Con e

KToml aAp P a](Total de aKToml
dKCon 0 0KCon N 0KCon  0dpp N 0KCon 0
dKTotaI aKTotaI aAp P aKT otal de aKTotal

Now in order to show the presence of an enzyme biphasic response and study its features, we begin
with exploring the necessary features that the system must satisfy for the behavior to exist. We begin
with the basic tenet that for the behavior there should exist a steady state of the system where

dApp

dKTotal

At this point then, the above expressions simply as follows

=0 is satisfied.
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_ 04Con de

9 K
Total
_ 0KCon de
T % K
Total
\ 4 Note
T o . 04Con  0KCon .
This simplification is possible since the functions ——-——, ———— are finite and always have
0App 04pp

04pp
non-zero denominators, and thus the products involving JK  can be zero.
Total

simplify (diff (ACon, App) ) =

(kzz 023 (App2 032 k, + ((2 App + P

2.2 2.2
k2+PTmlk3) 03+k2) ke, E4+k2 c, (App ¢k,

me/)
3
+2A4pp k, (c4App+ 1) 03+2Appc4k]+PTmlc4k1+PTmlc4k4+k1) k3C163€
. 2 .
[ k, k, (chpp-i- 1) c,
2

1
+Appc, c,k k (chpp-i- 7c4App

+2k c, c LS

2%2%
2 2,2
+1]]kjc3€2+ (2k2k4 (chpp+1)cz+App0163k]k3) c, Appk3 e €

+App2c33 043 k33k4]/(k2 (Czkz (chpp + 1) €+c, c App kj)zczk[ c, 62)
c, €k, (k1czkz€2_k1k3 (cZ—c4) E—k4c4k3) c,P

(02 k2 (chpp + 1) €+c, c,App k3)2k1

Total

simplify (diff (KCon, App)) = —

0KCon de
We know that the denominator of o is non-zero, thus this implies that TK has to be non-
Total

zero in order to satisfy the second expression above.
L . . . . . 04 Con
This insight then informs us that in order to satisfy the first expression, e must be equal to

ZEero.

Condition = simplify (diff (ACon, €))

R 2 2.2
Condition = (App k, (kz c, ( (App e’ k, + App (P ot €4 k,+2 k1) c,+ P, (k1 1.2.1)

+k4) c4+k1) kZ—AppPT(}t[llcjc4k1k3) ¢, €+2k, (k2k4 (chpp-i- 1)62

+dppc, cj,kj k3) c, (chpp + l) ¢, e+ (4 k2k4 (cj,App + 1) c,
+dppc, ek, k3) c42App kyc e+ 2 App? 032 043 ka k4) 03)/(1(2 (Cz k, (c3App

-‘rl) €+c4chppk3)zczklcle3)

In order for this expression to equal zero, the numerator of it (which a polynomial in €/App) to be
equal to zero. Isolating and studying it as a polynomial in App (as shown below), we can observe that
all except the coefficient of the second exponent are negative.

collect(numer( Condition), App)
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3 4 17273 3

3,2 3_ _ 3
+4czc c, €k2k3k4+26 ¢k k)c App k( 6162 c,c, €k kk P, .

+cc cjcek kPTmu[-i-ch < ekk +2L1(,2(,3(,4€kkk

—kg<C1C2ZC?ZE3k k2+2ccczc Ezkkk+2c c c€2k2k +cc c, Ek k2 (1.2.2)

+4c c,c, Ezkzk tdc,cc, ek k k)c App? —k, ( /6 c4ek1k22PToml

3 3 2 2
+cc Ek k4PTU”+c]czek1k2 Jr2c2 c,€ kz k4)c3App

Thus for the polynomial to equal zero, this coefficient must be positive. Isolating the coefficient
further as shown below, reveals that k] k3 - k2 k4 must be greater than zero for this to be true.

simpliﬁ/( - (—1 22636‘46 k1k2k3PTwl+c c, cgc e k2k4PTtl+26162263€3k1k22
2
+2c,c,c,c,€ k1k2k3+4c ¢, €2k k +4c2c3c4 €k2k3k4)c App)
kzcz((PToml(k1k3_k2k4) ¢, ~2k k) c e, —2c, (¢ k kgt 2,k k) e 1.2.3)

4.2 2 2
de, k3k4) App*k el e

Thus, this becomes a necessary condition for the presence of biphasic dose response in the maximally
modified substrate (App) with total enzyme concentration (K-

Necessary condition for enzyme biphasic dose response: k1 k3 — kz k4 >0

It is worth noting that from a different study (C. Conradi and M. Mincheva, “Catalytic constants
enable the emergence of bistability in dual phosphorylation,” J. R. Soc. Interface, vol. 11, no. 95,
2014, doi: 10.1098/rsif.2014.0158) it was established that if k1 k3 - kz k4 < 0 then multi-stationarity

is guaranteed for some finite positive total enzyme, substrate concentrations.

We now make a comment regarding the contrast in the necessary and sufficient condition for
obtaining biphasic behavior (result here) and the condition enabling bistability in the model (Conradi
et al., 2014). While the conditions contrast it is possible to obtain both biphasic and bistability for the
same underlying kinetic system (but different choice of total concentrations of substrates and
enzymes). This is depicted in the main text in figure N-2.

Comment on guarantees of biphasic behavior:

In this discussion we make the augment to show that should the necessary condition above be
satisfied, then there exists total concentrations of substrate (Aq,,;) and phosphatase (Pr,;)-

In order to make the argument, we recapitulate that the steady state of the system is defined by the
solutions to the expressions ACon and KCon. However since we are

ACon
k c chppk ¢, App k3 ot k4c4ciApp k3PToral 124
€k, k c, ek,c, rp k](czkz(c3App+1)€+c4c3Appk3) 1.24)
N c,c,App kyeP, N c,App P, €k, c,
czkz (chpp + 1) e+c4c3Appk3 czk2 (chpp + l) €+c, c,App k3
N c 3 App ks Pry y
e, k, (chperl) etc,c,Appk, Total

2
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KCon

Pk N kyc s App ks Pr 12.5)
czkz(chpp+1)€+c4c3Appk3 k,(62k2(63App+1)€+c4c3Appk3) o
+ 02 (,‘3 App k3€PTota/ K
e, k, (chpp + l) €etc,c,Appk, Total

However, since we have complete flexibility for the total amounts, any feasible concentration of App
and € can be made to satisfy ACon and KCon by choosing Ay ,; and Ky ..

Thus in order to have a steady state which presents with a biphasic response, it is thus enough to find
a feasible concentration of App and e that satisfies the necessary condition for biphasic response from

dA
PP,

Total
We recall that this line of reasoning resulted in requiring us to find a steady state of App and € that

earlier (

. 04Con . . . .
satisfies o = 0. This resulted in the following expression.
0 [ —numer( Condition) y )
t s
collec App pp
kj(c1c22032e3k1k22+2010c c€2k1k2k3+20 cjcezkzk +cc ek k2 (1.2.6)

2.2 3 2
+4dc,cle, ekzkjk4+263 c, k k)cApp + &, ( c,clee, Ek k kP,

2 372 3
-‘rclc ccek kPT)M-‘chc cekk +2(3162€3(34€kkk

. 2 . - 2
+4L c,e, €@klk,+4c,cic ekkk)chpp-i-kj(c[Lz c, &k kP

34 234 Total

4" Total 3

3 3 2 2. 2k2
+CIC cek k, P +clcgek1k2 +2c’c, €k, k4)c
This is a second order polynomial in App (after we have factored an App from the expression). Now
we can observe (as we have observed earlier) that the leading coefficient and the constant term are
always positive, while the coefficient of the first exponent can be negative (this is the coefficient from
which we discerned the necessary condition).

simpli/j/( cczccekkkP +clczcc4€k kP +2c¢ czc3€3k1k22

172 73 17273 Total 3 Total
2
+201c2c3c4€ k, kyk, +4c c,c, € k k +4czc3c4 €k2k3k4)
—cje((PTmal(ka}—ka”04—2 k1k2)0162€2—2 04(c1k1k +202k2k4) (1.2.7)

4.2
4c, k3k4) k,c,

Now we can observe that if the necessary condition is satisfied (kl k3 - kz k4 > 0), the phosphatase

concentration can be sufficiently increased to make the whole expression further negative. This
implies that if the necessary condition is satisfied then, by varying (increasing) the total phosphatase
concentration, the coefficient can be made more and more negative. Thus, this implies that for some
arbitrary choice of € there exists feasible (positive) values of App for which the expression is
guaranteed to be 0.

Thus this implies that should the required necessary condition be satisfied, then for a high enough
Py there exits an App and € (which provides Ar 1, Kpg, from there on), which satisfies,

04Con
5 0 and thus satisfies the necessary requirement of the enzyme biphasic response of App

with K. ... Thus ensuring the sufficiency of the necessary condition to guarantee the existence

28



| | enzyme biphasic response for some total concentration of substrate and enzymes.

V¥ Substrate biphasic response

In this subsection, we analytically show the presence of and study the features of substrate biphasic (in
the full system) and extract kinetic constraints that enable (and preclude) biphasic behavior. As noted
earlier, the biphasic behavior is characterized by the following condition being satisfied for some steady
state of the system.

dApp

dA Total

We now have two remaining conservations, KCon =0 & ACon = 0 (see below) whose solutions to the
variables App and € define the steady state of the system.

ACon =
kyc esApp ks N c; App ks +app + kyeiesApp ks Pry
€k,c,k c, ek,c, k](czkz (chpp+1)€+c4chppk3)

C2 L’3 App k3 € PT()mI C3 App PTuml € kZ C_7

+
e, k, (chpp-i- l) €tc,c,Appk, ¢, k, (chpp-i- 1) €+tc,c App k,

+

+ C4 C} App ki PTotal —4
e, k, (c3App+l) €tc,c Appk, Total

KCon =

2 . -
€ PToml k2 62 + k4 L4 L3 App k3 PTma/
czkz (chpp + 1) €+c, c,App kj k] (czkz (chpp + 1) €+c, c,App kj)

¢, App k3 €eP

Total K
e, k, (c3App+l) €+c, c,App k, Total

+

If we differentiate both these with respect to the total substrate concentration in the system, we get

dACon 0= 04 Con + 04Con  04pp 4 04Con de
dd Total 04 Total aAp ( o4 Total d¢ 04 Total
dKCon 0 0KCon  0App N 0KCon e

dd Total aAp P 04 Total de o4 Total

Now in order to show the presence of a substrate biphasic response and study its features, we begin with
exploring the necessary features that the system must satisfy for the behavior to exist. We begin with the
ddpp 0
=0is

basic tenet that for the behavior there should exist a steady state of the system where
Total

satisfied.

At this point then, the above expressions simply as follows

_ 04Con e
de aATotal
_ OKCon de
0="3¢ "m

Total

Y Note
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04ACon 0KCon

This simplification is possible since the functions “odpp * odpp

are finite and always have non-

0App
zero denominators (as shown below), and thus the products involving 94 can be zero.
Total

simplify (diff (ACon, App)) =

2.2 . .3 21 4 2.2
(App ek, + ((2App+PT0m]) k2+PTm]k3)c3+k2) e e k) k e+ k, (App ek,
+2Appk1(C4App+1)cj+2Appc4k1+P c,k, +P Ck+k])622C k2ec, &

Total "4 1 Total “4 4 172 73
2
k2k4 (chpp-t-l) c, 1 R
+2 5 +Appclcjk1k3 chper?c4App+l kgc4czk2036

+ App k32 042 (2 kz k4 (cj,App + 1) c,+4Appc, C3k1 kj) c32€+App2 033 c43 k33 kJ/
(02 ¢ k, ek, (¢ k, (chpp + 1) €+c,c,dpp k})z)
€ (ke ky @ —kky (c;—c,) e ke ky) ese, Pk,
(Czkz (chpp-i- l) €+c, c,App kj)zk[

simplify (diff (KCon, App)) = —

Observing, the second expression above (from differentiation of the total kinase concentration) we can
0KCon i3 3
see that either e Or 7y must be equal to zero. However, ——— cannot be zero as, if it was
Total Total
04Con
indeed zero, then since the denominator of o is non-zero, there would be a contradiction with the

0KCon
first expression (from differentiation of the total substrate concentration). Thus, —je  must be equal to
zero.

Condition = simplify (diff (KCon, epsilon) )
Condition = App®c k., (k k., —k k 2 2.1
ondion (App (€kye,+ e ky) e, +ekye,)?k, pp e ks (K ks =R k) e @1

k
. _ 4. , 2. .
+ App [k1 e, k, €+ 2k, (kle ) )L4] ke, + €k, ‘2k1] czPTm,j

Now for this expression to be zero, the numerator (which is a function of App and epsilon) must be
equal to zero. isolating this, we get the following expression

simplify (numer( Condition) )

=

2 _ 2 _ 4
[App ek, (k1 k, k2k4) ¢+ App [kl e, k, e+ 2k, [kIE 5 j 04) kyc, 2.2)

272

tek e k/] < Pt

We recap here that, so long as this expression is zero for a feasible steady state concentrations of App and
epsilon, we can find total concentrations of substrates and enzyme where the biphasic response is
guaranteed. Keeping this in mind, we rewrite the expression as a polynomial function of epsilon as
shown below
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collect(numer( Condition ), epsilon)

(App k, czkzzc3+k2202k1) e, P, E+24ppk ke kcoc, P, €+ (App2€3264k1k32 23)

Total 17374727372 Total

— App® 032 c ky bk k,—Appc;c k,k; k4) 3P porat

This allows us to observe that so long as the constant term (which is itself a function of App) is negative,

there is guaranteed to exist a steady state of the system where the expression is zero and thus where the
system accommodate a biphasic dose response with total substrate concentration (Ar,)-

Isolating the constant we can observe the grouping of catalytic constants from the enzyme biphasic
responses' necessary condition appear here too.

simplijy( (App2 032 c,k, k32 — App? 032 e, kyk k,—App c ek, k k) c PToml)

2
App Pppe56,k, (App (k1 ky =k, k4) c;—k, 1) & 2.4

Now, if this catalytic constant grouping (k[ k3 - k2 k4) is negative, then the constant term is negative

irrespective of the steady state concentration of App and thus the whole expression from earlier is zero,
guaranteeing substrate biphasic response. This is because, if the key term is negative, for any given
concentration of App, there will exist an € root for which the polynomial in 2.3. However, if the
grouping (k, k3 - k2 k4) is positive, then the constant term can still be negative, however in this case App

k,k,
= (kl k,—k, k4)
This is however still feasible since, App and € can take any positive concentration and we can find a

suitable total concentration of substrate and enzyme that will accommodate it as steady state
concentrations (using ACon and KCon which we are yet to solve).

(at the biphasic peak) is necessarily to be less than

ACon =
kje,e;dpp kg c;App k; ) kyc e App ks Pry
+ App +
ezkzczklcl €k202 k](czkz (chpp+1)€+c4chppk3)
+ L’2 L’3 App k3 € PT()mI C3 App PT()ml € kZ C]

+
e, k, (chpp-i- l) €tc,c,App k, ¢, k, (chpp-i- 1) €+c,c App k,

N ¢ c;App ki Proy y
e, k, (c3App+l) etc,c Appk, Total
KCon =

2 . -

€ PTolal k2 C2 + k4 L4 L3 App k3 PTma/
Czkz (chpp + 1) €+c, c,App k} k] (Czkz (chpp + 1) €+c, c,App kj)
¢, ¢, App k3€P

Total K
e, k, (c3App+1) €+c, c,dpp k, Total

+

Thus, what this implies is that, irrespective of the underlying grouping (or the sign of the catalytic
constant grouping k1 k3 - kz k4), substrate biphasic behavior is guaranteed to exist for some total

concentration of substrate and enzyme in the system.

However, we wish to note here that depending on the sign of the catalytic constant grouping

k1 k3 — kz k4 it is either more likely or less likely to observe substrate biphasic response in App with total
amount of substrate in the system. Further, depending on the sign of the catalytic constant grouping (if
k1 kj, — k2 k4 > 0), the peak concentration of the biphasic response capable of being observed is capped

at
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k2k4
C3'(k1 k; —k, k4)

biphasic peak (given that the total amounts are completely flexible.

which is not the case when (kz kj - kz k4 < 0) when App can take any value at
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Double site phosphorylation system (DSP)
[enzyme combinations - same/different acting on the two

modification sites]
Features and requirements to obtain substrate and enzyme biphasic behavior in
the maximally modified substrate

In this folder we detail analytical results pertaining to biphasic response in the maximally modified
substrate in various models of the DSP (with common or different enzymes acting on the two
modification sites). Specifically, we study each system's capacity to exhibit biphasic responses in the with
changing total concentration of substrate (substrate biphasic) and total concentration of enzyme (enzyme
biphasic).

A summary of the results is presented in the table below.
nd Enzyme biphasic dose responses in the double site ordered modification system with common/different en:

System Substrate Enzyme
Biphasic Biphasic
Common Kinase :
Seperate Phophatase Present Not possible
Present with
Separate Kinase Not possible K2 potal
Common Phosphatase p Not possible
with K10
Separate Kinase : :
Separate Phosphatase Not possible Not possible
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Double site phosphorylation system (DSP)

[common kinase and separate phosphatase]
Features and requirements of obtaining biphasic response in the maximally
modified substrate

In this file we analytically study the presence of enzyme and substrate biphasic in the maximally modified
substrate form. In doing so we establish the following key results with regard to the behavior.

Enzyme biphasic response (biphasic behavior in the dose response curve of App as Ky, ,; changes)
1. The system is incapable of exhibiting enzyme biphasic dose response with increasing amounts of total
kinase.

Substrate biphasic response (biphasic behavior in the dose response curve of App as Ay, changes)

1. Substrate biphasic response is possible in App for any kinetic regime (i.e. for any choice of underlying
kinetics the system is capable of exhibiting substrate biphasic dose response at some total concentration of
enzymes)

We note that the key signature of biphasic behavior in the dose response curve of the system is the presence
of a steady state of the system that satisfies the following condition.

dApp
dK,

Total

dApp

=0 (for enzyme biphasic)

=0 (for substrate biphasic)
Total
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Model DSP: We first describe the model of double site phosphorylation with common kinase and different
phosphatase acting on each modification site.

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with (LinearAlgebra) : with (VectorCalculus) : with (Student[ LinearAlgebral) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text. Here dA
represents d[A]/dt and similarly in the case of the other variables. At steady state thus, the right hand sides of
each of these expressions will be equal to zero.

dd =k ApPl + k, -AK —k, -4-K:
ddp =k AK + kj-AppPZ + kubZ. (ApK) + kub4. (ApPI1) — ka. (Ap) - (K) —kb4-Ap-Pl :
dApp = k, ApK + k ,.-AppP2 — k,,-App-P2 :

dAK = kb1~A-K— (kub] + k]) AK :

dApK = kbz-Ap~K - (kubZ + kz) -ApK :
dAppP2 = kb3-App-P2 - (kubS + k3) -AppP2 :
dApPl = kb4~Ap~P1 - (kub4 + k4) ApP1 :

dK :=—k, A K+ (kublw + kl) AK =k, Ap K+ (kub? * k2) ApK:
dPl =~k Ap Pl + (k,, + k) ApPI
dp2 = _kb3 App P2 + (kub3 + k3) AppP2 :

The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, P1Con, P2Con and KCon for the substrate and the respective enzymes.
Each of these expressions is always equal to zero (both in the transient and at steady state).

ACon == A + Ap + App + AK + ApK + AppP2 + ApPl — A
PI1Con = Pl + 4pPl —PI -

P2Con = P2 + AppP2 — P2

KCon = K+ AK + ApK — K

Total *

Total *

We now solve the system described at steady state to obtain expression linking the steady state concentrations
of the various species. Here we use the Maple command solve

assign (solve({dAK, dApK, dAppP2, dApP1}, {AK, ApK, AppP2, ApP1})) :
assign (solve({dA, dApp}, {4, Ap}))

Simultaneously we introduce the following parameters (c,, ¢,, ¢3, and c,). This is done for the sake of

brevity and easy tractability of the expressions obtained.

kyp = ey (ky k) thyy = oy (Kt k) thyy = o (K k

ub3) :kM =, (k4 + kub4) :

Once this is done, we again solve for the steady states of the two phosphatases using the conservation
expression for the enzymes (P1Con and P2Con).

Pl = solve(PI1Con, P1) :
P2 = solve(P2Con, P2) :

This results in the following expressions for the steady state concentrations of the various species in terms of
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the steady state substrate concentration App and K.

- PloakycyApp P2y, ks ¢
~( App P2 €34 K
—Appcj-‘rl +Kk262 K(Appcj-i-l)k]c[
App = App
AK = Pl Total k4 c4 App PZTotal k3 (,’3
- App P2 Total (33 (34 k3
T appe,t1 KRG (et )k
ApK _ App PZToml k3 C}
(App c,+ 1 ) k,
c,App P2
3 Total
AppP2 = Appc,+1
ApP] = 04 App PZToml kj' Ci P]Tata/
P App P2, 165 ¢ k,
App e, + 1 2l 223 4Kk, c
( PP €y ) App ¢, + 1 272

Note that when App and We now have two expressions, ACon and KCon - the conservation of the substrate
and kinase, whose solution for the variables define the steady state of the system.

Y Enzyme biphasic

In this subsection, we analytically show the absence of enzyme biphasic (in the full system). As noted
earlier, the biphasic behavior is characterized by the following condition being satisfied for some steady
state of the system.

dApp
dK.

Total

We now have two remaining conservations, KCon =0 & ACon =0 (see below) whose solutions to the
variables App and K define the steady state of the system.

ACon =
Pl Total k4 C4 App PZTotaI k3 c3 App PZToml k3 03 +4
App P2, c.ck (Appc +1)ch PP
— S Kke, | K (Appe,+ 1Yk, c ’ 2
App ¢, + 1 26 | K(Appes T 1) ke,
+ Pl Total k4 C4 App P2Taml k3 C3 App P2Tnml k3 L’3 C3 App PZTm‘al
AppPZTmlc?c‘{kj (App ¢, + l) k2 App c, + 1
App e, + 1 +Kkzc2] (Appcj-i-l)kI
N ¢, App P2y, ks €5 Pl iy
App P2, c.c, k3 Total
(4pp c;+ 1) Tpe, i1 +Kk,c,
KCon =
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K+ Pl ®i i App P2y, ks 5 N App P2y, ks c;
App P2T0t0103c4k3 Kk P v (App ¢, + l)k2
Appc3+1 26 (pp63 ) 1

Total

If we differentiate both these with respect to the total kinase concentration in the system, we get

dACon o= 04Con  04pp 04Con oK
K ar ddpp K, 9K Total
dKCon  3KCon 0KCon  9d4pp 0KCon 0K
Kk V=K atpp 9K T oK -

Total

Total

Total

Now in order to show the absence of an enzyme biphasic response we use a proof by contradiction. We
begin with the assumption that there exista a biphasic beahvior. In which case there should exist a steady

dApp

state of the system where e

Total

=0 is satisfied.

At this point then, the above expressions simply as follows

_ 04Con 0K
0K aI{Toml
B 0KCon 0K
0K aI{Total
A\ 4 Note

(
“
+k, Pl

czkzclKk

(

+p2 2

Total ~4

Tollc4+k

This simplification is possible since the functions

szmpltﬁ/ diff (ACon, App)) =
2 2

App k263 + ((PZ
(2KApp3clc4k k, cz+App (((4Appc k, +c k, Pl

+ k) ky 2 P2

(App P2

simplify (diff (KCon, App)) =
(03 PZTom/ k3 (App2 (KCZ (KCZ kI + k4 Pl

2 2\ .2
c k]kj)c

04 Con

0KCon

Total

torat €4 K1 K
)K+k P]Ttlc4))k3k2P2
-i-Appk32 (App c, ke, +App ((2Appc4+c4P2Tml+2)k2+P2
+ k, (Appc +2))c P2

Total “3 "4 3

)01K+k4P]Tml

Total P

cck-‘rch

Total 6’4 )

+ 2 App ((Kczk]+k4P1

+2App) kZ-‘rPZ

Kk czc +App2c]c3

0App ° 0App

k

Total 3) 63 +

c k

4 Z)L +k

Total

k22 +2KP2

€1)

Total ~4

04pp
zero denominators (as shown below), and thus the products involving 9K

can be zero.

¢k kP2
5 (App e, + 1))2 (4pp s+ 1)2)

Total

k_,) K3

T”+26 k P2T

(¢

Total c4 k

Tatal3 )

T €2 €4 K1 K5
k. k

k2+P2Toral 4173

+Kec, (Kc k,+k, Pl 4)k2>)/((Appc3+1)2k1 (App (Kkzcz
)c + Kk c) kz)

+ P2 c

Total ~4

We know that the denominator of

0K

0KCon
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is non-zero (see below), thus this implies that 9K

otal
(2Appc k1+c4k1P1
ch (Appcj-i- 1)

3

k1 (Appcj-&—l)zc3

+k4P1

)

are finite and always have non-

Total C4

Total

)cZKk203

Total

has to



be non-zero in order to satisfy the second expression above.

simplify (diff (KCon, K) ) =

! (KQkkz(Appc +1)2c2
: . . 2 2
k, (AppPZTolalcjc4k3+Kk2c2 (App e, + 1) 12 3 2
2¢. P2 App (A 1) k Kk—LT”””/% k AppPclelk k2P2 2
+2c, P2, ,App (App ¢+ 1) k; i 2 SC et Apptee Sk kP2,

04 Con

This insight then informs us that in order to satisfy the first expression, ok must be equal to zero.

