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Abstract Understanding how the brain encodes behaviour is the ultimate goal of neurosci-
ence and the ability to objectively and reproducibly describe and quantify behaviour is a necessary 
milestone on this path. Recent technological progresses in machine learning and computational 
power have boosted the development and adoption of systems leveraging on high- resolution video 
recording to track an animal pose and describe behaviour in all four dimensions. However, the high 
temporal and spatial resolution that these systems offer must come as a compromise with their 
throughput and accessibility. Here, we describe coccinella, an open- source reductionist framework 
combining high- throughput analysis of behaviour using real- time tracking on a distributed mesh of 
microcomputers (ethoscopes) with resource- lean statistical learning (HCTSA/Catch22). Coccinella is 
a reductionist system, yet outperforms state- of- the- art alternatives when exploring the pharmacobe-
haviour in Drosophila melanogaster.

eLife assessment
This study presents an important open- source resource for high- throughput behavioral screening. 
The protocols employ inexpensive, off the shelf hardware, and allow real- time analysis of hundreds 
of behaving flies. Although these protocols were developed using Drosophila melanogaster, they 
could easily be applied to other models. The evidence in support of the conclusions is solid and the 
revisions carried out by the authors go a long way towards providing the user with an integrated 
system that is also more user- friendly.

Introduction
The nervous system integrates stimuli, internal states, expectations, and previous experience to 
regulate behavioural output. Describing, quantifying, and modulating behaviour are critical aspects 
of modern neuroscience and, ever since its inception, the field has spent considerable effort into 
building and sharing paradigms or tools aimed at objectively and reproducibly quantify behaviours 
in the most disparate animal models, to the point that this exercise is now recognised as an exciting 
subfield of neuroscience in its own right: ethomics (Brown and de Bivort, 2018; Datta et al., 2019). 
As the portmanteau name itself suggests, ethomics is not just about describing behaviour (etho-) 
but also about doing so in a high- throughput fashion (- omics), collecting data simultaneously from 
a large number of individuals, which can remain undisturbed throughout recording. Irrespective of 
the behaviour or the animal model to be analysed, the first compromise a researcher will face when 
choosing a tool for behavioural quantification will always be between throughput and resolution: a 
high- throughput analysis will allow for powerful experimental manipulations – such as genetics or 
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pharmacological screens – offering unbiased approaches in identifying neuronal circuits, genes, mole-
cules underpinning behaviour; high- resolution analysis, on the other hand, promises to identify and 
discriminate even minuscule differences that may not be immediately visible to the human eye, and 
to label behaviours into identifiable classes (e.g. ‘grooming’, ‘courting’, and ‘shaking’) that may be 
more relevant to researchers interested in modelling disease or in anthropomorphic descriptions. 
In the past years, the field has generally converged towards the adoption of high- resolution video 
recording of activity, in some cases adopting cameras that have milliseconds temporal resolution or 
developing setups that provide depth information for three- dimensional reconstruction of motion or 
posture (Wiltschko et al., 2015; Hsu and Yttri, 2021; Nath et al., 2019; Pereira et al., 2019; Gosz-
tolai et al., 2021). Given the recent evolution in machine learning and progresses in computational 
power, even these high- resolution analyses can be at least in part compatible with high- throughput 
approaches (Wiltschko et al., 2020), especially when employed on small invertebrate animal models 
(McDermott- Rouse et al., 2021; Ayroles et al., 2015; Branson et al., 2009; Kabra et al., 2013) or 
when aided by robotic handling (Alisch et al., 2018). These systems, however, can still be prohibi-
tively expensive for most laboratories, and not easily compatible with throughput in the ‘omics scale. 
Moreover, besides the technical urge of removing entry barrier and make ethomics an accessible tool, 
an equally important underlying question concerns what is the minimal amount of information that 
needs to be extracted to identify and classify behaviour. Do we always necessarily gain information 
from extracting micro- postural features or by analysing activity in three dimensions? To what extent 
this may actually add counterproductive biological noise to some assays?

