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Abstract Prostaglandin E2 (PGE2) is a key player in a plethora of physiological and pathological 
events. Nevertheless, little is known about the dynamics of PGE2 secretion from a single cell and its 
effect on the neighboring cells. Here, by observing confluent Madin–Darby canine kidney (MDCK) 
epithelial cells expressing fluorescent biosensors, we demonstrate that calcium transients in a single 
cell cause PGE2- mediated radial spread of PKA activation (RSPA) in neighboring cells. By in vivo 
imaging, RSPA was also observed in the basal layer of the mouse epidermis. Experiments with an 
optogenetic tool revealed a switch- like PGE2 discharge in response to the increasing cytoplasmic 
Ca2+ concentrations. The cell density of MDCK cells correlated with the frequencies of calcium 
transients and the following RSPA. The extracellular signal- regulated kinase (ERK) activation also 
enhanced the frequency of RSPA in MDCK and in vivo. Thus, the PGE2 discharge is regulated tempo-
rally by calcium transients and ERK activity.

eLife assessment
This important study reports on the dynamics of PKA investigated at the single- cell level in vitro and 
in epithelia in vivo. Using different fluorescent biosensors and optogenetic actuators, the authors 
dissect the signaling pathway responsible for PKA waves, finding that PKA activation is a conse-
quence of PGE2 release, which in turn is triggered by calcium pulses, requiring high ERK activity. The 
evidence supporting the claims is solid. At this stage, the work is still partly descriptive in nature, 
and additional measurements would increase the strength of mechanistic insights and physiological 
relevance.

Introduction
Prostaglandin E2 (PGE2) is an eicosanoid lipid mediator that regulates a plethora of homeostatic func-
tions, including vascular permeability, immune response, and mucosal integrity (Narumiya, 2007). 
The metabolic pathway of PGE2 production, which is a major branch of the arachidonic acid cascade, 
was extensively studied in the mid to late 20th century. This cascade starts from the activation of cyto-
solic phospholipase A2 (cPLA2) (Park et al., 2006). Increased intracellular calcium induces the translo-
cation and activation of cPLA2 from the cytosol to the Golgi, endoplasmic reticulum, and perinuclear 
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membrane, where cPLA2 cleaves arachidonic acid out of the membrane phospholipids (Clark et al., 
1995; Hirabayashi et al., 1999; Evans et al., 2001). The arachidonic acid is then presented to cyclo-
oxygenases, COX1 and COX2, to yield PGH2, which is further converted to PGE2 by prostaglandin E 
synthases (Smith and Langenbach, 2001). PGE2 synthesized de novo is secreted to the extracellular 
space either by passive diffusion or by active transport by multidrug resistance protein 4 (MRP4) (Reid 
et al., 2003). The secreted PGE2 exerts its actions by acting on four G protein- coupled receptors 
(GPCRs), EP1 to EP4, expressed in neighboring cells (Narumiya, 2007; Regan, 2003).

Although it is largely believed that the PGE2 action is primarily regulated by the expression and 
activation of COX (Kalinski, 2012), cPLA2 appears to play a more important role in the short- term 
regulation of PGE2 production and secretion (Leslie, 2015). It was shown that the secretion of arachi-
donic acid is induced within a few minutes after the calcium- dependent translocation of cPLA2 to 
endo- membranes (Hirabayashi et al., 1999; Evans et al., 2001). Moreover, ERK and p38 MAP kinases 
also contribute to the activation of cPLA2 (Lin et al., 1993), which may be calcium- independent (Gijón 
et al., 2000). Importantly, these earlier biochemical studies did not elucidate the dynamics of the 
production and secretion of PGE2 at the single- cell level, leaving many questions unanswered. For 
example, do all cells contribute to the production of PGE2? Does each cell keep secreting PGE2 upon 
stimulation?

Genetically encoded biosensors based on the principle of Förster resonance energy transfer 
(FRET) allow us to visualize the dynamics of intracellular signaling molecules at the single- cell reso-
lution (Miyawaki and Niino, 2015; Greenwald et al., 2018). The development of transgenic mice 
expressing FRET biosensors has opened a window to the visualization of signaling molecule activity in 
live tissues (Terai et al., 2019). Furthermore, by using the activation of protein kinase A (PKA) and ERK 
MAP kinase as surrogate markers, we can also visualize the intercellular communications mediated by 
Gs- coupled receptors and tyrosine kinase receptors in live tissues (Konishi et al., 2021; Hino et al., 
2020). In this study, we show that PGE2 discharged from a single cell causes radial spread of PKA acti-
vation (RSPA) in neighboring cells in tissue culture and the mouse epidermis. By combining a chemical 
biology approach, optogenetic stimulation, and a simulation model, we quantitatively analyzed the 
PGE2 secretion and found that the PGE2 discharge is regulated temporally by calcium transients and 
quantitatively by growth factor signaling and cell density.