Condition = simplify (diff (ACon, K) )

Condition = — [App k, [kf K (1 (Pl (kg +5)) €+ ) K+2k,Pl, ¢,) (Appe;+1) 2 (1.1)
+ 2 App [KCI k, + MJ kik,c P2, . c. (App ¢, +1 ) ¢,
+ dpp*c, c32 cf k, k32 szfj P2, . c3j / (c2 k¢, K*k, (App P2, ¢3¢,k
+ Kk, e, (4pp s+ 1))2 (App e + 1))

However, from above we can see that this is not possible as the expression is always negative irrespective

of choice of parameters or steady state concentrations of App and K.

Thus we have a contradiction, indicating that the system is incapable of exhibiting enzyme biphasic
L response in steady state concentration of App with total kinase concentration.

Substrate biphasic

As seen in the main text, substrate biphasic response is need possible in the ordered double site with
common kinase and separate phosphatase. In this section we illustrate analytically the features of such
biphasic responses and characterize the kinetic parameter dependency of the behavior.

In order to do this, we begin with the assumption that there exists a substrate biphasic response in App. i.

. .pp . .
e. there exists a steady state of the system where A" 0 is satisfied.
Total

We now have two remaining conservations, KCon =0 & ACon =0 (see below) whose solutions to the
variables App and K define the steady state of the system.

ACon =
Pl Total k4 c4 App PZTolal k3 c} + App PZTmaI k3 c} + App
App PZTomlc} c4kj Kk Ko v (App ¢+ I)Kkzcz
Appc3+] 26 (ppcj ) 161
+ Pl Total k4 C4 App PZT()tul k3 c3 + App PZT()tul k3 C3 (,'3 App PZT(/MZ

Total "3 "4 3
App ¢, + 1

App P2 c.c k (Appc;-‘rl)kz App c, + 1

+Kk2c2] (App ¢, + l) k,
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c4AppP2 k ¢, Pl

Total "3 Total
+ App P2, c.c k, A e
(Appc +1) —+ch
3 App ¢, + 1
KCon = K+ P]Tota/ k4 ¢ App PZTota/ k3 c3 + App PZTOI{L/ k3 L} K
(App c,+1 ) k2 Total

( App P2T0ta/ C3 04 k

App c, + 1 +Kk262] (Appc\?-&—l)kI

If we differentiate both these with respect to the total substrate concentration in the system, we get

dACon 0- 04Con . 04Con  04pp 4 04Con oK
d4 Total 4 Total aAp P a4 Total 0K o4 Total
dKCon 0- 0KCon  04pp 4 0KCon 0K

d4 Total aAp P o4 Total 0K 04 Total

At this point then, the above expressions simply as follows (evaluated at the biphasic peak where
dApp

A1l
04Con oK
- K A
_ 0KCon LK
- K 0
\ 4 Note

04ACon 0KCon

“adpp  odpp are finite and always have non-

This simplification is possible since the functions

App
zero denominators (as shown below), and thus the products involving 4 can be zero.
Total

simplify (diff (ACon, App)) =
((App2 k, c32 + (P2 T2 App) ky+ P2, k) e+ kz) k e kK3 (App c;+ 1 )2 c}

+ (ZKApp cjc4k1k ¢+ App (((4Appc k +e, k P]Tatal+2C4k1P2Tnml+k4PITotulC4
+k1)k2+2P2T”c4k1kj)c]K+k4PIT”c4k2) (c (2Appc4k1+c4k1P1

kPl e, + k) K+ k Pl c)k) kP2, e k K(Appcg-i-l)cz

Ttl 4 Total ~3 "2

+Appk k PZTUWZCSZC]K(App3c4k2632+App((2App64+c4P2 +2)k2
+P2T”L4k3)cj+k (4pp e, +2))0402+App261033042k1k33P2Tml3)
(k1c1k2 (AppPZT”cjc4k +Kk c, (Appc‘?+l))2K(Appcj+1)202)

simplify (diff (KCon, App)) =

Total

Total

k +2KP2_ ¢ c k k k + P2 Zczk]kj)cz

(Pzrozz(Appz(KC (Key by + kPl ,c,) Total €2 €4 %1 %3 %5 Total €4
)k2+P2 ckk)Kc3+Kc (Kc k[

+2App ((KLk+kP]TJtal4 Total 4" 1"3
+k4P1T0ml c,) k;? )k3cj,)/((App e+ 1) (dpp (Kkye,+ P2, e k)¢

Total “4 3
2
+Kk202) kzk[)

39



04Con L oK
gk ismon-zero (see below), thus this implies that aATotal has to

We know that the denominator of

be non-zero in order to satisfy the first expression above.
simplify (diff (ACon, K) )

— (App k, [kZZK (App ey + 1 )2 (P (K + o) T KY€ K2k, PL e )} .1

2 App k, P2 Kek +allmas )
T2App kP2, ek e, | Ke k + 2 (ppc3+ )<

¢k k2 2
tdppteeltelk kP2, ] P2 "3] / (ki by (App P2y, ¢5¢,k;

-‘rKchz(Appcj-‘rl)) (Appcs-ﬁ-l)cz)

KCo
Hence in order for the biphasic response to exist, ok has to be zero. This expression is shown

below (stored as the variable Condition).
Condition = simplify (diff (KCon, K) )

P 2 . 2.2
Condition = [KQ k, k, (App c,+1 ) ¢, +2A4pp (App c,+1 ) P2, [Kk1 2.2)

Pl roaks ke k y 2k k2P2 2 App P2 k
- 2 e ke e, T AppPe ek kP2, ((App P2y, e3¢k,

+Kk,ec, (4pp s+ l))2k1)

Now writing the numerator of Conditon as a polynomial in K (as shown below), reveals that irrespective
of the steady state concentrations of App the parameter values, the coeffecient of the first and second
exponent of K are positive.

collect(numer( Condition ), K)

(App2022c32k k2+2Appczc?k k2+(12k kz)K2+ (2App2c ¢ c4k1k2k3P2 wl 2.3)

+2A4Appc,c,c k k k,P2

Ses e,k kyk, TmI)K AppccckkkP] P2

472734 Total Total

2.2,2 2 2 _
+ App L3 L4 k] k3 P2Tota[ PI Total k4 ¢ App PZTJtal k3 L} k2 62

The constant term however depending on the concentration of App can be negative or positive. Now this
polynomial (Condition) has to be zero for the biphasic to exist, implying the constant term has to
necessarily be negative (which will guarentee the existence of a positive concentration of K that is a root
of the polynomial). This requirement of negativity for the constant term provides us with the following
condition involving the concentration of App

App <solve(—App2 c, 0320 k k k P1_ P2 + App? 032 (,‘42 k] k32P2 2

42 Total Total Total
— Pl ke App P2 Kock, 2’App)[2]
c k k Pl
224 Total
App < —— 2.4)
63 (CZ k.7 k4 Pl Total -2 Total 04 k[ k )

Depending on whether —c, k, k4 Pl o T P2Tml ek,

satified or isn't. In addition to kinetic constants, the sign ofthis grouping can also be manipulated by

k k is positive or negative, this condition is trvially
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suitable choices of total phosphatase concentrations (P11, & P2y.,)-

Now, if thiss grouping ( —c, k, k4 Pl ot T P2Tml ¢, k, k3) is negative, then the constant term is negative
irrespective of the steady state concentration of App and thus the whole expression from earlier
guarentees substrate biphasic response at some total concentration. However, if the grouping (

—c, kz k4 p1,  tP2. ¢, k1 k3) is positive, then the constant term can still be negative, however in

this case App (at the biphasic peak) is necessarily to be less than
CZ kZ 4 Total

s (_Cz kyky Pl T P20k, k3) .

This is however still feasible since, App and epsilon can take any positive concentration and we can find
a suitable total concentration of substrate and enzyme that will accommodate it as steady state
concentrations (using ACon and KCon which we are yet to solve).

ACon =
Pl Total k4 C4 App PZTm‘al k3 C3 + App P2Tntal k3 C3 + App
App P2, c.c k, Kk Ko v (App ¢+ 1)Kk2c2
Appcj-t-l 26 (ppc3 ) 1€
Pl ®, €4 4PP P21, K 5 N App P2y ks ¢ N c;Adpp P2,
App P2, ¢, c4k3 (App c, + 1) k2 App ¢, + 1
—Appcj-i-l +Kk2c2 (Appcj-i-l)k]
+ C4 App P2 Total k3 C3 Pl Total —4
App PZT c,c k Total
Appe + 1) | ——2 S L Kke
( PP s ) App e, + 1 272
KC. - K+ Pl Total k4 C4 App P2 Total k3 C3 App PZTOIa/ k3 C3 K
on = App PZTom/ (,’3 C4 k3 (App 5’3 —+1 ) k2 Total
—Appcj+l +Kk262 (Appc3+])k]

Thus, what this implies is that, irrespective of the underlying grouping (or the sign of the catalytic

constant grouping —c, k2 k4 P, TP2. .c, k1 kj), substrate biphasic behavior is guaranteed to exist

for some total concentration of substrate and enzyme in the system.

However, we wish to note here that depending on the sign of the catalytic constant grouping

—c,k,k, Pl + P2, c k k,itiseither more likely or less likely to observe substrate biphasic

response in App with total amount of substrate in the system. Further, depending on the sign of the
catalytic constant grouping (if —c, kz k4 Pl Tt P2Tatal c, k1 kj, > 0), the peak concentration of the
c k k Pl
biphasic response capable of being observed is capped at 22 1 Toul
3 ( —C, k kPl P2 ek, k3)

which is not the case when ( —c, k2 k4 pI,  tP2. ¢, k1 k3 < 0) when App can take any value at

biphasic peak (given that the total amounts are completely flexible.

Additionally, now we show how the parameter values used to generate main text figure 2, satisfy the
requirements.

k =351k = 50:k3 = lOO:k4 =100 :

1 2
ka = 20:ka =75 :kb3 = 50 :kM =30 :
kpp =1k, =1k =1k, =1:Pl, =1:P2, =1:
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kb] kbz kb3
c, = lc, = ic

: : = e =
! kl + kubI 2 kZ + kubZ 3 k3 + kub3 !

App =2
K = solve(Condition)[1] = 2.195303469

ACon = 6.526495239 — 4

Total

KCon =5.586607136 — K

Total
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Double site phosphorylation system (DSP)

[separate kinase and common phosphatase]
Features and requirements of obtaining biphasic response in the maximally
modified substrate

In this file we analytically study the absence of enzyme (with K1) and substrate biphasic in the

maximally modified substrate form. We also show the presence of enzyme biphasic (with K2Total) and the
discern the kinetic conditions required to enable the behavior in the system. In doing so we establish the
following key results with regard to the behavior.

Enzyme biphasic response (biphasic behavior in the dose response curve of App as K1,,; changes)

1. The system is incapable of exhibiting enzyme biphasic dose response with increasing amounts of total
kinase K1.

Enzyme biphasic response (biphasic behavior in the dose response curve of App as K2, .., changes)

1. Presence of enzyme biphasic dose response with increasing amounts of total kinase K2, and the necessary
conditions (kinetic constraints) to enable the behavior.

Substrate biphasic response (biphasic behavior in the dose response curve of App as A .., changes)

1. Substrate biphasic response is impossible in App for any kinetic regime (i.e. for any choice of underlying
kinetics the system is incapable of exhibiting substrate biphasic dose response at some total concentration of
enzymes)

We note that the key signature of biphasic behavior in the dose response curve of the system is the presence
of a steady state of the system that satisfies the following condition.

ddpp L

K =0 (for enzyme biphasic)
Total

dApp I

74 =0 (for substrate biphasic)
Total
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Model DSP with separate kinase and common phosphatse: We first describe the model of double site
phosphorylation with different kinase and common phosphatase acting on each modification site.

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with (LinearAlgebra) : with (VectorCalculus) : with (Student[ LinearAlgebral) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text. Here dA
represents d[A]/dt and similarly in the case of the other variables. At steady state thus, the right hand sides of
each of these expressions will be equal to zero.

dd =k ApP + k , -AKI —k, -A-KI:

dAp = k;-AKI + k -AppP +k .- (ApK2) +k - (ApP) —k, , (Ap)-(K2) —k, -Ap-P:

dApp = k, ApK2 + k , .-AppP — k, .-App-P:

dAKl =k, -A-KI — (kubJ + k1)~AK1 :
dApK2 =k, Ap-K2 — (k. +k,)-ApK2 :
dAppP =k, ,-App-P — (kub3 + k3) -AppP :
dApP = kb4~Ap-P - (kub4 + k4) “ApP :

dKl :==—k, AKI + (kub] + k1) AKI :

dK2 =—k ,Ap K2 + (kub2 + kz) ApK2 :

dP = —kbjApp P+ (kub3 + kj) AppP —kb4ApP + (kub4 + k4) ApP :

The model is also associated with conservation conditions which are described below. Here we store the

conservation expressions as ACon, PCon, K1Con and K2Con for the substrate and the respective enzymes.

Each of these expressions is always equal to zero (both in the transient and at steady state).

ACon == A + Ap + App + AKI + ApK2 + AppP + ApP — A4

PCon := P + AppP + ApP — P

KlICon == KI + AKI — Kl :
Total

K2Con = K2 + ApK2 — K2

Total *

Total *

Total *

We now solve the system described at steady state to obtain expression linking the steady state concentrations
of the various species. Here we use the Maple command so/ve to solve the equations for a given variable as
shown below. We pursue this to finally obtain the steady state concentrations of most species in terms of App

, K1 and a ratio € (defined below).

kbl AKI

kub] + k[

assign (solve( {dApK2, dAppP, dApP}, {ApK2, AppP, ApP}))
assign (solve({dA, dAp}, {A,Ap}))

AKI = solve(dAKI, AKI) =

Further we now introduce a ratio, € = K2/P (defined as the ratio of the free enzymes). Simultaneously we
introduce the following parameters (c;, ¢,, c5, and c,). This is done for the sake of brevity and easy

tractability of the expressions obtained.

k= (K T k) Tk, =cy (kz Thyy) =y (b k) thy, = (k4 T )
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K2 = epsilon-P :

Once this is done, we again solve for the steady state of the phosphatase using the conservation expression
for the enzyme (PCon).

Proa €55 ¢

o, k, (App03+ 1) etc, Appk;c,

P = simplify (solve(PCon, P)) =

This results in the following expressions for the steady state concentrations of the various species in terms of
the steady state substrate concentration App and €

App Pr, k3 by cs ¢,

(c2k2 (Appc3 + 1) e+c4Appk3cj) Klk, c,

A = simplify(A) =

App k¢,

Ap=————

€6
AK] = App Pr, o k3 Ky cs ¢,

(c2 k, (c3App+ 1) etc, Appk; 03) k,
ApK2 = ¢, App ks ¢ € P,y

¢, k, (C3App+ 1) e+, Appk;c,
AppP = €3 APP Py €K, €5

o, k, (c3App+ 1) e+c, App k; c,

c,App k, c, P

ApP 4 3 737 Total

- o, k, (C3App+ 1) etc, Appk;c,

Note that when App, K1 € are positive, steady state concentrations of the other variable concentrations are
positive as well. Thus we have solved the system of equations at steady state to arrive at expressions linking
the steady state concentrations of the variables with that of App, K1 and €. We now have three expressions,
ACon, K1Con and K2Con - the conservation of the substrate and kinases, whose solution for the variables

define the steady state of the system.

ACon =
App Pryya ks by es ¢ . App k; ¢
(Czkz (cj,App—i-1)e+c4Appk3c3)K1k1c1 ek, c,

APP Py K3 5y ¢3¢ n ¢y App ks c5 € P,y
(czk2 (c3App+ 1) e+ c, App k; c3)k1 o, k, (chpp—i— 1) e+ c, App k; c,

ek, c, c,App ki c, P

+ App

_|_
+ C3 App PTotal + Total — 4
o, k, (C3App+l)€+c4Appk3c3 o, k, (C3App+l)€+c4Appkj,c3 Total

App P, ks k¢

¢y

KICon = KI + — K1
(c2 k, (03 App + 1) et+c, Appk, 03) k, Total
2
€ Pr ks ¢ c,Appkyc;ePr )

K2Con = + - K2
o, k, (chpp-l- 1) etc, Appk; c, o, k, (C3App+ 1) etc, Appk;c, Total
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¥ Substrate biphasic (Absence)

Now in order to show the absence of substrate biphasic response in the maximally modified substrate
form (App) with changing Ay, we use a proof by contradiction. Thus we begin with the assumption

04pp
oA equals zero.

Total

that substrate biphasic exists, meaning there exists a steady state of the system where

Now if we were to differentiate ACon, K1Con and K2Con with Ay, we obtain the following (note that
K2Con is a function of App and € only)

dACon 0- 04Con + 04Con  04pp 4 04Con de + 04Con  0KI
dA Total 04 Total aApp i Total de 4 Total K1 Total
dKi1Con 0- 0KI1Con  0KI + 0KI1Con  0App + 0K1Con e

d4 Total oK1 o4 Total aAp P 04 Total de 04 Total
dK2Con 0 0K2Con  0App N 0K2Con e

d4 Total aAp P o4 Total de 04 Total

Now, since we assume that there exists substrate biphasic, we can simplify these expressions further as
shown below

_ 04Con 0e 04Con 0Kl
U= a1t k1 o4

Total Total
0- 0K1 + 0K1Con 0e
Total de 04 Total
0 0K2Con 0c
d¢ aATotal
\ 4 Note
o ) . . 04Con 0K2Con 0K1Con .
This simplification is possible since the functions app  odpp and adpp are flg;te and
always have non-zero denominators (as shown below), and thus the products involving E)Al can
Total
be zero.
simplify (diff (ACon, App) )
2 3 2.2
(k2 Klc k, ( (1 +App* el + (Pn;mz +2 App) (,’3) k,+ P, c, k3> ¢, & (1.1.1)

2.2, 2, 02 .
+k3k2 ¢, ¢y (K]App ¢ k1+2K1Appc1k1 (Appc4+l)cj+KI ((ZAppc4

) 2
TPt V) K te bk, Pry)e, ek, PToml) €+2c kk KI (App o

1
+ ?App c, + l) App czklclcjze-‘rApszI clcj3c4zk1k33)/

(€k2K1 (Czkz (App ¢, + 1) €+c,App k, 03)2(:2 k, 61)

simplify (diff (K2Con, App)) =
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_PTotal((EkZ_k3) C2+C4k3)c.7€203k2
(c kz (Appc + 1) €e+c Appk3c3)2

2
PTotul k3 k4 (’3 (’4 C7 € k

(czkz (App ¢, + l) €+ c4App k3 cj)zkI

simplify (diff (KI1Con, App)) =

) K2Con o de
We know that the denominator of ¢ _ isnon-zero (see below), thus this implies that FYI has to
Total

be zero in order to satisfy the first expression above.
(€2k2202 (App e, + 1) +2 App cjc4€k2k3+App2c32c4k 2) P

3 ) Vo ©
(c2k2 (App ¢, + 1 ) €+c4App k303)2

simplify (diff (K2Con, €)) =

0K1
This insight then informs us that in order to satisfy the second expression, 4 must be equal to zero.
Total
Lo . 0KI1Con .
Again this simplification is possible since the denominator of ¢  ismon-zero (see below).

App anlkj k4c3 c,c, k (App ¢, + 1)

(c_7 k2 (App ¢, + l) €+c, App k3 03)2k1

simplify (diff (KI Con, epsilon) ) = —

K1 0e . - .
—— and —— are both zero provides a contradiction with the
04, a
otal Total
requirements of the first expression (obtained upon differentiation of the total substrate concentration
equation).

\ 4 Note

Put together, the fact that

. L. . . . 04Con 04Con .
This assertion is possible since the denominators of oKl and e are finite and always have

non-zero denominators (as shown below),
App PToml k? k4 ¢ C
2
K1 (czkz (App ¢+ 1) €+C4App k3c3) k
simplify (diff (ACon, epsilon) ) =
—(kApp(k cz<(K](App2k c2+App(ckP +2k)c +P

simplify (diff (ACon, K1)) = —
1€1

4 4" Total
+k, P (4pp <, +1))k K]PTotlAppccckk)

Total (k4 + k1) ¢, * k]) ¢
4" Total 4 37471

+ 2 K1 Appc]czc3c4k1k2k3 (Appc3+1)€+App2K1 0103 42k1k32) 03)/
(€2k2K1 (c2k2 (Appc3+ 1) €+c, App k;c, ) czklcl)

Thus we have a contradiction, indicating that the system is incapable of exhibiting substrate biphasic
L response in steady state concentration of App with total substrate concentration.

¥ Biphasic with K1-Total (Absence)

Now in order to show the absence of enzyme biphasic response in the maximally modified substrate
form (App) with changing K1, we use a proof by contradiction. Thus we begin with the assumption
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that enzyme biphasic exists, meaning there exists a steady state of the system where oKL equals zero.

K1 Total

Now if we were to differentiate ACon, K1Con and K2Con with K11, we obtain the following (note
that K2Con is a function of App and € only)

dACon 0 84Con  dApp N 94 Con e N 94 Con oK1

dKi Total aAp P oK1 Total de oK1 Total oK1 K1 Total

dKI1Con 0- 0K1Con + 0K1Con 0K1 + 0KI1Con  0dpp + 0K1Con e
dKi Total oK1 Total oK1 oK1 Total aAp P oK1 Total de oK1 Total
dK2Con 0 0K2Con  dApp N 0K2Con e

dK1 Total aAp P oK1 Total de oK1 Total

Now, since we assume that there exists substrate biphasic, we can simplify these expressions further as
shown below

94 Con 0e 04Con oK1
0= +

o€ . 0K1 Total oK1 . aI<1Tmal
- 0K/ 4 0K1Con Oe
oK1 Total de oK1 Total
0K2Con Oe
- d€ ‘ 0K1 Total
Y Note
his simolification i bl si he functi 04Con  0K2Con 0K1Con fini
This simplification is possible since the functions adpp * odpp an adpp are 1ng2 and
always have non-zero denominators (as shown below), and thus the products involving ()Klpp can
Total
be zero.
simplify (diff (ACon, App))
2 3 2.2
(k2 Kl ¢, k, ( (1 +dpp* e+ (P, +24pp) cj) k,+ P, c, k3> ¢, & 2.1.1)

2.2 2 2
thykjele, (KIApp c ¢k, +2KI App ¢k, (Appc4+l)c3+Kl ((2Appc4

+PTmaIC4+ 1)k1+c4k4P

Total ) 44" Total

. . 2 .
¢, tec, kP >62+2c4k3 k, K1 (Appc3

! 2 2 3.2 3
+7Appc4+l Appczklc]cj €+ App K]clcj ¢, k]k3‘

2
(EkZKI (czkz (Appc3+1)€+c4Appk363) Czk/c/)
— . . . 2.

_PTma/((EkZ k}) L2+c4k3)tz€ )

(c2 kZ (App c,+ l) €+c, dpp k3 03)2

simplify (diff (K2Con, App)) =

simplify (diff (KI1Con, App)) =
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L Praksk ese ¢, €k,

(02k2 (App ¢+ l) €+ c4App k3 c3)zk]

0e
0K1

Total

Now from equation 3 above (obtained from differentiating K2Con), we can observe that is

. 0K2Con
zero, (since e cannot be equal to zero, see note below).

0K1
This implies that (from analyzing equation 1 above, obtained from differentiating ACon), KL is
Total

. 04Con . . 04Con
also equal to zero since e s finite and has a non-zero denominator, and K] isnon-zero

always (see note below).