Here, we introduce coccinella: a new experimental framework that combines high- throughput, 
inexpensive, real- time ethomics (Geissmann et  al., 2017) with state- of- the- art statistical analysis 
(Fulcher and Jones, 2017; Lubba et al., 2019) to characterise and discriminate complex behaviours 
using a reductionist approach based solely on one simple feature (https://lab.gilest.ro/coccinella). 
Coccinella builds on ethoscopes (Geissmann et al., 2017), an accessible open- source platform, to 
extract, in real- time, activity information from flies. Despite its minimalist nature, coccinella outper-
forms state- of- the- art alternatives in recognising the pharmacobehavioural space, providing better 
discernibility at a fraction of the cost, thus opening a new path to high- throughput ethomics.

Results
Drosophila ethomics studies generally rely on image acquisition through so- called industrial cameras, 
able to collect videos with high temporal and spatial resolution and featuring mounts for a large selec-
tion of lenses. Some of the cameras commonly used for these purposes (e.g. FLIR, Point Grey, Basler) 
(Mathis et  al., 2018) are expensive and normally employed in close- up imaging that microscopi-
cally highlights the smallest anatomical features of the animal but at the same time greatly limits the 
number of experimental subjects that can be recorded by a single device. Normally, one or few more 
camera would be connected to a dedicated powerful computer for acquisition and storage of videos. 
The cost and physical footprint of these setups makes them incompatible, at least for most laborato-
ries, with high- throughput simultaneous acquisition. To lower this barrier, we created a framework that 
employs the distributing computing power of ethoscopes (Geissmann et al., 2017), thus allowing for 
inexpensive analysis of activity in hundreds or thousands of flies at once. Ethoscopes are open source 
and can be manufactured by a skilled end- user at a cost of about £75 per machine, mostly building 
on two off- the- shelf component: a Raspberry Pi microcomputer and a Raspberry Pi NoIR camera 
overlooking a bespoke 3D- printed arena hosting freely moving flies. The temporal and spatial resolu-
tion of the collected images depends on the working modality the user chooses. When operating in 
offline mode, ethoscopes are capable to acquire 720p videos at 60 fps, which is a convenient option 
with fast moving animals. In this study, we instead opted for the default ethoscope working settings, 
providing online tracking and real- time parametric extraction, meaning that images are analysed by 
each Raspberry Pi at the very moment they are acquired (Figure 1b). This latter modality limits the 
temporal resolution of information being processed (one frame every 444 ± 127 ms, equivalent to 2.2 
fps on a Raspberry Pi3 at a resolution of 1280 × 960 pixels with each animal being constricted in an 
ellipse measuring 25.8 ± 1.4 × 9.85 ± 1.4 pixels – Figure 1a) but provides the most affordable and 
high- throughput solution, dispensing the researcher from organising video storage or asynchronous 
video processing for tracking the animals. In the work here described, flies moved freely in a circular 
two- dimensional space with a diameter of 11.5 mm designed to maintain the animal in the walking 
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Figure 1. Coccinella successfully classifies pharmacobehaviours. (a) Bespoke 3D- printed arena can house 24 individual flies in a two- dimensional circular 
space. Each arena measures 11.5 mm in diameter and allows for back illumination either by visible or infrared light sources embedded in the ethoscope 
base. The red ellipse shows the data being extracted by the ethoscope in real time. w, h: width and height of the ellipse inscribing the animal. φ: 
the angle of the ellipse in reference to the region of interest. max. vel.: maximal velocity over the last 10 s. (b) Flowchart describing the analytical 

