
Hu, Zhang et al. eLife 2023;12:RP87115. DOI: https://doi.org/10.7554/eLife.87115  1 of 19

Microhomology- mediated circular 
DNA formation from oligonucleosomal 
fragments during spermatogenesis
Jun Hu1†, Zhe Zhang2†, Sai Xiao3, Yalei Cao2, Yinghong Chen3, Jiaming Weng2, 
Hui Jiang2,4*, Wei Li3,5*, Jia- Yu Chen1,6*, Chao Liu3,5*

1State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, 
Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Andrology, 
Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China; 2Department of 
Urology, Department of Reproductive Medicine Center, Peking University Third 
Hospital, Beijing, China; 3Guangzhou Women and Children's Medical Center, 
Guangzhou Medical University, Guangzhou, China; 4Department of Urology, Peking 
University First Hospital Institute of Urology, Beijing, China; 5State Key Laboratory 
of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and 
Regenerative Medicine Innovation Institute, Chinese Academy of Science, Beijing, 
China; 6Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, China

Abstract The landscape of extrachromosomal circular DNA (eccDNA) during mammalian sper-
matogenesis, as well as the biogenesis mechanism, remains to be explored. Here, we revealed 
widespread eccDNA formation in human sperms and mouse spermatogenesis. We noted that germ-
line eccDNAs are derived from oligonucleosomal DNA fragmentation in cells likely undergoing cell 
death, providing a potential new way for quality assessment of human sperms. Interestingly, small- 
sized eccDNAs are associated with euchromatin, while large- sized ones are preferentially generated 
from heterochromatin. By comparing sperm eccDNAs with meiotic recombination hotspots and 
structural variations, we found that they are barely associated with de novo germline deletions. We 
further developed a bioinformatics pipeline to achieve nucleotide- resolution eccDNA detection 
even with the presence of microhomologous sequences that interfere with precise breakpoint iden-
tification. Empowered by our method, we provided strong evidence to show that microhomology- 
mediated end joining is the major eccDNA biogenesis mechanism. Together, our results shed light 
on eccDNA biogenesis mechanism in mammalian germline cells.

eLife assessment
This study provides important information on the biogenesis of eccDNAs during spermatogenesis. 
The data presented are solid and supportive of the concussion that eccDNAs in spermatogenic 
cells are not derived from miotic recombination hotspots but rather represent oligonucleosomal 
DNA fragments from apoptotic male germ cells, whose ends are ligated through microhomology- 
mediated end- joining. This work is of interest to researchers working on germ cell biology and 
cancer biology.

Introduction
Apart from linear chromosome, DNA in circular form also exists in the nuclei of eukaryotes (Noer 
et al., 2022). Circular DNAs could be roughly classified into two groups based on their cell origins 
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(Chiu et al., 2020). The one exclusively present in cancerous cells is usually referred to as extrachro-
mosomal DNA (eccDNA), which is of megabase long in average and plays key roles in tumorigenesis 
(Wang et al., 2021b). The ecDNA biogenesis is linked to ‘episome model’ (Carroll et al., 1988), chro-
mothripsis (Shoshani et al., 2021), breakage- fusion- bridge (Coquelle et al., 2002), or translocation- 
deletion- amplification model (Van Roy et  al., 2006). The other class found in somatic and germ 
cells is usually called extrachromosomal circular DNA (eccDNA). The size of eccDNA ranges from 
dozens of bases to hundreds of kilobases (Paulsen et al., 2018). Contrary to ecDNAs, the biogenesis 
mechanisms and biological functions of eccDNAs are relatively less experimentally characterized, and 
current studies show inconclusive or even contradictory results.

The genomic origins of eccDNAs have been extensively investigated in different cells and condi-
tions with the application of Circle- seq and its refined derivatives (Mehta et al., 2020; Møller et al., 
2015; Wang et al., 2021a), where eccDNAs are detected via rolling circle amplification and deep 
sequencing. While CpG islands (Shibata et al., 2012), gene- rich regions (Møller et al., 2018), and 
repeat elements, for example, LTR (long terminal repeat) (Møller et al., 2015), LINE- 1 (Dillon et al., 
2015), segmental duplication (Mouakkad- Montoya et  al., 2021), or satellite DNA (Mouakkad- 
Montoya et al., 2021), are hotspots for eccDNA formation, others found that eccDNAs are nearly 
random with regard to genomic distribution (Møller et al., 2020), or even made opposite observations 
(Henriksen et al., 2022). Epigenomically, the overall higher GC content, the periodicities of dinucle-
otide, and eccDNA size convergently point to that nucleosome wrapping of DNA might contribute 
to the formation of small- sized eccDNAs (Shibata et al., 2012; Wang et al., 2021a), an intriguing 
starting point for mechanistic understanding of eccDNA origination. However, direct evidence for 
coincident positioning of eccDNAs and nucleosomes is still lacking, not to mention specific epigenetic 
marks on nucleosomes that are tightly associated with eccDNA formation.

EccDNAs are increased upon DNA damages (Møller et al., 2015; Paulsen et al., 2021), suggesting 
them as by- products of successive DNA repairs. Among diverse repair pathways, it was reported that 
eccDNA levels particularly depend on resection after double- strand DNA break (DSB) and repair by 
microhomology- mediated end joining (MMEJ) (Paulsen et al., 2021; Wang et al., 2021a). In further 
support of the involvement of MMEJ, microhomology is found around eccDNA breakpoints (Lukasze-
wicz et al., 2021; Møller et al., 2015). However, in all studies using short- read sequencing technolo-
gies, eccDNA breakpoints are mis- annotated if microhomologous sequences are present around due 
to their interference to precise breakpoint detection (see our main text; Dillon et al., 2015; Henriksen 
et al., 2022; Kumar et al., 2017; Lv et al., 2022; Mann et al., 2022; Møller et al., 2018; Møller 
et al., 2020; Paulsen et al., 2019; Prada- Luengo et al., 2019; Shibata et al., 2012; Sin et al., 2020; 
Wang et al., 2021a; Zhang et al., 2021), or the eccDNA identification does not depend on precise 
breakpoint detections at all (Møller et al., 2015; Mouakkad- Montoya et al., 2021). The contribu-
tion of microhomology to eccDNA generations thus needs to be revisited with precise mapping of 
breakpoints.

Alternative or additional mechanisms might be involved in germline eccDNA formation. During 
meiosis, two spatially closed break sites catalyzed by SPO11 at recombination hotspots may release 
eccDNAs accompanied by de novo deletions on linear chromosomes (Lukaszewicz et  al., 2021). 
Consistently, germline microdeletions display similar sequence features with eccDNAs (Shibata et al., 
2012). However, a recent study reported that the creation of germline eccDNAs negatively correlate 
with meiotic recombination rates (Henriksen et al., 2022). Therefore, it remains to be determined 
whether meiosis might significantly contribute to eccDNA biogenesis.