\ 4 Note

simplify (diff (K2Con, epsilon) ) =
<, (ezkzzcz (App e, + 1) +24ppcyc ek, k, + App? c32 c4k32) P

(Czkz (App ¢, + l) €+c, App k3 03)2

App PTom/ k3 k4 03 C4

- ¢k, (czkz (App ¢+ ]) €+C4App k303) KI?
simplify (diff (ACon, epsilon) ) =
—(ijpp [N (((K] (Appzkl 032 + App (C4k4PTaml+ Zkl) ¢, +PTmal (k4+k1) c, +k1) ¢,

_ 2
+k, P, .c, (App e, + 1)) k,—KI P,  Appc, c,c,k, kj) ke e

2 2,2 2
+2K1Appc]czc3c‘4k1k2k3 (Appcg+1)€+App K1 c e, k1k3 ))/

(c[ ek, (czkz (App e, + 1) €+c, App k, 03)21(1 k, Cz)

Total

simplify (diff (ACon, K1)) =

0K1 0e
Thus, from the above inferences ( K1 and K1 are both zero), we find that a contradiction in

Total Total
equation 2 (obtained from differentiating K1Con)

Thus contradiction. The conditions can't be satisfied implying that a biphasic response in App is not
|_ possible with total enzyme concentration K1y,

V¥ Biphasic with K2-Total (Presence)

In this subsection, we show the presence of enzyme biphasic response in the maximally modified
substrate form (App) with changing K21 ... We begin with the assumption that enzyme biphasic exists,

0App
meaning there exists a steady state of the system where KL equals zero, and show how the system
Total
can permit this provided a given kinetic condition is satisfied.
Now if we were to differentiate ACon, K1Con and K2Con with K21, we obtain the following (note
that K2Con is a function of App and € only)
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dACon —o0- 04Con  0App N 04Con 0 + 04Con 0K1

dK2, d4pp  0K2 e K2 0Kl 0K2

otal Total Total Total

dKi1Con 0- 0K1Con . 0K1Con 0K1 N 0KI1Con  d4pp + 0K1Con de
dK2 Total K2 Total K1 0K2 Total aAp (g 0K2 Total B¢ K2 Total
dK2Con 0 0K2Con  0dpp N 0K2Con 0

dK2 Total aAp P K2 Total de K2 Total

Now, since we assume that there exists substrate biphasic, we can simplify these expressions further as
shown below

94 Con de 04Con K1
0= +

o 0K2 K1  0k2
Total Total
0 0K/ + 0K1Con 0e
0K2 Total B¢ K2 Total
- 0K2Con Oe
de aKvZTotaI
YV Note
o . . . 04Con 0K2Con 0K1Con .
This simplification is possible since the functions adpp * odpp an adpp are finite and
04
always have non-zero denominators (as shown below), and thus the products involving aszp can
Total
be zero.
simplify (diff (ACon, App) )
2, .3 2.2 . .
(kz ¢ ke, Kl ((1 +App* el + (PT{)ml-i- 2App) c3> k,+ P, c, k3) e 3.1.1)
2 2 2 2
+c3k2 kj,cz (K]App ¢ k[ +201k1AppK1 (Appc4+ l) c,+ ((ZAppc4
2
+ C4 PTntul +1 ) k[ + k4 PT(}ta] 04) K1 C] + k4 PT()tul 64) €+2 C3 kZ App CI k[ [63 App
! 2 2 3.2 3
+ 7Appc4+ 1 k3 c,Klc,e+dpp Kl c,c/c, k1k3
2
(k2 c, k, (Cz k, (chpp + 1 ) €+c,App k, 03) c, K1 E)
kP c c, € ((ek,—k)c,+c k
simplify (diff (K2Con, App)) = — 2" Toal "2 73 (( 2 3) 2 Yy 32)
(Cz k_7 (chpp + l) €+c, dpp k3 03)
P_ kk,c,c ek, c
simplify (diff (KI1Con, App)) = ol 3 ¢ 3 4 22 3
L k](czkz (cj,App+l)€+c4Appk3c3)
. 0K2Con L 3
We know that the denominator of ¢ lisnon-zero (see below), thus this implies that el has
Total
g 9K2Con

to be non-zero in order to satisfy the third expression above, i.e. K e
Total
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simplify (diff (K2Con, epsilon) ) =
272 X L 2 02 2 X
(e k)" c, (chppﬁ— 1) +24ppc;c ek, k, + App” e ¢, k; )Promlc2

(czkz (c3App+ 1) e+, Appk, c3)2

o ) ) ) oK1 0K1Con e o
Similarly from the first expression we can discern that 3 KZW =~ "% 3 K2Total . Resubstituting
this in the first expression above yeilds,

04 Con e 04Con 0K1Con 0
o oKz, t okl T 0 ok2
Total Total

which further simplifies to

0€e ( 04Con 04Con  0KICon ]

0=k d T okl oe
Total
0€
Now as mentioned earlier, o # 0. Thus, in order for the above expression to be satisfied,
Total
04Con 04Con  0KICon B
0e 8Kl = 0e -

We evaluate the expression, and store the numerator of the expression below as T.

T = collect (simplify (numer (diff (ACon, epsilon) — diff (ACon, K1) -diff (KICon, epsilon))), K1)
T:=—Appk,c, (k22 k, (chpp + 1) cz3 ((01 (App2 c2+2 c,App + ¢, P, .+ l) k, 3.1

TR P €y (C34PP + 1) 61) ky = PpApp ¢ cic k k; )

2 2.2
+c,k, App k¢, ((01(3App cfto6c App+c4PT”ml+3)k +k, P, 4(6314]7]7

. — . 2 2. -2 . 2 2 (n
+1)L1k1) k, PTma/AppcICjc"kl k)c4€ + 3 App 6102c3 ¢, k k, k, (L App

3 337273\ 172 3 o3 3
t1)etdppic cic, k7 k, )K] App ke, (k2 k, (chpp-&—l) kP, c,€

2
+03k2 Appk ¢, k4P

torat €4 (c App + 1 ) k, ez) K1

—App* P, TkPklPc, Zkz(c3App+1)e2

Total

Collected above as a polynomial in K1, we can clearly discern the strucutre of this polynomial as a
quadratic in K1. More specifically the coeffecient of the first exponent and the constant are all negative
for all feasible parameter and steady state values of the variables.

Thus in order for a feasible steady state admitting a enzyme biphasic (with K21..,) to exist, the

coeffecient of the leading coeffecient must be positive for some feasible steady state concentrations and
kinetic parameter values.

We isoalte this coeffecient blow and simplify it further using the inbuilt simplify command.

T 2 3 2.2
szmpllﬁz( App k, c, (kz k, (C3App +1)ec, ((01 (App ¢’+2c,App +c, P, + 1) k,
TR P €y (C34PP + 1) C]) ky =P PP € ¢ C4k1 ks)
+ ¢, k, App k3c22 ((01 (3 Appzc 2+ 6 c,Adpp +c, P, + 3) k12 +k, P, ., (c3App

_ 2 2 2,.2,2 2
1)C1k1)k2 P ot PP c1c3c4k1 k3) c, @+ 3dppic c ce kT k ky (C3APP+ 1) €
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+ App? c, 033 643 k12 k33>)
(< k, (¢ App + 1 )ete, App k, ) kyc e, App (022 k, ((App2 032 k, + App (k4 P, ¢, (32

+2 k1) Gt P (k1 + k4) ¢t k1) kz —App Pp 56, k/ k3) e

2.2.2 2
+24dppc,c e,k k,k, (chpp-I—l) €+ dpp’cfc, k1kj)k]

As we can see the coeffecient factors in to the product of two expressions. The leading exponent is
always negative ( — (02 k, (03 App + 1 ) €+c, App k, 03) k¢, c, App ). Thus this implies that there

must exist a feasible steady state concentration when the second expression in this factorization must be
negative (to make the whole coeffecient positive).

Isolating and simplifying this as a polynomial in Py, further yeilds the following

collect(cz2 ( (App2 032 k, + App (k4 P, c,t2 k1) e+ P, (kj + k4) c,+ kj) k,

_ 2 2.2.2 2
App P, c.c k, kj) k,e+24ppc,c,c k kk, (App ety etdppicle, k1k3,PTam1)

cZ2 ( (App e,k e+ (k] + k4) 6‘4) k,—Appc;c,k, k3) k, e Prw™ 022 (App2 cj2 k, 3.3

. 2 2 e . 2,.2,2 2
+2Appklcj+k1) k€ +2Appc,c;c k k k, (App ¢, + 1) €+ App ek k,
Here again we can observe that the expression is a linear expression in P, with the constant term (or
terms independent of Py .() are all positive for feasible values. The coeffecient of P ,; however can be
negative. Isolating this further,

3%y
(—c. c, k k +c4k4c3k2)App+ (k1+k4) c4k

(collect( (App c4k4cj+ (k1+k4) 64) kz—Appc c, k k App))
34

3747173 2

We can see above that there exists a grouping of kinetic constants for which this expression can be
negative. i.e., —cc, k1 k3 +e, k4 c, k2 < 0 then there exists a sufficiently large App for which the

coeffecient of P, is negative in the expressions above.

By extending that logic to the expressions and polynomials obtained earliar, for a sufficiently large Py,

and given App, the coeffecient of the second term in the quadratic polynomial involving K1 can be
positive. This implies in turn that there exists a feasible steady state K1 where the conditions of the
enzyme biphasic response (with K21 ., are satisfied for the given kinetic parameters.

This grouping thus can be simplified as
simplifj/( —cy c4k1 k3 + c"{k4c3k2 < 0)
—c,c, (klkj—k2k4) <0 3.5)
or
simpliﬁ)(kl k3 —k2 k4 > 0)
0 <k, k,—k,k, 3.6)
Thus, should the expression above involving kinetic parameters be satisfied, there exists some total

amounts of kinase (K1 & K2), phosphatase and substrate, where the enzyme biphasic requirements
(with K2 are satisfied and can be obtained.

Necessary condition for enzyme biphasic dose response:
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k k,—k,k, >0

Interestingly thiss is the same kinetic constraint required to be satisfied to obtain enzyme biphasic in the
ordered double site system with common kinase and common phosphatase - see section 2.1
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Double site phosphorylation system (DSP)

[separate kinase and separate phosphatase]|
Features and requirements of obtaining biphasic response in the maximally
modified substrate

In this file we analytically prove the absence of enzyme and substrate biphasic in the maximally modified
substrate form (App), with changes in K111, K21, and Ag ., respectively.

We note that the key signature of biphasic behavior in the dose response curve of the system is the presence
of a steady state of the system that satisfies the following condition.

04

aKppl =0 (for enzyme biphasic, K1, or K21 .., depending on the enzyme dose considered)
Tota

04pp L

Y =0 (for substrate biphasic)

Total
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Model DSP with separate kinase and separate phosphatse: We first describe the model of double site
phosphorylation with different kinase and separate phosphatase acting on each modification site.

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with (LinearAlgebra) : with (VectorCalculus) : with (Student[ LinearAlgebral) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text. Here dA
represents d[A]/dt and similarly in the case of the other variables. At steady state thus, the right hand sides of
each of these expressions will be equal to zero.

dd =—k, -A-KI +k, -AKI +k,-ApPI :
dApp = k2~ApK2 —kbj'App~P2 + kub3~AppP2 :
dAp =k -AKl —k, ,Ap-K2 —k, ~Ap-Pl +k  -ApK2 +k  -ApPl + k,-AppP2:

dAKI =k, -A-KI — (kubl + k1)~AK1 :
dApK2 =k, ,-Ap-K2 — (kubZ + kz) -ApK?2 :
dAppP2 = kb3~App~P2 — (kuh3 + k3) -AppP2 :
dApPl =k, ~Ap-Pl — (kub4 + k4) ‘ApP1 :

dPl :=—k ~Ap-Pl + (kub4 + k4) “ApP1I :
dP2 = —kbj-App-PZ + (kub3 + k3) -AppP2 :
dKl =—k, -A-KI + (kubl +k1)-AKI :
dK2 :=—k, - Ap-K2 + (kubz + k2) -ApK2 :

The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, P1Con, P2Con, K1Con and K2Con for the substrate and the respective
enzymes. Each of these expressions is always equal to zero (both in the transient and at steady state).

Pl1Con := Pl + ApPI1 — P1 Total -
P2Con := P2 + AppP2—P2
K1Con == KI + AKI —KI :
Total
K2Con = K2 + ApK2—K2 -

ACon = ATataI —Ap — A — App — AKI — ApK2 — AppP2 — ApPI :

Total *

We now solve the system described at steady state to obtain expression linking the steady state concentrations
of the various species. Here we use the Maple command solve to solve the equations for a given variable as
shown below. We pursue this to finally obtain the steady state concentrations of most species in terms of

App.

k,, AKI

kuhl + k]

assign (solve({dApK2, dAppP2, dApP1}, {ApK2, AppP2, ApP1})) :
assign (solve({dA, dAp}, {A,Ap})) :

AKI = solve(dAKI, AKI) =

Simultaneously we introduce the following parameters (c,, ¢,, ¢3, and c,). This is done for the sake of
brevity and easy tractability of the expressions obtained.
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by =y (kp k) ik, =y (b k) thy =g (bt k) k= (KT k)t

Once this is done, we again solve for the steady state of the phosphatases using the conservation expression
for the enzymes (P1Con and P2Con).

_ P2Tolal
App c,+ 1
PITuml (App ¢+ 1 ) K2 kz <,

App K2 ¢, c, k2 +Appc;c, k3 p2, tK2c, kz

P2 = solve(P2Con, P2)

Pl = solve(PI1Con, PI)

This results in the following expressions for the steady state concentrations of the various species in terms of
the steady state substrate concentration App, K1 and K2.

4 = simplifo(4) = Pl ®i€i¢34PP P20, ks
= simplify(4) = cI((Appcj-‘r1)K2kzcz+c4chppP2 k)K]kl

Total "3
c} App P2 Total k3

(App ¢, +1 ) K2k, c,
PI k, c chpp p2 k

Ap =

AK] = Total "4 4 Total 3
( (App C3 1 ) K2 kz (,’2 + C4 C3 App P2Totalk3) k[
okz = 3P P2k
P (App ¢ +1 ) kz

c,App P2

3 Total
AP = e 1

c,c,App P2 'k, Pl

ApPI _ 473 Total 3 Total

App K2 ¢, < k, + c e App P2Tota1 k3 +K2k,c,

Note that when App, K1 and K2 steady state concentrations of the other variable concentrations are positive
as well. Thus we have solved the system of equations at steady state to arrive at expressions linking the
steady state concentrations of the variables with that of App, K1 and K2. We now have two expressions,
ACon, K1Con and K2Con - the conservation of the substrate and kinase, whose solution for the variables

define the steady state of the system.

ACon =
4 . c;App P2, ks . Pl ke e App P2y k; — app
Total (App e, + 1)K2 k_, c, ¢ ((App c,+ 1)K2 k2 ¢, tc,c dpp Pzrmalkj)KI k]
PlyyakyycsApp P2y, ks c;App P2y, ks c;App P2p,,
a ((Appc;+ 1) K2 kyc,+c,c App P2, K.}k, a (App e+ 1Y k, ~ dAppe,+1
. cyc;App P2y ki Ply
App K2 ¢, c, k2 tc,c,dpp P2, k3 + K2 k2 c,
KICon - K1 + Pl ®y €4 634PP P24, 0 ks ok
((App ¢y + 1) K2 kyc,+c,c;App PZT()mlks) k, Total
¢;App P2, ks
K2Con = K2 + W _K2Ta/al
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Y Substrate biphasic

Now in order to show the absence of substrate biphasic response in the maximally modified substrate
form (App) with changing Ay, we use a proof by contradiction.

We begin with the assumption that substrate biphasic exists, meaning there exists a steady state of the

04

By op equals zero. Now if we were to differentiate ACon, K1Con and K2Con with A,
Total

we obtain the following (note that K2Con is a function of App and K2 only).

system where

dACon 0- 04Con + 04Con  0A4pp 4 04Con  0K2 + 04Con  0KI
d4 Total 04 Total aAp P a4 Total K2 o4 Total K1 o4 Total
dKi1Con 0- 0KI1Con 0Kl 0K1Con  04pp + 0KICon  0K2
4 Total 0K1 o4 Total aAp (4 04 Total 0K2 o4 Total
dK2Con 0= 0K2Con  0App + 0K2Con  0K2
d4 Total aAp (4 o4 Total K2 a4 Total

Now, since we assume that there exists substrate biphasic, we can simplify these expressions further as
shown below

- 04Con 0K2 + 04Con 0K1

0K2 a4 0Kl 04
Total Total
0= 0K1 . 0KI1Con  0K2
4 Total 0K2 04 Total
k2
aATataI
\ 4 Note
o ) ) . 04Con 0K2Con 0K1Con .
This simplification is possible since the functions adpp  odpp an adpp are finite and
04
always has non-zero denominators (as shown below), and thus the products involving G)Al can be
Total
zero.

simplify (diff (ACon, App) )

(—(App e, +1 )2 k2 k¢, KI (App2 k, c32 + (P2 + 2 4pr) k) + Ky P2 1.1.1)

T()m/) 6‘3

41 2

[[ K1 (4Appc4k1+C4k1P1Taml+2C4k1P2Total+k4P1Tomlc4+k1) c,
+
2

3.3 _ . 3 2.
+k2>K2 ¢, =2 (Appc3+l)k2k3 (KIApp ¢ cle k k

AP was )y 4k e k| 4
+ 2 2 + 3 Total C1 C4 1 pp CS

+ k2 (K1 (2 App C4 kI + C4 k] P1T01a1+ k4 PITora/ C4 + k]) C] + k4 P1Tota1 04) j
2
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2.2 _ 3 2
¢, P2, K2cf—c, (App c kel + ((2 App C4+C4P2Total+2) k,

. . . 2 .2 . 2 .
+k3P2Tomlc4)App c3+k2 (App L4+2)) k3 App k1 ¢ e, P2, FKIK2c,

— App* K1 ¢, 033 042 k, kj,3 P2T0m[3) / ( (App ¢, +1 )2 k, ((App ¢, +1 ) K2 k,c,

2
+ c, C3A]7]7 PZTumlkS) <, k/ ¢, K1 KZ)

(,‘3 PZTotalkS
(App c,+1 )2 kz
Pl Total k4 c4 (,’3 P2 Total k3 K2 cZ kZ
((App ey + 1) K2k, e, +c e App szu,kj)z k

simplify (diff (K2Con, App)) =

simplify (diff (KI1Con, App)) =

1

0K2
Thus YR has to be zero in order to satisfy the third expression above (obtained from differentiating
Total
K2Con).

This insight then informs us that in order to satisfy the second expression (obtained from differentiating

0K
K1Con), L must be equal to zero. (Again this simplification is possible since the denominator of
Total
0KI1Con
K2 isnon-zero (see below).

Pl Total k4 C4 cj’ App PZTotal k} (App C‘3 +1 ) k2 CZ

simplify (diff (KICon, K2)) = —

( (App c,+1 ) K2 k2 ¢, tc,c,dpp P2Totalk3)2 k]
0K1 0K2 . o )
Put together, the fact that ——— and ———— are both zero provides a contradiction with the
04 Total 04 Total

requirements of the first expression (obtained upon differentiation of the total substrate concentration
equation).

\ 4 Note

04Con 04Con

okl ¢ Tox2
denominators (as shown below),.

This assertion is possible since are finite and always has non-zero

Pl Total k4 C4 6‘3 App P2 Total k3

simplify (diff (ACon, K1)) = - - - - 3
((AppL3+l)K2k2c2+c403AppP2 k)kIL[K]

Total 3
simplify (diff (ACon, K2)) = o
((((PlTaml (k, T k) e, +k)Kle, +k Pl c) (Appc,+ 1)2k22K22 )}

2 2.2 2 2
+2KI kP2, K2Appc, c ek k, (App e, + 1) ¢, TApp* Kl c,clelk kP2, )

k3 App c, PZTma/) / ( (App c,t1 ) k_7 ( (App c,t1 ) K2 k2 c,

2 2
+ec, ¢, dpp P2Tatalk3) c,k,c, KI K2 )

Thus we have a contradiction, indicating that the system is incapable of exhibiting substrate biphasic
|_response in steady state concentration of App with total substrate concentration.
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Y Enzyme biphasic

\ 4 Enzyme biphasic in App with changing K1 1,

Now in order to show the absence of enzyme biphasic response in the maximally modified substrate
form (App) with changing K1, we use a proof by contradiction.

We begin with the assumption that enzyme biphasic exists, meaning there exists a steady state of the
04
K Ipp equals zero. Now if we were to differentiate ACon, K1Con and K2Con with
Total
K11y We obtain the following (note that K2Con is a function of App and K2 only).

system where

dACon 0- 04Con  0App n 04Con 0K2 . 04Con oK1

Kl . 0dpp oK1, . 0K2 oK1, . 0K1 oKl

dKiCon 0= 0K1 Con N 0K1Con 0K1 N 0KI1Con  0App N 0K1Con 0K2
K1y, KT oKl Kl ddpp Kl K2 Klp,
dK2Con 0- 0K2Con  d4pp N 0K2Con 0K2

dK1 Total aAp P K1 Total K2 K1 Total

Now, since we assume that there exists enzyme biphasic, we can simplify these expressions further as
shown below

04Con 0K2 04Con 0K1
0= +

0K2 0Kl 0Kl 0Kl
Total Total
- 0K1 N 0K1Con 0K2
0K1 Total 0K2 0K1 Total
0K2
0= k1
Total
YV Note
o . . . 04Con  9K2Con 0K1Con .
This simplification is possible since the functions adpp * odpp an adpp are fln(;;e and
always have a non-zero denominator (as shown below) and thus the products involving Y £r
Total
can be zero.
simplify (diff (ACon, App))
(—(App c,+1 )2 kP k e, KI (App2 ke + (P2 +24PP) Ky +h, P2,y ey (2111)

412

[( K1 (4Appc4k1+c4k1PJTmal+2c4k1P2Tml+k4P]Tmalc4+k1) c,
+
2

+k2) K23 023—2 (App ¢, + 1) k2k3 (K] App? ¢ cjzc k k
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+ 2 2 TRk P2y ¢ ¢iky ) App ¢y
N ky (KT (24ppe bk +c k Ply +k Ply e tk)e, +kPly,c,)
2
2.2 3 2
e, P2, K2?c?—c, (App e ke’ + ((2 Appe,+c, P2, + 2) k,

. . . 2 .2 . 2 .
+k3P2TomIL4) App L3+k2 (App c4+2)) k3 App k1 ¢ e, P2, FKIK2c,

— App* K1 ¢, 033 042 k, k33 P2T0m13] / ( (App ¢, +1 )2 k, ( (App [

2

+ 1) K2 k2 ¢, +e, c3App PZTUW[k3) czk ¢, K1 KZ)

c, P2 k
simplify (diff (K2Con, App)) = %
(App c,+ 1) k2

Pl k,c c,P2 k,K2c k
Slmpl{ﬁ/(dﬁ(K]COn,App)) _ Total "4 "4 "3 Total "3 272 ;
((Appcj,-i-1)K2k2c2+c403AppP2 k) k[

1

Total "3

We can observe from the third expression above (obtained from differentiating K2Con), that
0K2

oKL is equal to zero. Thus, resubstituting this in the other expressions we can further infer that, 1
Total

K1

= W(from the second expression, obtained from differentiating K1Con).
Total

Resubsituing this in the first expression, we get

B 04Con
~ 9Kl

A 4 Note

04Con
This simplification was possible since the denominator of K is non-zero, allowing the

d ith 0K2 b (see below)
product with ———— to be zero (see below
aK]Tatal
simplify (diff (ACon, K2)) =
27 2p92,2
(App (((PIToml (k4 + k]) c, + k]) Klc, +c,k, PITnta/) (App e, + 1 ) kP K2?c?  (2.1.2.0)
c

+2KI k3P2Tole2 App c,c, c4k1 k2 (App ¢, + 1) B

2 2.2 2 2
+tApp Klcjc e k kP2 ) ky e PZToml)/(CZ ¢ (App ‘s

+1) ((Appc;+ 1) K2 kyc,+c c dpp P2,k )2 K1 k]kZKZZ)

Total 3

)ACon
However we can quickly observe from the expression for KT (see below), that it can never be

equal to zero for any feasible concentration of steady state of the system (when all the variables are
positive).

simplify (diff (ACon, K1))
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k3 P2 Total App C3 k,P1 Total 64

ke, KI? (¢35 (€25 K2 = P2 ks (€ —¢4) ) APP F ey Ky K2, )

2.11)

Thus we have a contradiction, indicating that the system is incapable of exhibiting enzyme
|_ biphasic response in steady state concentration of App with total enzyme concentration (K1y,,).

\ 4 Enzyme biphasic in App with changing K2,

Now in order to show the absence of substrate biphasic response in the maximally modified substrate
form (App) with changing A, we use a proof by contradiction.