Figure 1 continued on next page
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position (Simon and Dickinson, 2010) while venturing on solidified agar providing nutrients alone 
or nutrients and drugs. In previous analysis of activity and sleep (Geissmann et  al., 2017; Geiss-
mann, 2018), we found that the maximal velocity of the fly over a period of 10 s best described the 
basic motion features of the animal, allowing us to accurately differentiate between different activity 
patterns, such as walking, grooming, and feeding (Geissmann et al., 2017). We therefore adopted 
this measure for coccinella too, ultimately producing monodimensional time series of a behavioural 
correlate, which were then digested using highly comparative time- series analysis (HCTSA) (Fulcher 
and Jones, 2017), a computational framework that effortlessly subjects time series to more than 7700 
literature- relevant statistical tests, looking for meaningful discriminative features. Features success-
fully extracted through HCTSA were then used to classify behaviour using a linear support vector 
machine (SVMlinear) (Chatterjee et  al., 2022; Figure  1b) and here presented and compared using 
confusion matrices (Figure 1—figure supplement 1a). To test the ability of this system to discriminate 
behaviour, we started by exploring the pharmacobehavioural space of flies fed with a panel of known 
or putative neurotropic chemicals, comprising molecules previously described in the literature along 
with uncharacterised ones being considered as potential insecticides (Figure 1c, d and Supplemen-
tary file 1). Using an initial panel of 17 treatments (16 drugs and 1 solvent control) we were able to 
discern compounds with an accuracy of 71.4% (vs. 5.8% of a random classifier – Figure 1c). Some 
compounds induced behaviours with a particularly high predictive fingerprint: dieldrin, for instance, 
was predicted with an accuracy of 94% and flonicamid with an accuracy of 87%. For others, our system 
fared more poorly (e.g. tetramethrin showed 41% accuracy). In all cases, however, the relative confu-
sion was negligible, with all compounds being correctly identified as the first choice and with the first 
predicted compounds having, on average, a score that was 15 times greater compared to the second- 
best choices (Figure 1c – min.: 3.3×; max.: 65×). To validate our framework and exclude artefacts 
operated by overfitting biologically irrelevant information we followed two lines of control. Firstly, we 
fed flies with lower concentrations of the same compounds (Figure 1c). Feeding flies with different 
concentrations of drugs unsurprisingly showed a different effect on short- term lethality (Figure 1—
figure supplement 1b), with several compounds hitting a 25% lethality rate before the end of the 
experiment when fed at the highest concentration (1000 ppm – Figure 1—figure supplement 1b). 
Lowering the compound concentration, the predictive accuracy of the system decreased from 71.4% 
(1000 ppm) to 61.8% (100 ppm), falling to 36.1% with the lowest concentrations (1 ppm), indicating 
that the system does operate on pharmacologically induced, biologically meaningful behavioural 
correlates (Figure 1c). A similar drop in accuracy was observed using a smaller panel of 12 treatments 
(Figure 1—figure supplement 1c). As a second line of work to test specificity, we obtained genetic 
mutants known to be resistant to specific pharmacological treatments: the paraL1029F allele encodes for 
a version of the α-subunit of voltage- gated sodium channel conferring resistance to dichlorodiphenyl-
trichloroethane (DDT) and pyrethroids (Kaduskar et al., 2022); the RdlA301S allele encodes for a version 
of the ligand- gated chloride channel conferring resistance to dieldrin and fiproles (Remnant et al., 
2014). Challenging these mutants with their respective compounds created confusion in the clus-
tering algorithm for which discerning between drug treatment and solvent control became a harder 
task, especially in the case of DDT and paraL1029F (Figure 1—figure supplement 2a). The observed 
drop in accuracy suggests again that coccinella is working on biologically relevant behavioural signa-
tures and the fact that some discrimination can still be observed with targets harbouring point muta-
tions – which should severely affect compound efficacy – is indicative of high sensitivity.

Having established the accuracy and sensitivity of the system, we next wanted to test its usefulness 
in a genuine high- throughput scenario. We subjected a total of 2192 flies to a panel of 40 treatments 
(Figure 1d), mostly featuring known compounds but also two unexplored molecules (Supplementary 

pipeline and the tools that compose coccinella. (c) Confusion matrices for treatments with 16 compounds and a solvent control, with drugs used at 
concentrations of 1000 ppm (left), 100 ppm (centre), and 1 ppm (right). The target icon indicates calculated accuracy while the rolling die indicate the 
accuracy of a random classifier. (d) Confusion matrix for the largest panel of 40 treatments at 100 ppm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Successful classification of a smaller group of 11 compounds.

Figure supplement 2. Effect of drug resistance conferring mutations on Coccinella's performance.