We envision that eccDNA landscape during spermatogenesis is ideal for clarifying the abovemen-
tioned issues and so better understand the biogenesis mechanisms and biological implications of 
eccDNAs. Only a small fraction of histones will survive from the histone- to- protamine transition in 
mature sperms, allowing us to more specifically correlate eccDNA origination with histones. Studying 
eccDNAs in germline cells rather than somatic cells could help reveal to what extent meiosis might 
contribute to eccDNA generation and de novo structural variations that can be passed to offspring. 
Therefore, in this study, we profiled eccDNAs via Circle- seq in human sperms and different develop-
mental stages of mouse germ cells with an improved analysis pipeline to identify eccDNAs at nucleo-
tide resolution. We conclude that germline eccDNAs are likely formed by microhomology- mediated 
ligation of nucleosome- protected fragments and barely contribute to de novo genomic deletions at 
meiotic recombination hotspots.

https://doi.org/10.7554/eLife.87115
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Results
Widespread eccDNA formation in human and mouse germline cells
Because it was reported that high content of eccDNAs existed in sperms (Henriksen et al., 2022), we 
examined the genome- wide eccDNA landscape in two human sperm samples by Circle- seq (Møller 
et  al., 2018; Møller et  al., 2015; Møller et  al., 2020; see ‘Materials and methods’) and indeed 
found that there were widespread eccDNAs across the human genome (Figure 1A, Figure 1—figure 
supplement 1A). This motivated us to further investigate the biogenesis mechanism, particularly 
whether it might be linked to specific spermatogenesis processes. Given that it is ethically prohib-
ited and technically challenging to collect pure spermatogenic cell types from human individuals, we 
therefore turned to use mouse model to study the eccDNA formation during spermatogenesis.

A series of cell divisions and morphological changes are involved in spermatogenesis, where sper-
matogonial stem cells develop into spermatocytes (SPA) via mitosis, and SPA then undergo meiosis 
to produce haploid round spermatids (RST), which will take a dramatic morphological change and 
chromatin compaction to produce elongated spermatids (EST) and finally matured sperms (Hess 

Figure 1. Overview of extrachromosomal circular DNA (eccDNA) formation during mouse spermatogenesis. (A) Schematic representation of Circle- 
seq in human sperm cells and mouse spermatocytes (SPA), round spermatids (RST), elongated spermatids (EST), and sperm cells validated with 
immunochemistry. SYCP3: a component of the synaptonemal complex; γH2AX: a marker for double- strand breaks; SP56: a marker for acrosome 
organelle; TUBULIN: structural component of manchette in EST and flagellum axoneme in sperm cells. (B) Number of eccDNAs detected in different 
cell types. *Two- sided t- test p- value<0.05; **two- sided t- test p- value<0.01. (C) Size distribution of eccDNAs during mouse spermatogenesis. Dotted lines 
indicate multiplies of 180 bp. (D) A representative genomic locus showing the gene annotation, Circle- seq signals, detected eccDNAs, and SINE and 
DNA repeat elements. Highlighted in red rectangle is a large- sized eccDNA. (E) Enrichment of eccDNAs at given genomic regions relative to randomly- 
selected control regions. (F) Enrichment of eccDNAs at given repeat elements relative to randomly selected control regions.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Detection and characterization of extrachromosomal circular DNAs (eccDNAs).

Figure supplement 2. Quality control of the extrachromosomal circular DNA (eccDNA) isolation procedure.

Figure supplement 2—source data 1. The original gel images for Figure 1—figure supplement 2C showing PCR validation of three 
extrachromosomal circular DNAs (eccDNAs) using inward and outward PCR primers.

Figure supplement 3. Length distribution of extrachromosomal circular DNAs (eccDNAs) in different cells.

https://doi.org/10.7554/eLife.87115
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and Renato de Franca, 2008; ROOSEN- RUNGE, 1962). We isolated SPA, RST, and EST using flow 
cytometry and collected sperms from mouse cauda epididymis (Hayama et al., 2016) for subsequent 
Circle- seq (Møller et al., 2018; Møller et al., 2015; Møller et al., 2020; see ‘Materials and methods’). 
All four cell types were validated with known markers and cell morphology (Figure 1A). EccDNA isola-
tion procedures were validated by a high ratio of an exogenous circular DNA (pUC19) to a linear DNA 
locus (H19 gene) (Figure 1—figure supplement 2A), and the low abundance of mitochondria DNA 
that was supposed to be cleaved by PacI and degraded by exonuclease (Figure 1—figure supplement 
2B). To account for sample variations, up to five biological replicates and ~150 million reads for each 
cell type were sequenced for eccDNA detection. From ~1500 to ~180,000 high- confidence eccDNAs 
were identified, suggesting widespread circular DNA formation during mouse spermatogenesis 
(Figure 1B; see ‘Materials and methods’). Some randomly selected eccDNAs were validated with PCR 
using outward primers (Figure 1—figure supplement 2C). The reproducible rate of eccDNAs with 
50% reciprocal overlap between biological replicates was only ~2.4% in average, a level comparable 
to previous studies (Henriksen et al., 2022; Møller et al., 2018; Figure 1—figure supplement 1B). 
As noted earlier (Møller et al., 2018), the detected eccDNAs seemed not saturated (Figure 1—figure 
supplement 1C; see ‘Discussion’ and ‘Materials and methods’), which might underlie the observed 
low reproducibility. Nevertheless, principal component analysis suggested that the within- group simi-
larity was marginally higher than the between- group similarity (Figure 1—figure supplement 1D), 
allowing investigation of stage- specific eccDNA features during mouse spermatogenesis.

The detected germline eccDNAs verified known genomic features of eccDNAs. First, the natural 
size distribution of eccDNA is usually distorted in Circle- seq as smaller eccDNAs tend to be overrep-
resented in rolling circle amplification (Mohsen and Kool, 2016; Møller et al., 2018; Møller et al., 
2015). As expected, the detected eccDNA population was dominated by small- sized eccDNAs, most 
of which were ~180 bp or ~360 bp long (Figure 1C). However, eccDNA size could occasionally reach 
to several kilobases and even tens of kilobases (Figure 1D). Second, eccDNAs from different cell types 
were all enriched at gene- rich regions, especially 5′UTR (Figure 1E, Figure 1—figure supplement 
1E), corroborating the reported association between eccDNA frequency and gene density in somatic 
cells (Dillon et al., 2015; Shibata et al., 2012). ccDNAs were also highly associated with SINE but not 
LINE elements (Figure 1F), and quantitative analysis revealed that eccDNA biogenesis was positively 
correlated with SINE density (Figure 1—figure supplement 1F), but negatively correlated with LINE 
density (Figure 1—figure supplement 1G). Given that SINE and LINE elements function to orches-
trate chromosomes into gene- rich A compartment and gene- poor B compartment, respectively (Lu 
et al., 2021), the positive correlation between eccDNAs and SINE elements might further support 
that eccDNAs are overall highly associated with the gene- rich regions. Interestingly, we also noticed a 
strong association between eccDNAs and DNA transposons (Figure 1F), suggesting that DNA trans-
posons might get circularized rather than or in addition to reintegrated into the genome, an inter-
esting possibility awaiting further investigations. Altogether, the genome- wide eccDNA landscape 
during mouse spermatogenesis allows us to further study the biogenesis mechanism and function of 
eccDNAs.