Thus we begin with the assumption that substrate biphasic exists, meaning there exists a steady state of

04pp
the system where ——— equals zero. Now if we were to differentiate ACon, K1Con and K2Con
Total

with Ar .., we obtain the following (note that K2Con is a function of App and K2 only).

dACon 0= 04Con  0App N 04 Con 0K2 N 04Con 0K1

aK2 Total 0dpp  0K2 Total 0K2 0K2 Total 0K1 0K2 Totl
dKi1Con 0- 0K1Con 0K1 N 0KICon  9d4pp n 0K1Con 0K2
k2, . 0K/ K2, . 0App 0K2, . 0K2 K2, .
dK2Con 0= 0K2Con 4 0K2Con  0App + 0K2Con 0K2

dK2 Total K2 Total aAp P K2 Total K2 K2 Total

Now, since we assume that there exists substrate biphasic, we can simplify these expressions further as
shown below

04Con 0K2 04Con 0K1
0= +

0K2  0K2 oKl K2
Total Total
0— 0K/ + 0K1Con 0K2
K2 Total K2 K2 Total
- 0K2
aKzTatal
V Note
nis simolification i ible s he £ . 04ACon 0K2Con 0K1Con fini
This simplification is possible since the functions adpp * odpp an adpp are finite and
04
always have non-zero denominators (as shown below), and thus the products involving PP
Total

can be zero.
simplify (diff (ACon, App))

(—(App ¢, +1 )2 k2 ke, KI (App2 kel + (P2 + 2 4PP) k,+k, P2 c, (22.1.1)

Total Tatul) 3

3.3 _ 3 2
+k2) K2 ¢ =2 (App ey + 1) k, k, [K] AppP e, cle, k k,
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[ ( KI (4 App c4 k1 + c4 k] PjTotal +2 c4 k] P2Total + k4 P1Tmal C4 + k]) C1
+
2

Pl ) ik ek | appe
+ 2 2+ 3 Tola[LI C4 1 pp L3

k2 (KI (2 App 04 k1 + C4 kI Pl Total + k4 P]Toral 04 + k]) C1 + k4 PITatal C4)
2

+

. 2.2 _ . 3. .2 . .
(,3P2T0m]K2 c, ¢, (App L4k2L3 + ((2App L4+C4P2Tntal+2)k2

2 2 2
+ kP2, <)) App e, + k, (4pp e, + 2)) kZAppk,c?ec P2, *KIK2c,

—dApp* Kl c ek k} szfj / ( (App e, +1 )2 ky ((App <,

+ 1) K2kyc,+c, e App P2, k)? ¢,k ¢ KIK2)
c, P2 k
simplify (diff (K2Con, App)) = ?%rlfz
(App e, + 1 ) K,
PITata/ k4 C4 03 PZTma/ k3 K2 C2 k2

( (APP ¢ +1 ) K2 kz ¢ + €46 App PZTomI kﬁ)z kI

simplify (diff (KI1Con, App)) =

0K7

This thus allows us to compute —5—— as shown below
aKZTotul
oK1 Pl ke e;App P2 ks (App ey + 1) k,c,
= 2
aKZTotal ((App c,+ 1 ) K2 k2 c,tc,c,dpp PZTWI k3) k]

Substuting this into the expression obtained from differntiating ACon, we get

0— 04Con _ 0K2 . ddCon Pl gk e s App P2 ks (App 2N 1) kyc,
0K2 0K, OKI ((App ey + 1) K2 ke, +c e App P2, k)

Total 3 1

which is evaulated below by Maple and stored as the expression called Condition

Condition = simplify (diff (ACon, K2) — (diff (KI1Con, K2)) - (diff (ACon, K1) ))
Condition = (¢, P2 K23 (Kl e, (¢, Plyyt 1) b, +k,PL e, (Klc, 2.2.1)

K12c[ (c4P1

Total (
+1)) Kk KI (App e, + 1)3 ¢+ K2k} e P2

Total
Total ( + 3) klz

(K] c, + l) k, +k42PITom/2 04) k, App (App e+ 1)2c4022

Total

+ K1 k4P1Tom/c4

272 2 2 2,272
+ 3 K1 kj, PZTotal K2 App c e, k1 kz (App ci+ 1) c,
3 2 3.31,2713 3 2 2 2
+ App’ K1 ¢, el e, k/ k3 PZTuml ) k3App)/(K2 kzcl kl K1 c, (App e

+ l) ((App eyt l)K2 kyc,+c,c, App P2T0la1k3)3)

We can see however the expression Condition can never be equal to zero as it is a sum of positive
parameters and variables K1, K2, and App, implying that the expression is purely positive for all
feasible steady state concentrations.
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Thus we have a contradiction, indicating that the system is incapable of exhibiting enzyme
biphasic response in steady state concentration of App with total enzyme concentration (K2,)-
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Enzymatic networks beyond multisite
modification networks

In this folder we detail analytical results pertaining to biphasic dose response by substrates involved in
enzymatic networks beyond covalent modification networks/multisite modification of proteins, such as
coupled covalent modification network and cascaded enzymatic network.
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Two tier cascaded enzymatic network
[modified form of one substrate acts as a kinase modifying another substrate]

In this file, we analytically establish the impossibility of different biphasic responses in the two tier cascaded
enzymatic network. In such a network, there are two covalent modification cycles (undergoing
phosphorylation and dephosphorylation); wherein the dephosphorylation is effected by either a common or
separate phosphatases, while a kinase effects the phosphorylation of the first tier of covalent modification (A
-> Ap) and the modified form of the first tier substrate (Ap) acts as the kinase for the modification of the
second tier substrate (B -> Bp); See figure 2 in the main text for schematic.

In this manuscript we establish the following results regarding biphasic response in the modified substrates to
various doses (substrate/enzyme amounts).

1. Common phosphatase network

a. Enzyme biphasic response is not possible with kinase in either of the maximally modified substrate
forms (Ap or Bp)

b. Substrate biphasic response is not possible in the modified substrate of the first tier (Ap with A}
Note: Please note that substrate-biphasic response in Bp with total substrate concentration By, is possible

and is shown computationally for a parameter point in the figure 2 in the main text.

2. Separate phosphatase network

a. Enzyme biphasic response is not possible with kinase in either of the maximally modified substrate
forms (Ap or Bp)

b. Substrate biphasic response is not possible in the modified substrate of the first tier or the second tier
(Ap with Ap.,;or in Bp with By,

These results are summarized in the following tabular column.

Table 1: Substrate and Enzyme biphasic dose responses in the two tier cascaded enzymatic network

System Substrate Biphasic Enzyme
Biphasic
Not possible with A
Common . . o .
Phosphatase Possible Wlth Brow (See | Not possible
figure 2)
Separate Not possible with Ay .
Phosphatases or Bryar Not possible

65



Y Common phosphatase model

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (Lineardlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with (LinearAlgebra) : with (VectorCalculus) : with (Student[ LinearAlgebral) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text. Here
dA represents d[A]/dt and similarly in the case of the other variables. At steady state thus, the right hand
sides of each of these expressions will be equal to zero.

dA =k, ApP —k, -A-K+k , -AK:
ddp =k, -AK +k  ,-ApP —k ,Ap-P —p, -B-Ap + (pub] +p, ) ‘BAp :

dAK =k, -4-K— (k -‘rk)-AK:
ubl 1
dApP =k, Ap-P — (kubz + k2) -ApP .

dB =—p, B-Ap+p, BAp +p, BpP:
dBp = pl-BAp —pbz-Bp-P +pub2-BpP:

dBAp = Py B-Ap — (publ +p1)~BAp :
dBpP = Py, Bp-P — (pubz +p2) ‘BpP:

dK =—k, -A-K+ (kubl + k1) AK :
dpP =—k, ,-Ap-P + (kubZ + k2) “ApP —p, " Bp-P + (pu/:z +p2) BpP :

The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, BCon, PCon and KCon for the substrate and the respective enzymes.
Each of these expressions is always equal to zero (both in the transient and at steady state).

ACon := A+ Ap + ApP + AK+ BAp — A
KCon == K+ AK — KToml :

PCon == P + ApP + BpP — PTotal :
BCon :== B + BpP + BAp + Bp — B

Total *

Total *

Now we begin by solving the system of equations to obtain expressions linking the steady state
concentrations of the variables, primarily to obtain expressions for the steady state concentrations of
variables as a function of concentrations of Ap and Bp. For this purpose we use an inbuilt Maple

command solve as shown with the example below.
k,, A K

kub] + k1

AK = solve(dAK, AK) =

We similarly solve for the other variables using the same command.

assign (solve({dApP, dBAp, dBpP}, {ApP, BAp, BpP}))
assign (solve({dA, dB}, {4, B}))

We introduce the following parameters (c,, ¢,, d;, and d,). This is done for the sake of brevity and easy
tractability of the expressions obtained.
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Ky =y (b H k) thyy =y (K Tk
Py = dl'(pl TPy) Py = dz'(p2+pub2) :

Once this is done, we again solve for the steady state of the phosphatase using the conservation
expression for the enzyme (PCon).

P Total

P := solve(PCon, P) = W

This results in the following expressions for the steady state concentrations of the various species in terms
of the steady state substrate concentration Ap and Bp

- ¢ 4p Pru ks
(Apcz-‘erdZ-i-l)Kk[cl
B= d,Bp Pr P,
(Apc2+Bpa'2+l)App1d1
K — AP Py
(Ach+de2+1)k[
ApP: - CZAp PTala/
pc2+de2+l
Bap - d,Bp Pr P,
(Apcz-i-dez-i-l)pl
BpP _ dz BP PTma/
Apc2+de2+l
p P ol

- Apcz-‘r-de_?-‘rl

Note that when Ap and Bp are positive, steady state concentrations of the other variable concentrations
are positive as well. Thus we have solved the system of equations at steady state to arrive at expressions
linking the steady state concentrations of the variables with that of Ap and Bp. We now have three

expressions, ACon, BCon and KCon - the conservation of the substrates and kinase, whose solution for

the variables define the steady state of the system.

V¥ 1. Absence of enzyme-biphasic dose response in the modified forms
(Ap and Bp) with total kinase concentration

In this subsection we show the absence of enzyme biphasic in either of the modified forms of the
substrates with total kinase amounts. As mentioned earlier, feasible solutions to the three coupled
expressions (ACon, BCon, KCon - shown below) would define the steady state of the system.
ACon

4P Pryuks +ap + 4P P 4P Pryuks

(Apc2+de2+l)Kk101 Apc,+Bpd,+1 (Ach-‘erdZ-i-l)kI
4, Bp PruP, iy
(ApCZ+deZ+l)pl Total

(1.1.1)
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BCon

d,Bp Pr P, N d,Bp Pr. N dyBp PP, LBy (1L12)
(Apcz-‘r-deZ-‘rl)Appld] Apc,+Bpd,+1 (Apcz+de2+l)p[ P o
_BTmal
KCon
CZ Ap PTotaI k2

K+ (1.1.3)

(Ap e, + Bpd, + 1)k, K

If we are to differentiate the expressions by total kinase amounts we would have the following
expressions

dACon 0 04Con  0Ap d4Con  0dBp dACon 0K
K o adp 0K, 0Bp 9K, K oK,
dBCon 0 dBCon  0Ap dBCon  0Bp
dKTotal 6Ap Total aBp 6KTatal
dKCon dKCon dKCon 0K dKCon  d4p dKCon  0Bp
k. 9=39x t79x "okt aap 9K T 9By 9K
Total Total Total Total Total

\ 4 Absence of biphasic response in Ap with total kinase concentration

We first begin by showing the absence of a biphasic response in the concentration of Ap as K,
changes. We show this with a proof by contradiction.

If we assume that a biphasic response exists, then there should exist a steady state of the system
where the following should be satisfied (at the biphasic peak)

04p

a1<Total
Thus, the above expressions obtained after differentiation can be simplified as follows

0 d4Con  dBp d4Con oK

dBp ‘9K T oK K
Total Total
dBCon  0dBp
aBp aI<Total
0KCon  9dBp oK
="9Bp 9K T K
Total Total
\ 4 Note
04Con dBCon 0dKCon
This simplification is possible since the functions 9Ap > 9dp ° adp A finite and

always have non-zero denominators (as shown below), and thus the products involving

d4p
can be zero.
Total

simplify (diff (ACon, Ap)) =
1

2 2
(Ap e, +Bpd,+ 1Y Kk ¢ p, (A7 k™ 4 (Pro 2 4P) K+ Py k) (BP 4,
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+1)c,+k (Bpd,+ 1)2) Ke, +pP, ck (Bpd,+ l))p1
—d,Bp Pp ,p,c,Kk ;)
simplify (diff (BCon, Ap)) =
- (chI (p[ +p2)Ap2+2pzczAp +p, (Bp d,+ 1)) d,Bp P, .
(Ach+de2+1)2Ap2p1d1
PTatalCZ k2 (Bp d2+ 1)
(Apc2+de2+1)2kl

simplify (diff (KCon, Ap)) =

dBCon
Now we can make the following inference that since aBp is never zero (as shown below),

dBp
that 9K has to be necessarily zero (at the biphasic peak).
Total
simplify (diff (BCon, Bp)) =
1 ( PTota/ pZ Total
Apc?d p +2 ( ( (B + + d
(Ap e, +Bpd, + 1)’ 4pp, d, P by Py )P 2 2

+p1] d, czAp2+ ((Bp2d22p1+ ((ZBp +PTatul) P, +p2PTntuI) d2+p1) d,

te,dyp, Pry) A+ d, PTamlpzj

. 04Con 0KCon . .
Now since “oBp and By are finite and always have non-zero denominators (as shown

below)
simplify (diff (ACon, Bp)) =
P @ (AP (P, —P)) k=P ) e, 1, k) Ke,—c,4p k,p))
(Apc2+de2+l)2Kklclpl
¢, Ap P .k, d,
(Apc2+3pd2+1)2k1

simplify (diff (KCon, Bp)) = —

the differentiated expressions further simplify to

0- 04Con 0K
0K aI<Total
0B,
0= Kp
Total
. 0K
aKTatal
o ) 04Con . . . . . )
This implies that K 0 is a necessary condition for the biphasic behavior to exist. However
04Con . . .
we can also see that K - 0 is not possible for any feasible steady state of the system (see
below)

¢, Ap Pr K,

(Ach+de2+l)K2klcl

simplify (diff (ACon, K) ) = —
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| Thus a biphasic response in Ap cannot be possible with total kinase concentration (Krp,,)-

V Absence of biphasic response in Bp with total kinase concentration

In a similar manner we can show that a biphasic response in Bp can also not exist with total kinase.
We proceed similarly, with a proof by contradiction, starting with the assumption that there exists
a biphasic response in Bp with total kinase.

0Bp

aI<T0tal
Thus, the above expressions obtained after differentiation can be simplified as follows

0 04Con  0A4p dACon K

aAp 6KTata1 9K aI(Total
_ 3BCon d04p

ddp oK
Total
0K 0KCon  0A4p
1=9x —* 34p 3K

Total

04Con dBCon dKCon
This simplification is possible since the functions 9Bp * 9Bp ° aBp Ac finite and

always have non-zero denominators (as shown below), and thus the products involving

=0 can be zero.
Total

simplify (diff (ACon, Bp)) =
P o 2 ((4r ((P.—P)) k, —k2p1) c,tp, k1) Ke, —c,dp k2p1)
2
(Ach+de2+1) Kk, c,p,
simplify (diff (BCon, Bp)) =
1
(Ap02+de2+l)2App]d1

P p,P
[Ap3 022 dlpl +2 ([[Bp + 7;!01 ]p[ + 2 2T0{a1 ] dz

+p1] dzczAPZJr ((szdzzler ((2 Bp+ P )PP Prw) d2+p1) d,

+ CZ d2p2 PTmal) Ap + dZ PTmaIPZJ

62 Ap PTam/ k2 d2

(Ach+de2+l)2k]

simplify (diff (KCon, Bp)) = —

0BCon

Now we can make the following inference that since “odp

is never zero (as shown below), that

-7 has to be necessarily zero (at the biphasic peak).
Total

simplify (diff (BCon, Ap) ) =
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(c2d1 (p1+p2) Ap2+2p2c2Ap +p, (de2+ 1)) d,BpP, .
Ap c2+8pdz+])2Ap2pld]

04Con 0KCon . .
———— and ——— are finite and always have non-zero denominators (as shown
04p 04p

Now since
below)

simplify (diff (ACon, Ap)) =

2 .2
(Apc,+Bpd,+ 1) Kk ¢ p, (47 ke 4 (Pro+ 24P ) Ky Pr k) (Bp 4

+1)c,+k (Bpd,+ 1)2) Ke, +P, c,k, (Bpd,+ 1));;1
—d,Bp Pp,.p, CZKkIC])

PTuml CZ kZ (Bp dZ + l)
(Apcz+de2+ 1)2k1

simplify (diff (KCon, Ap)) =

the differentiated expressions further simplify to

0= 04Con 0K
0K aKTotal

04p
0=

KTotal
. 0K

a]{Taml
04Con

However we can also see that K 0 is not possible for any feasible steady state of the
system.

CZ Ap PT()tul kZ

implify (diff (ACon, K) ) = —
simplify (diff (4Con, K} ) (Ap e, + Bpd,+ 1) K2k c,

|_ Thus a biphasic response in Bp cannot be possible with total kinase concentration (Ky,,)-

V¥ 2. Absence of substrate-biphasic dose response in Ap with total
substrate concentration (A ..)

In this subsection we show the absence of substrate-biphasic in the modified form of the first tier
substrate (Ap) with total substrate concentration (Ar,)). As mentioned earlier, feasible solutions to the
three coupled expressions (ACon, BCon, KCon - shown below) would define the steady state of the
system.

ACon
AP Prk c,dp P, c,dp P, K,
(e, +Bpd,+ 1)Kk, * " Dpe vBpd,+1 * (dpe, v Bpd,+1)5, D
n 4, Bp Pryy Py iy
(Apc2+de2+])pl Total
BCon
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d,Bp Pryy P, N d,Bp Prypy N d,Bp PryyPy
(Ach+de2+l)Appld] Apc,+Bpd,+1 (Ach+de2+l)pl

+Bp (1.2.2)

B
KCon
e, Ap Pr K,

K (Ap e, + Bpd, + 1)k, K

(1.2.3)

If we are to differentiate the expressions by total substrate amount Ay .., we would have the following
expressions

dACon 0 dA4Con 04Con  0Ap d4Con  0dBp dA4Con 0K

dA 94 " Taap o4 T TaBp ‘94 T TI9K a4
Total Total Total Total Total
dBCon 0 dBCon  04p dBCon  0Bp
4 Total aAp 4 Total aBp d4 Total
dKCon dKCon oK 0KCon  0ddp dKCon  0Bp
i 979Kk 94t aap 94 T aBp a4
Total Total Total Total

We now show the absence of a biphasic response in the concentration of Ap with A, using a proof
by contradiction.

Assuming that a biphasic response exists, there should exist a steady state of the system where the
following should be satisfied (at the biphasic peak)

d0Ap
Total
Thus, the above expressions obtained after differentiation can be simplified as follows

| d4Con  dBp 904 Con oK

9Bp 94 T oK 4
Total Total
dBCon  0Bp
aBp aATotaI
dKCon  dBp dKCon K
0=-38p "4t 9K "9
Total Total
\ 4 Note
d4Con 9dBCon dKCon
This simplification is possible since the functions dAp > odp > 9dp are fi;lite and always
Ap
have non-zero denominators (as shown below), and thus the products involving ——— =0 can
Total
be zero.

simplify (diff (ACon, Ap)) =
1

2 2
(4pc,+ Bpd,+ 12 Kk c,p, (ke + (Brdy = 1) (Pt 24P) K,

+ P k) e, Tk, (Bpd,+ I)Z)Kc]JrPTmlczkz (Bpd,+ 1))[)1

Total "2
—d,BpP csz]cl)

Total pZ
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simplify (diff (BCon, Ap) ) =2
Bp (czd] (P, tP,) Ap*+2p,c,4p +p, (Bp d,+ 1)) d,p, .
(Ape,+ Bpd,+ l)zApzp[d[
PTalal CZ k2 (Bp dZ + l)
(Apc2+de2+l)2k1

simplify (diff (KCon, Ap)) =

dBCon
Now we can make the following inference that since “9Bp is never zero (as shown below), that

JdBp
Fy has to be necessarily zero (at the biphasic peak).
Total
simplify (diff (BCon, Bp))
1

. 2
(Apa2+de2+l) App1d1

p2 PTotal ]
2

P
(Ap3 cldp +2d [ ( (Bp + ] p, (1.2.4)

2 2 2
+ d2+p1) c,4p” + ((Bp dyp,+ ((2Bp+ P )P+ P, ) 4,
+p1) d +c,d,p, PTntaI) 4p +d, Promzpz)

dACon dKCon
Now since 9By and Ware finite and always have non-zero denominators (as shown below)

simplify (diff (ACon, Bp)) =
P et ((Ap ( (P, —P)) k, _kZPI) P) +p2k1) Ke,—c,4p k2p1) d,
(Apc2+de2+l)2Kk101p1
¢, 4p P ks 4,
(Apc,+ Bpd,+ 1)2k,

simplify (diff (KCon, Bp)) = —

the differentiated expressions further simplify to

dACon oK
T 79K
Total
dBp
Total
0K
0="51_—
Total
oK dACon K
However we now notice a contradiction, 0 = Fy has to be true, while 1 = ) Gy
Total Total
o . . 04Con . .
This is not possible since Rk is finite and has a non-zero denominator (see below) and thus the
04 Con IK . . .
product of —z7— and ———— cannot be 1, while the latter is necessarily zero.
Total
& Ap Pk,

simplify (diff (4Con, K)) = — (Apc +Bpd,+ 1) Kk ¢
2 2 151
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| Thus a biphasic response in Ap is not possible with total substrate concentration A,y

V¥ 3. Presence of substrate-biphasic dose response in Bp with total
substrate concentration (B,,,)

In this subsection we show the presence of substrate-biphasic in the modified form of the second tier
substrate (Bp) with total substrate concentration (Br,,;). As mentioned earlier, feasible solutions to the

three coupled expressions (ACon, BCon, KCon - shown below) would define the steady state of the
system.

ACon
CZ Ap Pﬂ)ta] k2 +Ap + CZ Ap PT()tul CZ Ap PT}/m/ kZ (1 3 1)
(Ach+de2+l)Kklcl Apc,+Bpd,+1 (Apc2+de2+l)k1
+ dZ Bp PTotzJIPZ —4
(Ach+de2+])p] Total
BCon
d,Bp PP, n d,Bp Pr n d,Bp Pp P, By (13.2)
(Apc2+de2+l)App1d1 Apc,+Bpd,+1 (Apcz-‘erdZ-i-l)pl P -
- B7btal
KCon
c,Ap Pk
2 Total "2
K+ e, vopa,+1yk ~Kow (133)

If we are to differentiate the expressions by total substrate amount By ,; we would have the following
expressions

dACon 04Con 04Con  0A4p 04Con  0Bp dA4Con 0K
=0= + . + . + .
dB Total 08 Total aAp B Total 6Bp 08 Total 9K 98 Total
dBCon 0 0BCon dBCon  0A4p dBCon  0Bp
=0= + . + .
dB Total 08 Total aAp B Total d Bp 08 Total
dKCon dKCon K 0KCon  0d4p 0KCon  0Bp
=0= . + . + .
dB Total K 08 Total aAp 8 Total aBp B Total

Now in order to show the presence of the behavior, we assume that the biphasic dose response in Bp
with increasing substrate dose exists.

Thus, assuming that a biphasic response exists, there should exist a steady state of the system where
the following should be satisfied (at the biphasic peak)

0Bp
0B

Total

Thus, the above expressions obtained after differentiation can be simplified as follows

dACon  0dp dACon 0K
0="%4p "B, T 9K 9B

Total Total
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dBCon  ddp

aAp . aBTotaI
dKCon  ddp 9K
=1 o8, T8
P Total Total
\ 4 Note

dACon dBCon 0dKCon
0Bp ° 0Bp > O0Bp

This simplification is possible since the functions are finite and always
dA4p

0B

Total

have non-zero denominators (as shown below), and thus the products involving =0 can

be zero.
simplify (diff (ACon, Bp)) =
P (K( ( (pz _p1) k, _k2p1) Ap 02+p2k1) ¢, —c,4dp k2p1) d,
(Ap ¢, +Bpd,+ l)szJCIPI
simplify (diff (BCon, Bp)) =
1
(Apcz-‘erdZ-i-l)zAppId[

3 2 PT()ta]
Ap° ¢, d1p1+202d1 Bp-‘rT p,

p,P
: 2Toml j d, +p]] Ap* + ((Bp2 dzzp/ + ((ZBP T Pra) Pr Y P Pr) d2+p1) d,

+ CZ d2 P2 PTatul) Ap + d2 PTntaIPZJ

C2 Ap PTomI k2 d2

(Ap e, + Bpd,+ 1)2k1

simplify (diff (KCon, Bp)) = —

K

Solving the third expression for —5——
0B
Total

and resubstituting it in the first expression leads to the

following,

0 04p ( dACon  dACon AdKCon ]

0B, . 04p IK 04p
dBCon  dAp
aAp 6BTotal
dBCon 04
Now, since —7— has a non-zero denominator, —5—— must be non-zero. This implies that the
aAp aBT()tal
d4Con 04Con  dKCon

factor of terms ( ap 9K odp j must be equal to zero. We group these terms as

shown below in the expression T,

T = simplify (numer(diff (ACon, Ap) — diff (ACon, K) -diff (KCon, Ap)))
Ti=—c K ( ( —dp* e} — (Bp d,+ V) (P +24P) ¢, — (B d,+ 1)2) P, (1.3.4)

+d,Bp PTota1p2c2) (Ap ¢,+Bpd,+ 1) k12 +KP, ¢, kp, (Bp d,+ 1) (Ap c,

+Bpd,+ 1) (Ke, + l)k]JcmzAp Pkt (Bpd,+1)p,
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We now isolate this as a polynomial in K. As we can see the resulting expression is a quadratic in K

collect(T, K)
(—e, ((—Ap*e = (Bpd,+ 1) (Pp,, +24p)c,— (Bpd,+ 1)) p, (1.3.5)

+ dZ Bp PTotaIp2 c]

+de2+1)c]k])K2+P c,k,p, (Bpd,+ 1) (Apc,+ Bpd,+ 1)k K

Total ~2

) (Apc, + Bpd,+1) kP+P, ¢ kp, (Bpd,+1) (4pc,

.2 2752
+e,"Ap P k, (de2+l)p[

Total

The coeffecient of the first and zeroth exponent of K is always positive for any feasible kinetic
condition and concentration of Ap. Thus, the sign of the leading coeffecient determines if expression
T can have any feasible roots in K such that T = 0. Note that if such a root can be accomodated, the
system admits to a biphasic response having satisfied the neccessary conditions for the same.

simplijj/( —c, ((—Ap2 022 - (Bp d,+ l) (PTOm-i- 2Ap) ¢, = (Bp d,+ 1)2) P,
+dZBpPTomlpzcz) (Ap c,+Bpd,+ l) k12 +P..6kp, (Bp d,+ 1) (Ap c,+Bpd,
+ 1) C]k])
P ol P ®s
c, [[Apzc]2k1+2 [[Ap-i— Tj k,+ fj (de2+ 1ye,+k (Bpd, (1.3.6)
+ 1)2] r, —PTompr Czdzkipzj (Ap ¢, + Bp d2+ 1) k]

We now isolate the resulting expression as a function of Py .