Figure 1 continued
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file 1). Given that the 100 ppm intermediate concentrations showed the best compromise between 
accuracy and lethality in the previous pilot experiment (Figure  1—figure supplement 1b), we 
performed this larger screen using compounds diluted at 100 ppm only. Even with such a large panel, 
the system was able to first- guess 39 out of 40 of the tested treatments (the only exception being the 
Syngenta Compound #5) with an overall accuracy of 44.5% vs. 2.5% of the random classifier.

A reductionist approach served us well so far, identifying with remarkable accuracy even subtle 
changes when we explored the pharmacobehavioural space of a large number of neuroactive 
compounds in wild- type and mutant flies. But how does it compare to other more established para-
digms? Coccinella is arguably to be preferred in terms of accessibility and throughput, but what is the 
amount of useful information that we are sacrificing by adopting a reductionist approach? To quantify 
any possible loss in information content, we ran a series of parallel experiments in which flies were fed 
with a selected panel of 12 treatments (11 drugs and a solvent control, Figure 2) and their behaviour 
analysed either using coccinella or using other widely adopted state- of- the- art methods, which started 
with high- resolution imaging and employed supervised machine learning for pose- estimation Deep-
LabCut; Mathis et al., 2018 followed by unsupervised identification of behavioural grammar (B- SOiD; 
Hsu and Yttri, 2021). To widen the range of comparisons, data were then either immediately clustered 
using different common clustering algorithms (K- nearest neighbours, random forest) or first processed 
through a smaller, selected subsample of the HCTSA array (Catch22; Lubba et  al., 2019) before 
being clustered using SVMlinear (Figure 2a). In this challenge, coccinella unambiguously identified 10 
out of 12 compounds, with poor performance only for two of them (flubendiamide and tetramethrin) 
and an overall accuracy of 42.4% vs. 8.3% of the random classifier (Figure 2b). Surprisingly, none of 
the state- of- the- art high- resolution paths did better than this. The combination of pose- estimation 
→ grammar extraction → random forest classification scored as the second best, with an accuracy of 
25.4% but with only three compounds being unambiguously identified (Figure 2c). The same experi-
mental dataset clustered with even poorer performance when using K- nearest neighbours (Figure 2e) 
and even the application of HCTSA features extraction to the B- SoID output still could not match the 
accuracy observed with coccinella’s reductionist approach (Figure 2d). This analysis is not meant to be 
conclusive. We expect that some alternative combination of state- of- the- art approaches will probably 
manage to match or likely improve over coccinella’s performance, yet the fact we could obtain such an 
impressive result with a system that is arguably unmatched in terms of throughput and economic cost 
is, alone, an argument that gives new weight to this (and future) reductionist approaches.

Finally, to push the system to its limit, we asked coccinella to find qualitative differences not in 
pharmacologically induced changes in activity, but in a type of spontaneous behaviour mostly char-
acterised by lack of movement: sleep. In particular, we wondered whether coccinella could provide 
biological insights comparing conditions of sleep rebound observed after different regimes of sleep 
deprivation. Drosophila melanogaster is known to show a strong, conserved homeostatic regulation 
of sleep that forces flies to recover at least in part lost sleep, for instance after a night of forceful sleep 
deprivation (Shaw et al., 2000; Hendricks et al., 2000). We previously showed that the extent of 
sleep rebound observed after sleep deprivation only loosely correlates with the amount of lost sleep 
(Geissmann et al., 2019a) and it remains an open question whether similar amounts of sleep rebound 
may in fact differ from each other in some inscrutable feature that would underpin a different ‘sleep 
depth’ (Wiggin et al., 2020; French et al., 2021), similar to what it is believed to happen in mammals. 
Here, we analysed a dataset of 727 flies that experienced different regimes of mechanically enforced 
sleep deprivation during the 12 hr of the night (Figure 3). Flies were housed in tubes that would rotate 
after a set time of inactivity ranging from 20 to 1000 s leading to different degrees of sleep restriction 
(Figure 3a, dataset from Geissmann et al., 2019a). In this experimental paradigm, all treatments led 
to a statistically significant rebound compared to the undisturbed control animals (Figure 3b). We 
then ran coccinella on the two subsets of the panel: the baseline data, acquired the morning before 
the sleep deprivation (Figure 3c), and the rebound data, on the morning after (Figure 3d). Unsurpris-
ingly, we could not detect any internal biological difference in the pre sleep deprivation control set, 
featuring flies of identical genotype and age housed in different tubes before the sleep deprivation 
treatment. In these conditions, coccinella could not discern, and performed exactly as a random clas-
sifier would (9% vs. 9% – Figure 3c). However, analysis of those same animals during rebound after 
sleep deprivation showed a clear clustering, segregating the samples in two subsets with separation 
around the 300 s inactivity trigger (Figure 3d). This result is important for two reasons: on one hand, 