Results
PGE2 mediates RSPA
In an attempt to understand intercellular communication under physiological conditions, we observed 
the PKA activity of Madin–Darby canine kidney (MDCK) epithelial cells by using the FRET biosensor 
Booster- PKA (Zhang et al., 2001; Watabe et al., 2020; Figure 1A). We noticed that PKA activa-
tion propagates from a single cell to neighboring cells under a confluent condition. We named this 
phenomenon radial spread of PKA activation (RSPA) and pursued underlying mechanisms (Figure 1B, 
Figure  1—video 1). In a typical example, approximately 100 neighboring cells located within a 
100 µm distance exhibit firework- like spread of PKA activation, which decays within several minutes. 
To characterize this phenomenon without preoccupations, we developed a program to identify and 
characterize RSPA under various conditions (Figure 1C). The frequency, but not the radius, of RSPA 
depended on the cell density; that is, RSPA was observed only when cells were maintained at more 
than 6 × 104 cells/cm2 (Figure 1D and E). The probability of RSPA in each cell was also increased 
in a cell density- dependent manner (Figure  1—figure supplement 1A). To examine whether the 
PKA activation correlates with increased intracellular cAMP concentration, we employed another 
FRET biosensor for cAMP, hyBRET- Epac, and performed a similar experiment (Watabe et al., 2020; 
Ponsioen et al., 2004; Figure 1—figure supplement 1B and C). Although the increment of the FRET 
ratio was not so remarkable as that of Booster- PKA (Figure 1—figure supplement 1D), we found that 
the pattern of cAMP concentration change is very similar to the activity change of PKA, indicating 
that a Gs protein- coupled receptor (GsPCR) mediates RSPA (Figure 1—figure supplement 1E). This 
discrepancy between hyBRET- Epac and Booster- PKA may be partially explained by the difference 
in the dynamic ranges for cAMP signaling in each FRET biosensor (Watabe et al., 2020). Previous 
transcriptome analysis of MDCK cells showed that ATP receptor and PGE2 receptor EP2 are the most 
abundant GsPCRs (Shukla et al., 2015). Thus, we examined the contribution of the ATP receptor and 
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Figure 1. Radial spread of PKA activation (RSPA) in Madin–Darby canine kidney (MDCK) cells. (A) A scheme of 
Booster- PKA, a PKA sensor. (B) Booster- PKA- expressing MDCK cells in a confluent condition were observed every 
15 s under a fluorescence microscope (Figure 1—video 1). The image of mKOκ represents the cell density, 
which is seeded at 2.4 × 105 cells cm-2. mKate2 and mKOκ images were acquired to generate mKate2/mKOκ 
ratio images representing PKA activity in pseudocolor. The time 0 is set the just before initiation of PKA activation. 
The radius of RSPA as determined in (C) was plotted as a function of time. (C) Procedure to call RSPA positive. 
The original ratio images were binarized with the threshold value 1.3 of mKate2/mKOκ ratio. The fitted radius 
of RSPA, r, was defined as the radius of a circle with the same area. When r is >15 µm, it is counted as RSPA. The 
detailed procedure is provided in the ‘Materials and methods’ section. (D, E) MDCK cells expressing Booster- PKA 
were seeded at the indicated density and analyzed. Representative images in indicated cell densities are shown 
in pseudocolor (D). Each color in panel (E) represents an individual experiment. Red lines indicate average values. 
(F) MDCK cells expressing Booster- PKA in the presence of the inhibitors were imaged and analyzed for the RSPA 
frequency. Reagents are as follows: DMSO, 0.1% v/v DMSO; PKAi, 20 μM H89; Apyrase, 10 unit mL-1; EP2i, 10 μM 
PF- 04418948; EP4i, 1 μM ONO- AE3- 208; COXi, 10 μM indomethacin. The frequency of RSPA was analyzed 20–80 
min after the treatment. Each dot represents an individual experiment. Red lines indicate their average value. p- 
Values were calculated between the labeled sample and the DMSO- treated sample.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. The probability of radial spread of PKA activation (RSPA) in each cell.

Figure 1—video 1. Radial spread of PKA activation (RSPA) in Madin–Darby canine kidney (MDCK) cells.

https://elifesciences.org/articles/86727/figures#fig1video1

https://doi.org/10.7554/eLife.86727
https://elifesciences.org/articles/86727/figures#fig1video1
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PGE2 receptors EP2 and EP4 by using specific inhibitors (Figure 1F). Inhibitors against EP2, EP4, and 
COX, but not the ATPase apyrase, abolished RSPA, indicating that PGE2 mediates RSPA.

RSPA is also observed in the epidermis of the PKAchu mice
To clarify the physiological relevance of RSPA, we used PKAchu mice, which are transgenic mice 
expressing a FRET biosensor for PKA, AKAR3EV (Kamioka et al., 2012; Sato et al., 2020; Figure 2A). 
We previously observed that ERK MAP kinase activation is propagated radially among the basal layer 
cells of the mouse epidermis (Hiratsuka et al., 2015), but we failed to observe a similar propagation 
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Figure 2. Radial spread of PKA activation (RSPA) in the basal layer of mouse auricular epidermis. (A) A scheme of 
AKAR3EV, a PKA sensor. (B) Transgenic mice expressing AKAR3EV were observed under a two- photon excitation 
microscope. Shown are an ECFP image and a YPet/ECFP ratio image representing the cell density and PKA activity 
in pseudocolor, respectively. (C) Three mice were administrated a COXi, 30 mg/kg flurbiprofen intraperitoneally. 
The frequency of RSPA in pretreatment was quantitated more than 40 min before the injection. Similarly, the 
frequency of a post- COX inhibitor treatment was analyzed 15–58, 15–97, and 15–63 min. Each dotted line 
represents an individual mouse experiment. (D) Magnified views of an RSPA in vivo. Shown are an ECFP image and 
a YPet/ECFP ratio image representing the cell density and PKA activity in pseudocolor, respectively. The radius 
was determined as in Figure 1C, with the detection limit of 6.4 µm. (E) The properties of RSPA are compared 
between in vivo and in vitro. Data from three independent experiments are shown for each condition. The data of 
MDCK is from Figure 1E, seeded at the 1.2 × 105 cells cm-2. Cell density and frequency of RSPA data are values 
per experiment. Peak radius data are pooled from three independent experiments for each condition. Red lines 
indicate average values.

The online version of this article includes the following video for figure 2:

Figure 2—video 1. Radial spread of PKA activation (RSPA) in living mice.

https://elifesciences.org/articles/86727/figures#fig2video1

https://doi.org/10.7554/eLife.86727
https://elifesciences.org/articles/86727/figures#fig2video1
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of PKA activation. We reasoned that this failure was due to the low frequency and short duration of 
this phenomenon. When we observed a region of over 1 mm square at 1 min intervals, we successfully 
observed RSPA in the basal layer of the mouse auricular epidermis (Figure 2B, Figure 2—video 1). 
Upon i.p. injection of a COX inhibitor, RSPA almost completely disappeared within 10 min (Figure 2C), 
indicating that RSPA in the epidermis is mediated by prostaglandins, presumably PGE2. The cell density 
in the basal layer is approximately 2 × 106 cells cm-2, which is markedly higher than that in MDCK cells 
(Figure 2D and E). It is not clear whether this may be related to the lower frequency (~300 cm–2 hr-1) 
and smaller radius of RSPA in the basal layer cells compared to MDCK cells (Figure 2E).