PTatal PTaml k2
collect Ap2022k1+2 Ap + P k1 3 (dez+1)cz+k1 (de2+l)2 r,

—PruBpe,d,kpy P

((k, k) (Bp d,+1)c,p, —Bpc,d, k1p2) Pt (Ap2 ek, + 2k dp (Bp d, (1.3.7)

Total

+1)c, +k, (de2+l)2)p]

We can see that the constant term here is strictly positive for all feasible concentrations of Ap and Bp,
and kinetic rate constants. Thus depending on the sign of the coeffecient of Py, the expression can

be negative. we bow isolate this coeffecient of PTotal as shown below
simpliﬁ/(collect( (kJ + kz) (Bp d2 +1 ) c,p, —Bpc, d2 k1p2’ Bp) )
((k1+k2) (de2+1)pl—8pd2k]p2) c, (1.3.8)

Thus as seen above, if the condition below is satisfied, the coeffecient of PTotal, can be negative.
Thus using this, for a sufficiently large PTotal (arbitrarily choosen), the coeffecient of the second
exponent of K is negative, guaranteeing a positive feasible root in K, for all feasible concentrations of
Ap and Bp. This condition is shown below.

Condition = (p] —pz) k, +k,p, <0
Condition = (pl —pz) k,+k,p, <0 (1.3.9)

Thus for a substrate biphasic respose to exist in Bp with increasing BTotal, the above condition
would need to be satisfied. This is also a necessary condition to obtain the behavior for some total
| amounts.
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V¥ Different phosphatase model

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (Lineardlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with (LinearAlgebra) : with (VectorCalculus) : with (Student[ LinearAlgebral) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text. Here
dA represents d[A]/dt and similarly in the case of the other variables. At steady state thus, the right hand
sides of each of these expressions will be equal to zero.

dA =k, ApP —k, -A-K+k , -AK:
dAp =k, -AK+k  ,-ApP —k Ap-Pl —p, -B-Ap + (pub] +p, ) ‘BAp :

dAK = ka-A~K— (k -‘rk)-AK:
ubl 1
dApP = kbz-Ap~PI — (kubz + kz) ApP :

dB =—p, B-Ap +p, ~BAp +p, BpP:
dBp =p -BAp —p,,"Bp-P2 +p  ,-BpP:

dBAp = Py B-Ap — (publ +p1)~BAp :
dBpP = pb2~Bp~P2 — (pubz +p2) ‘BpP :

dK =~k -4-K+ (kubl + k1) -AK :
dPl =—k, -Ap-PI + (kubz + k2) ApP :
dP2 = —pb2-Bp~P2 + (pubz +p2) ‘BpP :

The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, BCon, PCon and KCon for the substrate and the respective enzymes.
Each of these expressions is always equal to zero (both in the transient and at steady state).

ACon == A + Ap + ApP + AK + BAp — 4
KCon = K+ AK—K_
Total
P1Con := Pl + ApP — P1
P2Con = P2 + BpP — P2 :
Total

BCon == B + BpP + BAp + Bp — B

Total *
Total *

Total *

Now we begin by solving the system of equations to obtain expressions linking the steady state
concentrations of the variables, primarily to obtain expressions for the steady state concentrations of
variables as a function of concentrations of Ap and Bp. For this purpose we use an inbuilt Maple
command solve as shown with the example below.

k,,AK

kubl + k]

AK = solve(dAK, AK) =

We similarly solve for the other variables using the same command.

assign (solve({dApP, dBAp, dBpP}, {ApP, BAp, BpP}))
assign (solve({dA, dB}, {4, B}))

We introduce the following parameters (c,, ¢,, d;, and d,). This is done for the sake of brevity and easy
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tractability of the expressions obtained.

2 uhZ) :
(pZ ub2) :

Once this is done, we again solve for the steady state of the phosphatase using the conservation
expression for the enzyme (PCon).

bl ubl) : 2

k = l(k +k =c (k
Py =dy (Pt Py phz =d2

1
Total
PI := solve(P1Con, P1) = W
P2 e solve( P2Con. P2 = — ol
= solve(P2Con, P2) = Bpd,+ 1

This results in the following expressions for the steady state concentrations of the various species in terms
of the steady state substrate concentration Ap and Bp

e ¢, Ap Ply .k,
(Apcz+l)Kklc[
B= dZ Bp PZTOIa[p2
(de2+1)App]d1
K — ¢, Ap Ply .k,
(Apcz+1)k]
ApP = 02 Ap PIT()mI
pE= Ape,+1
B — d,Bp P2, P,
P (Brd,+1yp,
BpP = dZ Bp P2T0ml
PET Bpd,+1

Note that when Ap and Bp are positive, steady state concentrations of the other variable concentrations
are positive as well. Thus we have solved the system of equations at steady state to arrive at expressions
linking the steady state concentrations of the variables with that of Ap and Bp. We now have three

expressions, ACon, BCon and KCon - the conservation of the substrates and kinase, whose solution for

the variables define the steady state of the system.

V 1. Absence of enzyme-biphasic dose response in the modified forms
(Ap and Bp) with total kinase concentration
In this subsection we show the absence of enzyme biphasic in either of the modified forms of the

substrates with total kinase amounts. As mentioned earlier, feasible solutions to the three coupled
expressions (ACon, BCon, KCon - shown below) would define the steady state of the system.

ACon
c,Ap Pl K, oy e, Ap Pl ., ¢, Ap Pl K, d,Bp P2 ,p, @.1.1)
(dpc, + 1) Kk,c, P T dpe,+1 (Ap e, + 1)k, (Bpd,+1)p -
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- AToml

BCon
d2 Bp P27btulp2 + dZ Bp PZTm‘a] dZ Bp PZT}Jmlpl +Bp—B (2 1 2)
(Brd,+ 1) App,d, Bpd,+1 (Brd,+1)p, P Proal ol
KCon
c,Ap P1 k
2 Total 2
K+ o T)E —K, . (2.1.3)

If we are to differentiate the expressions by total kinase amounts we would have the following
expressions

dACon 0 04Con  0Ap d4Con  0dBp dACon 0K
K o adp 0K, 0Bp 9K, K oK,
dBCon 0 dBCon  0Ap dBCon  0Bp
dKTotal 6Ap Total aBp 6KTatal
dKCon dKCon dKCon 0K dKCon  d4p dKCon  0Bp
k. 9=39x t79x "okt aap 9K T 9By 9K
Total Total Total Total Total

\ 4 Absence of biphasic response in Ap with total kinase concentration

We first begin by showing the absence of a biphasic response in the concentration of Ap as K,
changes. We show this with a proof by contradiction.

If we assume that a biphasic response exists, then there should exist a steady state of the system
where the following should be satisfied (at the biphasic peak)

04p

a1<Total
Thus, the above expressions obtained after differentiation can be simplified as follows

0 d4Con  dBp d4Con oK

dBp ‘9K T oK K
Total Total
dBCon  0dBp
aBp aI<Total
0KCon  9dBp oK
="9Bp 9K T K
Total Total
\ 4 Note
04Con dBCon 0dKCon
This simplification is possible since the functions 9Ap > 9dp ° adp A finite and

always have non-zero denominators (as shown below), and thus the products involving

d4p
can be zero.
Total

simplify (diff (ACon, Ap)) =
2.2
(Ap e,k + ((2 Ap + PITOW) k, +k, PITOW)

Ap e, + 1)V Kk, ¢
( 2 ) 1€

cz+k1) Ke, +¢c,P1, Kk,
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d,Bp P2, P,

2
(deZJrl)Ap p]dl
CZPITOtulk2

2
(Ap ¢, + 1) kl

simplify (diff (BCon, Ap)) = —

simplify (diff (KCon, Ap)) =

dBCon
Now we can make the following inference that since “9Bp is never zero (as shown below),

dBp
that TR has to be necessarily zero (at the biphasic peak).
Total

simplify (diff (BCon, Bp)) =
202
(Bp d’p,+ ((2 Bp + szl) P, +p2P2T0m1) d, +p1) Apd, +d, P2
(Bpd,+1 )zApp[ d,
. 04Con 0KCon
Now since —5— and —(5—
0Bp

0Bp
below)

Total p 2

are finite and always have non-zero denominators (as shown

d2 P2Tntalp2
(Bp d,+ 1)2p1
simplify (diff (KCon, Bp)) =0

the differentiated expressions further simplify to

simplify (diff (ACon, Bp)) =

0= 04Con 0K
0K aI<szll
0B,
0= 4
Total
_ oK
1=K

Total

04Con
This implies that K 0 is a necessary condition for the biphasic behavior to exist. However

04 Con
we can also see that K - 0 is not possible for any feasible steady state of the system (see

below)

c,Ap Pl .k,

(AchJrl)szlcl

simplify (diff (ACon, K) ) = —

| Thus a biphasic response in Ap cannot be possible with total kinase concentration (Kr,,)-

V Absence of biphasic response in Bp with total kinase concentration

In a similar manner we can show that a biphasic response in Bp can also not exist with total kinase.

We proceed similarly, with a proof by contradiction, starting with the assumption that there exists
a biphasic response in Bp with total kinase.

80



0Bp

aI<T otal

Thus, the above expressions obtained after differentiation can be simplified as follows

0 04Con  0A4p dACon K

aAp 6KTotal K aKTotal
_ 3BCon d4p

aAp 6KTotal

0K 0KCon  04p
1=%9x —*+ 54p 9K

Total Total

\ 4 Note

04Con dBCon 0dKCon
This simplification is possible since the functions 3Bp * 9Bp - aBp A finite and

always have non-zero denominators (as shown below), and thus the products involving

dBp
=0 can be zero.
Total

d, P2 p
2 Total * 2
simplify (diff (ACon,Bp)) = ——————————
(Bpd,+ 1)2[71
simplify (diff (BCon, Bp)) =
(Bp2 d22p1 + ( (2 Bp + Pzroml) r, +p2P2T0ml) d, +pl) Apd, +d,P2
(Bp d2+ l)zAppIdI
L simplify (diff (KCon, Bp)) = 0

Total p 2

0BCon
Now we can make the following inference that since “odp is never zero (as shown below), that

04
aKip has to be necessarily zero (at the biphasic peak).
Total

simplify (diff (BCon, Ap)) = —

. 04Con 0KCon . .
Now since ——— an W are finite and always have non-zero denominators (as shown

04p
below)

dZ Bp PZTotaZPZ
(Bpd,+ 1)Ap2p[d[

simplify (diff (ACon, Ap)) =
3.2
(4p7c 2k, + ((24p +PL, Yk + kP )

(Ap ¢, + l)sz] ¢,
)

(e, 4p + 1)2k1

Cz+k1) KC[ * Czplrmalkz

simplify (diff (KCon, Ap)) =

the differentiated expressions further simplify to

B 04Con 0K

0K aKTo tal
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04p

KTD tal

0K
aKTola[
04Con . . .
However we can also see that K 0 is not possible for any feasible steady state of the
system.
CZ Ap Pl Total kZ
(c_?Ap + 1) K2k1 ¢,

simplify (diff (ACon, K) ) = —

|_ Thus a biphasic response in Bp cannot be possible with total kinase concentration (Ky,,).

V¥ 2. Absence of substrate biphasic dose response in Ap with total

substrate concentration (ATotal)

In this subsection we show the absence of substrate-biphasic in the modified form of the first tier
substrate (Ap) with total substrate concentration (Ar,,). As mentioned earlier, feasible solutions to the
three coupled expressions (ACon, BCon, KCon - shown below) would define the steady state of the
system.

ACon
C2 Ap Pl Total k2 +Ap + CZ Ap Pl Total C2 Ap Pl Total k2 dZ Bp PZTotalpz (2 2 1)
(4p ¢, + 1) Kk ¢, P T Ape,+1 (Apc,+ 1)k, (Bpd,+1)p, o
A
BCon
d2 Bp PZTamlp.? + dZ Bp P2T0ml dZ Bp PZT(}talpz +Bpr—B (2 2 2)
(Bpd,+ 1) App,d, Bpd,+1 (Brd,+1)p, P P o
KCon
c, Ap P1 k
K+ W -k, (2.2.3)

If we are to differentiate the expressions by total substrate amount Ay ,,; we would have the following
expressions

dACon dA4Con d4Con  d4p d4Con  dBp dA4Con 0K
4. V=94 T a4p 94 T dBp 94 T 9K o4
Total Total Total Total Total
dBCon 0 dBCon  dAp dBCon  dBp
4 Total 6Ap 94 Total aBp 94 Total
dKCon dKCon oK dKCon  0dp dKCon  0Bp
A 9="9x a4 T aap a4 T aBp -
Total Total Total Total

We now show the absence of a biphasic response in the concentration of Ap with Ay, using a proof
by contradiction.

Assuming that a biphasic response exists, there should exist a steady state of the system where the
following should be satisfied (at the biphasic peak)
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dAp
34
Total

Thus, the above expressions obtained after differentiation can be simplified as follows

d4Con  dBp 04 Con 0K
=3By 94 T 9K o4
Total Total
dBCon  0dBp
aBp aAToml

0KCon  0Bp dKCon 0K

0==38p "4t 9K 94
Total Total
\ 4 Note
dACon dBCon 0dKCon
This simplification is possible since the functions adp ° adp  odp are fi;l/i;e and always
P
have non-zero denominators (as shown below), and thus the products involving - 0 can
Total
be zero.

simplify (diff (ACon, Ap)) =

K(Ap2 ¢k, + ((24p +Ply,,) K + kPl

(Ap ¢, + l)szl c,
d,Bp P2

cz+k1) ¢, te, Pl k

Total "2

Tum/pZ
2
(de2+ I)Ap p1d1

simplify (diff (BCon, Ap)) = —

Pk,

simplify (diff (KCon, Ap)) = W
2 1

dBCon
Now we can make the following inference that since 9By is never zero (as shown below), that

dBp
has to be necessarily zero (at the biphasic peak).
Total

simplify (diff (BCon, Bp))
2 2
Ap (Bp d’p,+ ((2 Bp +P2Toml)p1 +p2PZT0ml) a'2+p[) d,+d,P2

(de2+ 1)2Appld]

Total P 2

(2.2.4)

_ dA4Con dKCon )
Now since 9Bp and ~9Bp e finite and always have non-zero denominators (as shown

below)

dZ P2Tatal p 2

(Bpd,+ 1)2pl
simplify (diff (KCon, Bp)) =0

the differentiated expressions further simplify to

simplify (diff (ACon, Bp)) =
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dACon oK

dK 94
Total
dBp
Total
0K
0= 31
Total
) 0K dACon 0K
However we now notice a contradiction, 0 = Fy has to be true, while 1 = Kk a4 -
Total Total
o ) . 04Con . ) .
This is not possible since Rk is finite and has a non-zero denominator (see note below) and thus
04Con IK . . .
the product of 9K and G4 cannot be 1, while the latter is necessarily zero.
Total
Note
dACon

This simplification is possible since the functions K is finite and has a non-zero

denominator (as shown below).

¢, Ap Pl k

Total "2

(Apc2+1)K2klcl

simplify (diff (ACon, K) ) = —

Thus a biphasic response in Ap is not possible with total substrate concentration Ay ...

V¥ 3. Absence of substrate biphasic dose response in Bp with total
substrate concentration (B, ..)

In this subsection we show the absence of substrate-biphasic in the modified form of the second tier
substrate (Bp) with total substrate concentration (By,,;). As mentioned earlier, feasible solutions to the
three coupled expressions (ACon, BCon, KCon - shown below) would define the steady state of the
system.

ACon
¢, Ap Ply .k, oy c,Ap Ply ¢, dp Pl .k, d,Bp P2, ,p, @3.1)
(dp e, + 1) Kk, ¢, P T dpe,+1 (Apc,+ 1)k, © (Bpd,+1)p, -
A
BCon
d,Bp P2, .P, d,Bp P2, .,  d,Bp P2, ,p, By — B 23.2)
(Brd,+1)4pp,d, Bpd,+ 1 (Brd,+1)p, P Byl 9+
KCon
c, Ap Pl k
+ ﬁ -K, (2.33)

If we are to differentiate the expressions by total substrate amount By, we would have the following
expressions
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dACon 04Con  0Ap d4Con  0dBp 04Con 0K

=0 . + . + .
dB Total aAp 08 Total aBp 98 Total oK B Total
dBCon 0 0BCon dBCon  0d4p dBCon  dBp
=0= + . —+ .
dBTotal aBTotal aAp aBT otal aBp 08 Total
dKCon 0 dKCon 0K dKCon  d4p
dB Total K 08 Total aAp 8 Total

We now show the absence of a biphasic response in the concentration of Bp with By, using a proof
by contradiction.

Assuming that a biphasic response exists, there should exist a steady state of the system where the
following should be satisfied (at the biphasic peak)
0Bp
0B

Total

Thus, the above expressions obtained after differentiation can be simplified as follows

d4Con  0dp 9dACon oK
0="%4p "B T 9K 3B

Total Total
dBCon  ddp
aAp aBTotal
dKCon  0dp oK
0= ap o, Tl
P Total Total
Y Note

dACon dBCon 0dKCon

aBp ° 0Bp  0Bp are finite and
always have non-zero denominators (as shown below), and thus the products involving
dAp
——=—— =0 can be zero.
0B
Total

This simplification is possible since the functions

simplify (diff (ACon, Bp)) =

2.2 . . .
(Ap LZ k1+ ((2Ap+P1Tota/) k1+k2PITata/) L2+k1) KCI+L2P1T17Icz/k2
(Apc2+1)2Kk]c1
d,Bp P2 p
R 2 Total 2
simplify (diff (BCon, Bp)) = == — ==
(Brd, )4pp,d,
CZP]TotaIkZ

simplify (diff (KCon, Bp)) =

(Apc2+l)2k]

oK
Now by solving equation 3 above (obtained from differentiating KCon) for —7—— and substituting

Total
it in the first equation (obtained from differentiating ACon) we get,

0=

0A4p d4Con  dACon dKCon
0B ( 0dp ~ K " odp ]

Total
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dBCon 04p
0dp 0B

Total

04Con dACon AdKCon

Now from the first expression above we can infer that [ alp 9K " odp ) should be

04p
equal to zero (since otherwise, B must be equal to zero and this would violate the second

Total
dBCon

expression, as Wis finite and has a non-zero denominator - see below).

d,Bp P2 ,p,

(de2+l)Ap2pld]

simplify (diff (BCon, Ap)) = —

) 04Con d4Con 9dKCon \
However, we can see below that the expression ( adp 9K oap j is never zero (see
below).
simplify (diff (ACon, Ap) — diff (ACon, K) -diff (KCon, Ap))
! [A3K2c 3 k*+34 [ch (A +h]k2 (2.3.4)
(cZAp+1)3K2k]2c1 ? 172 1 4 1\ 3 1 e
Kk, Pl (Ke, + 1)k k2Pl 2 Pl
2 Total 1 1 2 Total 2 Total
+ 3 + 3 c, +3Kk1 [Kc[ (Ap-i-iz. ]k,
k, Pl Ke +1
+ 2 Total g 1 ) ] CZ + ) k12 c]j

Thus contradiction. The conditions can't be satisfied implying that a biphasic response in Ap is not
|_ possible with total substrate concentration By,
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Coupled covalent modification systems
[coupled through enzyme sharing]

In this file, we study the propensity for substrate and enzyme biphasic dose responses in modified substrate
form in coupled covalent modification systems. We consider (as mentioned in the main text), a suite of
models of two coupled covalent modification systems (A=Ap and B=Bp) where the coupling is achieved
through enzyme sharing (one or more enzymes). By systematically studying models with different degrees
of coupling (common kinase and phosphatase, common kinase only, common phosphatase only) we show
the following key results

1. Common enzymes (kinase and phosphatase) model:
a. Enzyme biphasic response is impossible in the modified substrate forms of either
modification cycles (Ap or Bp) with changing total kinase concentration (K,

Note: Substrate biphasic response however in the modified form of either substrate is possible along total
substrate amount and is shown in figure 9 in the main text.

2. Separate kinase - common phosphatase model:

a. Substrate biphasic response is impossible in the modified substrate forms (Ap or Bp) with
changing total substrate concentrations (total substrate concentrations of A or B respectively)

b. Enzyme biphasic response is impossible in the modified substrate forms with either total
kinase concentrations.

3. Common kinase - separate phosphatase model:

a. Substrate biphasic response is impossible in the modified substrate forms (Ap or Bp) with
changing total substrate concentrations (total substrate concentration of A or B respectively)

b. Enzyme biphasic response is impossible in the modified form of either substrate with total
kinase concentrations.

These results are summarized in the following tabular column.
Table 1: Substrate and Enzyme biphasic dose responses in the coupled covalent modification system

System Substrate Biphasic Enzyme
Biphasic
Common Kinase Yes (see figure N-1 [ Not possible
Common Phosphatase in main text)
Separate Kinase Not possible Not possible

Common Phosphatase

Common Kinase Not possible Not possible
Separate Phosphatase
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Y Common enzyme model: Presence of substrate biphasic and
absence of enzyme biphasic response

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with (LinearAlgebra) : with (VectorCalculus) : with (Student[ LinearAlgebra]) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text. Here
dA represents d[A]/dt and similarly in the case of the other variables. At steady state thus, the right hand
sides of each of these expressions will be equal to zero.

dA =k, ApP —kb1~A~K+ kpAK:
dAp = kl ‘AK + kubz-ApP —ka-Ap-P :
dAK = kb[-A~K— (kubl + kl)'AK:
dApP = kbz-Ap~P — (kubz + k2) ApP :

dB = p, BpP —pr-B-K+pub1~BK:
dBp = pl-BK+pub2-BpP —pr-Bp-P :
dBK :=pb[~B'K— (publ +p1)-BK:
dBpP = pbz-Bp~P — (pub2 +p2) ‘BpP :

dK =~k -A-K+ (k, +k)AK—=p, B-K+ (p, +p)BK:
apP =—k, ,-Ap-P + (kubZ + kz) “ApP —p,,Bp-P + (puhZ +p2) ‘BpP :

The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, BCon, PCon and KCon for the substrate and the respective enzymes.

Each of these expressions is always equal to zero (both in the transient and at steady state).

ACon == A+ Ap + ApP + AK — 4
BCon := B+ Bp + BpP + BK —B
KCon = K+ AK+ BK—K_
Total
PCon == P + ApP + BpP — P

Total *

Total *

Total *

Now we begin by solving the system of equations to obtain expressions linking the steady state
concentrations of the variables, primarily to obtain expressions for the steady state concentrations of
variables as a function of concentrations of Ap and Bp. For this purpose we use an inbuilt Maple

command solve as shown with the example below.

kMAK

AK = solve(dAK, AK) = m

We similarly solve for the other variables using the same command.

assign (solve ( {dBK, dApP, dBpP}, {BK, ApP, BpP}))
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assign (solve({dA, dB}, {4,B}))

We introduce the following parameters (c;, ¢,, d;, and d,). This is done for the sake of brevity and easy
tractability of the expressions obtained.

2 ubZ) :

(P2t Pu2) "

Once this is done, we again solve for the steady state of the phosphatase, using the conservation
expression for the enzyme (PCon).

bl ubl ) ok 2

k = I(k + k =c (k
Py =dy (P, tp,): pr :dz

P Total

P := solve(PCon, P) = m

This results in the following expressions for the steady state concentrations of the various species in terms
of the steady state substrate concentration Ap and Bp

c,dp P, .k

A= Total "2
(Apcz+de2+l)Kklcl
B = d_7 Bp PTata/pz
(Apc2+Bpa'2+l)Kp1a’1
K - ¢ A4p Pra ks
(Apcz+de2+l)k]
BK = dZ Bp PTmalpz
(Ach-‘erdZ-i-l)pI
ApP = (,’2 Ap PTotaI
Pr T dpe,+Bpd,+1
d, Bp P
BpP: 2 Total

Apcg-‘erdZ-‘rl

Note that when Ap and Bp are positive, steady state concentrations of the other variable concentrations
are positive as well. Thus we have solved the system of equations at steady state to arrive at expressions
linking the steady state concentrations of the variables with that of Ap and Bp. We now have three

expressions, ACon, BCon and KCon - the conservation of the substrates and kinase, whose solution for

the variables define the steady state of the system.

Y Enzyme biphasic

In this subsection we show the absence of enzyme biphasic in either of the modified forms of the
substrates with total kinase amounts. As mentioned earlier, feasible solutions to the three coupled
expressions (ACon, BCon, KCon - shown below) would define the steady state of the system.

Note: Since the kinase and the phosphatase are shared by the two covalent modification cycles, the
individual covalent cycles (A=Ap, B=Bp) are equivalent. Thus, a proof presenting the absence of
enzyme biphasic in one covalent modification cycle is tantamount to proving the absence in both
modification cycle.