https://doi.org/10.7554/eLife.86695
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Figure 2. Comparison between coccinella and the state- of- the- art. (a) Experimental pipeline illustrating the 
four experimental analyses. (b) Confusion matrix for 12 treatments (11 drugs at 1000 ppm and 1 solvent control) 
analysed using coccinella. (c) Same experimental treatments as in b, analysed using the DeepLabCut → B- SoID 
→ random forest pipeline starting from high- resolution images. The random forest classifier was trained on a 4:1 

Figure 2 continued on next page
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it provides, for the third time, strong evidence that the system is not simply overfitting data of nought 
biological significance, given that it could not perform any better than a random classifier on the base-
line control. On the other hand, coccinella could find biologically relevant differences on rebound data 
after different regimes of sleep deprivation. Interestingly enough, the 300 s threshold that coccinella 

training:testing ratio. (d) Same as c but with Catch22 identification and support vector machine (SVM) clustering 
after B- SoID grammar dissection. This is a hybrid treatment combining highly comparative time- series analysis 
(HCTSA) feature extraction to the high- resolution pipeline. (e) Same as c but using K- nearest neighbours (KNN) as 
cluster algorithm. KNN required a much higher training:testing ratio of 9:1, dramatically reducing the size of the 
testing dataset. The accuracy of a random classifier for all matrices on this figure would be 8.3% (not shown on 
figures for lack of space).

Figure 2 continued

Figure 3. Coccinella finds differences in type of sleep rebound after sleep deprivation. (a) Sleep profile of flies over 
the period of 3 days. A 12- hr sleep deprivation regime starts at the beginning of the dark phase of day 0 (purple 
bar). The 3- hr windows labelled with green boxes were analysed by coccinella in search of meaningful differences. 
The letters above refer to the panels using data in those time windows. (b) Extent of rebound as observed 
following sleep deprivation as performed in a. Panels a and b reproduce data from Geissmann et al., 2019a. 
(c) Confusion matrix showing the classification using coccinella of the baseline time series. No accuracy gain 
compared to the random classifier. (d) Confusion matrix of the rebound data. The classification finds two clusters, 
separated by the 300 s threshold (thick black lines).

https://doi.org/10.7554/eLife.86695
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independently identified has a deep intrinsic significance for the field, for it is considered to be the 
threshold beyond which flies lose arousal response to external stimuli, defining a ‘sleep quantum’ (i.e. 
the minimum amount of time required for transforming inactivity bouts into sleep bouts; Shaw et al., 
2000; Hendricks et al., 2000; Joyce et al., 2023). Coccinella’s analysis ran agnostic of the arbitrary 
5 min threshold and yet identified the same value as the one able to segregate the two clusters, thus 
providing an independent confirmation of the 5- min rule in D. melanogaster.