RSPA is triggered by calcium transients
What causes RSPA? In agreement with the principal role of calcium in cPLA2 activation, dual imaging 
of calcium and PKA showed that an intracellular calcium transient precedes RSPA (Figure 3A). As 
anticipated, the frequency of RSPA was suppressed by the calcium chelator BAPTA- AM (Figure 3B). 
Note that not all of the calcium transients induced RSPA (Figure 3C, arrowheads). Approximately only 
one- tenth of calcium transients evoke RSPA (compare Figures 1E and 3D). Moreover, the frequency 
of calcium transients was also cell density- dependent (Figure  3D). To further pursue the relation-
ship between calcium transient and RSPA, we employed the Gq- DREADD system (Armbruster et al., 
2007). The Gq- DREADD- expressing producer cells were plated with the reporter cells expressing 
Booster- PKA at a 1:1200 ratio (Figure 3E). Upon activation of the Gq protein- coupled receptor by 
the DREADD ligand CNO, we observed RSPA with almost the same size and time course as observed 
under the non- stimulated condition (Figure 3F). Among cells with the calcium transient, 76% exhib-
ited RSPA, significantly higher than that in the unstimulated state. Because the average calcium signal 
intensity was higher in RSPA (+) cells than in RSPA (-) cells (Figure 3G), the peak value of calcium 
transients appears to be important for the following induction of RSPA.

RSPA is a switch-like response to cytoplasmic calcium concentration
To further explore the relationship between the peak value of the calcium transient and RSPA, we 
employed OptoSTIM1, an optogenetic tool to activate the calcium influx (Kyung et  al., 2015; 
Figure 4A). As anticipated, a blue light flash caused a calcium transient, followed by RSPA (Figure 4B). 
In a preliminary experiment, a 30 min interval was sufficient to restore the calcium response; there-
fore, we repeated the blue light flash every 30  min to 1  hr with increasing light intensity. As the 
light intensity was increased, the amplitude of calcium transients represented by the R- GECO signal 
also increased linearly (Figure 4C). In stark contrast, RSPA occurred in an all- or- nothing manner. We 
repeated this experiment for 13 cells to find any correlations between the calcium concentration and 
the size of RSPA (Figure 4D). The R- GECO signal intensity ratio (F/F0) that evoked RSPA ranged from 
1.5 to 2.1 among the different cells (Figure 4D, left), but the size of RSAP did not show a clear correla-
tion with the R- GECO signal intensity ratio (Figure 4D, right). This observation indicates that there is 
a threshold of the cytoplasmic calcium concentration for the triggered PGE2 secretion.

High cell density increases the sensitivity to PGE2

We next explored the mechanism that determines the size of RSPA. First, taking advantage of the 
reproducibility of DREADD system, we examined the involvement of EP2/EP4, cPLA2, and COX1/2 in 
the calcium- induced RSPA by CRISPR/Cas9- mediated gene knockout (Figure 5A). As anticipated, we 
did not observe any RSPA by using the reporter MDCK cells deficient from EP2 and EP4. Knockout 
of COX2 and cPLA2, but not COX1, in the producer cells almost completely abolished CNO- induced 
RSPA. These results support the idea that RSPA is mediated by PGE2 via the Ca2+- cPLA2- COX2- EP2/4- 
cAMP- PKA pathway (Figure 5B).

Next, because the size of RSPA depends on the cell density (Figure 1E), we reasoned that the 
sensitivity of MDCK cells to PGE2 may also be regulated by cell density. To avoid the effect of PGE2 
produced by the cells, the COX1/2- deficient MDCK cells were challenged by the bath application 
of PGE2. We found an approximately tenfold difference in the EC50 between the high and low cell 
densities (Figure  5C), suggesting that increased sensitivity to PGE2 underlies the increased RSPA 
size under the confluent condition. Transcriptome analysis showed a twofold increase in guanine 
nucleotide- binding protein G(s) subunit alpha (GNAS) (Figure 5D), but it is not clear whether this 
difference is sufficient to explain the difference in RSPA frequency. We did not observe any cell density 

https://doi.org/10.7554/eLife.86727
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Figure 3. Radial spread of PKA activation (RSPA) induction by calcium transients. (A) Madin–Darby canine 
kidney (MDCK) cells expressing GCaMP6s and Booster- PKA were observed for calcium transients and RSPA. 
Calcium transients are represented by the fluorescence of GCaMP normalized to the basal level (F/F0). RSPA is 
analyzed as in Figure 1C. (B) The frequency of RSPA was analyzed 20–80 min after 30 μM BAPTA- AM treatment. 
Data from three or four independent experiments. The DMSO control data set is from Figure 1F. (C) Maximum 
projection images of the ratio over 10 min. An arrow or arrowheads represent calcium transients with or without 
RSPA, respectively. Shown is a part of Figure 3—video 1. (D) MDCK cells expressing GCaMP6s were seeded 
at the indicated density. Calcium transients showing F/F0 to be >3 were counted in an indicated cell density. 
(E) Schematic representation of RSPA induction using Gq- DREADD. MDCK cells expressing Gq- DREADD served 
as producer cells, while MDCK cells expressing Booster- PKA were employed as reporter cells. (F, G) MDCK cells 
expressing Gq- DREADD with GCaMP6s or Booster- PKA were mixed and plated, treated with 1 μM CNO, and 
imaged. Blue circled cells are producer cells, expressing Gq- DREADD. The FRET ratio, the value of mKate2/
mKOκ, in each pixel is shown in pseudocolor as indicated. The time 0 was set as just before CNO addition. Cells 
showing an F/F0 value >4 were analyzed for their RSPA as Figure 1C. Red lines indicate their average value.