High eccDNA load and periodic eccDNA size distribution in mouse 
sperm cells
Notably, sperm cells had 97,372 eccDNAs detected in average, a number significantly higher than 
those in SPA (15,246), RST (18,426), and EST (3591) cells (Figure 1B). SPA cells did not show higher 
eccDNA numbers (Figure 1B), suggesting that meiosis does not seem to contribute significantly to 
eccDNA biogenesis. Since the same amount of eccDNAs (10 ng) was used for library construction 
and all samples were sequenced in comparable and sufficiently- deep depth, it suggests that eccDNA 
species in sperm cells has higher complexity. However, the higher starting cell number for sperm cells 
might account for the larger diversity of sperm eccDNA species (see ‘Discussion’ and ‘Materials and 
methods’); otherwise, it would be interesting to explore any specific features of sperm cells underlying 
the higher load of eccDNAs.

In contrast to SPA, EST, and RST eccDNAs showing the unimodal distribution that was centered 
at ~180 bp, sperm- derived eccDNAs showed a multimodal distribution with a pronounced period-
icity of ~180 bp (Figure 1C), which was readily seen in individual samples (Figure 1—figure supple-
ment 3). Given that each nucleosome consists of 147 bp DNA wrapping itself around a histone core, 

https://doi.org/10.7554/eLife.87115
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the ~180- bp- long fragments likely corresponded to histone core region plus ~20–30 bp linker regions, 
as observed in apoptotic cells (Matassov et al., 2004). Although the identified eccDNAs in all sper-
matogenesis stages were likely related to nucleosomes, the different modes of size distribution might 
be due to distinct nucleosome compositions and structures between sperm and other spermatogenic 
cells.

Mouse sperm eccDNAs come from DNA fragments protected by 
histones
Only a small fraction of histones will be retained in mouse sperm cells after histone- to- protamine tran-
sition (Torres- Flores and Hernández- Hernández, 2020), permitting us to more specifically correlate 
eccDNAs with histones. We were therefore motivated to see whether the detected eccDNAs were 
derived from the retained histones in mature sperm cells. We noted that sperm eccDNAs had higher 
GC content than surrounding regions as well as control regions randomly selected across the genome 

Figure 2. Association between sperm extrachromosomal circular DNAs (eccDNAs) and nucleosome positioning. (A) GC contents of sperm eccDNAs, 
regions upstream and downstream of eccDNAs, and randomly selected length- matched control regions. ***Two- sided Wilcoxon test p- value<0.001. 
(B) Predicted probability of nucleosome occupancy for eccDNA and randomly selected length- matched control regions (highlighted by red- shaded 
area), and surrounding regions. Boxplots showing the probability distribution of individual eccDNAs and control regions. ***Two- sided Wilcoxon test 
p- value<0.001. (C) Enrichment of eccDNAs at different histones and histone modifications. (D, E) ChIP- seq signal distribution at [–1.8 kb, +1.8 kb] of the 
centers of ~180 bp (D) and ~360 bp (E) eccDNAs. ChIP- seq signals quantified as reads density are color- coded below heatmaps.

https://doi.org/10.7554/eLife.87115
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(Figure  2A), resembling the sequence feature of nucleosome- protected DNA fragments. Consis-
tently, sequence- based prediction revealed significantly higher nucleosome occupancy probability 
for ~180 bp (from 175 bp to 185 bp) and ~360 bp (from 355 bp to 365 bp) sperm eccDNA regions 
(Figure 2B; see ‘Materials and methods’). A small dip was observed at the center of ~360 bp eccDNA 
regions, which likely corresponded to the linker region between two nucleosomes (Figure 2B, right).

It is a common practice to reuse publicly available genomics data generated in the same cell types 
for integrative analysis. Taking advantage of public ChIP- seq data for histones and their modifications 
in mouse sperm cells (Jung et al., 2019; Jung et al., 2017; Singh and Parte, 2021), we found that 
eccDNAs were significantly enriched with certain histone variants and modifications (Figure 2C), and 
7.46% of sperm eccDNAs in total were intersected with at least one ChIP- seq peaks. Considering that 
histones occasionally retained in sperms might not generate strong ChIP- seq signals exceeding the 
peak calling cutoff, a meta- gene analysis of ChIP- seq signals at and around sperm eccDNA regions 
will likely provide more insights. Interestingly, enrichment of H3 histone and H2A.Z, TH2A, and TH2B 
histone variants but depletion of H3.3 variant was observed at  ~180  bp sperm eccDNA regions 
(Figure  2D). These eccDNAs also showed strong associations with H3K27ac, H3K4me1, H3K9ac, 
and H3K27me3 modifications; however, no enrichment was seen for H3K4me3, and H3K36me3 and 
H3K9me3 signals were comparable with or even lower than randomly selected regions as control 
(Figure 2D).

We next examined ~360 bp sperm eccDNAs, which supposedly correspond to two nucleosomes 
and made similar observations. Centers of  ~360  bp eccDNAs were well positioned between two 
adjacent nucleosomes consisting of H3 histone and H2A.Z histone variants, and H3K27ac, H3K4me1, 
H3K9ac, and H3K27me3 histone modifications (Figure 2E). Similar to ~180 bp eccDNAs, ~360 bp 
eccDNAs did not show association with H3.3 or H3K4me3, or stronger association than randomly 
selected regions with H3K36me3 and H3K9me3 either (Figure  2E). Although H3.3 variant coin-
cides with active transcription, it is also well known for its localization at heterochromatin region 
and its roles in promoting heterochromatin formation by inhibiting H3K9/K36 histone demethylase 
(Udugama et al., 2022). Together, euchromatin is generally more preferred than heterochromatin for 
eccDNA biogenesis, which is consistent with the enrichment of sperm eccDNAs at gene- rich regions 
(Figure 1D).