Discussion
System neuroscience is living a period of renaissance, and Drosophila is driving this revolution strong 
of the first full- brain connectome, a plethora of new genetic reagents that allow thermo- and opto- 
genetic manipulations, a galore of genetic transformants for circuit tracking and manipulation, and 
multiple tools for large- scale quantification of behaviour. Progresses in machine learning and computer 
power have had a massive impact on the field of ethomics, especially in achieving levels of anatom-
ical tracking that allow mapping of the tiniest movements on an experimental animal model with the 
highest temporal resolution and with little human supervision (Pereira et al., 2019; Mathis et al., 
2018). Most of these systems, however, rely on relatively expensive setups and do not scale easily to 
high- throughput experimental paradigms. They are ideal – and irreplaceable – to identify behavioural 
patterns and study fine motor control but may be undue for other uses. Here, we introduce a new 
framework, coccinella, that merges an open- source, economically accessible hardware platform (etho-
scopes; Geissmann et al., 2017; Geissmann et al., 2019b) with a powerful toolbox for statistical 
analysis and clustering (HCTSA, Fulcher and Jones, 2017/Catch22, Lubba et al., 2019). Coccinella is 
a reductionist tool, not meant to replace the behavioural categorisation that other tools can offer but 
to complement it. It relies on Raspberry PIs as main acquisition devices, with associated advantages 
and limitations. Ethoscopes are inexpensive and versatile but are limited in terms of computing power 
and acquisition rates. Their online acquisition speed is fast enough to successfully capture the motor 
activity of different species of Drosophilae (Joyce et al., 2023), but may not be sufficient for other 
animals moving more swiftly, such as zebrafish larvae. Moreover, coccinella cannot – and is not meant 
to – apply labels to behaviour (‘courting’, ‘lounging’, ‘sipping’, ‘jumping’, etc.) but it can successfully 
identify large behavioural phenotypes and generate unbiased hypothesis on how behaviour, and a 
nervous system at large, can be influenced by chemicals, genetics, artificial manipulations in general. 
Here, we provided evidence that coccinella can be used to successfully explore and compartmentalise 
the pharmacobehavioural space and also showed that a reductionist approach can be employed to 
discern otherwise invisible shades of a very subtle naturally occurring behaviour: sleep. The success of 
Drosophila as experimental model was built on the many genetic screens of the 1900s. We propose 
coccinella as an accessible, pivotal tool to boost again this important line of work in any laboratory, 
without funding or access to technology being a discriminative factor.

Methods
Drosophila rearing
Fly lines were maintained on a 12- hr light:12- hr dark (LD) cycle and raised on polenta and yeast- based 
fly media (agar 96 g, polenta 240 g, fructose 960 g, and Brewer’s yeast 1200 g in 12  l of water). 
Canton- Special (CS) D. melanogaster were used as the wild- type line for all experiments.

Drug-resistant mutants
RdlA301S is derived from RdlMDRR (RRID:BDSC_1675), an Rdl allele isolated from a natural population 
in Maryland (Ffrench- Constant et al., 1990), and underwent isogenisation and selection on dieldrin 
to eliminate the metabolic resistance and maintain the dieldrin target site resistance (Blythe et al., 
2022). The RdlMDRR was obtained from the Bloomington Drosophila Stock Center. For para: the L1029F 
mutation, located in the voltage- gated sodium channel paralytic, has been extensively reported to 
confer resistance to DDT and pyrethroids in many other insect species (called kdr, knockdown resis-
tance, reviewed in Arena et al., 1992). In the Drosophila gene, kdr maps to L1029F and is equivalent 
to the often cited L1014F in other insects (e.g. Musca domestica; Dong, 2007). The kdr L1029F 
mutation in Drosophila Para was introduced via CRISPR/Cas9- mediated genome editing (see below). 

https://doi.org/10.7554/eLife.86695
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This genome edited generated mutation resulted in a similar resistance to DDT as previously reported 
(Samantsidis et al., 2020).