The online version of this article includes the following video for figure 3:

Figure 3—video 1. Correlation of calcium concentration with radial spread of PKA activation (RSPA).

https://elifesciences.org/articles/86727/figures#fig3video1

https://doi.org/10.7554/eLife.86727
https://elifesciences.org/articles/86727/figures#fig3video1
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dependence in the transcription of EP2, EP4 (Figure 5D), phosphodiesterases, or adenylyl cyclases 
(Figure 5—figure supplement 1). Thus, the cell density appears to increase the sensitivity to PGE2 
mostly in a transcription- independent manner.

ERK activity is required for RSPA
Previously, we reported that ERK activation is propagated among confluent MDCK cells in a wave- like 
fashion (Aoki et al., 2013). To examine whether ERK activity also regulates RSPA, we simultaneously 
observed ERK and PKA activities by using EKAREV- NLS and Booser- PKA, respectively (Figure 6A). 
It appeared that the center of RSPA was localized primarily in areas of high ERK activity. Further 
quantitative analysis has shown that the ERK activity of the cells locating in the center of RSPA was 
significantly higher than that of the randomly chosen cells (Figure 6B, left). However, the size of RSPA 
did not correlate with the ERK activity (Figure 6B, right). We next examined the timing of RSPA and 
the passage of ERK activation waves by aligning the events at the highest PKA activity. It appears that 
RSPA was evoked when the cells exhibited the highest ERK activity (Figure 6C and D, Figure 6—
figure supplement 1). Cross- correlation analysis of PKA activity and ERK activity revealed that ERK 
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Figure 4. A switch- like response of radial spread of PKA activation (RSPA) to calcium transients. (A) Schematic 
representation of RSPA induction using OptoSTIM1. Madin–Darby canine kidney (MDCK) cells expressing 
OptoSTIM1 and R- GECO1 were employed as the producer cells. The Booster- PKA- expressing MDCK cells, 
deficient in COX- 1 and COX- 2 (COX- DKO), were employed as the reporter cells. (B) The producer cells were 
stimulated by a flashlight during imaging. Blue circled cells in the mKOκ image are the producer cells. The FRET 
ratio, the value of mKate2/mKOκ, in each pixel is shown in pseudocolor as indicated. The time 0 was set as just 
before blue light irradiation. The detection limit for the RSPA radius was 26 µm, as shown in the shaded area. 
(C) Flashlight illumination was repeated with increasing LED power. (D) Vertically aligned dots (left) are the results 
from an individual producer cell. The right panel shows the relationship between R- GECO fluorescence intensity 
and the radius of RSPA.

https://doi.org/10.7554/eLife.86727
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activation preceded PKA activation by approximately 3 min (Figure 6E). The ERK activation wave is 
known to be mediated by EGFR and EGFR ligands (Lin et al., 2022). Accordingly, the addition of EGF 
faintly increased the frequency of RSPA in our experiments, while the MEK and EGFR inhibitors almost 
completely abrogated RSPA (Figure  6F), representing that ERK activation or basal ERK activity is 
essential for RSPA. Collectively, these results obtained with MDCK cells showed that RSPA is triggered 
by calcium transient in cells with high ERK activity.

The results in MDCK cells motivated us to validate our model in vivo. Thus, we tested RSPA in 
the basal layer of the mouse auricular epidermis could be canceled by the administration of MEKi 
(Figure 6G and H). As anticipated, RSPA in the basal layer was significantly attenuated 30 min after 
the administration, representing that ERK activity is required for RSPA in vivo.
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Figure 5. Effect of cell density on prostaglandin E2 (PGE2) sensitivity and the transcriptome. (A) Madin–Darby 
canine kidney (MDCK) cells expressing Gq- DREADD and GCaMP6s were employed as the parental producer cells. 
Meanwhile, MDCK cells expressing Booster- PKA were employed as the parental reporter cells. The genes knocked 
out by CRIPSR/Cas9 system are depicted in the figure. Analysis was performed as in Figure 3G. Each producer 
cell exhibiting F/F0 values >3 was analyzed for the occurrence of radial spread of PKA activation (RSPA). Data from 
two independent experiments was summed up. (B) Inter- and intracellular pathway of RSPA. (C) COX- DKO MDCK 
cells expressing Booster- PKA were plated at the indicated cell density, treated with increasing concentrations of 
PGE2, and analyzed for PKA activity. The mKate2/mKOκ ratio representing PKA activity was calculated and plotted 
against PGE2 concentration. The average intensity of the whole view field of mKate2 or mKOκ, at 20–30 min after 
the addition of PGE2, was applied to calculate the mKate2/mKOκ ratio. Three or four independent experiments 
were performed. (D) COX- DKO MDCK cells were seeded at the indicated cell densities and subjected to RNA- seq 
analysis. FPKM values of other genes are in Figure 5—figure supplement 1. N.D. represents not detected.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effect of cell density on the transcriptome.