Large-sized eccDNAs are preferentially generated from 
heterochromatin regions
Intriguingly, periodic distribution of nucleosomes, for example, those marked with H3K27me3, 
was observed for ~360 bp but not for ~180 bp eccDNAs, indicating that eccDNAs from di- nucleo-
somes but not mono- nucleosomes preferentially originate from well- positioned nucleosome arrays 

Figure 3. Large- sized extrachromosomal circular DNAs (eccDNAs) are preferentially generated from heterochromatin regions. (A) Distribution at 
H3K27ac- and H3K9me3- marked regions for eccDNAs of different sizes. (B) Distribution at different genomic regions for eccDNAs of different sizes. 
(C) Number of small (<3 kb) vs. large (≥3 kb) eccDNAs per Mb as a function of gene number per Mb. Pearson correlation coefficients and two- sided 
t- test p- values are indicated. (D) Number of small (<3 kb) vs. large (≥3 kb) eccDNAs per Mb as a function of Alu number per Mb. Pearson correlation 
coefficients and two- sided t- test p- values are indicated.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Correlation between the density of small- sized (A) vs. large- sized (B) extrachromosomal circular DNAs (eccDNAs) and the meiotic 
recombination rate (Jensen- Seaman et al., 2004).

https://doi.org/10.7554/eLife.87115
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(Figure 2E). We were further prompted to ask whether eccDNAs of different sizes are originated from 
different genomic regions. Indeed, small- sized eccDNAs (<3 kb) were more enriched at H3K27ac- 
marked euchromatin regions, while large- sized ones (≥3 kb) at H3K9me3- marked heterochromatin 
regions (Figure 3A). Accordingly, small- sized eccDNAs were generally more associated with genic 
regions, while large- sized ones with non- genic regions (Figure 3B). Since sperm eccDNAs in this study 
were dominantly small- sized ones (Figure 1C), strong enrichment of eccDNAs at genic regions was 
observed (Figure 1E). However, strong depletion at genic regions was reported for human sperm 
eccDNAs in a recent study (Henriksen et al., 2022). Close inspection suggests that the discrepancy 
is partially reconciled in the light of two eccDNA groups of different sizes. Henriksen et al. studied 
eccDNAs with the size largely ranging from ~3 kb to 50 kb (Henriksen et al., 2022), rather than small- 
sized ones reported by us and many others (Dillon et al., 2015; Møller et al., 2018; Møller et al., 
2020; Paulsen et al., 2019; Shibata et al., 2012; Wang et al., 2021a). This was why we chose 3 kb 
as the cutoff to separate eccDNAs into small- and large- sized categories. In support of this notion, the 
large- sized sperm eccDNAs detected in this study displayed a weak negative correlation with gene 
density or Alu elements (Figure 3C and D). Altogether, compared to euchromatin regions, heteroch-
romatin regions are probably too condensed to be fragmented into smaller pieces for small- sized 
eccDNA formation.

Germline eccDNAs as apoptotic products are not associated with 
meiotic recombination hotspots
The observed association between eccDNA and oligonucleosomal DNA fragmentation (Figure 2) is 
a typical feature of cell death. The spontaneous death of germ cells has been observed during the 
normal spermatogenesis (Liu et al., 2017; Shaha et al., 2010; Weinbauer et al., 2001; Young et al., 
2001); however, it is still debatable whether spermatids and sperm can undergo apoptosis (Lachaud 
et al., 2004). Thus, sperm- derived eccDNAs might be associated with apoptosis (if exists) or unpro-
grammed cell death of germ cells during the spermatogenesis (see also ‘Discussion’). In support of this 
hypothesis, all features associated with mouse germline eccDNAs identified in this study (Figure 1C, 
E, and F) closely matched with those of eccDNAs whose generation is dependent on apoptotic DNA 
fragmentation (Figure 4—figure supplement 1; Wang et al., 2021a).

During meiosis, two spatially closed cleavage sites catalyzed by SPO11 at recombination hotspots 
could release eccDNAs and generate de novo genomic deletions (Lukaszewicz et al., 2021), which, 
if transmitted to offspring, might contribute to structural variations within population. Since most 
sperm eccDNAs likely result from oligonucleosomal DNA fragments in sperm cells undergoing cell 
death (Figures 2 and 3) and SPA cells undergoing meiosis does give rise to more eccDNAs than 
other cells (Figure 1B), meiotic recombination is unlikely the major mechanism for germline eccDNA 
generation. To test this hypothesis, we first investigated to what extent eccDNA breakpoints well 
correspond to recombination hotspots defined as SPO11 or PRDM9 binding sites (Alleva et al., 2021; 
Lange et al., 2016). We noted that there was only a small number of eccDNAs with both breakpoints 
located in one recombination hotspot or two different hotspots (Figure 4A). These eccDNAs only 
constituted <0.15% (or <350) of mouse germline eccDNAs, suggesting a very low level of coincidence 
between eccDNA generation and meiotic recombination (Figure 4A). Consistently, only dozens of, 
or a few hundred eccDNAs in mouse germline cells coincided with known genomic deletions within 
mouse population (Figure 4B). Altogether, germline eccDNAs are likely apoptotic products that are 
not associated with meiotic recombination hotspots and heritable genomic deletions.

Microhomology-directed ligation is the major biogenesis mechanism of 
germline eccDNAs
We therefore further explored how nucleosome- protected DNA fragments get circularized into 
eccDNAs. As suggested by previous studies, MMEJ is implicated in eccDNA biogenesis (Lukaszewicz 
et al., 2021; Møller et al., 2015; Paulsen et al., 2021; Wang et al., 2021a). The precise distribution 
of microhomologous sequences relative to eccDNA breakpoints will help better understand how and 
to what extent MMEJ might contribute to eccDNA biogenesis. However, we noted that the presence 
of microhomologous sequences will hinder precision eccDNA breakpoint identification (Figure 4C), 
which is not well dealt with by existing methods for eccDNA detection, including ECCsplorer (Mann 
et  al., 2022), Circle_finder (Kumar et  al., 2017), Circle_Map (Prada- Luengo et  al., 2019), and 

https://doi.org/10.7554/eLife.87115
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Figure 4. Microhomology- directed ligation accounts for emergence of most extrachromosomal circular DNAs (eccDNAs). (A) Numbers of eccDNAs or 
randomly selected control regions overlapped with recombination hotspots in mouse. (B) Shown are numbers of mouse sperm eccDNAs or randomly 
selected control regions having 95% reciprocal overlap with different types of structural variations. (C) Illustrated are how an eccDNA with homologous 
sequences (CGA) at two ends is identified from short- read sequencing data by our methods vs. other methods. (D) Percentages of homologous 
sequences of different lengths (coded by different color saturation levels) are shown for eccDNAs and randomly selected control regions. (E) GC content 
of homologous sequences and randomly selected control regions. (F) Percentages of homologous sequences of different lengths (coded by different 
color saturation levels) are shown for small- sized (<3 kb) and large- sized (≥3 kb) eccDNAs. (G) Length of microhomologous sequences as a function of 
the eccDNA size. Data points are shown as median plus lower (25%) and upper (75%) quartiles. The shaded area is 95% confidence interval of linear 
regression line. Pearson correlation coefficient and two- sided t- test p- value are indicated. (H) Sequencing motif analysis for ±10 bp leftmost left ends 
and ±10 bp leftmost right ends of eccDNAs with no perfectly matched homologous sequences observed. (I) Model for microhomology- mediated end 
joining (MMEJ)- directed eccDNA biogenesis.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. High similarity between sperm extrachromosomal circular DNAs (eccDNAs) detected in this study and those from apoptotic 
DNA fragmentation reported previously.