Generation of ParaL1029F via CRISPR-CAS9-based genome editing
CRISPR/Cas9- mediated genome editing was used to introduce a point mutation L1029F in para- PBG 
isoform, CTT to TTT, L to F by homology- dependent repair using one guide RNA and a dsDNA 
plasmid donor. The strategy design, molecular biology, and screening were completed by Well 
Genetics Inc, Taiwan (R.O.C.). The cassette PBacDsRed contains Piggy Bac 3′ terminal repeats, the 
selection marker 3xP3- DsRed, and Piggy Bac 5′ terminal repeats. The selection marker 3xP3- DsRed 
contains Piggy Bac 3′ terminal repeats, 3x Pax3 and hsp70 promoter, DsRed2, SV40 3′UTR, and Piggy 
Bac 5′ terminal repeats. The dsRed marker facilitates the genetic screening and was excised by Piggy 
Bac transposase. Only one TTAA motif was left after transposition embedded in mutated intron 
sequence, and create a mutation G to A on X:16,486,649; X:16,486,649–X:16,486,646, CTAA to T TAA 
in intron. The CRISPR Target Site [PAM]:  CACA  AGAT  TGCC  GATG  ACAA [CGG]. Guide RNA Primers: 
Sense oligo5′-  CTTC  GCAC  AAGA  TTGC  CGAT  GACA A and Antisense oligo5′-  AAAC  TTGT  CATC  GGCA  
ATCT  TGTG C. Upstream Homology Arm: 1027 bp, the +34,097 nt to +35,123 nt from ATG of para. 
Forward Oligo5′-  GTTC  ACCA  AACT  CGGA  ATCG ; Reverse Oligo5′-  GTGG  CCAA  GAAG  AAGG  GAAT 
. Downstream Homology Arm: 1022 bp, the +35,128 nt to +36,149 nt from ATG of para Forward 
Oligo: 5′-  CCAT  GGCT  TTAA  GCAT  CGCA ; Reverse Oligo: 5′-  TTAT  GACG  GATA  CGGT  TACG G. Synthesis 
fragment: 5′-  GGTT  GTCA  TCGG  CAAT  TTTG  TGgt gagt actc ttat cgaa ctgc tgac ttgt aaac gatg ttta ctgg ctat 
aatg ctga ctta tcgc ct.

The Drosophila injection strain was white1118. 206 embryos were injected. 36 G0 crosses were 
established. Of the 78 positive lines crosses, in the F1 screen 25 positive lines were identified. Seven 
lines were positively validated by PCR and 1 line was sequenced confirming no unexpected changes 
in para. Lines were isogenised and balanced. DsRed was excised using PiggyBac (PBac) Transposase 
Bloomington Stock RRID:BDSC_8285. Excision was validated by genomic PCR and sequencing. 
Resulting lines were hemizygous viable. The line used in study had internal identifier: 20256ex1.

Choice, handling, and preparation of drugs
The initial preliminary analysis was conducted using a group of 12 compounds ‘proof of principle’ 
compounds and a solvent control. These compounds were initially used to compare both the video 
method and ethoscope method. After testing these initial compounds, it was found that the etho-
scope methodology was more successful, and then the compound list was expanded to 17 (including 
the control) only using the ethoscope method. As a final test, we included additional compounds for 
a single concentration, bringing up the total to 40 (including control), also for the ethoscope method. 
All insecticide compounds were supplied by Syngenta Ltd from their in- house stock (see Supplemen-
tary file 1 for a full list of compounds used). Compounds were received in solid form and diluted in 
solvent containing 5% ethanol (VWR, 20821), 5% acetone (Sigma, 179124), and 10% dimethylsulfoxide 
(D2650, Sigma) in distilled water to 1000 ppm initially, then further diluted in the solvent mixture to 
100 and 1 ppm (where 1 ml/l = 1000 ppm). For insecticide assays, 0.5 ml of 5% sucrose (Sigma, S0389), 
1% agarose (Sigma, A6236) solution was pipetted into each well and allowed to set. Following this, 
2 µl of compound solution were placed on the surface and allowed to dry for 30 min or more. Male 
flies were then placed on the surface with a small glass cover slip placed on top (13 mm circular cover 
slip, VWR631- 0150). Flies were briefly anaesthetised (>1 min) before being placed onto the surface of 
the plate. Once each well had been filled with a single male fly, arenas were placed into the ethoscope 
and recorded for a minimum of 2 days. All experiments were started between ZT0 and ZT1 and within 
30 min of the flies being placed in the wells. For each compound in Figure 1c and Figure 1—figure 
supplement 1c, three repeats were done at different time points. For Figure 1d, two repeats to three 
biological repeats per compound.