https://doi.org/10.7554/eLife.86727
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Figure 6. Requirement of ERK activation for radial spread of PKA activation (RSPA). (A) Madin–Darby canine kidney 
(MDCK) cells expressing EKAREV and Booster- PKA were observed for ERK and PKA activities every 5 min and 1 
min, respectively. The mKate2/mKOκ ratio image represents PKA activity in pseudocolor. The YPet/ECFP ratio 
image represents ERK activity in IMD mode. RSPA is indicated by white circles. (B) The ERK activities within 10 µm 
from the center of RSPA and within 10 µm from randomly set positions with a random number table generated by 
Python are plotted in the left panel. Each colored dot represents an average value of an independent experiment. 
The right scattered plot shows the relationship between ERK activity and the size of RSPA. (C) The correlation 
between ERK activation and RSPA is shown. This is a part of Figure 6—video 1. (D) Cross- correlation analysis of 
PKA and ERK activities. The average and SD values from 67 samples are shown in the black lines and blue shades, 
respectively. (E) Temporal cross- correlations between RSPA and ERK activation rate. The black line indicates the 
average temporal cross- correlation coefficients with SD. (F) MDCK cells expressing Booster- PKA were imaged 
in the presence of the following reagents: 0.1% v/v DMSO, 50 ng/mL EGF, 1 μM PD0325901 (MEKi), and 1 μM 
AG1478 (EGFRi). The frequency of RSPA was analyzed 20–80 min after the treatment. Each dot represents an 
individual experiment. Red lines indicate their average value. The control data set is from Figure 1F. p- Values were 
calculated between the labeled sample and the DMSO- treated sample. (G, H) Similar to Figure 2. Transgenic 
mice expressing AKAR3EV were observed under a two- photon excitation microscope and administrated a MEKi, 
5 mg/kg PD0325901 intravenously. Shown are an ECFP image and a YPet/ECFP ratio image representing the cell 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.86727
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Discussion
PGE2 discharge causes radial spread of PKA activation in neighboring 
cells
To the best of our knowledge, only one study has visualized PGE2 secretion from a single cell (Zonta 
et al., 2003). In this study, HEK cells expressing the Gq- coupled PGE2 receptor EP1 and a calcium 
indicator were used to monitor PGE2 release from agonist- stimulated astrocytes. However, the spon-
taneous release of PGE2 has never been visualized in either tissue culture cells or live animals. Here 
we have shown that PGE2 is discharged after calcium transients in MDCK cells at high cell densities 
(Figure 1). This PGE2 discharge leads to the radial spread of PKA activation, which we named RSPA, 
in the neighboring EP2- expressing cells. By using transgenic mice expressing the PKA biosensor, 
RSPA was also observed in the mouse auricular epidermis (Figure 2). RSPA in the epidermis is almost 
completely shut off by COXi, strongly suggesting that prostaglandin(s), most likely PGE2, mediates 
RSPA in the skin. Notably, we failed to observe RSPA in melanoma tissues in which calcium transients 
were frequently observed (Konishi et al., 2021). We reasoned that repetitive PGE2 secretion from 
tumor cells maintains a high PGE2 concentration in the tumor microenvironment, which prevented us 
from observing pulsatile PKA activation. In fact, the PGE2 concentration in melanoma tissue is known 
to reach as high as 10 µM (Konishi et al., 2021). Thus, RSPA in the skin may function as an alert signal 
in an early phase of cellular stress.

PGE2 is discharged in a switch-like manner in response to Ca2+ 
transients
Soon after the identification of a Ca2+- dependent translocation domain within cPLA2 (Clark et al., 
1991), Ca2+- dependent cPLA2 arachidonic acid release from cells has been reported (Hirabayashi 
et al., 1999; Gijón et al., 2000); therefore, it is not surprising to find that the PGE2 discharge in our 
present experiments was due to Ca2+- dependent cPLA2 activation (Figure 3). However, visualization 
of PGE2 secretion at the single- cell resolution revealed a switch- like response of PGE2 discharge to the 
increasing Ca2+ concentration (Figure 4). Recruitment of cPLA2 to the ER and perinuclear membrane 
requires a higher Ca2+ concentration than that to Golgi (Evans et al., 2001). If so, cPLA2 may be 
sequestered at Golgi at low intracellular Ca2+ concentration, and only when the intracellular Ca2+ 
concentration exceeds the threshold that cPLA2 may reach the ER to liberate arachidonic acids.

What does regulate the frequency of Ca2+ transients? Since the frequency is cell density- dependent 
in MDCK cells (Figure 3D), one candidate might be mechanical stress. 293 and HeLa cells demon-
strate that cells show an increment in their frequency (Morita et al., 2015). However, a clear mechano 
receptor has not been identified.

ERK also regulates the probability of RSPA
In the cell density- dependent RSPA of MDCK cells, ERK activity regulates the probability, but not the 
size, of RSPA. Of note, the MEK inhibitor did not significantly decrease the frequency of calcium tran-
sients (Figure 6—figure supplement 2), suggesting that ERK had a direct effect on the production 

density and PKA activity in pseudocolor, respectively. The images of PKA activity were projected over 30 min. The 
frequency of RSPA in pretreatment was quantitated more than 120 min before the injection. Similarly, the frequency 
of RSPA in a post- treatment was analyzed 15–90, 15–125, 15–85, and 15–115 min. Each dotted line represents an 
individual mouse experiment.

The online version of this article includes the following video and figure supplement(s) for figure 6:

Figure supplement 1. Representative ERK and PKA activities in the center of radial spread of PKA activation 
(RSPA).

Figure supplement 2. Effect of MEK inhibitor on calcium transients.

Figure 6—video 1. Correlation of ERK activity with radial spread of PKA activation (RSPA).

https://elifesciences.org/articles/86727/figures#fig6video1

Figure 6—video 2. Requirement of ERK activation for radial spread of PKA activation (RSPA) in vivo.

https://elifesciences.org/articles/86727/figures#fig6video2

Figure 6 continued

https://doi.org/10.7554/eLife.86727
https://elifesciences.org/articles/86727/figures#fig6video1
https://elifesciences.org/articles/86727/figures#fig6video2
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of PGE2. Because ERK positively regulates cPLA2 by phosphorylating Ser505 (Cook and McCormick, 
1993; Qiu et al., 1993), it is reasonable that the RSPA is regulated by ERK activity.

The ERK activation wave is operated by a positive feedforward mechanism in which ERK promotes 
EGFR ligand shedding and the following EGFR activation increases ERK activity in the neighboring 
cells (Hino et  al., 2020; Aoki et  al., 2017). Here we found that the ERK activation functions as 
the ‘AND gate’ for PGE2 production together with the calcium transients (Figure 7). Notably, the 
propagation of PKA activation, ~100 µm/min (Figure 1B), is markedly faster than that of ERK activa-
tion, 2–4 µm/min (Hiratsuka et al., 2015). Because PKA antagonizes Ras- dependent ERK activation 
(Cook and McCormick, 1993; Burgering et al., 1993; Wu et al., 1993), the EGFR ligand- ERK and 
PGE2- PKA pathways fit the Turing diffusion reaction model consisting of slow positive and fast nega-
tive signaling cascades.

