This table presents a side-by-side comparison of the results obtained from our cross-frequency information transfer analysis using 100 and 250 surrogate datasets. Each row corresponds to a selected 10 -second trial during the conscious state for each patient/animal. The selection criteria for these trials were as follows: we identified a trial in which the initial analysis (using 100 surrogates) showed statistically significant cross-frequency information transfer in both directions, i.e. from both cortex ("cort") to thalamus ("thal") and from thalamus to cortex. In a majority of subjects, this occurred for a large portion of available trials, and so we randomly selected among those a single trial to evaluate with the larger number of surrogates. In instances where no trials showed significant bidirectional communication, we selected the trial which had the lowest combined p -value (sum of the p -value for cortico-thalamic communication and the p -value for thalamo-cortical communication). The table illustrates that our conclusions hold consistent when the number of surrogates was increased to 250 , thereby reinforcing the robustness of our original findings.

	100 Surrogates		250 Surrogates	
	Cort to thal	Thal to cort	Cort to thal	Thal to cort
Human ET Patient 1	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$
Human ET Patient 2	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$
Human ET Patient 3	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$
Human ET Patient 4	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$
Human ET Patient 5	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$
Human ET Patient 6	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$
Human ET Patient 7	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$
Human ET Patient 8	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$
Human ET Patient 9	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$
Human ET Patient 10	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$
Long-Evans Rat 1	$\mathrm{p}=0.01$	$\mathrm{p}=0.04$	$\mathrm{p}=0.016$	$\mathrm{p}=0.02$
Long-Evans Rat 2	$\mathrm{p}=0.03$	$\mathrm{p}=0.04$	$\mathrm{p}=0.028$	$\mathrm{p}=0.036$
Long-Evans Rat 3	$\mathrm{p}=0.01$	$\mathrm{p}=0.02$	$\mathrm{p}=0.036$	$\mathrm{p}=0.004$
Long-Evans Rat 4	$\mathrm{p}=0$	$\mathrm{p}=0.02$	$\mathrm{p}=0$	$\mathrm{p}=0.004$
Long-Evans Rat 5	$\mathrm{p}=0.02$	$\mathrm{p}=0.02$	$\mathrm{p}=0.02$	$\mathrm{p}=0.016$
Long-Evans Rat 6	$\mathrm{p}=0.03$	$\mathrm{p}=0.02$	$\mathrm{p}=0.012$	$\mathrm{p}=0.024$
Long-Evans Rat 7	$\mathrm{p}=0.14$	$\mathrm{p}=0.03$	$\mathrm{p}=0.136$	$\mathrm{p}=0.004$
Long-Evans Rat 8	$\mathrm{p}=0.01$	$\mathrm{p}=0.024$	$\mathrm{p}=0.04$	$\mathrm{p}=0.04$
Long-Evans Rat 9	$\mathrm{p}=0.07$	$\mathrm{p}=0.16$	$\mathrm{p}=0.04$	$\mathrm{p}=0.14$
GAERS Rat 1	$\mathrm{p}=0$	$\mathrm{p}=0.02$	$\mathrm{p}=0.004$	$\mathrm{p}=0.004$
GAERS Rat 2	$\mathrm{p}=0.03$	$\mathrm{p}=0$	$\mathrm{p}=0.052$	$\mathrm{p}=0.008$
GAERS Rat 3	$\mathrm{p}=0.01$	$\mathrm{p}=0$	$\mathrm{p}=0.004$	$\mathrm{p}=0$
GAERS Rat 4	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0.01$
GAERS Rat 5	$\mathrm{p}=0.01$	$\mathrm{p}=0.03$	$\mathrm{p}=0.012$	$\mathrm{p}=0.028$
GAERS Rat 6	$\mathrm{p}=0$	$\mathrm{p}=0.03$	$\mathrm{p}=0.008$	$\mathrm{p}=0.044$
GAERS Rat 7	$\mathrm{p}=0$	$\mathrm{p}=0.01$	$\mathrm{p}=0.008$	$\mathrm{p}=0.028$
C58/BL6 Mouse 1	$\mathrm{p}=0.03$	$\mathrm{p}=0.01$	$\mathrm{p}=0.008$	$\mathrm{p}=0.012$
C58/BL6 Mouse 2	$\mathrm{p}=0.02$	$\mathrm{p}=0$	$\mathrm{p}=0.008$	$\mathrm{p}=0$
C58/BL6 Mouse 3	$\mathrm{p}=0$	$\mathrm{p}=0.03$	$\mathrm{p}=0.004$	$\mathrm{p}=0.008$
C58/BL6 Mouse 4	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0.012$	$\mathrm{p}=0.004$
C58/BL6 Mouse 5	$\mathrm{p}=0.02$	$\mathrm{p}=0$	$\mathrm{p}=0.036$	$\mathrm{p}=0.02$

