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Abstract The application of next-generation sequencing (NGS) has transformed cancer 
research. As costs have decreased, NGS has increasingly been applied to generate multiple 
layers of molecular data from the same samples, covering genomics, transcriptomics, and meth-
ylomics. Integrating these types of multi-omics data in a combined analysis is now becoming a 
common issue with no obvious solution, often handled on an ad hoc basis, with multi-omics data 
arriving in a tabular format and analyzed using computationally intensive statistical methods. 
These methods particularly ignore the spatial orientation of the genome and often apply stringent 
p-value corrections that likely result in the loss of true positive associations. Here, we present 
GENIUS (GEnome traNsformatIon and spatial representation of mUltiomicS data), a framework for 
integrating multi-omics data using deep learning models developed for advanced image analysis. 
The GENIUS framework is able to transform multi-omics data into images with genes displayed 
as spatially connected pixels and successfully extract relevant information with respect to the 
desired output. We demonstrate the utility of GENIUS by applying the framework to multi-omics 
datasets from the Cancer Genome Atlas. Our results are focused on predicting the development 
of metastatic cancer from primary tumors, and demonstrate how through model inference, we are 
able to extract the genes which are driving the model prediction and are likely associated with 
metastatic disease progression. We anticipate our framework to be a starting point and strong 
proof of concept for multi-omics data transformation and analysis without the need for statistical 
correction.
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This valuable manuscript presents a new approach to transform multi-omics datasets into images 
and to exploit Deep Learning methods for image analysis of the transformed datasets. As an 
example, the method is applied to multi-omics datasets on different cancers. While the evidence in 
this specific case is solid, whether the method is working as advertised in other settings is not yet 
known.
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Introduction
The recent advent of next-generation sequencing (NGS) has revolutionized research and has 
been applied extensively to investigate complex biological questions. As the cost of sequencing 
continues to drop, it has become increasingly common to apply NGS technology to investigate 
complementary aspects of the biological processes on the same samples, particularly through 
analysis of DNA to resolve genomic architecture and single-nucleotide variants, RNA to inves-
tigate gene expression, and methylation to explore gene regulation and chromatin structure. 
Such multi-omics data provides opportunities to perform integrated analysis, which investigates 
multiple layers of biological data together. Over the years, this has resulted in the generation of an 
incredible amount of very rich data derived from the genome itself, either directly or indirectly. The 
genome is spatially organized, with genes positioned on chromosomes sequentially and accessed 
by biological processes in blocks based on chromatin organization (Franke et al., 2016). However, 
genome-derived NGS data is usually stored in and analyzed from a tabular format, where the 
naturally occurring spatial connectivity is lost. Furthermore, while genomic data is rich, the feature 
space is generally much larger than the number of samples. As the number of features to evaluate 
in statistical tests increases, the risk of chance associations increases as well. To correct for such 
multiple hypothesis testing, drastic adjustments of p-values are often applied which ultimately 
leads to the rejection of all but the most significant results, likely eliminating a large number of 
weaker but true associations. While this is a significant issue when analyzing a single type of data, 
the problem is exacerbated with performing multi-omics analysis where different types of data 
are combined, often in an ad hoc manner tailored to specific use cases. Importantly, a common 
theme in multi-omics analytical approaches is that observations are processed individually, thereby 
discarding potential spatial information that may originate from the organization of genes on indi-
vidual chromosomes.

Using artificial intelligence methods may help overcome this problem. Over the past decade, 
the development of artificial intelligence methods, particularly within deep learning architectures, 
has thoroughly revolutionized several technical fields, such as computer vision, voice recognition, 
advertising, and finance. Within the medical field, the roll-out of AI-based technologies has been 
slower, hampered in part by considerable regulatory hurdles that have proven difficult for machine-
learning applications where the systems may accurately classify patients or samples by some param-
eter, but the logical reason behind this is unclear (Wiens et  al., 2019). Nevertheless, AI systems 
have proven successful in a multitude of medical studies, and in recent years some AI-powered tools 
have started to move past testing to deployment (Benjamens et al., 2020). A major benefit of deep 
neural networks is that they can capture nonlinear patterns in the data without necessitating correc-
tion for multiple hypothesis testing. Additionally, the use of convolutional layers within the networks 
has shown to improve performance by decreasing the impact of noise (Jang et al., 2021; Du et al., 
2022). However, the problem with complex deep learning models is not the analysis itself but their 
interpretation (Rudin, 2019). Simpler models tend to have high interpretability; however, they are 
unable to capture complex nonlinear connections in data. This often leads to the utilization of ‘black 
box’ models at the cost of interpretability (Elmarakeby et al., 2021; Wolfe et al., 2021). ‘Black box’ 
models are popular in the artificial intelligence industry, especially in computer vision applications, 
where immense progress is being made in technologies such as self-driving cars and computer inter-
pretation of images. However, in many of those applications, the interpretability of models is not as 
important as in medicine (Yang et al., 2022; Petch et al., 2022).