ACon
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¢ Ap Pr ok, dp AP Pry N ¢ Ap Pk, L1
(Apcz+de2+l)Kk]c] P Apc,+Bpd,+1 (AchJerderl)k] o
A
BCon
d,Bp Pr P, B+ d,Bp Pr N d,Bp Pr P, 1.12)
(Ach+de2+l)Kpld] P Apc,+Bpd,+1 (AchJerderl)pl o
B
KCon
K+ cAp Pryky n d,Bp Pr P, _K 1.13)
(Ach+de2+l)k] (Apc2+de2+l)pl Total e

If we are to differentiate the expressions by total kinase amounts we would have the following
expressions

dACon 0 04Con  0Ap d4Con  9dBp dACon 0K
=0= . + . + .
dKTotal aAp aI<T¢1ml aBp aKToml 9K aKTotal
dBCon 0 dBCon  90Ap dBCon  0Bp 0BCon ).
=0 = . + . +
dKTotal 6Ap a](Total aBp 6KTatal 0K KTotal
dKCon dKCon dKCon K 0KCon  0Ap dKCon  0Bp
k. 99K T ek 9K " a4p 9K T 9By K
Total Total Total Total Total

Now in order to show the absence of biphasic response in Bp with total kinase concentration, we
proceed with a proof by contradiction.

If we assume that such a biphasic response exists, then there should exist a steady state of the system
where the following should be satisfied (at the biphasic peak)
0Bp

aI(Total

Thus, the above expressions obtained after differentiation can be simplified as follows

0 04Con  0Ap dACon K
aAp aKTotal ok KT otal

0 dBCon  d4p N 0BCon 0K
aAp aKTotaI 0K 9 KT otal
oK 0KCon  0Ap

1=9x — + 4p 3K

Total Total
dA4p oK
The first two equations are homogenous linear equations in 9K and 9K - If the determinant
Total Tota
dAp oK
of these equations are strictly non-zero, then the only solutions are for TR and JK  are zero.
Total Tota

We evaluate this determinant below as shown,

simplify (diff (ACon, Ap) -diff (BCon, K) — diff (ACon, K) -diff (BCon, Ap ) )
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1
(Ach+de2+l)3K3k]c]pld] (((

Ap ((Ap ek, +d kP K+ P k) ¢, (1.1.4)

Total

+(de2+1)(c[((k1+k2)P +2Apk[)K+P k)cz-i-KcIk[(de_7

Total Total "2

+1)2)p2+Ach22d1k2p1P Bpd,P

Tc 0m/> Tc atal)

As we can see this is non—z%rlg for any feasible concentration of Ap, K, Bp, and kinetic rate constants.

p
Hence TIO and TZO

Total Tota

K dKCon  0dAp
This leads to a contradiction as from the third expression above, 1 = oK + 3dp 9K for
Tot

Total al

dKCon
a biphasic response to exist. Since the denominator of “9dp is non-zero, this equation cannot be

satisfied (see below).

_ <P (Bp (pzkl _kzpl) dz_kzpl)

simplify (diff (KCon, Ap)) =
(Ap e, + Bpd,+ 1)2k1p[

| Thus enzyme biphasic cannot exist in Bp with total kinase concentration (Kr,,)-

¥ Substrate biphasic

In this subsection we show the presnce of substrate biphasic in the modified form of a substrate form
with the respecitve total amount of substrate as dose. We will further show how this substrate biphasic
is guaranteed to exist in exactly one of the covalent modification cycles irrespective of the kinetic
regime of the (de)modifications. As mentioned earlier, feasible solutions to the three coupled
expressions (ACon, BCon, KCon - shown below) would define the steady state of the system.

Note: Since the kinase and the phosphatase are shared by the two covalent modification cycles, the
individual covalent cycles (A=Ap, B=Bp) are equivalent. Thus, a proof presenting the presence

of substrate biphasic in one covalent modification cycle is tantamount to proving the presence in the
other modification cycle. We thus proceed by focussing on the presence of biphasic dose response
with A in this sub-section first.

ACon
cAp Pryk, . AP Pr N ¢ Ap Praky 2.1
(Ach+de2+l)Kk]cl P Apc,+Bpd,+1 (Ach+de2+l)k] -
Total
KCon
K+ ¢ A4p Pk, N d,Bp PP, _K 12.2)
(Ach+de2+l)k] (Apc2+de2+l)pl Total e
BCon
dZ Bp PTom/pz +Bp + dZ Bp PTam[ d2 Bp PTolu/pz (1.2.3)

(Apcg-&—dez-i-l)KpIdI Apc,+Bpd,+1 (Apc2+de2+l)p1

B BTr)tal
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If we are to differentiate the expressions by total substrate amount (Ar,,;) we would have the
following expressions

d4ACon 0 04Con N 04Con  04p N dACon  0Bp N dACon oK
d4 Total 4 Total aAp a4 Total 6Bp o4 Total 9K a4 Total
dBCon 0 dBCon  0Ap dBCon  0dBp 0BCon oK
=0= . + . + .
dA Total aAp 04 Total aBp 04 Total 0K a4 Total
dKCon dKCon K 0KCon  0d4p 0KCon  0Bp
=0= . + . + .
dA Total K 04 Total aAp 4 Total aBp 04 Total

Now in order to show the presence of biphasic response in Ap with total substrate concentration, we
proceed by checking if the necessary conditions for the behavior to exist can be satisfied.

If we assume that such a biphasic response exists, then there should exist a steady state of the system
where the following should be satisfied (at the biphasic peak)
04p
04

Total

Thus, the above expressions obtained after differentiation can be simplified as follows

. d4Con  0dBp 04 Con 0K
= +

aBp 04 Total 9K A Total
0 dBCon  9dBp N 0BCon oK
aBp 04 Total 0K a4 Total

oK dKCon  0Bp

4 Total 63[7 a4 Total

A 4 Note

d4Con dBCon dKCon o
adp ° adp ° odp are finite and always

0Ap
have non-zero denominators (as shown below), and thus the products involving Y

Total

This simplification is possible since the functions

can be
Zero.

P Apd c, (K(k +k)c, +k
simplify (diff (ACon, Ap)) = ——"4—— : (4 j) 175)
(Apc_7+de2+1) Kk[c[

simplify (diff (BCon, Ap)) =
1 ( [ PToml pZ PTota[
K | Bp? d2+2[(B + = |p,+t— | (4
(Ap e, + Bpd,+ 1) Kp a, (PP Pt T (e

+1)d,+p, (Apec,+ 1)2) d,+d,p, P, (A ¢, + 1))
P ot (Ap (pzkz _k2p1) ¢, tr, k[) d,

simplify (diff (KCon, Ap)) =
(Ach+de2+ 1)2k1p1

Now solving the final expression obtained above after differentiation for
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oK
and resubstituting it
Total
in the other expressions (as shown below) we get,

dBp ( d4Con 04Con  dKCon ]

s, ‘\dBp ~— 0K = 9Bp
dBp dBCon 0BCon 9dKCon
0= a1, ( 9Bp oK dBp ]
otal
K 0KCon  0Bp
04 Total aBp o4 Total
dBp
From the first expression, it is easy to discern that ——— cannot be equal to zero. Thus this implies
Total

that the the expression contained in the brackets in the second equation has to equal zero for a
biphasic dose response to exist. We thus isolate this expression as shown below,

simplify (diff (BCon, Bp) — diff (BCon, K) -diff (KCon, Bp))
1
(Apc2+de2+ 1)3K2p12d1k1

(( (Bp2 d}+ (AP ¢, + 1) (Ppyu+ 2 Bp) d, (1.2.4)

+(Ap e, + 1)2) (Ap e, + Bpd, + 1)K2 dp?+Kp,P, d, (Ap e, + 1) (4pc,

+Bpd,+1) (Kd[+1)p1+p22PT”Mzde22 (Apc_7+1))k[

— .42 2
Ap Bp ¢, d ) kyp 1y Pryy )
Collecting only the numerator, and writing it as a polynomial in P, we get
collect( ( (Bp2 dr+ (AP e, + 1) (Pp+2Bp)d,+ (Ape,+ 1 )2) (Apc,+Bpd,
2
+ 1) K2d1p1 +Kp2PT0mld2 (Ap ¢, + 1) (Ap ¢, +Bpd,+ l) (Kd] + 1)p1
2 2 2 _ 2 2
Tp) Pr Brdy (Apc, + 1)) k,—ApBpc,d; k,p,p,Pp ., ’PTotal)
2 2 _ 2 2
(p2 Bpd, (Ap e, +1 ) k,—Ap Bpc,d, k2p1pz) Pt <(Ap e, +1 ) d, (Ap c, (1.2.5)
+Bpd,+ l)K2d1p12+Kp2d2 (AP e, + 1) (Apcz-i-dez-‘r 1) (Kd[—i- 1)p1)
2,72 2
kP, + (Bp d}+2 (4p e, + 1)de2+ (4p e, + 1) ) (Apcz-i-deg
+1) K*d,plk,
We can thus observe that for a feasible steady state of the system, only the coeffecient of the second

(leading) exponent of PTotal, can be negative. The other coeffecients are strictly positive. We now
isolate this coeffecient below,

collect(simpllﬁ)(Ap c22 k22 (Bp d,+1 )P, —Ap Bp 622 d,k, kzpz)’ {Bp, Ap, dz})
(—(k1p2 —plkz) k2022d23p+022k22p1)Ap (1.2.6)

This implies that, depending on the sign of k, p, — k, p,, the coeffecient can be negative or strictly

positive (in which case the equation, 1.5, can never be zero for a feasible steady state ruling out
substrate biphasic dose response). If
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k] P, P, kz > 0, then for a sufficiently large Bp concentration,

the coeffecient is negative (irrespective of the value of Ap), guaranteeing that there exists a solution
for equation 1.5 (featuring any value of Ap and K at some Pr,).

Thus for some finite amount of K ,; and By, it is possible to obtain substrate biphasic response in
Ap for changing Ay, if k1p2 —p, k,>0.

However if k] P, P, kz < 0, substrate biphasic in Ap with ATotal is strictly not possible.

Here by leveraging the fact that the two covalent cycles are essentially equivalent (A=Ap with the
kinetic nomenclature k;, and B=Bp with the kinetic nomenclature p;), we can see that if

k P, P, kz < 0, then the condition for substrate biphasic in Bp with By, is trivially satisfied again
indicating that there exists some total finite amount of K., and Ay ,;, where substrate biphasic in Bp
with By, is guaranteed to exist.

Thus to conclude - this proves that irrespective of the kinetic regime, either Ap or Bp is
exclusively guaranteed to (for some finite amount of substrate and enzyme) present with biphasic
dose repsonse with the respective substrates. Specifically, if k1 P, P, k2 > 0 then Ap is capable

of substrate biphasic while Bp is not, and when kzpz -p, k2 < 0 then Bp is capable of substrate

|_ biphasic while Ap is not.

V¥ Separate kinase common phosphatase model: Absence of
substrate and enzyme biphasic dose response

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with (LinearAlgebra) : with (VectorCalculus) : with (Student[ LinearAlgebral) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text. Here
dA represents d[A]/dt and similarly in the case of the other variables. At steady state thus, the right hand
sides of each of these expressions will be equal to zero.

dd = k,-ApP —k,-A-KI + k , -AKI :
ddp =k -AKI +k - ApP —k,,-Ap-P :

dAKI =k A-KI = (k,,, + k) AKI :
2 ubl 1
dApP =k, Ap-P = (k,,, + k) -ApP :

dB = p, BpP —pb1~B-K2 +pub1~BK2 :
dBp =p BK2+p . -BpP —p, Bp-P:

dBK2 =p, -B-K2—(p,,, +p1)~BK2 :
dBpP = Py BrP—(p,, +p2) ‘BpP:

ubl
dK2 =—p, ‘B-K2 + (p,,, +p,) BK2:

(
(

dKI ==k, -AKI + (K, + k) -AK] ;
(
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dP=—p, -B-K2 + (publ +p1) "BK2 —p, ,Bp-P + (pub2 +p2) ‘BpP .

The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, BCon, PCon, K1Con and K2Con for the substrates and the respective

enzymes. Each of these expressions is always equal to zero (both in the transient and at steady state).

ACon == A + Ap + ApP + AKI — 4
BCon == B + Bp + BpP + BK2 — B
KICon = KI + AKI —KI
K2Con = K2 + BK2 —K2_
Total
PCon = P + ApP + BpP — P

Total *
Total *
Total *

Total *

We introduce the following parameters (c,, ¢,, d;, and d,). This is done for the sake of brevity and easy
tractability of the expressions obtained.

kb1: (bt k) k= (
2

Pyy=dy (P, Fp,): pr =dy

k2 ubZ) :
(pZ ubZ) :

Once this is done, we again solve for the steady state of the phosphatase, using the conservation
expression for the enzyme (PCon).

AKI = solve(dAKI, AKI) = K1 A c
We similarly solve for the other variables using the same command.

assign (solve({dBK2, dApP, dBpP}, {BK2, ApP, BpP}))
assign (solve({dA, dB}, {4, B}))

Once this is done, we again solve for the steady state of the phosphatase, using the conservation
expression for the enzyme (PCon).

PTaml

P o= simplify(sohve (PCom), P)) = 22 oy

This results in the following expressions for the steady state concentrations of the various species in terms
of the steady state substrate concentration Ap and Bp

62 Ap PTotal kZ
(Apcz-i-dez + I)ch]k]
dy Bp Pr, 0 P,
(Apcz-i-dez + l)KZdeI
AP Proyu b
(Apc2+de2+ l)kl
dy Bp Pr, 0 P,
(Apcz-l—dez—l- l)p

AKI =

BK2 =

ApP =
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BpP

\ 4

CZ' Ap PTatal
Apc,+Bpd,+ 1

_ dyBp Pr,,.i
Apc,+Bpd, +1

Substrate biphasic

In this subsection we show the absence of substrate biphasic in either of the modified forms of the
substrates with total substrate amounts. As mentioned earlier, feasible solutions to the three coupled
expressions (ACon, BCon, K1Con, K2Con - shown below) would define the steady state of the
system.

Note: Since the two covalent modification cycles are virtually identical to one and other with a shared
phosphatase and two unique kinases acting on them, a proof presenting the absence of substrate
biphasic in one covalent modification cycle is tantamount to proving the absence in both modification
cycle.

ACon
¢ 4p P,k s c,dp P . c,Ap Pk, o
(4pc,+Bpd,+ 1)Kl c k) * V" dpec,+Bpd,+1 * (Apc,+Bpd,+ 1)k, 1.
_ATatal
BCon
dz Bp Pr,;:a/pz By d2 Bp PTma[ d_? Bp PTata/pz 212
(Apc,+ Bpd,+1)K2d,p, P dpe,+Bpd, +1 (Apc, ¥ Bpd, + 1) p, 1.
_BTatal
K1Con
c,Ap P_ 'k
2 Total 2
M e, v Bod, + 1Yk, ~ Mo (2.1.3)
K2Con
d,BpP_ p
2 Total 2
K2+ (Apc, T Bpd, + 1)p, K2 (2.1.4)

Now differentiating each of these expressions with respect to By, we get the following

dACon o~ 04Con  0Ap N dACon  0Bp N dACon oK1
B Total aAp 08 Total d Bp 08 Total 0K1 B Total
dBCon 0 0BCon N dBCon  dAp N dBCon  0Bp N 0BCon  0K2
B Total 08 Total aAp B Total 9 Bp 08 Total 0K2 98 Total
dKI1Con “o0- 0K1Con 0K1 N 0KICon  04p 4 0KI1Con  0Bp
dB Total 0K1 08 Total aAp Total J Bp 08 Total
dK2Con o~ 0K2Con 0K2 + 0K2Con  0Ap N 0K2Con  0Bp
dB Total K2 08 Total aAp 9B Total d Bp 08 Total

Now in order to show the absence of biphasic response in Bp with total substrate concentration
(Brotar)> We proceed with a proof by contradiction. Note that the same procedure of which will be
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valid to show the absence of substrate biphasic response in modified form Ap with Ap ..

If we assume that such a biphasic response exists, then there should exist a steady state of the system
where the following should be satisfied (at the biphasic peak)
0Bp
0B

Total

Thus, the above expressions obtained after differentiation can be simplified as follows

0- 04Con  0A4p dACon oK1

. + .

aAp 08 Total K1 9B Total
. dBCon  0ddp . 0BCon  0K2

aAp 08 Total 0K2 98 Total
0 0KICon  0KI N 0K1Con ~ d4p

K1 08 Total aAp B Total
0= 0K2Con  0K2 + 0K2Con  0d4p

K2 08 Total aA‘D 0B Total
\ 4 Note

o N ~ 04Con dBCon 9KICon 0K2Con
This simplification is possible since the functions

oBp ° oBp ° oBp ° oBp ¢
fintie and always have non-zero denominators (as shown below), and thus the products involving
0Bp
B can be zero.

Total
P d c (KI (k,+k)c +k))Ap
simplify (diff (ACon, Bp)) = — TOWAZ 2 B( : 12)21;1 .
(Ap e, + Bpd,+1) c, k,
simplify (diff (BCon, Bp)) =
1

2
(Ach+de2+l) K2d1p]

(KZ [Bp2p1d22+2 (Apcz-‘r l) ((Bp-i— PZMI ]pI
+ @J d,+p, (Apcz-‘r- 1)2] d,+d,p,P, (Apc2+ 1))
_ ¢, 4p P ky 4,
(Ap c, + Bp d,+ 1)2k1
dypy Pr (AP €, + 1)
(Apcz-‘erdz-‘r 1)2]71

simplify (diff (KI1Con, Bp) ) =

simplify (diff (K2Con, Bp)) =

0K/

08 Total

Now solving the expression obtained by differentiating K1Con above for and resubstituting

it in the first expression (as shown below) we get,

adp B T oK1 | T odp 0B

Total

0 94Con  94p dA4Con 0KICon  04p )
Total

which further simplifies to
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0 d4p (6ACon dA4Con BKICon]

0B, . 04p 0K1 d4p
) ) ) ) ddp 04 Con dACon  0KICon
This thus leads to the following conclusion, either TTQ[G[ is zero, or adp ~ Kl adp
is zero. The former cannot be possible (see note below).
YV Note
odp . . .
Suppose, BB iszeroat such a point. Then, by analyzing the last two expressions, we get
Total
0K1 0K2 . 0K1Con  0K2Con ) .
aBrumz and - to be zero (since “odp  adp are finite and the denominators are

0KI1Con 0K2Con

always non-zero, and okl ok e always non-zero).

) PT(}tul kZ (Bp dZ + 1)
(cZAp-i-deZ-i- l)zk]
d,BpP

simplify (diff (K1Con, Ap)) =

Total P2 €2

simplify (diff (K2Con, Ap)) = — ( ot Brd 4 1)2
AP TP d, Py

04p

aBTmal

Thus, the second expression would be violated under this scenario. Hence, is non-zero.

However the latter can also not be possible for a feasible steady state of the system (see below).

simplify (diff (ACon, Ap) — diff (ACon, K1) -diff (KICon, Ap))
1
(Ap ¢, + Bpd,+ 1)3 KI* ¢, k

P
Total
(cl KI? (Apz e +2 [Ap + T‘) (Bpd,+1)c, (215)

+ (de2+1)2j (Apc,+ Bpd,+ 1)k12+K1 ¢ ky Pry (K1 e, + 1) (Bpd,

+1) (Apc,+Bpd,+ 1)k1+c22ApPTomzk22 (Bpd,+ 1))

Since all the parameters and variables involved in the expression are positive, the expression is non-
zero always.

We have a contradiction.

Thus, our assumption of the presence of a substrate biphasic in Bp with B, is wrong.

| Hence substrate biphasic cannot exist in the model.

Y Enzyme biphasic

In this subsection we show the absence of enzyme biphasic in either of the modified forms of the
substrates with total kinase concentration (between the respective substrate enzyme pair). As
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mentioned earlier, feasible solutions to the three coupled expressions (ACon, BCon, K1Con, K2Con -
shown below) would define the steady state of the system.

Note: Since the two covalent modification cycles are virtually identical to one and other with a shared
phosphatase and two unique kinases acting on them, a proof presenting the absence of enzyme
biphasic in one covalent modification cycle is tantamount to proving the absence in both modification
cycle.

ACon
CZ Ap PT}))‘al kZ +Ap + CZ Ap PT()tul CZ Ap PT}Jml kZ (2 2 1)
(Apcz-‘erdz-‘rl)K]c]kI Apc,+Bpd,+1 (Apc_7+de2+l)k1 -
_AToral
BCon
dZ Bp PT})I(IIPZ + Bp + d2 Bp PT()tul d? Bp PTumlpl (2 2 2)
(Apcz-‘erdZ-i-l)KZd]pI Apc,+Bpd,+1 (Apcz-‘erdZ-i-l)p] o
_BToml
Ki1Con
c,Ap Pk
2 Total 2
M e, v Bod, v 1Yk Mo 2.23)
K2Con
d,BpP_ p
2 Total * 2
K2 + (re, 7B a7 1), ~K2, (2.2.4)

Now differentiating each of these expressions with respect to K11..;, we get the following

d4Con 0 04Con 04p N dACon dBp N dACon 0K1

dK2 Total aAp 0K2 Total aBp 0K2 Total 0K1 0K2 Total

dBCon “o- dBCon dAp . dBCon dBp N 0BCon 0K2

dK2 Total 6Ap 0K2 Total aB[J K2 Total K2 0K2 Total

dK1Con o= 0K1Con 0K1 n 0KI1Con d4p 4 0K1Con dBp

dK2 Total 9K1 K2 Total aAp K2 Total 9 Bp K2 Total

dK2Con _ = 0K2Con  3K2Con 0K2 3K2Com d4p 4 9K2Con 9Bp
dK2 Total K2 Total K2 K2 Total aAp K2 Total 9 Bp K2 Total

Now in order to show the absence of biphasic response in Bp with total kinase concentration (K21,)),

we proceed with a proof by contradiction. Note that the same procedure of which will be valid to
show the absence of substrate biphasic response in modified form Ap with K11

If we assume that such a biphasic response exists, then there should exist a steady state of the system
where the following should be satisfied (at the biphasic peak)
0Bp

0K2 Total

Thus, the above expressions obtained after differentiation can be simplified as follows

B 04Con d4p dACon K1
0="%4 k2 T ok1 k2

Total Total
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dBCon d0A4p 0BCon 0K2
0= +

aAp 0K2 Total K2 0K2 Total
0= 0K1 4 0K1Con JdAp
K2 Total aAp 0K2 Total
__0K2 | 0K2Con odp
K2 Total aAp K2 Total
YV Note

dACon 90BCon 9KICon 0K2Con

This simplification is possible since the functions aBp * oBp ° oBp ° 0Bp are

fintie and always have non-zero denominators (as shown below), and thus the products involving
0Bp

K can be zero.

Total

B PTomle ¢, (K] (k] + kz) ¢, + k2) Ap

(Ach+de2+1)2ch[k[

simplify (diff (ACon, Bp)) =

simplify (diff (BCon, Bp)) =

1 ( [ Total
K2 |Bp*p, d>+2 (Apc,+ 1 ((3 +—]
(Apc,+Bpd,+1)>K2d,p, prppdy 2 (e, t ) ((Bpt 3 ) py
+ 2 2+]71( p62+ ) 1+ sz Total( p62+ )

_ C2 Ap PTa/a/ kZ dZ
2
(Ach+de2+l) k1
A0, Pry (AP e, T 1)
(Apc2+de2+1)2p1

simplify (diff (K1Con, Bp) ) =

simplify (diff (K2Con, Bp)) =

K1

Now solving the expression obtained by differentiating K1Con above for K and resubstituting
Total

it in the first expression (as shown below) we get,

0 04 Con d0Ap N 9dACon [ 0K1Con dA4p ]

04p 0K2 Total 0K1 dAp 0K2

Total

which further simplifies to

0 d4p ( 04Con dACon  9K1Con ]
0K2 ol 04p 0K1 J04p
dA4p
This thus leads to the following conclusion, either ——5—— is zero, or

Total

04Con dACon  9KICon

04p 0K/ dAp

T Note

is zero. The former cannot be possible (see note below).
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adp K2

Suppose, Ko iszero at such a point. Then, by analyzing the second, we get K to be
Total Total
. 0BCon 0BCon - .
equal to 1 (since “adp & Togp e finite and have non-zero denominators).

(K2 (p1+p2) 4, +p2) P a4 8P ¢,
(Ap CZ+de2+ 1)2K2d1p1

simplify (diff (BCon, Ap)) = —

simplify (diff (BCon, K2)) = — 50 PP
g ’ (Apcz+ch12+1)K22dlp[
K2 0K1Con

Then, by analyzing the third expression, we get K

- “odp are finite and have non-zero
ota

denominators).

2" Total "2
. 2
(czAp+de2+l) k1

c, P k(dez+l)

simplify (diff (K1 Con, Ap) ) =

0Ap .
Ko s not equal to zero.

Total

This is a contradictino. Thus, the

However the latter can also not be possible for a feasible steady state of the system (see below).
simplify (diff (ACon, Ap) — diff (ACon, K1) -diff (KI1Con, Ap))
Total

] ( ( -
KI1% | Ap? 2+2(A +—— | (Bpd, +1 2.2.5
(4p e, + Bpd,+ I)SKIZC,/(,2 ‘i e r 2 (Bpd,+1)c, ( )

+ (Bpd, + 1)2) (Ap c, + Bpd,+ 1) k?+Kle kP, (Kl'c,+1) (Bpd,

+1) (Ap e, + Bpd,+ 1Yk +c’Ap P Pk} (Bpd,+ 1))

Since all the parameters and variables involved in the expression are positive, the expression is non-
zero always.