RSPA may not directly affect cell competition
Recently, PGE2 was shown to regulate cell competition among MDCK cells. Interestingly, extrusion of 
Ras- transformed MDCK cells has been shown to be suppressed by PGE2 (Sato et al., 2020), whereas 
extrusion of MDCK cells expressing constitutively active YAP was dependent on PGE2 (Ishihara et al., 
2020). Therefore, the effect of PGE2 in cell competition could be markedly different according to the 
signaling cascades that cause the oncogenic changes of MDCK cells. Importantly, PGE2 promotes 
the extrusion of MDCK cells expressing the constitutively active YAP by internalization of E- cadherin 
(Ishihara et al., 2020), which is a relatively slow process. Since RSPA causes PKA activation for only 
several minutes in each cell, multiple RSPA events may be needed to reach the concentration required 
for the induction of extrusion.

The radius of RSPA might represent the amount of PGE2 discharge
The radius of RSPA, in MDCK cells, might partially represent the amount of PGE2 discharge from the 
single cell. However, because of the cell- to- cell junction of the confluent MDCK cells, we failed to 
quantify the PGE2. In HeLa cells, we quantitated PGE2 secreted from a single cell by combining fluo-
rescence microscopy and a simulation model (Watabe et al., 2023).

Limitations of this study
It would be clear that the physiological relevance of RSPA remains. In MDCK cells, the treatment of 
NSAIDs, which perturb RSPA, did not show a detectable change in cell growth, ERK wave propaga-
tion during collective migration, migration velocity, cell survival, or apoptosis. In mice epidermis, the 
frequency of RSPA was not remarkably changed by inflammation or corrective migration, evoked by 
TPA treatment or wound, respectively.

AND gate

Ca transient ERK wave

Low cell density
Low probability

AND gate

Ca transient ERK wave

High cell density
High probability

PGE2 secretion

Figure 7. Models for prostaglandin E2 (PGE2) secretion. The frequency of calcium transients is cell density- 
dependent manner. The ERK activation wave is there in both conditions. Because both calcium transient and ERK 
activation are required for radial spread of PKA activation (RSPA), the probability for PGE2 secretion is regulated as 
‘AND gate’.

https://doi.org/10.7554/eLife.86727
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Conclusions
We have shown that the PGE2 discharge from a single cell is a stochastic and switch- like event in the 
confluent MDCK cells and mouse epidermis. The secreted PGE2 can transiently activate PKA in cells 
within a few hundred micrometers from the producer cell. The question of why cells adopt this pulsa-
tile rather than continuous secretion of PGE2 awaits the future.

Materials and methods
Reagents
ONO- AE3- 208, PF- 04418948, clozapine N- oxide, and PGE2 were purchased from Cayman Chemical. 
BAPTA- AM was obtained from Enzo Life Sciences. PD0325901, mitomycin C, and indomethacin were 
purchased from FUJIFILM Wako Pure Chemical Corp. AG1478 was purchased from BioVision Inc. 
Apyrase and EGF were obtained from Sigma- Aldrich. H- 89 was purchased from Seikagaku Corp. The 
DREADD ligand, clozapine N- oxide, was purchased from Cayman Chemical. Flurbiprofen axetil was 
purchased from KAKEN Pharmaceutical.

Cell culture
MDCK cells were purchased from the RIKEN BioResource Center (no. RCB0995). Lenti- X 293T cells 
were obtained from Invitrogen. MDCK and Lenti- X 293T cells were maintained in Dulbecco’s modified 
Eagle medium (FUJIFILM Wako Pure Chemical Corp.) containing 10% fetal bovine serum (Sigma- 
Aldrich) and 1% v/v penicillin−streptomycin (Nacalai Tesque). Cell line identity were validated.

Plasmids and primers
Plasmids and primers are described in Supplementary files 1 and 2.

Cell lines
For the generation of MDCK cells stably expressing Booster- PKA or the other ectopic proteins, a lenti-
viral or piggyBac transposon system was employed. To prepare the lentivirus, a lentiCRISPRv2- derived 
expression plasmid, psPAX2 (plasmid no. 12260; Addgene), and pCMV- VSV- G- RSV- Rev (RIKEN BioRe-
source Center) were co- transfected into Lenti- X 293T cells using polyethyleneimine (Polyscience). 
Virus- containing media were collected at 48 or 72 hr after transfection, filtered, and applied to target 
cells with 10 μg/mL polybrene (Nacalai Tesque). To introduce ectopic genes using a PiggyBac system, 
pPB plasmids and pCMV- mPBase(neo-) encoding piggyBac transposase were co- transfected into 
MDCK cells by electroporation with an Amaxa nucleofector (Lonza). Cells were selected with the 
medium containing the following antibiotics: 10 μg/mL blasticidin S (FUJIFILM Wako Pure Chemical 
Corp.), 100 μg/mL zeocin (InvivoGen), 2.0 μg/mL puromycin (InvivoGen), or 200 μg/mL hygromycin 
(FUJIFILM Wako Pure Chemical Corp.).

MDCK cells expressing EKAREV- NLS were previously described (Kawabata and Matsuda, 2016). 
The established cell lines are described in Supplementary file 3.

The identity of cell lines was validated by partial genome sequence during knockout cell devel-
opment. Mycoplasma contamination was tested with PlasmoTest (InvivoGen) when it was suspicious.