Figure supplement 2. Evaluation of our nucleotide- resolution extrachromosomal circular DNA (eccDNA) detection method.

https://doi.org/10.7554/eLife.87115
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ecc_finder (Zhang et al., 2021; Figure 4—figure supplement 2A). Short sequencing reads spanning 
eccDNA breakpoints will be mapped to the genome as split reads, with its first part mapped to the 
right end of eccDNA, and the second part to the left end. If the sequence in front of the left eccDNA 
end is homologous to the right eccDNA end, or if the sequence following the right eccDNA end is 
homologous to the left eccDNA end, the homologous regions will be included in both parts of split 
reads to reach to a maximal length of matches, and many existing methods will mistake the eccDNA 
plus two homologous regions as the whole eccDNA region (Figure 4C). Being aware of it, we devel-
oped a base- resolution method for eccDNA identification on the basis of previous efforts (Figure 4—
figure supplement 2B; Kumar et al., 2017; Møller et al., 2018). When homologous sequences are 
present, we record the coordinates of the leftmost form of eccDNA and an offset corresponding to 
the length of homologous sequences to represent all possible eccDNA variants (Figure 4C). Similar to 
ECCsplorer (Mann et al., 2022), Circle_finder (Kumar et al., 2017), Circle_Map (Prada- Luengo et al., 
2019), and ecc_finder (Zhang et al., 2021), our method was not designed to identity eccDNAs that 
encompass multiple gene loci.

We evaluated the performance of our method in comparison with existing methods. Firstly, we 
simulated paired- end reads derived from a set of eccDNAs with homologous sequences around break-
points and employed all methods for eccDNA identification (see ‘Materials and methods’). In total, 
97.9, 97.9, 97.4, 95.3, and 91.1% eccDNA regions could be detected by our method, Circle_Map, 
Circle_finder, ecc_finder, and ECCsplorer, respectively (Figure 4—figure supplement 2C). This result 
suggests that our method has comparable performance with existing methods in detecting eccDNA 
regions. Moreover, our method could faithfully assign breakpoints with 97.4% accuracy, in contrast 
to no more than 15% by other methods (Figure 4—figure supplement 2D). Secondly, we applied 
all methods on one dataset generated in this study. Again, our method had comparable sensitivity 
and specificity with existing methods (especially Circle_finder and Circle_Map) in detecting eccDNA 
regions (Figure 4—figure supplement 2E). At least 60% of eccDNAs with homologous sequences 
were misannotated by ECCsplorer, ecc_finder, Circle_finder, and Circle_Map, respectively (Figure 4—
figure supplement 2A and F). Overall, our method shows a high efficiency and accuracy in precise 
eccDNA detection.

In contrast to simulated controls (15%), more than one- third of eccDNAs had ≥1 bp homologous 
sequences, most of which were shorter than 5 bp (Figure 4D), suggesting the involvement of MMEJ 
in eccDNA biogenesis. The GC content of homologous sequences was higher than that of simulated 
control regions, permitting stronger base- pairing for efficient MMEJ (Figure 4E). Considering that 
two free- ends of long DNA fragments might be not as spatially close as those of short DNA frag-
ments, formation of longer eccDNA should more rely on longer homologous sequences for stable 
base- pairing. Indeed, large- sized eccDNAs in SPA, RST, and EST cells did show higher percentage 
of ≥2 bp homology than small- sized eccDNAs, and large- sized eccDNAs in sperm cells showed higher 
percentage of >5 bp homology (Figure 4F). A significant positive correlation between lengths of 
homologous sequences and eccDNA sizes was observed (Figure 4G). We further reasoned that for 
the remaining two- thirds of eccDNAs that were lack of perfectly matched homologous sequences, 
imperfect homologous sequences might be present. Accordingly, we noted the same sequence 
motifs between eccDNA starts and sequences following eccDNA ends, and between eccDNA ends 
and sequences in front of eccDNA starts (Figure 4H). Similar observations have been made also by 
others before (Sin et al., 2020); however, they failed to precisely locate the homologous sequences 
relative to eccDNA breakpoints. We propose that sticky ends of DNA fragments with homologous 
sequences might base pair with each other, and then be ligated by DNA ligase, for example, DNA 
ligase III (Wang et al., 2021a), to form eccDNAs (Figure 4I). In sum, among all proposed mechanisms 
(Chiu et al., 2020; Dillon et al., 2015; Møller et al., 2015; Paulsen et al., 2021; Sin et al., 2020), 
MMEJ- mediated ligation accounts for emergence of most eccDNAs at least in germline cells.

The eccDNA biogenesis mechanism is conserved in somatic tissues and 
in human
Upon revealing the major biogenesis mechanism of mouse germline eccDNAs, we further examined 
whether the mechanism is unique to germline cells or common in somatic tissues. We therefore analyzed 
publicly available eccDNA data from various mouse tissues (Dillon et  al., 2015). Sequence- based 
prediction revealed significantly higher nucleosome occupancy probability for ~180 bp and ~360 bp 

https://doi.org/10.7554/eLife.87115
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eccDNA regions, suggesting their origin from oligonucleosomal fragments (Figure 5—figure supple-
ment 1A). In contrast to simulated controls (~20%), more than 1/3 of eccDNAs had microhomologous 
sequences, most of which were shorter than 5 bp (Figure 5—figure supplement 1B). The remaining 
2/3 of eccDNAs had the same sequence motifs between eccDNA starts and sequences following 
eccDNA ends, and between eccDNA ends and sequences in front of eccDNA starts (Figure 5—figure 
supplement 1C). The genomic distribution of eccDNAs closely matched with that of eccDNAs whose 
generation was dependent on apoptotic DNA fragmentation (Figure  5—figure supplement 1D). 
Altogether, these results indicate that microhomology- directed ligation of oligonucleosomal frag-
ments in apoptotic cells significantly contributes to eccDNA biogenesis in different mouse tissues.