We have a contradiction.

Thus, our assumption of the presence of an enzyme biphasic in Bp with K2, is wrong.

| Hence enzyme biphasic cannot exist in the model.

Y Common kinase separate phosphatase model: Absence of
substrate and enzyme biphasic dose response

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (Lineardlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with (LinearAlgebra) : with (VectorCalculus) : with (Student[ LinearAlgebral) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text. Here
dA represents d[A]/dt and similarly in the case of the other variables. At steady state thus, the right hand
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sides of each of these expressions will be equal to zero.

dd =—k ~A-K+k, -AK+k, -ApPl:
dAp =—k, ,Ap-P1 + k ,, ApPl + k -AK:
dB = —pbl-B~K+pub1~BK+p2~BpP2 :
dBp = —pb2~Bp~P2 +pub2~BpP2 +p, BK:

dAK =k, -4-K— (kubl + kl)'AK:
dApPl =k, ,Ap-PI1 — (kubz + kz) ‘ApP1 :
dBK = pbl-B~K— (publ +p1) ‘BK:
dBpP2 = pb2~Bp~P2 - (pubz +p2) ‘BpP2 :

dK =~k -4-K+ (kubl +k1)4AK—pb1~B'K+ (»
dPl =—k, -Ap-PI + (kubz + k2)~ApP1 :
dP2 =—p, -Bp-P2 + (pubz +p2) BpP2 :

i T P,)BK:

The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, BCon, KCon, P1Con and P2Con for the substrate and the respective

enzymes. Each of these expressions is always equal to zero (both in the transient and at steady state).

ACon == A + Ap + ApPI + AK—AToml :
BCon = B + Bp + BpP2 + BK — B
KCon = K+ AK + BK — KT alt
P1Con = Pl + ApPI1 — PI

P2Con = P2 + BpP2 — P2

Total *

Tc ota/ .
Total *

Now we begin by solving the system of equations to obtain expressions linking the steady state
concentrations of the variables, primarily to obtain expressions for the steady state concentrations of
variables as a function of concentrations of Ap and Bp. For this purpose we use an inbuilt Maple

command so/lve as shown with the example below.

K, AK

kub] + kl

AK = solve(dAK, AK) =

We similarly solve for the other variables using the same command.

assign (solve({dBK, dApP1, dBpP2}, { BK, ApPI1, BpP2}))
assign (solve({dA, dB}, {4, B}))

We introduce the following parameters (c,, ¢,, d;, and d,). This is done for the sake of brevity and easy
tractability of the expressions obtained.

uhZ )

2 ™2
(P2t Pun)

by = 1+ b e =
Py =dy (Pt Py phz =d,

Once this is done, we again solve for the steady state of the phosphatases, using the respective
conservation expressions (P1Con and P2Con).
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P]Tatal
Pl = solve(PlCon,Pl) = ———
Apc, +1

P2T0tal

P2 = solve(P2Con, P2) = W

This results in the following expressions for the steady state concentrations of the various species in terms
of the steady state substrate concentration Ap and Bp

¢ ApPly, .,k
(Apcz-i- 1)Kk1 ¢
dyBp P2p,,.1P,
(Bpd,+ 1) Kp,d,
¢, Ap PI k

Total "2

(Ap ¢, + 1) k,

d2 Bp P2
BK =

AK =

Total P2
(Bp d, + l)pl
CZ Ap PITotal
Apc, +1
d,Bp P2y,
Bpd, +1

ApPl1 =

BpP2 =

Note that when Ap and Bp are positive, steady state concentrations of the other variable concentrations
are positive as well. Thus we have solved the system of equations at steady state to arrive at expressions
linking the steady state concentrations of the variables with that of Ap and Bp. We now have three

expressions, ACon, BCon and KCon - the conservation of the substrates and kinase, whose solution for

the variables define the steady state of the system.

¥ Substrate biphasic

In this subsection we show the absence of substrate biphasic in either of the modified forms of the
substrates with their respective total substrate amounts. As mentioned earlier, feasible solutions to the
three coupled expressions (ACon, BCon, KCon - shown below) would define the steady state of the
system.

Note: Since the two covalent modification cycles are virtually identical to one and other with a shared
kinase and two unique phosphatases acting on them, a proof presenting the absence of substrate
biphasic in one covalent modification cycle is tantamount to proving the absence in both modification

cycle.
ACon
CZAP P]T(JtalkJ +Ap + 02 Ap PlTaml CZAp P]T(Jtalk.? —4 (311)
(4p ¢, + 1) Kk ¢, PT T dpe,+1 (Ap e, + 1)k, ~ "o oL
BCon
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d,Bp P2 ,p, B+ d,Bp P2, d,BpP2, ,p, 3 3.1.2)
(Bpd,+1)Kp,d, PT TBpd,+1 (Bpd,+1)p, Total L
KCon
c,Ap P1_ 'k d,Bp P2_ p
K+ 2 Total 2 + 2 Total * 2 _K (3.1.3)

(Ap ¢, + l) k, (Bp d,+ 1)p1 Total

If we are to differentiate the expressions by total substrate amount (By,,;) we would have the
following expressions

d4Con 0 04Con  0A4p N d4Con  dK
B Total aAp 08 Total K 08 Total
dBCon 0 dBCon N dBCon  dBp N dBCon oK
dB Total 08 Total aBp B Total 0K 08 Total
dKCon 0 dKCon 0K dKCon  dAp dKCon  dBp
=0= . + . + .
dBTataI K aBTotal aAp aBT(J):aI aBp aBTDtal

Now in order to show the absence of biphasic response in Bp with total substrate concentration, we
proceed with a proof by contradiction.

If we assume that such a biphasic response exists, then there should exist a steady state of the system
where the following should be satisfied (at the biphasic peak)

0Bp
0B

Total

Thus, the above expressions obtained after differentiation can be simplified as follows

0 04Con  0dp dACon K
aAp 0B Total aK 0B Total
B 0BCon 0K
T 0K 0B
Total

0K 0KCon  0Ap

0= + :
B Total aAp 08 Total
\ 4 Note
dBCon 9dKCon
This simplification is possible since the functions “oBp * 0Bp are finite and always have

0B,
non-zero denominators (as shown below), and thus the products involving M{ip can be zero.

simplify (diff (BCon, Bp)) = ol

(3p2 dzzpl + ((2 Bp + PZTM) p,+p, PZTOW) d, +p1) Kd, +d,P2
(de2+ l)zKpldl

d2 P2

Total p 2

Total p 2

simplify (diff (KCon, Bp)) = W
2 1
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0BCon
We also know that K has a non-zero denominator (see below). Thus we can assert that
0K

08 Total

is also non-zero.

dZ Bp P2Tola/p2
(Bpd,+ 1)K2p1d1

simplify (diff (BCon, K) ) = —

This allows us to solve for it using the expression obtained from differentiating KCon and substituting
in the expression belonging to ACon.

0 04Con  04p dA4Con [ dKCon  dAp )

adp 9B T K aAp

Total aBT otal

This expression can be further simplified as shown below

0 dAp ( d4Con  dACon IKCon ]

aBTotal aAp 2 aAp

d4p
Now, in order for this to be true, either the B is zero (which it cannot be - see note below), or

B Total

04Con dACon 0KCon

ap 0K 9dp is zero. We show below that latter can also not be zero for any feasible
steady state concentration.
\ 4 Note
0A4p dA4Con 0K
Suppose B is zero. Then, this implies that —gK  must be zero (this is since, B is
Total 904G Total
on

non-zero). However, —z%— is non-zero as shown below.

c,Ap Pl k

Total "2

(Apc2+1)K2k]cl

simplify (diff (ACon, K) ) = —

simplify (diff (ACon, Ap) — diff (ACon, K) -diff (KCon, Ap)) =

1 [ P]Total
Ap’ K? 3k2+3[K2 [A + 5 | k?
(c,4p + 1) K2 kP e, PR A 1
Kk, Pl (Kc +1)k k*p1_ 2 Pl
2 Total 1 1 2 Total 2 Total
+ 3 + 3 Apcz+3[Kcl[Ap+f]k1
k, PI (Kc +1)
2 Total 1 21 2
+ 3 ]kIKc2+K k1 c])

Since all the parameters and variables involved in the expression are positive, the expression is non-
zero always.

We have a contradiction.

Thus, our assumption of the presence of a substrate biphasic in Bp with B, is wrong.
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|_ Hence substrate biphasic cannot exist in the model.

cycle.

ACon

BCon

KCon

Y Enzyme biphasic

02 Ap P]Tn[al k2 +Ap + CZ Ap P]Ta[al 02 Ap P]Toml k2 —4
(4p e, + 1) Kk ¢, P T Ape,+1 (Ap e, + 1)k, ~ "o
d,Bp P2, P, +Bp+ d,Bp P2, , N d,Bp P2 ,p, 3
(de2+l)Kp1d1 Bpd,+1 (de2+1)p1 Total

c,Ap Pl .k, d,Bp P2 P,

K+

(Apc’2+1)k[

(Bp dZ + l)pl _KTr)tul

Now differentiating each of these expressions with respect to K11..;, we get the following

Total

0Bp

aKTotaI

Total

Total

0K

_ 04Con dAp
0="ap K

Total

dACon
+

0K

"K

Total

dACon o~ 04Con  04p N dACon oK

dKTmal aAp KTataI 0K KTotal

dBCon o~ dBCon  0Bp + 0BCon 0K

dKTotal 6Bp KTotal 0K KTotal

dKCon  dKCon 0KCon oK 0KCon  0Ap 0KCon  O0Bp
ik 9=kt Tk K dip oKt B K

Total Total

Thus, the above expressions obtained after differentiation can be simplified as follows
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In this subsection we show the absence of enzyme biphasic in either of the modified forms of the
substrates with total kinase concentration (between the respective substrate enzyme pair). As
mentioned earlier, feasible solutions to the three coupled expressions (ACon, BCon, KCon - shown
below) would define the steady state of the system.

Note: Since the two covalent modification cycles are virtually identical to one and other with a shared
kinase and two unique phosphatases acting on them, a proof presenting the absence of enzyme
biphasic in one covalent modification cycle is tantamount to proving the absence in both modification

(3.2.1)

3.22)

(3.2.3)

Now in order to show the absence of biphasic response in Bp with total kinase concentration (K,),

we proceed with a proof by contradiction. Note that the same procedure of which will be valid to
show the absence of substrate biphasic response in modified form Ap with K ...

If we assume that such a biphasic response exists, then there should exist a steady state of the system
where the following should be satisfied (at the biphasic peak)



_ 0BCon 0K
T K K
Total

0K 0KCon  d4p

+ .
aKT otal aAp aI(Total

1=

\ 4 Note

dBCon  9KCon

This simplification is possible since the functions “oBp * 0Bp

are finite and always have

0Bp
non-zero denominators (as shown below), and thus the products involving —z—— can be zero.
Total

simplify (diff (BCon, Bp)) =

K(Bp2 d22p1 + ((2 Bp+ P2, NP, +P, P2 d, +p1) d,+d,P2
(Bpd,+ l)zKp] d,

d, P2

Total p 2

Total 4 2

simplify (diff (KCon, Bp)) = W
2 1

. BCon 0K
Now since 9K ismon-zero (see below), K must be zero.

Total

dZ Bp P2T0talp2
(Bpd,+ l)sz]dI

simplify (diff (BCon, K) ) = —

o d4Con } . ‘ oK
Again, since K has a non-zero denominator (see below), the products involving =7 can
Total
be zero.

¢, Ap Ply, .k

simplify (diff (ACon, K) ) = — 5
(Apcz—i- l)K k¢,

This results in the following expressions after reduction for the differentiated expressions

_ 94Con d0A4p

aAp aI('Total
_ 0KCon  94p
T dp K

Total

04 Con 0KCon

However, we have a contradiction here. Both ———— and —55—— are non-zero and finite
0Ap JdAp

respectively (see below)

simplify (diff (ACon, Ap)) =
K <Ap2 ek, + ((24p +Ply,,)

(Ap02+1)21<k]c]

ky+ kPl )¢t k1) ¢ T, Pl k,

107



¢, Pl k,

simplify (diff (KCon, Ap)) = W
2 1

dAp
—7— must be zero and non-zero to satisfy the two
aI{Total

However this simultaneously implies that

remaining expressions from earlier.
We have a contradiction.

Thus, our assumption of the presence of an enzyme biphasic in Bp with Ky, is wrong.

| Hence enzyme biphasic cannot exist in the model.
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Biphasic interactions within common network motifs

The following document includes models N1-N4. As mentioned in the main text each of these models
involve a basic 3-node motif representing, a. positive feedback (N1), b. negative feedback (N2), c.
incoherent feedforward (N3), and d. coherent feedforward (N4). Each node consists of an active form and
an inactive form shuttling between each other. In each of these models, the basic characteristic of the motif is
represented following which the role of biphasic interactions in the pathway are analyzed by considering the
interaction of the pathway node (responsible for the feedback/feedforward) to be biphasic. All models are
constructed using simple mass action kinetics and the biphasic interaction is modelled using the following

2

- X
expression f(x) =b -xe where a and b are parameters. This ensures a biphasic response is acheieved at

1 b
x value of B and a corresponding maximum f'(x) of [ bil ] .
2 2

V¥ Proof of absence of multistability in negative feedback motif
(Open System)

restart : with (LinearAlgebra) : with (VectorCalculus) : with (Student[ LinearAlgebra]) :

In this sub-section we show that the basic negative feedback motif (Open system) used in figure S3, is
incapable of exhibiting multistability. To recap; figure S3 shows how the introduction of a simple
biphasic response in the feedback interaction can allow the system to present multistability.

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text
(Models and Methods section). Here dA represents d[A]/dt and similarly in the case of the other
variables. At steady state thus, the right hand sides of each of these expressions will be equal to zero. The
model is described here again (the code for the same can be found in the MatCont package under the
name N5__Bi NFB). In this instance, for the open system, Switch = 0.

dR = kS — k1~R~Ap- (1 —Switch) — Switch~R~Ap-b1~exp( —b2~Ap) - k2~R :

kS'A'R k4'Ap
ddp = &——FT—F — &= 15— :

K +4 K, +4p -

kAR kdp

M=% 3a T K+

Switch =0 :
The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, PCon and KCon for the substrate and the respective enzymes. Each of

these expressions is always equal to zero (both in the transient and at steady state).

ACon =4, —A—Ap:
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Now we begin solving the system of equations to obtain equations relating the steady state concentrations
of the variables. Primarily to obtain equations relating the steady state concentrations of variables A and

R. For this purpose we use an inbuilt Maple command so/ve as shown with the example below.
k,Ap (K, +4)

(K, +4p) k4

assign (solve({ACon}, {A})) :

R := solve(dA, R) =

Now having solved for the steady state of the system in terms of Ap, the only two equation that remains
(which defines the steady state of the system) is the differential equation dR

simplify (numer( —dR))
3 2

k] k4Ap + ((—K3 k] _k[Aﬂ;tul+k2) k4 —kOSkj) Ap” + (—/’c_7 (ATUtul+K3) k4 a.1)

+ Sk()k3 (ATolul —K4) ) Ap +K4Sk()k A

3" Total

The feasible solutions of the above equation for Ap defines the steady state of the system. We can also
see that the equation is a third degree polynomial in Ap, which can atmost accept three feasible solutions.
Note that the feasible solution for Ap should lie between 0 and A ;.

We can also observe that the coeffecient of the third exponent and the constant term are both positive.
This implies that one root of the cubic polynomial is necessarily negative. Similarly since the polynomial
evaluated at Ap = A, is negative (see below), there exists exactly one solution.

simplifj/(eval( T, Ap :ATotul) )

K kA, (k1 A T 5 ) 1.2

L Thus multistability is impossible in the negative feedback motif (open system).

¥ Choice of parameters for biphasic in interaction

In this sub-section we show the rationale used to choose parameter values when comparing the behavior
of a network motif with and without biphasic in interaction. The main aim, as stated in the models and
methods is to maintain parity in the strength of the interaction modelled, whether using a bilinear
response (modelled using the term: f(x) = k-x) indicating general motif response, or using a biphasic
response modelled using the following term f(x) = bl -x~exp( —b2~x)

restart : with (LinearAlgebra) : with (Student[ LinearAlgebra]) : with (VectorCalculus) :

In order to ensure parity in the strength of the interaction. We first assume that the system is operating
over the range (for values of x) 0 to a finite value Xp,;. In such a case, we wish to choose parameters b,

and b, for the biphasic interaction term, such that the averaged strength over 0 to X, is equal to that
arising out of the bilinear (basal models') interaction. This can be written as shown below

X X
Total Total

_L fBipha:ic(x)dx:J;) Srpsa(¥) dx

Substituiting the respective terms, this becomes
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X X
Total Total
L bl-x-exp(—bz-x)dx=.[0 k-xdx:

Evaluating this expression we get

2 pota 0 potat 2
ota otal _
bl ( © b2 XTotal +e 1 ) k XTotaI

2
b, 2

0.5

Now we assign b, the value of b2 = . With this, the above expression becomes

Total

kX, ?

2 Mo
0.2065321413 b1XTota1 - 2

Thus, further simplification of this implies that b1 should take the value as shown below

lve| 0.2065321413 b, X Z—LT”’“’Z b
e . 1 Total 2 > by
2.420930693 k 2.1

Thus, in order to have parity in the averaged strength of both the biphasic interaction and the basal
interaction over the range of operation (0 to Xr,,,;). We approximate this and take the value of b; and b,

to be as shown below.

20.5

b =25k and b, =
Total

Note: In instances such as the upstream signal regulation not having an explicit total amount (unlike
when the total amount, i.e. the range of activation, is evident when the regulation comes from a
conserved substrate) the Xy, value is assumed to be taken arbitrarily such that it represents

approximately half the range over which the bifurcation is carried out.
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Biphasic interactions within integral feedback
control motif

In this section we provide the following proof pertaining to the effect of biphasic interactions on integral
feedback control motif responose.
1. The presence of a biphasic interaction can induce a saturation effect that can result in a reduced range of

signal regulation for the model.
2. The biphasic interaction allows for in addition to the saturation effect above a loss of stability in one of

the branches of steady state.

We first begin by describing the three relevant models,

1. Basic model of integral feedback control motif

2. The integral feedaback control model with biphasic signal regulation
3. Model with biphasic response within the motif interactions

The first two models are provided for completeness - however please only run the third model as
appropriate for the proof that follows. Similar to the other worksheets, please run the model, and one of the
proofs (not the whole worksheet together)

A 4 Basic model

restart : with (Student[ LinearAlgebra) : with (VectorCalculus) :

dA = kaa*S — kda*A*M:
dP == kap* A — kdp :
| dM = kam* P — kdm* M :

\ 4 Biphasic signal regulation model

restart : with (Student[ LinearAlgebra]) : with (VectorCalculus) :
dA = bl *S*exp(—b2*S)—kda*A*M:

dP == kap* A — kdp :
| dM = kam* P — kdm* M :

\ 4 Biphasic response within motif interactions

restart : with (Student[ LinearAlgebra) : with (VectorCalculus) :
dA = kaa*S — kda*A*M:
dP == kap* A — kdp :

| dM = bl *P*exp(—b2*P)—kdm* M :
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In the subsequent subsections we provide proofs for the following insights.
1. The presence of a biphasic interaction can induce a saturation effect that can result in a reduced range of
signal regulation for the model.

2. The biphasic interaction allows for a loss of stability in one of the branches of steady state (in addition to
the saturation effect described above).

V¥ 1. Saturating effect of interaction leads to a reduced range of
signal regulation

Prereq: please run only model 3 before running this section.

In order to illustrate this proof, we solve for the system at steady state to obtain relationships between the
steady state concentrations of A, and P as shown below. We do this by solving the differential equations
for A and P at steady state.

assign (solve({dA, dP}, {A,M}))
Once we do this and resubstitute, the remaining differential equation for M simplies as follows

simplify (dM)
bl Pe PP kda kdp — kdm kaa S kap
kda kdp

@.1)

Solving this equation for the signal value (at steady state) provides the following relationship between
any upstream signal and the steady state concentration of P.

solve(dM, S)

bl Pe " kda kdp
kdm kaa kap “.2)
Now, the expression on the right hand side is the biphasic interaction term (in variable P), multiplied by a

constant (combination of the kinetic constants). This maximum can be evaluated as a function of the
kinetic parameters as shown below,

- bl Pe Pidakdp ( ) [ b1 Pe "7 kda kdp )
Max_value of S = szmphfj}[eval( fdm kaa kap , P=solve| diff fdm kaa kap ,P,

?)))

bl e~ kda kdp

Max_value_of S = b2 kdm kaa kap

@.3)

Thus, the right hand side has a maximum concentration that it can take as P varies. This implies that any
signal value beyond that maximum (as given by the equation) cannot be supported as a steady state by
the system.

Hence we have shown how the saturation effect of interaction leads to a reduced range of signal
regulation. This can also be easily verified with a computation by choosing an input signal beyond the
L maximum value predicted by the equation above.
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V¥ 2. The biphasic interaction induces a loss of stability in one of
the branches of steady state (necessarily)

Prereq: please run only model 3 before running this section.

In order to show this result pertaining to the stability of the steady states, we first make the point that
there exists two steady states for any given choice of signal activation from this motif. This is apparent
from the earlier steady states observed in proof 1. These steady state concentration relationships are
rewritten below

kdp kaa S kap

kap M= Tdakdp -

bl Pe PP ikdakdp

and § = kdm kaa kap

Thus for any given value of S, A is fixed, M takes a specific value, and there are two values of P that
will satisfy the last equation. This implies that there are two steady state branches (Defined by the steady
states of A, M and P) for every signal value.

Having estabished that - we will show below that one of these branches necessarily is unstable, and in
particular loses stabilty at the point of inflection (where the biphasic nature of the interaction begins or
kicks in).

In order to ascertain information regarding the stability of the steady states, we calculate the Jacobian and
the Characteristic polynomial of the system at any given steady state. This is done as shown below.

J == Jacobian([dA, dP,dM ), [4, P, M]) :

C := CharacteristicPolynomial (J, x) :

T := collect(eval(collect(C, x) ), x)
T:= x>+ (Mkda + kdm) x* + M kda kdm x — (P b2 — 1) A bl kap kda e~ ""? 5.1)

From the above expression, for any feasible steady state we can observe that the coeffecient of the
leading, second degree and first degree exponent of x are all positive. The roots of the polynomial
(solutions) represents the eigen values of the system.

We solve the system to obtain steady state concentrations for A and M (as obtained in proof 1) and we
resubstitute it into the expression T.

assign (solve({dA, dM}, {M, A}))

We now extract the coeffecient of the exponents as shown below,

C3 = coeff (T, x,3) : C2 == coeff (T, x,2) : Cl = coeff (T, x, 1) : CO = coeff (T, x,0) :

Now at a given steady state, for the system to be stable, all eigen values of the steady state should be
negative real or be complex conjugates with negative real parts. In this polynomial, this will get

determined depending on the sign of the constant term.

However we can see that this term can be negative (giving rise to a unstable steady state).
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co

(Pb2—1) S kaa kdm kap
— 7 (5.2)

This constant term is negative when P b2 — 1 is positive for a given steady state.

Examining the biphasic in interaction term as shown in the model, we can see that it is precisely negative
when the biphasic effect kicks in within the interaction, or rather there is a decreasing function value for
increasing input value of P. This can be seen below by checking the sign of the gradient of the function
as P changes.

simplify (diff (b1 * P* exp(—b2*P),P))
—ble PP (Pb2—1) (5.3)

As we can see from this gradient, when P b2 — 1 is positive, the gradient is negative. The system
originally as we showed initially has two steady state solutions, one corresponding to the initial phase of
the interaction, and the other belonging to the waning / latter phase of the interaction.

Hence proved Thow the biphasic interaction induces a loss of stability in one of the branches of
L steady state (necessarily).

These two insights show how the waning phase of the biphasic interaction necessarily is unstable. Thus even
though the biphasic behavior introduces an additional steady state and non-linearity in to the system.. it only
diminishes the range over which signal regualtion is capable and further, the steady state introduced is
unstable.
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Extracellular Regulated Kinase model (ERK)

Exploring the features and requirements of obtaining biphasic dose response in
pYpTErk with total substrate and enzyme amounts

In this file we analytically study the presence of enzyme and substrate biphasic dose response in the doubly
phosphorylated Erk (pYpTErk). In particular we establish the following key results regarding them,

1. Enzyme biphasic response in pYpTErk (biphasic behavior in the dose response curve of pYpTErk as
Mekoa1 (Kpowp) changes): Presence of enzyme biphasic response is shown for a choice of parameters.

Further, we show how certain analytical expressions (involving kinetic constants and total phosphatase
amount) guarentees the presence of enzyme biphasic for some total concentration of Erk and Mek.

2. Substrate biphasic response (biphasic behavrior in the dose response curve of pYpTErk as Erkqy,

changes): We show how for any choice of biochemistry kinetics, the Erk model is guarenteed to present with
substrate biphasic response in pYpTErk (at some total concentration of Erk and Mek).

