```
This function is used to perform RNA exchange simulation among CD133- hepatocytes. The basic idea was to randomly divide all CD133- hepatocyes into small groups with size N and simulate that cells within each group exchange IEGs with each other. The simulation results are then visualized and evaluated by plotting IEG diversity (entropy) against total IEG expression levels.
A data.frame with meta cell IEG diversity (entropy) and total IEG expression levels.
# Import data and function
source('Simulation.R')
normalized.dat <- readRDS('Normalized.dat.Rds')
IEG_mean <- readRDS('IEG_mean_expression.Rds')
Entropy <- readRDS('Entropy.Rds')
Meta_cell <- readRDS('Meta_cell.Rds')
Seeds <- readRDS('Seeds.Rds')
IEG <- read.delim('Liver_IEG.txt')
as.character(IEG$GeneName)
## [1] "Fos" "Jun" "Egr1" "Ier2" "Atf3" "Junb" "Myc" "Crem" "Ets2" "Ier3"
## [11] "Lepr" "Egfr"
# Run function
res_sim <- exchange_simulation(normalized.data = normalized.dat, seeds = Seeds,
Entropy = Entropy, IEG_mean_total = IEG_mean,
size = 5, ex = 1/12, ex2 = 1/12, mode = 3, n_meta = 50,
col_name = "Neg_sim")
# Visualization
library(ggplot2)
colnames(res_sim) <- c('Entropy_sim', 'CyclinD1', 'CD133', 'IEG_sim')
res_Pos <- Meta_cell[Meta_cell$CD133 == 'Pos', ]
res_Neg <- Meta_cell[Meta_cell$CD133 == 'Neg', ]
res_Neg_ori_vs_sim <- cbind(res_Neg, res_sim[,c(1,4)])
ggplot() +
geom_point(data = res_Neg_ori_vs_sim, aes(x=IEG, y=Entropy), color='black') +
geom_point(data = res_Neg_ori_vs_sim, aes(x=IEG_sim, y=Entropy_sim), color='red') +
geom_point(data=res_Pos, aes(x=IEG, y=Entropy), color='olivedrab2', linetype = "dashed", size=4)+
geom_path(data=res_Pos, aes(x=IEG, y=Entropy), color='olivedrab2', linetype = "dashed", size=1) +
geom_segment(data = res_Neg_ori_vs_sim, aes(x=IEG, y=Entropy, xend=IEG_sim, yend=Entropy_sim),
arrow=arrow(length = unit(0.15, "cm")),color='gray60',size=0.5,linejoin='round') +
xlab('IEG') +
ylab('Entropy') +
theme(axis.text=element_text(size=12, face="bold"), axis.title=element_text(size=14,face="bold"))
Use zero-inflated Negative Binomial (ZINB) regression for modeling single-cell RNAseq data:
Miao, Z., Deng, K., Wang, X. & Zhang, X. DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics 34, 3223-3224, doi:10.1093/bioinformatics/bty332 (2018).