CRISPR/Cas9-mediated KO cell lines
For CRISPR/Cas9- mediated single or multiple knockouts of genes, sgRNAs targeting the exons were 
designed using CRISPRdirect (Naito et al., 2015). Oligo DNAs for the sgRNA were cloned into the 
lentiCRISPRv2 (plasmid no. 52961; Addgene) vector or pX459 (plasmid no. 62988; Addgene) vector. 
The expression plasmids for sgRNA and Cas9 were introduced into MDCK cells by lentiviral infec-
tion or electroporation. For electroporation, pX459- derived plasmids were transfected into MDCK 
cells using an Amaxa Nucleofector II. Cells were selected with the medium containing the antibi-
otics depending on the drug- resistance genes. After the selection, genomic DNAs were isolated with 
SimplePrep reagent (TaKaRa Bio). PCR was performed using KOD FX neo (Toyobo) for amplification 
with the designed primers, followed by DNA sequencing.

Wide-field fluorescence microscopy
Cells were imaged with an ECLIPSE Ti2 inverted microscope (Nikon) or an IX83 inverted microscope 
(Olympus). The ECLIPSE Ti2 inverted microscope was equipped with a Plan Fluor ×10 or ×4 objective, 
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an ORCA Fusion Digital CMOS camera (HAMAMATSU PHOTONICS K.K.), an X- Cite TURBO LED light 
source (Excelitas Technologies), a Perfect Focus System (Nikon), a TI2- S- SE- E motorized stage (Nikon), 
and a stage top incubator (Tokai Hit). The IX83 inverted microscope was equipped with a UPlanAPO 
×10/0.40 NA objective lens (Olympus), a Prime sCMOS camera (Photometrics), a CoolLED preci-
sExcite LED illumination system (Molecular Devices), an IX2- ZDC laser- based autofocusing system 
(Olympus), and an MD- XY30100T- Meta automatically programmable XY stage.

The following filters were used for the multiplexed imaging: for CFP and YFP imaging, a 434/32 
excitation filter (Nikon), a dichroic mirror 455 (Nikon), and 480/40 and 535- 30 emission filters (Nikon) 
for CFP and YFP, respectively; for GCaMP6s imaging, a 480/40 (Nikon) excitation filter, a dichroic 
mirror 455 (Nikon), and a 535/50 emission filter (Nikon); for mKOκ and mKate2 imaging, a 555BP10 
excitation filter (Omega Optical), an FF562Di03 dichroic mirror (Semrock), and XF3024 (590DF35) 
(Omega Optical) and BLP01- 633R- 25 (Semrock) emission filters for mKOκ and mKate2, respec-
tively; for iRFP670 imaging, an FF01- 640/14 excitation filter (Semrock), a dichroic mirror 660 (Nikon), 
and a 700/75 emission filter (Nikon); for R- GECO1, a 555BP10 excitation filter (Omega Optical), an 
FF562Di03 dichroic mirror (Semrock), and an XF3024 emission filter (590DF35) (Omega Optical).

In vivo two-photon imaging of the mouse epidermis
The establishment of transgenic mice expressing AKAR3EV (PKAchu mice) was described previously 
(Kamioka et al., 2012). Briefly, 8- to 13- week- old female mice were used for the in vivo imaging. The 
ear hair was removed with a razor 1 d before the experiments. Mice were anesthetized with 1.5% 
isoflurane (FUJIFILM Wako Pure Chemical Corp.) inhalation and placed in a side- lying position on 
an electric heater maintained at 37°C. The ear skin was placed on the cover glass. Two- photon exci-
tation microscopy was performed with an FV1200MPE- IX83 inverted microscope (Olympus) equipped 
with a ×30/1.05 silicon oil- immersion objective lens (XLPLN 25XWMP; Olympus), an InSight DeepSee 
Ultrafast laser (Spectra Physics), an IR- cut filter (BA685RIF- 3), two dichroic mirrors DM505 (Olympus), 
and two emission filters (BA460- 500 for CFP and BA520- 560 for YFP) (Olympus). The excitation wave-
length was 840 nm.

The animal protocols were approved by the Animal Care and Use Committee of Kyoto University 
Graduate School of Medicine (approval no. 22063).

Spontaneous RSPA
MDCK cells expressing Booster- PKA or hyBRET- Epac were seeded on collagen- coated glass- bottom 
96- well plates (Matsunami Glass Ind.) at a density of 1.2–2.4 × 105 cells/cm2. Before imaging, the 
culture media were replaced with phenol red- free M199 (Thermo Fisher Scientific) supplemented 
with 10% fetal bovine serum. Cells were imaged by wide-field fluorescence microscopy, as described 
above.

Analysis of calcium concentrations
Intracellular Ca2+ concentrations in MDCK cells were visualized with a genetically encoded calcium 
indicator, GCaMP6s or R- GECO1. For GCaMP6s analysis, calcium signals were expressed as F/F0, 
where F is the fluorescence at each time point, and F0 represents baseline fluorescence. To analyze 
the peak F/F0 value of GCaMP6s, F0 was calculated as the minimum projection of fluorescence inten-
sity over the 5 min before each frame. Each cell showing calcium transient was visually checked to 
exclude the F/F0 elevation caused by flowing debris and misregistration of cells. If two or more adja-
cent cells showed calcium transients simultaneously, it was counted as a calcium transient. If two or 
more calcium transients were detected at intervals of more than 1 min, they were counted separately. 
In the Gq- DREADD experiment, F0 was calculated as the mean intensity before the stimulation.

For R- GECO1 analysis, F/F0 calcium signals were calculated by assigning the reference F0 using 
the fluorescence intensity before each blue light flash.

Gq-DREADD-induced calcium transients and RSPA
MDCK cells expressing both Gq- DREADD- P2A- mCherry- NLS (Evans et  al., 2001) and GCaMP6s 
(Evans et al., 2001) were utilized as PGE2 producer cells. MDCK cells expressing Booster- PKA served 
as PGE2 reporter cells. The producer and reporter cells were mixed at a ratio of 1:400 to 1:200 and 
plated on collagen- coated glass- bottom 96- well plates (Matsunami Glass Ind. or AGC Inc) at a density 
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of 1.2–2.4 × 105 cells/cm2. Before imaging, the culture media were replaced with phenol red- free 
M199 (Thermo Fisher Scientific) supplemented with 10% fetal bovine serum. Gq- DREADD was acti-
vated by the addition of 1 µM of clozapine N- oxide (CNO). Cells were imaged by wide-field fluores-
cence microscopy, as described above.