We next examined whether the mechanism is also conserved in human by analyzing the features 
of human sperm eccDNAs detected in this study (see ‘Materials and methods’). Similarly, human 
sperm eccDNAs were originated from oligonucleosomal fragmentation as well, as suggested by the 
pronounced size periodicity of ~180 bp (Figure 5A), higher GC content, and nucleosome occupancy 

Figure 5. The biogenesis mechanism of germline extrachromosomal circular DNAs (eccDNAs) is conserved between human and mouse. (A) Size 
distribution of sperm eccDNAs in two biological replicates. (B) GC contents of sperm eccDNAs, regions upstream and downstream of eccDNAs, and 
randomly selected length- matched control regions. ***Two- sided Wilcoxon test p- value<0.001. (C) Predicted probability of nucleosome occupancy for 
eccDNA and randomly selected length- matched control regions (highlighted by red- shaded area), and surrounding regions. Boxplots showing the 
probability distribution of individual eccDNAs and control regions. ***Two- sided Wilcoxon test p- value<0.001. (D) Numbers of eccDNAs or randomly 
selected control regions overlapped with recombination hotspots in human. eccDNAs located completely within a hotspot (Intra-), or with both ends 
overlapped with two different hotspots (Inter-) are shown separately. (E) Shown are numbers of human sperm eccDNAs or randomly selected control 
regions having 95% reciprocal overlap with different types of structural variations. (F) Percentages of homologous sequences of different lengths (coded 
by different color saturation levels) are shown for eccDNAs and randomly selected control regions. (G) Length of microhomologous sequences as a 
function of the eccDNA size. Data points are shown as median plus lower (25%) and upper (75%) quartiles. The shaded area is 95% confidence interval 
of linear regression line. Pearson correlation coefficient and two- sided t- test p- value are indicated.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Biogenesis mechanism of extrachromosomal circular DNAs (eccDNAs) in mouse somatic tissues and human sperms.

https://doi.org/10.7554/eLife.87115
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probability (Figure  5B and C). We further performed base- level comparison between eccDNAs 
and meiotic recombination hotspots. Consistent with what we observed in mouse, only about 600 
eccDNAs (<0.7% of human sperm eccDNAs) were located in one recombination hotspot or two 
different hotspots (Figure  5D), and only dozens of, or a few hundred eccDNAs in human sperm 
cells coincided with known genomic deletions (Figure 5E). Overall, our analysis disfavors the meiotic 
recombination to eccDNA biogenesis. Instead, we observed higher frequency of micro- homologous 
sequences for eccDNAs than simulated control regions (Figure 5F). Moreover, large- sized eccDNAs 
had longer homologous sequences possibly for stable base pairing, as indicated by the strong positive 
correlation between lengths of homologous sequences and eccDNA sizes (Figure 5G). Altogether, 
these results suggest that microhomology- directed ligation of nucleosome protected DNA fragments 
is a conserved pathway for germline eccDNA generation in both human and mouse.

Discussion
The biogenesis mechanisms and biological implications of eccDNAs are big puzzles. Increasingly 
evidence has emerged to relate eccDNA formation with nucleosome- protected DNA fragments; 
however, to our knowledge, no study provides direct evidences. The comparison between high 
number of sperm eccDNAs and retained histones in sperm cells after histone- to- protamine transition 
(Torres- Flores and Hernández- Hernández, 2020) provide a good way to clarify the abovementioned 
issues. Here, we profiled eccDNA landscape during mouse spermatogenesis and explicitly linked 
eccDNAs with nucleosome- protected DNA fragments (Figure 2). According to these results, we spec-
ulate that any oligonucleosomal fragments might have a chance of eccDNA formation as long as 
microhomologous sequences are present at the ends. In other words, any single cells might generate 
distinct sets of eccDNAs and thus the theoretical number of eccDNA is extremely large. This might 
explain why sperm cells, which have a higher starting cell number, have more eccDNAs detected, even 
though the same amount of eccDNAs (10 ng) for each cell type was used for library preparation and 
high- coverage sequencing (~150 million reads).

Multiple biogenesis mechanisms of eccDNA have been proposed (Chiu et al., 2020; Dillon et al., 
2015; Møller et al., 2015; Paulsen et al., 2021; Sin et al., 2020); it is however unclear which one plays 
the dominant role. With our nucleotide- resolution eccDNA breakpoint detection method, we demon-
strated that microhomologous sequences are present at boundaries of most eccDNAs (Figure 4), 
suggesting the MMEJ- medicated eccDNA formation as the major mechanism for eccDNA biogenesis. 
However, rolling circle amplification in Circle- seq protocol preferentially increases the copy numbers 
of smaller eccDNAs, and our eccDNA detection method relying on uniquely mapped reads might 
favor the detection of small- sized eccDNAs with homologous sequences. It remains to be determined 
whether these small- sized eccDNAs with microhomologies are the dominant eccDNA species in the 
native composition. To examine whether the unexplored size populations of eccDNAs by Circle- seq 
were also associated with microhomologous sequences, we analyzed eccDNA data generated with 
long- read sequencing (Henriksen et al., 2022) or amplification- free strategies (Mouakkad- Montoya 
et al., 2021). Our sequence feature analyses also revealed the presence of homologous sequences 
surrounding eccDNA breakpoints (Figure 5—figure supplement 1E and F), suggesting the involve-
ment of MMEJ- medicated ligation for large- sized eccDNA as well. We further found the biogenesis 
mechanism of germline eccDNAs is common to eccDNAs in other tissues, and conserved between 
human and mouse. However, it remains unclear whether eccDNA generation from healthy cells not 
undergoing apoptosis is also medicated by MMEJ.

Spontaneous germ cell death has been observed during the normal spermatogenesis (Liu et al., 
2017; Shaha et al., 2010; Weinbauer et al., 2001; Young et al., 2001). Given the periodic size distri-
bution (Figure 1C) and similar genomic features with eccDNAs from apoptotic DNA fragmentation in 
somatic cells (Figure 1, Figure 4—figure supplement 1), we reason that mouse germline eccDNAs 
may be also the germ cell death products. As the final place for sperm maturation and storage, epidid-
ymis might contain unhealthy sperm cells undergoing cell death and so DNA fragments, which might 
additionally contribute to the high eccDNA loads of sperm cells than others. It is possible that failure 
of histone- to- protamine exchange might account for some sperm cell death. It has been shown that 
H3.3, generally linked to H3K4me3 marks, plays key roles in modulating TP1 removal and PRM1 incor-
poration for nucleosome eviction and replacement by protamine (Wang et al., 2019), and loss of H3.3 
will increase the cell death rate (Yuen et al., 2014). H3K36me3 and H3K9me3, whose demethylase 
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is inhibited by H3.3 (Udugama et al., 2022), are also involved in histone replacement (Wang et al., 
2019), failure of which might underlie the eccDNA generation as well. In line with it, sperm eccDNA 
regions correspond to depletion of H3.3 variant and H3K4me3, H3K36me3, and H3K9me3 histone 
modifications (Figure 2D and E). This suggests the number of sperm eccDNAs might be highly asso-
ciated with cell death, and sperm eccDNA may serve as a clinical biomarker for quality assessment of 
healthy sperms.