Data acquisition and processing
Ethoscope data were first processed in R using rethomics (Geissmann et al., 2019b). Each time series 
was exported (.csv) and converted using Python to individual time series in a file format (.dat) compat-
ible with MatLab. A metadata (.txt) file served as a reference file of each individual time series with 
keywords outlining compound groups and concentrations for processing data using HCTSA.

https://doi.org/10.7554/eLife.86695
https://identifiers.org/RRID/RRID:BDSC_8285
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HCTSA/Catch22
Following this process, HCTSA feature extraction was performed on the time- series data (for 
Figure 1c, d and Figure 3c, d, Figure 1—figure supplements 1 and 2a). After the features were 
extracted, outputs of error- producing operations were removed through a normalisation process 
using a sigmoidal transformation. HCTSA inbuilt functions were then used to classify data using a 
linear SVM classifier and a confusion matrix comparing the time series was generated. For some of 
the time- series data (that in Figure 2b, d, Figure 1—figure supplement 2b), a smaller feature set of 
HCTSA, Catch- 22 was used for feature extraction. Due to the smaller number of features used with 
this method, normalisation was not required before using a linear SVM classifier to generate a confu-
sion matrix comparing the results. A time series of 12 hr was used for the HCTSA analysis in Figure 1 
and Figure 1—figure supplements 1 and 2. A length of 3 hr was used for the HCTSA analysis in 
Figure 3. All video data in Figure 2 are from time series of 15 min. By always running the full set of 
features on aggregate to train a classifier (e.g. TS_Classify in HCTSA), no post hoc correction is neces-
sary because the trained classifier only ever makes a single prediction (only one test is performed).

Video generation for flies on insecticides
Custom 3D- printed squares were designed using the online CAD software Onshape and printed using 
Ultimaker 2+ 3D printers using PLA plastic. For insecticide assays, 0.5 ml of 5% sucrose (Sigma, S0389), 
1% agarose (Sigma, A6236) solution was pipetted into each well and allowed to set. Following this, 
2 µl of compound solution were placed on the surface and allowed to dry for 30 min or more before 
male flies were placed on the surface with a small glass cover slip placed on top (13 mm circular cover 
slip, VWR631- 0150). Flies were briefly anaesthetised (>1 min) before being placed onto the surface 
of the square. Once each well had been filled with a single male fly, squares were placed in the arena 
and a video was recorded for a minimum of 12 hr using an ELP 8 megapixel camera with an IMX179 
Sensor and 2.8–12 mm variable focus manual lens. All video recordings were started between ZT0 and 
ZT1. Recordings of flies exposed to compounds were done in a randomised manner. Video data were 
then broken down into shorter segments of 15 min videos for processing. The first 15 min following 
1 hr of fly exposure to compound or control was used for pose- extraction.

DeepLabCut/B-SoID
The use of DeepLabCut (version 2.1) followed the detailed protocol outlined by Nath et al., 2019. 
Briefly, frames for labelling were extracted from 3 representative videos using a K- means algorithm 
and frames were labelled with 22 unique body parts (head, left eye, right eye, thorax top, thorax 
bottom, abdomen top, abdomen middle, abdomen bottom, left wing tip, right wing tip, left foreleg 
tip, left foreleg middle, right foreleg tip, right foreleg middle, left middle leg tip, left middle leg 
middle, right middle leg tip, right middle leg middle, left back leg tip, left back leg middle, right back 
leg tip, and right back leg middle). These frames were labelled locally with a DeepLabCut graphical 
user interface before the project file was uploaded to Google Drive for training and video analysis to 
be done using Google Colab. The data were split into a 9:1 test:train dataset and training was run 
for more than 150,000 iterations before the average Euclidean error was computed between labels 
and predictions. The model at the best performing checkpoint was used to predict pose in novel 
videos. Following this, B- SoID was used to de- structure behaviour using the output of DeepLabCut 
and generate fly- specific time series of behavioural grammar as in Hsu and Yttri, 2021.

Sleep deprivation
Maximal velocity time- series data generated from recording flies exposed to either control condi-
tions (no SD) or incrementally increasing immobility- triggered SD conditions were taken from the 
dataset generated by Geissmann et al., 2019a and analysed as above. Only data for female flies 
were included in this study, limiting to a sample of 60 individuals per experimental group. Wherever 
experimental groups consisted of more than 60 individuals, 60 individual flies were randomly chosen.

Survival
Flies were fed with the specified compounds at the desired concentrations and concomitantly anal-
ysed in ethoscopes for 24 hr. Time of death was calculated as the last moment of detected motion.

https://doi.org/10.7554/eLife.86695
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Zenodo, 10.5281/
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