Light-induced calcium transients and RSPA
MDCK cells expressing both R- GECO1- P2A- iRFP670 and OptoSTIM1 (CRY2clust) (Lee et al., 2014) 
were used as PGE2 producer cells. COX1 and COX2- deficient MDCK cells expressing Booster- PKA 
were used as PGE2 reporter cells. The producer and reporter cells were mixed at a ratio of 1:400 to 
1:1200 and plated on collagen- coated glass- bottom 96- well plates (Matsunami Glass Ind.) or 24- well 
plates (AGC Inc). After 16–32 hr of incubation, the culture media were replaced with phenol red- free 
M199 (Thermo Fisher Scientific) supplemented with 10% fetal bovine serum or M199 supplemented 
with 0.1% w/v bovine serum albumin (Sigma- Aldrich). Cells were imaged by wide-field fluorescence 
microscopy, as described above. During the observation, OptoSTIM1 was activated with 475 nm LED 
for 200 ms to trigger calcium influx into the cell. To control the calcium influx from small to large, the 
excitation light was modulated from 0.8 to 67 μW mm–2. To prevent cell division, MDCK cells with 
3 µg/mL of mitomycin C for 1 hr 1 d before passage.

Titration of PGE2 sensitivity
COX- 1 and COX- 2 depleted (COX- DKO) MDCK cells expressing Booster- PKA were seeded on a 
96- well glass- base plate at the indicated densities. Before imaging, the culture media were replaced 
with phenol red- free M199 (Thermo Fisher Scientific) supplemented with 10% fetal bovine serum for 
MDCK. The 96- well plate was imaged by an inverted microscope as described earlier. mKate2 and 
mKOκ images were obtained in one position for every well at around 5 min intervals. Cells were stim-
ulated with PGE2 at the indicated concentrations. The mKate2/mKOκ ratio was quantified from the 
average intensity of the whole field of view at around 20–30 min after the addition of PGE2.

Quantification of RSPA
The program code for image analysis is available via GitHub at https://github.com/TetsuyaWatabe- 
1991/RSPAanalysis (copy archived at Watabe, 2023).

Ratio images of MDCK cells expressing Booster- PKA were created after background subtraction. 
A median filter and a Gaussian 2D filter were applied to each image for noise reduction. The ratio 
image was normalized by a minimum intensity projection along the time axis. The processed images 
were binarized with a predetermined threshold and processed by morphological opening and closing 
to refine the RSPA area. Center coordinates and equivalent circle radii were obtained from each RSPA 
area. If the distance between the center coordinates of RSPA between successive frames was less than 
100 μm, they were considered to be the same RSPA. For MDCK cells expressing hyBRET- Epac and 
mouse ear skin expressing AKAR3EV, the center coordinates of each RSPA were manually determined 
due to the low signal- to- noise ratio.

To obtain the time course of the RSPA radius, concentric regions were defined at the center of 
each RSPA. The median FRET ratio in each concentric ROI was calculated. The radius of the outermost 
concentric region where the median ratio value exceeds a predetermined threshold was defined as 
the radius of the RSPA.

Cross-correlation analysis of ERK and PKA activity
Cross- correlation analysis was performed with Python using the scientific library SciPy (http://www. 
scipy.org). The centers of each spontaneous RSPA in MDCK cells expressing both EKAREV and Boost-
er- PKA were detected automatically as described above. The regions of interest were defined at the 
center of each RSPA with a radius of 10 µm, and the average ERK and PKA activity from 2 to 5 cells 
was quantified. The program code for this analysis is available via GitHub as described above.

RNA-seq
COX1 and COX2- deficient MDCK cells expressing Booster- PKA were seeded in collagen- coated 
glass- bottom 96- well plates (AGC Inc) at a density of 1.5 × 104 or 6.0 × 104 or 2.4 × 105 cells/cm2. 
After 24 hr of incubation, the culture media were replaced with phenol red- free M199 (Thermo Fisher 

https://doi.org/10.7554/eLife.86727
https://github.com/TetsuyaWatabe-1991/RSPAanalysis
https://github.com/TetsuyaWatabe-1991/RSPAanalysis
http://www.scipy.org
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Scientific) supplemented with 10% fetal bovine serum. Then, 3 hr after medium replacement, RNA was 
extracted from each sample using an RNeasy Mini Kit (QIAGEN). Libraries for RNA- seq were prepared 
using an NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (New England Biolabs) and 
sequenced on the NextSeq500 (Illumina) as 75 bp single- end reads. RNA- seq data were trimmed 
using Trim Galore version 0.6.6 (Krueger, 2015Krueger, 2015) and Cutadapt version 2.8 (Martin, 
2011). The quality of reads was checked and filtered using FastQC version 0.11.9 (; Andrews, 2010). 
The reads were mapped to a reference genome canFam3.1 (Lindblad- Toh et al., 2005, Hoeppner 
et  al., 2014) using HISAT2 version 2.2.1 (Kim et al., 2019), and the resulting aligned reads were 
sorted and indexed using SAMtools version 1.7 (Li et al., 2009). Relative abundances of genes were 
measured in FPKM using StringTie version 2.1.4 (Kovaka et al., 2019, Pertea et al., 2015). Plots were 
created in Python using the pandas, matplotlib, NumPy, and seaborn libraries.

Sequence data are available in the DNA Data Bank of Japan Sequence Read Archive under acces-
sion numbers DRR014156 to DRR014161.

Statistical analysis
All statistical analyses and visualizations were performed in Python using the libraries NumPy, pandas, 
SciPy, pingouin, matplotlib, and seaborn. No statistical analysis was used to predetermine the sample 
size. Welch’s t- test was used to evaluate statistically significant differences. p- Values <0.05 were 
considered statistically significant.
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