We note that the key signature of biphasic behavior in the dose response curve of the system is the presence
of a steady state of the system, where the following conditions are satisfied.

dpYpTErk . o
Wkﬁ)m[ =0 (for enzyme biphasic in pYpTErk)
dpYpTErk ) o
m =0 (for substrate biphasic in pYpTErk)

Please note that we'll be using Ky, interchangably for Mek,, (and K for Mek) for the remainder of this
script for brevity.
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The Erk model: We first describe the mathematical description of the Erk model (adapted from Bluthgen et
al., 2018).

Notation: pYErk, pTErk represent singly phosphorylated Erk (at different sites), while pYpTErk represents
doubly phosphorylated Erk. C1 is the complex formed by the unphosphorylated Erk and Mek (K). CY2 and
CT2 are the complexes formed by the single phosphorylated Erk (pYErk and pTErk respectively) and MeK
(K). D2 is the complex formed by the fully phosphorylated Erk (pYpTErk) and the phosphatase. DY1 and
DT1 are the complexes formed by the singly phosphorulated Erk (pYErk and pTErk respectively) and the
phosphatase. K (Mek) and P represent the free active form of the kinase and phosphatase respectively.

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt Maple
functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart . with (LinearAlgebra) : with (VectorCalculus) : with (Student[ LinearAlgebral) :

The system is modeled as a set of ODEs using the kinetic nomenclature described in the main text. Here
dERk represents d[Erk]/dt and similarly in the case of the other variables. At steady state thus, the right hand
sides of each of these expressions will be equal to zero.

dErk = —k, Erk-K +k -Cl +p,DTI +k,-DYI :

dCl = kbl~Erk~K— (kubl +k))-Cl:

dpYErk = kl-C] —kb4~pYErk-P + kub4~DY] —kb2~pYErk‘K+ kub2~CY2 :
dDYl =k, pYErk-P — (kub4 + k4) -DYI :

dCY2 =k, pYErk-K _(kubZ + kz) -CY2

dpYpTErk = kz-CYZ —pbj-prTErk-P +pub3-D2 +p2-CT2 :

dD2 = pb3~prTErk~P —(puh3 +p3) D2 :

dCT2 = pb2~pTErk~K—(pub2 +p2) -CT2 :

dpTErk = —pb2~pTErk~K +p,,C12+p,-D2 —p, -pTErk-P +p  -DTI:
dDTI = pb4-pTErk-P—(pub4 + p4) -DT1 :

dK =—k, -Erk-K + (kubl + kl) Cl —k,, pYErk-K + (ku/:z + k2) -CY2 —p,, pTErk-K + (pubZ +p2)
-CT2 .
dpP =—k, pYErk-P + (kub4 + k4) DYl —p, -pYpTErk-P + (pubj +p3) D2 —p, pTErk-P + (p

ub4
+p,)DTI

The model is also associated with conservation conditions which are described below. Here we store the
conservation expressions as ACon, P1Con, P2Con and KCon for the substrate and the respective enzymes.
Each of these expressions is always equal to zero (both in the transient and at steady state).

KCon =K —K—Cl —CY2—CT2:
Total

PCon = P — P —DYI—D2 —DTI :
Total

ErkCon = ErkTml — Erk — pYErk — pTErk — pYpTErk — Cl1 — CY2 — CT2 — DYl — D2 — DT1 :

We now solve the system described at steady state to obtain expression linking the steady state concentrations
of the various species. Here we use the Maple command solve

assign (solve({dCI, dCY2, dCT2, dDYI, dD2, dDT1}, {CI, CY2, CT2, DYI, D2, DT1}))

Simultaneously we introduce the following parameters (c,, c,, ¢4, d,, d;, and d). This is done for the sake of
brevity and easy tractability of the expressions obtained.
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Once this is done, we again solve for the steady states of the unmodified and partially modified Erks (in
terms of the other variables and parameters).

assign (solve( {dErk, dpYErk, dpTErk}, { Erk, pYErk, pTErk}))

Further we now introduce a ratio, € = K/P (defined as the ratio of the free enzymes), and solve for the steady
state of the free phosphatase (using the conservation expression PCon).

K = epsilon-P :
P = simplify (solve(PCon, P)) =
Pra €%, (4, €, d,p,)

czd2k2p2 (dijpTErk-i- 1) 62+c2d4 (di (p3+p4)prTErk+p4) k26+c4d3d4prTErkp3p4

Note: For the sake of brevity of the expressions further, we rename pYpTErk as App.
pYpTErk = App :

This systematic solving and renaming results in the following expressions for the steady state concentrations
of the various species in terms of the steady state substrate concentration App (pYpTErk) and e.

(eczk2+c4k4) d4p4d3Appp3

simplify (Erk) =
kzczezk[c[(d2€p2+d4p4)
lify (pYErk 9y s AP P
simplify (pYErk) =
Eczkz (d2€p2+d4p4)
lify (pTErk 4, 4pp b,
simplify (pTEvk) = —————
d26p2+d4p4
simplify (Cl) =

P o (eczk2+c4k4) d,p,d;4pp p;
(Czdzkzpz (depp+ 1) €2+czd4 (d} (p3+p4)App +p4) k26+c4d3d4Appp3p4) k,
P @yP ;PP P €

simplify (CY2) = — — |
c,dykyp, (dyApp + 1) € +c,d, (dy (p;+p,)4pp +p,) ket dyd Appp,p,
2~
simplify (CT2) = d, P, € c,kyd App p,
c,d,k,p, (APde,-i- 1) €+c,d, (d3 (p3+P4)App +p4) k,e+c,d,d Appp,p,
simplify (DY1) = % PToml d4p4 dj‘ App P;
¢,d,k,p, (Appdy+ 1) € +c,d, (d; (py+p,)App +p,) ket e, dyd Appp,p,
d,App P €c_ k (Edp +dp)
3 Total ~ "2 "2 28 4Py
simplify (D2) =
- c,dyk,py (Appdy+ 1) € te,d, (dy(p;+p,)dpp +tp,)kyetc, did Apppp,
e, Prud,p,d,4pp p
simplify (DY1) = 4 Total 47473 3

ngzkzpz (Appdj-i- 1) €2+c2d4 (d3 (p3+p4)App +p4) k2€+c4d3d4Appp3p4

Note that when the steady state concentrations of App and € are positive, the steady state concentrations of
the other variable concentrations are positive as well. Thus, so far, we have solved the system of equations at
steady state to arrive at expressions linking the steady state concentrations of the variables with that of App
and €. We now have two expressions, ErkCon and KCon - the conservation of the Erk and Mek, whose

solution for the variables define the steady state of the full system.
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¥ Substrate Biphasic

In this subsection, we analytically show the presence of substrate biphasic (in the full system) for any
choice of underlying kinetics. As noted earlier, the biphasic behavior is characterized by the following
condition being satisfied for some steady state of the system.

0App

aErkTmtal

=0

We now have two remaining conservations, KCon =0 & ErkCon =0 (see below) whose solutions to the
variables App and e define the steady state of the system.

If we differentiate both these with respect to the total substrate concentration in the system, we get

dErkCon o= 0ErkCon + 0ErkCon 0App + 0ErkCon 0e
dErkTotaI aErkTataI aAp ( aErkTotal de aErkTDtal
dKCon o~ 0KCon  dApp N 0KCon e

dErkToml aAp P aEVkTataI %€ aErkTotal

Now in order to show the presence of a substrate biphasic response and study its features, we begin by
first imposing the necessary features that the system must satisfy for the behavior to exist. We begin with

0dp
the basic tenet that for the behavior there should exist a steady state of the system where Eh T 0 is
Total

satisfied.
At this point then, the above expressions simply as follows

- 0ErkCon de

0€ " OErk
Total
B 0KCon 0€
0="%8c ok

Total

\ 4 Note

O0ErkCon 0KCon

“odpp * odpp are finite and always have non-

This simplification is possible since the functions

04
zero denominators (as shown below), and thus the products involving ﬁ can be zero.
Total

simplify (diff (ErkCon, App)) =

P
—43 2 2 Total 3 a3
9 [App pydy [psPToza1+2 [App+ ) )Pz] d, +[72j ke’ py k) e €

3p
4
—d22023 ([App2p2p3d33k1 +2k1App (App [p3+ Tj d4+p3]p2d32

P P
Total Total
+[[[th1(p2+2kl)p3+6k][Aperiz ]p2]p4+2k1(z4pp+ 5 ]pjpzjd4
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2 6
tr,psk ) di+ 3pzp4d4kij k, +p2p3p4Pruml”lsdztki] pyk e €

((2k1 ¢, tp, dz)p4+2p3 ) k1) App2p3pzd33
4 2

_ 2
2d,c,°d

1
+7(Appp2 (Appclkl (p3+3p4) (p3+p4) d4+2((2klcl+p2d2)p4
k

PTaml

i
5 P (p2+ 7)1’3 3k, [App T )pz
+p3c1k1)p3)d3)+2p4 2 + 2 Py

P pp(2kc+pd) 3p.pltec,dk
Total 283 151 TP 2P4 “1%4 %
+k, [App-i— P )p3p2 c,d, + 2 d,+ 3 k,

App? d32 k,

2
+p,r;50, PTomlcld3d4k] 02+d2p4[ 5 +Appk1(Appc4+l)d3+Appc4k1

1 P roiat €4 Ky P o €4
_ 2 2.5 _ .2
+[2 + > k1+ > pjdjp2 ¢, k2€ c, d4 2 p2d2
k c p.c, k
1€ 31" ) 3
t ]p4+ 2 ]App Py (Pstp,)d;
2 2
L p4App (Appc[kl (p3+p4) d4+2 ((k1c1+2p2d2)p4+p3 (k1c1+p2d2))p3) d5
2

pSPT P P
2 otal Total Total
+p, (((72 +k] App+72 p4+p3k1 App+72 cld4+p3 p2d2

k ¢ pledk p.p P c d.dk
151 4 1% " 3P4 Vo 193 %4 "
]] 7]k2+ > d402+d2p4[(2k101(p3

+p4) d4+c4 (2p301k1+k4p2d2))App2d32+2App (kICI (p3+2p4) (Appc4+1)d4

. kA ko dNd +4p | dope i 1 P & ko Py €4 ) i
+°4(p3‘1 1+4p2 2)) 3+ b, \4ppPc, 1+ 2+ 2 1+ 2 €4y

d,(p,+p,)App +p,)2d, k2 c)?
+k4p264d2]p3d3p2] k22€4_217462p3d3[ (45 (s FPy) - ) 4k
ke, (p3+p4)2d4
+ f*‘((ﬁg (k161+p2d2)+k4p2d2)p4+p3 (pjc[k[

+k4p2d2))c4] App2d32+App (p4clk1 (p3+p4) (Appc4+ l)d4+ ((p3 (kICI

1 Totalc4
tpr,d))t2kp,d))p, K p,pid)c,)d;+p, (pzl [App ek, + [7 t— )k

k,P_ ¢
4~ Total "4
+72 ]cld4+k4p2c4dz))k202
Appp,pyp, e c,d,d ik, (Appe,+2Appd +2)
+

2

2 3
]d4 kze
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1
—2p,e,p,d;dlk,c, (7((“’3 (Pstpy)Are +p,) (((K+2p;) P,

+k4p3) Appd3+k4p4) d4k2c'2) +p4Appp3d3 ((k1c1 (p3+p4) d4+c4 [k4p2d2

p301k1 p4c1k1(Appc4+2)d4 R
LA — App d, + ) +k,p,c,d,| | €—2p, k,

Py Appp3p4c]d3k]
3 R S T S S 27273 .2
+ 5 ]p4+k4p3)Appd3+k4p4)kzcz+ > Appp3 d3 d4 ¢ €

—Appchdj3 d; k4p33p43) (k1 c, (czd2k2p2 (4pp d, + 1 €+d, (d3 (7;
+p4) App+p4) czk2€+c4d3d4Appp3p4)2ezkzc] (d2€p2+d4p4))

simplify (diff (KCon, App) ) =
(45 (P € crdy by by = ((mPy=p,) A+ pydy) bk, @ = (kT k) e, =kje,)p,d,pye

—rsp, e d k) €k, Py (€0, d,py) c_,)/(kl (c,d,kypy (Appd;+1) €
+ky ((Appd;+ 1) p,+Appdipy)d e, e+ e d d Appp.p,)?)

Observing, the second expression above (from differentiation of the total kinase concentration) we can

hat eith 0KCon 0e b | . 0e b .
see that either ac or AEk must be equal to zero. However, SETk cannot be zero as, if it
Total Total
. . . 0ErkCon o
was indeed zero, then since the denominator of —gc _ isnon-zero, there would be a contradiction

with the first expression (from differentiation of the total Erk concentration).

0KCon
Thus, e must be equal to zero. This expression is evaluated below and stored as T.

e simplif_j/[ numer ( simplify ( ;izﬁ”(.KCon, epsilon)) ) ) J
Total CZ

T:= EZCZ(—(d3 (s +p,)App +1,) kp,d?+d, (ijppz((pg—kI)p4—p3k1)d32 (1.1)
+ App ((—2k1p2€+p3(pz—kl))p4—2k]p2€p3)d3—2p2p4€k1)d4
—p,)€Edk, (d,App + 1)) k>+p,Appd,p, [—[App((pj—k4)p4—k4p3)d3
+2 [ek]—%]pJ c,d,+ed, (App (pyec,k,+2c, (—pk +kp,))d+ (K, (c,
—3c) 6+204k4)p2)] d k,—App*c,d?d}k plp}

Thus as long as the above equation (expression T) is satsifed, there exists a steady state at some Kr,; and
Erkq, corresponding to the conservation equations, where there exists a biphasic peak (behavior) in the
dose response.

Now in order to show that the expression T is indeed satisfied for every choice of underlying kinetics, we
rewrite App =m-¢€

App = m-epsilon :
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This simplifies the expression T as shown below.
simplify (T)

(—mp22€4czd22d3k1k22+02 ((d3 (( (p_?—kI)p4—pjkl)p3md3—2p2k1 (p3 1.2)

—p?2 2 2 3
+p4))md4 P, d2k1>k2+m p,rsp,d, d4k1) d,k, e

cz(—mdjk[(p3+p4)d4+(mp3(pz—k/)dj—szkl)dz)kz
+2P4 P + mc4(
pk (c,—3¢c
—pyk, Fkyp)d,+ %]djpjm%)d4k2e2—(p4c2d4k1k2
+dc (((( ) p3k4)md3+2p4kl)d4—2p2d2k4)k2
+mp r, 4d dk)p4d4€+mp3p4204d3d42k2k4)E

We can observe that the expression is now a fifth order polynomial in €. One of the roots factors out
resulting in a simplified quartic polynomial in €, with the constant term always positive and the leading
coeffecient always having a negative sign. This indicates that for any choice of value for m (which
appears in all the coeffecients) there exists a postive solution in € for this quartic expression.

This indicates that for every choice of underlying kinetics and total phosphatase concentration,
expression T = 0 can be satisfied (guarenteeing the existence of biphasic response in the dose response
for some total concentrations of ErkTotal and KTotal which can be arrived at by evaluating the
respective conservation expressions).

Thus we have shown how substrate biphasic response is guarenteed to exist in pYpTErk, for some
total concentration of Erk and Kinase in the system, for any choice of underlying kinetics.

Note: We illustrate the validity of this argument by providing an example of a prediction of the presence
of a biphasic response for an arbitraty value of 1 for m (i.e. App = €) and some abitrary choice of
kinetics (all values are equal to 1), validated by computational bifurcation analysis.

m:=1:

k11=12k2==1Zk4==1:p21=1:p31=1:p4==1:

kg =1k, =1k =1:p =1:p =1:ip =1k, =1k, =1k, =1:ip :=1:
P =lipy=1ipy,=1ip,;=1:p,, =1:
c, = il tc, = b2 tc, = i td, = Pos id = Poz id, =
S Y N N I 2 e R
Py .
p +pub4 '
PTotal =

€ = evalf (solve (T, useassumptions) assuming € > 0) = 0.236067977
App =0.236067977

ErkCon = Erk —6.236067987
Total

KCon =K_  —0.5278640449
Total

The computational evidence of the substrate biphasic dose response behavior predicted above is
L shown in figure 4.
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Y Enzyme biphasic

In this subsection, we analytically show the presence of enzyme biphasic (in the full system) for some
choice of kinetic parameter values. We further show the existence of an analytical condition involving
kinetic constants that will guarantee the presense of biphasic dose response in pYpTErk with Mekp .,

(Krop)- As noted earlier, the biphasic behavior is characterized by the following condition being satisfied
for some steady state of the system.
0App

aI{Total

We now have two remaining conservations, KCon = 0 & ErkCon = 0 (see below) whose solutions to the
variables App and € define the steady state of the system.

If we differentiate these both with respect to the total enzyme (kinase/Mek) concentration in the system,
we get

dErkCon o~ OErkCon  0App N OErkCon e
dKToml 6Ap P a]{Total de aI<Tz7tal

dKCon o~ 0KCon N 0KCon  0dpp + 0KCon e
dKTotal a1<Total aAp P aKTotal de aKTotal

Now in order to show the presence of a substrate biphasic response and study its features, we begin with
exploring the necessary features that the system must satisfy for the behavior to exist. We begin with the
0App
basic tenet that for the behavior there should exist a steady state of the system where ——— =0 is
Total
satisfied.
At this point then, the above expressions simply as follows

0 0ErkCon de

e K
Total
_ OKCon de
de a](T()t(zl
4 Note

0ErkCon  0KCon

“odpp * odpp are finite and always have non-

This simplification is possible since the functions

04
zero denominators (as shown below), and thus the products involving # can be zero.
Total

simplify (diff (ErkCon, App)) =

P
_ 2 2 __Total 203733 . 7
k, [App pydy+ [p3PT0m/+2p2 [App+ 2 J] d3+p2jp2 dyky ey c €

3p
_ 2 3 4 2
P, [(App p,pydsk + 2k p,App (App [p3+ 2 Jd4+p3] di+ [[(Phwl (7,
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P P
Total Total
+2k1)p3+6k1p2 (Aper T)]p4+2p3k1p2 [App+ T]] d4+p2p3k]] d3
+3p,p,d, kz] ky+ 0,30, Pro 59, kz] dk?ec e

p3pzApp2 ((2 ke +p2d2) P, +2p5¢ kl) ‘133

—24d,d, 3

1
+ 5 (pyApp (App ¢ ky (P +3p,) (Ps+p,)d,+2p, (2K ¢, +p,d))p,

PTutal

k
) [pz+ 7] PraPs  3%P, [App T )
+p301k1))d3)+2p4 5 + 5 P,

2
ik App + P totat e d + Pyp; (2 k]c]+p2d2) d + 3p,p/ e dk, i
Py K P,y \ApPP 2 1% 4 3 2 2

252

ZP d d k 2 La’}k] A k A 1\ d

TP,050 Pryy €y dsd, k)¢, oo, p, 2 +dApp k, (Appc,+ 1) d;
P ot €4 Ky P ol €4

1
. — o 7 T o 7 . 2.2
+Appc4k1+[2 + 5 jk1+ 5 )d2d3‘1 klele

ky e Psck, ) 3
=24, | |ps| | P4, T 5 p,t 5 App (p3+p4)d3
+ pyApp (App ¢k, (p3+p4)2d4+2p3 ((ke,t2p,d,)p,+p; (ke +p,dy))) d;?
2

p3 PTmal PTotal PTotal
+[[(72 +k, | App + —5 py ok, App + —5— | e, d, tpy|p,d,

3 3
ky e 2y Py e dk . P3Py Prow €459,k
2 pydyt 2 P 2 cz

+
+p3p4p2d2 [App2 (2k101 (p3+p4) d4+c4 (2p301k1+k4}72d2))d32

+ 2 App (k]c] (p3+2p4) (Appc4+1)d4+c4 (p3c]k]+k4p2d2))d3+4p4 (Appc4k]
1 P o €4 Ky P el 4
— . 2.2
+[2+ 5 k, + 5 ¢, d,+k,p,c,d,|d,|dk?c’?e
2 2.2 2
(9 (Pstp,)App +py) d ke L[ Kie (Pstr,)d,
-2 2 LG C T

te, ( (p3 (k1 ¢ +pzd2) +thp, dz)p4+p3 (p3 ¢k, +k,p, dz)) d32

+ App (p4clk] (p3+p4) (Appc4+1)d4+((p3 (k161+p2d2)+2k4p2d2)p4

1 Total c4 k4 PTotal C4
thp,pydy)e)d;+p, [p4 [Appc4k]+ [7+ 2 k,+ 2 ¢, d,
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Appp.p.p,c,c,d d, k, (Appc,+2App d,+ 2
+k[726d]]k262+ 234142312( 4 3 )j

pyp,drk,d c, &
1
T2ppeyd) [7((0[5" (Pt py)App +p ) dy (K, +2p5) Pyt k) App d;
p.c, k
Thapg) Ko er) ospyder [App [kl ¢ (Pstry)d,te, [k4pzdz+ %]] 9

p4clk1 (Appc4+2)d
2

4

2 _ 2,2 243
+k,p,c,d, d})kzd302€ 2psp/Appce/d, (kz[[[k4

P Apppyp,c dsk,
3 R L A S 2
+5 ]p4+k4p3)Appd3+k4p4)cz+ 5 d

—Appzcjdj3 0143 k4p33p43) (k1 e (Czdzkzpz (App d, + 1) €+c,d, (dj (P
+p4) App +p4) k2€+c4d3d4Apppj,p4>2k2 (€d2p2+d4p4) 6201)

simplify (diff (KCon, App))
(kZPTotule( Scydyk k, kz((_p3 )d *tr; 2)k ¢, p4p3((k[+k2) cz

_k1 C4) d4e—p3p4c4d4k4) d3 (€d2p2+d4p4) 2)/<(C2 dzkzpz (App d} + 1) Iz
+k, ((Appd3+ 1)p4+d3Appp3) d4cg€+c4d3d4z4ppp3p4)2k])

3

Observing, the first expression above (from differentiation of the total Erk concentration) we can see that

OErkCon e 0
either o o 3k must be equal to zero. However, —z—— cannot be zero as, if it was indeed
Total Total
0KCon

zero, then since the denominator of o is non-zero, there would be a contradiction with the first
expression (from differentiation of the total Erk concentration).

0ErKCon . . L .
Thus, — 3 must be equal to zero. This expression (a polynomial in App and €) is calculated as
shown below and stored as T.

T = simplify (numer (simplify (diff (ErkCon, epsilon)))) :

Now rewriting App as m/€ allows us to simplify T as a ninth degree polynomial in epsilon (whose
coeffecients are functions of the variable m).

App = epsilon :

However, this rearrangement allows us to isolate and observe the leading coeffecient and constant term
of the polynomial as shown below.

T = simplify (T-€3)
C0 = simplify (coeff (T, epsilon, 0)) =2p3 3a’ p 3d3k
CY = simplify (coeff (T, epsilon, 9)) =
_ 2 3 _ _
pyky md, dj((( d4(p4+k1)PTam/ kl)p2+p4PTmald4k1)k —dkp,p, Toral)pZ ¢

We can notice that the sign of CO is always positive for all choices of kinetic parameters and feasible
values of m, while the sign of C9 is decided purely by P, and the kinetic constants (and not m). We
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can use this insight to conclude that, should C9 be negative in sign, then there exists necessarily a positive
feasible solution of € for every feasible value m, thereby guarenteeing the existence of some feasible
App and € where the expression is 0 (indicating the presence of biphasic behavior in the dose response
of pYpTErk with Kogi.p).

i.e. If C9<0 then there is the guarenteed existence of biphasic dose response with kinase for some total
concentrations. We further isolate this condition from C9 as shown below (stored as the expression
Condition),

Condition = collect( —( ( ( ( —d4 (p4 + k[) PT()taI _k1) r,tp, PTUW d4 k1) kz —d4 k1p2p4 PTUW))
<0,P

> Tnml)
= (= (4, (p, k)Pt d k) kytp,p,d, k) Ptk kP, <0

Now, when Condition is negative, the signs of C9 and CO are negative and positive respectively
indicating the presence presence of atleast one positive feasible solution for epsilon for every choice for a
value of m (and thus App, and the concentration of the other variables).

Thus we have shown how enzyme biphasic response is guarenteed to exist in pYpTErk, for some total
concentration of Erk and Kinase in the system, when the above condition is satisfied.

This is not a necessary condition though, biphasic responses can/might exist when the above condition
is not satisfied. However this condition represents ONE possible sufficiency condition for obtaining
the biphasic dose response in the substrate.

Note: We illustrate the validity of this argument by showing the method predicting the presence of a

biphasic response for the arbitraty value of 1 for m (i.e. App = ?) and some abitrary choice of kinetics

that satisfies Condition.

i 2 4 :

ky=1lik, =1k =1:ip,=1:ip =1:ip =1k, =1k, =1k, =1:p, =1
Py = lipy=1ip, i =1ip,=1ip, =1:

. ky, . ks . b Ps ) J o

! kitk,, 2k thy, A kgt ky, T3 Pyt T Py,
Pyy

p4 +pub4 ’

P 1:

Total =
Condition = —0.2500000000 < 0

€ := evalf (solve (T, useassumptions) assuming € > 0) = 4.551992988
App = 0.6590519818
ErkCon = Erk, ~—2.771482748

KCon =K _ —4.159218072
Total

The computational evidence of the biphasic dose response behavior predicted above is shown in
| figure 4.
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