It is still debatable whether meiotic recombination is an important source of eccDNA generation. 
Both positive and negative correlations between eccDNAs and meiotic recombination rates at chro-
mosomal level have been reported previously (Henriksen et al., 2022; Lukaszewicz et al., 2021). 
Our results suggest that this discrepancy can be largely reconciled in the light of two eccDNA groups 
of different sizes. We noted that small- sized and large- sized eccDNAs are preferentially derived from 
euchromatin and heterochromatins, respectively (Figure 3). Since meiotic recombination hotspots are 
enriched at euchromatin regions (Lange et al., 2016), small- sized eccDNAs are therefore positively 
correlated with recombination rates but the opposite is true for large- sized eccDNAs (Figure 3—
figure supplement 1). Therefore, the observed correlations between eccDNA density and recom-
bination meiotic rate at chromosomal level are simply indirect reflections of their preferences to 
different chromatin regions.

We further investigated the overlaps between eccDNAs and meiotic recombination hotspots and 
structural variations at base level, and found that sperm cell eccDNAs does not seem to be a major 
source or by- products of de novo deletions, likely because that extensive eccDNA formation might 
only occur at dead sperm cells that have no chance to be transmitted to the next generation. However, 
we cannot fully exclude the possibility that some eccDNAs emerging in normal sperm cells and do 
not affect their viability will be accompanied by de novo deletions or re- integrated into genome to 
create structural variations. Furthermore, they might stimulate innate immune responses (Wang et al., 
2021a), serve as extracellular vesicles encoding small RNAs (Paulsen et al., 2019), and be taken as 
biomarkers (Lv et al., 2022), which represent exiting research directions.

Materials and methods
Isolation of mouse germ cells
Testes from adult C57BL/6 mice were decapsulated, and the seminiferous tubules were torn into small 
pieces. After incubating in 8 ml PBS containing 1 mg/ml collagenase (Sigma, C5138, St. Louis, MO) 
and 1 mg/ml hyaluronidase (Sigma, H3506) at 37°C for 6 min, the dispersed seminiferous tubules 
and cells were incubated at 37°C for 5 min with gentle shaking. Cells were collected by centrifuga-
tion at 200 × g for 5 min at 4°C, and washed once with PBS, resuspended in 15 ml PBS containing 
0.25% Trypsin (Gibco, 25200072) and 1 mg/ml DNase I (Sigma, AMPD1), and incubated at 37°C for 
5 min with gentle shaking. Thereafter, cells were collected and washed once with PBS. After filtration 
through a 70 μm Nylon Cell Strainer (BD Falcon, 352350), the cells were suspended in 30 ml of PBS 
and stained at 37°C with 5 mg/ml Hoechst 33342 (Thermo Scientific, 62249) for 30 min. Hoechst fluo-
rescence were detected with a 450 nm band- pass filter for blue fluorescent (Hoechst Blue) or a 675 nm 
band- pass filter for red fluorescent (Hoechst Red). Mouse spermatocytes, round spermatids, and elon-
gating spermatids were sorted by BD FACSAria Fusion (BD Biosciences). Mouse mature spermatozoa 
were collected form mouse cauda epididymis. The cauda epididymis was quickly cut into pieces and 
incubated in 1 ml pre- warmed human tubal fluid (HTF) (Millipore, MR- 070- D) for 15 min at 37°C, thus 
allowing the mature spermatozoa to release from the tissue. After filtration through a 40 μm Nylon 
Cell Strainer (BD Falcon, 352340), mature spermatozoa were collected and washed three times with 
PBS. About 106 SPA, RST, and EST cells and 107 sperm cells were obtained and used for the eccDNA 
extraction. All of the animal experiments were performed according to approved institutional animal 
care and use committee (IACUC) protocols (#08- 133) of the Institute of Zoology, Chinese Academy 
of Sciences.

Immunofluorescence
Mouse germ cells were spread on glass slides that were air- dried. The slides were fixed in 4% PFA at 
room temperature for 5 min and washed with PBS three times. After blocking with 5% bovine serum 
albumin, the primary antibodies (rabbit anti- SYCP3 pAb [Abcam, ab15093, 1:400]; mouse anti-γH2AX 
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pAb [Millipore, 05- 636, 1:400]; mouse anti- sp56 mAb [QED Bioscience, 55101, 1:200]; rabbit Tubulin 
pAb [ABclonal, AC007, 1:100]) were added to the slides, followed by 14–16 hr incubation at 4°C. After 
washing the slides with PBS, the secondary antibodies were added, followed by 1.5 hr incubation. The 
cell nuclei were stained with DAPI for 5 min. Images were observed using a fluorescence microscope 
SP8 microscope (Leica).

Human adult sperm sample preparation
The sperm donation candidates in this study were healthy young Chinese men. Each candidate 
completed a medical examination and extensive medical/social questionnaire to exclude any potential 
individuals with genetic or major medical problems (such as cardiovascular diseases and sexually trans-
mitted diseases) listed in the Basic Standard and Technical Norms of Human Sperm Bank published 
by Chinese Ministry of Health. Smokers, drug abusers, and heavy drinkers were also excluded. The 
rest of the candidates signed a voluntary sperm donation informed consent and agreed to live in 
Beijing for at least 6  mo. The sperm bank also recorded the candidates’ age, date of birth, and 
date of semen collection. The ethical approval in this study was provided by the Reproductive Study 
Ethics Committee of Peking University Third Hospital (2017SZ- 035). Semen samples were selected 
through 40% density gradient of PureSperm (Nidacon International, Molndal, Sweden) by centrifuga-
tion (500 × g, 30 min) at room temperature and washed with phosphate- buffered saline (PBS) for three 
times; the obtained spermatozoa were used for the eccDNA extraction.

Circle-seq
Purification of mouse and human eccDNAs was performed as previously described, with minor modi-
fications (Møller et al., 2018). In brief, samples were resuspended in 500 µl Lysis solution (10 mM Tris 
pH 7.4, 100 mM NaCl, 1% SDS, 1% Sarkosyl, 150 mM DTT) with 10 µl Proteinase K (Thermo Scientific, 
EO0491) and incubated overnight at 55°C. After cell lysis, phenol:chloroform:isoamyl alcohol was 
added and mixed, and centrifuged at 13,000 × g for 15 min at 4 °C. The supernatant was moved to 
a new tube, incubated with 500 µl isopropanol at room temperature for 10 min, and centrifuged at 
13,000 × g for 15 min at 4°C. The resulted DNA pellet was washed with 1 ml 70% ethanol, treated 
with alkaline to separate chromosomal DNA from eccDNAs by rapid DNA denaturing–renaturing, 
followed by column chromatography on an ion exchange membrane column (TIANprep Mini Plasmid 
Kit, DP103). Column- bound DNA was eluted in TE buffer (10 mM Tris- Cl, pH 8.0; 1 mM EDTA, pH 8.0) 
and treated with AsiSI (NEB, R0630S) and PacI (NEB, R0547S) endonucleases at 37°C for genomic 
DNA and mtDNA fragmentation. The remaining linear DNA was treated by exonuclease (Plasmid- 
Safe ATP- dependent DNase, Lucigen, E3101K) at 37°C for 1 wk, during which additional ATP and 
DNase was added every 24 hr (30 units per day) according to the manufacturer’s protocol (Plasmid- 
Safe ATP- dependent DNase, Lucigen, E3101K). The eccDNA samples were cleaned by phenol:chloro-
form:isoamyl alcohol once, followed by ethanol precipitation. EccDNAs were then amplified by phi29 
polymerase (NEB, M0269L) at 30°C for 16 hr. Phi29- amplified DNA was cleaned by phenol:chloro-
form:isoamyl alcohol once, followed by ethanol precipitation. The DNA samples were sonicated to 
a set size of 250 bp with an M220 Focused- ultra sonicator (Covaris, Woburn). Sequencing libraries 
were generated with NEBNext Ultra II DNA Library Prep Kit for Illumina (NEB, E7645S), according 
to the manufacturer’s instructions. Then, 10 ng of eccDNA samples were used for library prepara-
tion. NEBNext Multiplex Oligos for Illumina (Set 1, NEB #E7600) were used for PCR amplification 
of adaptor‐ligated DNA. Libraries were purified with SPRIselect Reagent Kit (Beckman Coulter, Inc 
#B23317). Paired‐end 150 bp sequencing was performed on Illumina NovaSeq 6000 System.

Quality control of Circle-seq and eccDNA validation
Exogenous circular DNA (pUC19) and mtDNA were measured by qPCR in a QuantStudio 6 Flex 
Real- Time PCR System, following the manufacturer’s protocol. The primer probes used for qPCR 
included pUC19 forward: 5′-AGC GAA CGA CCT ACA CCG AAC- 3′, pUC19 reverse: 5′-CTC AAG 
TCA GAG GTG GCG AAA C- 3′; MTND2 forward: 5′-AAC AAA CGG TCT TAT CCT TAA CAT AAC A- 3′, 
MTND2 reverse: 5′-TGG GAT CCC TTG AGT TAC TTC TG- 3′; H19 forward: 5′-GTA CCC ACC TGT CGT 
CC- 3′, H19 reverse: 5′-GTC CAC GAG ACC AAT GAC TG- 3′. EccDNA validation was performed by 
outward PCR in genomic DNA and eccDNA extractions. The primer probes used for eccDNA valida-
tion included Clone 1 (chr1:73132172–73132640) in- forward: 5′-TTT TCC TGG AGC ACA CTA GC- 3′; 
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Clone 1 in- reverse: 5′-CAT GCT AAA CAA AGC ATG TCA C- 3′; Clone 1 out- reverse: 5′-CAA CTG ACA 
CCA ACC ACA TC- 3′; Clone 2 (chr1:120058476–120058826) in- forward: 5′-CCT GCC ACT GCT CTG 
CAT TC- 3′; Clone 2 in- reverse: 5′-AGA TGC AAT AGG ACC AGG ATG- 3′; Clone 2 out- reverse: 5′-GCC 
CAG AGC AGA ATC CAA AG- 3′; Clone 3 (chr13:95405916–95406337) in- forward: 5′-GGT CAC ACA 
TGC AAA TGT CC- 3′; Clone 3 in- reverse: 5′-AAC ATA CCT GAG ACC CTA GG- 3′; Clone 3 out- reverse: 
5′-TTC CCA CAG CTA TGC TCA GC- 3′.

EccDNA detection
We developed a nucleotide- resolution eccDNA detection pipeline on the basis of previous efforts 
(Figure 4—figure supplement 1B; Kumar et al., 2017; Møller et al., 2018). Briefly, SeqPrep (St 
John, 2016; https://github.com/jstjohn/SeqPrep) was used to trim adapter sequences and merge 
the overlapping paired- end reads into singleton long reads, followed by reads mapping to GRCm38 
reference genome using BWA MEM version 0.7.17- r1188 (Li and Durbin, 2009). Samblaster version 
0.1.26 (Faust and Hall, 2014) or an in- house Perl script was used to remove PCR duplicates and 
separate alignments into split reads, discordant and concordant reads. Candidate eccDNAs were 
firstly identified based on split reads (high- confidence ones). If the total length of two sub- alignments 
of split reads exceeded the read length, homologous sequences were searched. When homologous 
sequences were found, we recorded the coordinates of the leftmost form of eccDNA and an offset 
corresponding to the length of homologous sequences to represent all possible eccDNA variants. 
Potential split reads that failed to be mapped as split reads in the first place (low- confidence ones) as 
well as discordant reads were identified and counted using in- house Perl scripts. The average cover-
ages (in terms of RPK) for candidate eccDNAs and surrounding regions were then calculated based 
on all different types of reads. Any eccDNA supported by at least two high- confidence split reads or 
discordant reads, with its 95% region covered by at least one read, and with its average coverage 
twice of that of its surrounding region, is considered as a high- confidence eccDNA.

Evaluation of our eccDNA detection method
We randomly selected 1000 eccDNAs containing ≥2 bp of microhomology sequences from this study. 
Ten copies of each eccDNA sequence were concatenated to mimic the product of rolling amplifi-
cation process. We then randomly extracted 50 fragments ranging from 250 to 350 bp from each 
concatenated sequence to mimic the sonication process and generated 150 bp paired- end reads from 
each fragment. We applied Circle_finder, Circle_Map, ecc_finder, ECCsplorer, and our own method to 
identify eccDNAs from the simulated paired- end reads. Detected eccDNAs with at least 95% recip-
rocal similarity with one of the 1000 eccDNAs were considered positive hits. We considered eccDNA 
boundaries to be correctly assigned only if they had the same start and end coordinates.

EccDNA characterization
Gene structure annotations in mouse and human are based on Ensembl GRCm38 Release 102 and 
Ensembl GRCh38 Release 104, respectively. Repeat elements are annotated by RepeatMasker data-
base. Random region generation, sequence composition calculation, and overlapping region deter-
mination were all done with Bedtools version 2.30.0 (Quinlan and Hall, 2010). The nucleosome 
occupancy probability of the eccDNAs and the surrounding regions was predicted using predNuPoP 
function of NuPoP version 2.2.0 R package (Xi et al., 2010). Motif analysis and visualization were done 
by Two Sample Logo web server (Vacic et al., 2006). Public ChIP- seq datasets (Jung et al., 2019; 
Jung et al., 2017; Singh and Parte, 2021) were aligned to GRCm38 reference genome using Bowtie, 
and sorted and indexed using SAMtools version 1.7 (Danecek et al., 2021). Picard MarkDuplicates 
version 2.18.14 was used to remove PCR duplicates. Peak calling was done with Macs2 version 2.2.7.1 
(Zhang et  al., 2008). Coverage file was generated from BAM file and visualized using deeptools 
version 3.5.1 (Ramírez et al., 2016).
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Data availability
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