In medicine, the interpretability of models is crucial since there is a need for discovering new 
biomarkers as well as identifying underlying biological processes (Picard et al., 2021). In addition to 
advancements in artificial intelligence and NGS, a vast amount of research has been conducted to 
interpret highly complex machine-learning models; frameworks such as DeepLIFT (Shrikumar et al., 
2017), Integrated Gradients (IG; Ancona et al., 2017; Sundararajan et al., 2017), and DeepExplain 
(Shrikumar et  al., 2017; Samek et  al., 2019; Bach et  al., 2015) were developed in recent years 
with the purpose of debugging complicated machine-learning models (Despraz et al., 2017). These 
frameworks enable the usage of deep learning models for integrated multi-omics analysis through 
their ability to evaluate input attribution in models that are traditionally considered a ‘black box’. In 
multi-omics analysis, this means that it is possible to combine the entirety of the data from multiple 
data sources into a high-dimensional data structure and process it with deep learning models without 
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losing interpretability. As output, an attribution score can be produced for every input, which may be 
interpreted as the relative importance of the feature in the model and used for further analysis.

Here, we present a framework for multi-omics analysis based on a convolutional deep learning 
network to find hidden, nonlinear patterns in spatially connected feature-rich multi-layered data. The 
spatial connection of the data is made by transforming the data into a multi-channel image in such a 
way that spatial connections between genes are captured and analyzed using convolutional layers. 
Using spatial connections between the data showed superior performance when compared to non-
spatially data transformations. Furthermore, the trained model is combined with IG, which allows us 
to evaluate the relative contribution of individual features and thus decipher the underlying biology 
that drives the classification provided by the deep learning models. IG is a non-parametric approach 
that evaluates the trained model relative to input data and output label, resulting in attribution scores 
for each input with respect to the output label. In other words, IG represent the integral of gradients 
with respect to inputs along the path from a given baseline. By using IG, we provide an alternative 
solution to the problem posed by performing multiple independent statistical tests. Here, instead 
of performing multiple tests, a single analysis is performed by transforming multi-omics data into 
genome images, training a model, and inspecting it with IG. IG will output an attribution score for 
every gene included in the genome image. These can be ranked in order to retrieve a subset of the 
most associated genes relative to the output variable. We named the framework GENIUS (GEnome 
traNsformatIon and spatial representation of mUltiomicS data), and the methodology may be split 
into two parts, classification and interpretation. First, the key feature of GENIUS is that for classifica-
tion, multi-omics data is transformed into multi-channel images where each gene is presented as a 
pixel in an image that covers the whole genome (Figure 1A, B). We then incorporate multiple types 
of omics data, such as mutation, expression, methylation, and copy number data, into the image as 
distinct layers. These layers are then used as input into the deep learning model for training against 
a binary or continuous outcome variable. Next, for interpretation, an attribution score is assigned to 
each feature using IG, allowing the user to extract information about which feature or features may 
drive a specific prediction based on deep learning analysis of input from multiple-omics data sources. 
In this work, we describe the development of the GENIUS framework and demonstrate its utility in 
predicting the development of metastatic cancer, patient age, chromosomal instability, cancer type, 
and as proof of concept, loss of TP53.

All predictions are based on multi-omics input through the GENIUS framework. Users may train 
their own or publicly sourced multi-omics data against a specified endpoint tailored to the user’s 
choice. The GENIUS framework thus overcomes the issue of multiple hypothesis testing and may 
provide new insights into the biology behind classification by deep learning models. The GENIUS 
framework is made available as a GitHub repository and may be used without restrictions to develop 
stratification models and inform about genome biology using multi-omics input.

Methods
GENIUS model architecture and hyperparameters
We designed a four-part convolutional neural network with the purpose of extracting the features 
from multi-dimensional data while minimizing the impact of noise in the data (Figure 1C). The network 
was implemented using the PyTorch framework. The structure of the network is similar to an autoen-
coder architecture; however, the reconstruction of the genome image is not penalized. The motivation 
behind the implemented network structure is to use an encoder in order to learn how to compact 
genomic information into a small vector, L, forcing the network to extract relevant information from 
up to five data sources. The next module reconstructs the image from vector L, learns which features 
are important, reorganizes them optimally, and removes noise. The final module of the network uses a 
series of convolutions and max-pooling layers in order to extract information from the reconstructed 
image and, finally, predicts the outcome variable using a fully connected dense network.

The first part of the network is called the encoder, as its purpose is to encode the entire image to 
a vector of size 128, representing the latent representation of the input data, ‘L’. Next, the original 
image is reconstructed from L into its original size using a decoder module in the network. In this step, 
since we are not using the reconstruction loss, the network reconstructs the image of a genome which 
is optimal for information extraction. This is followed by the extractor module containing convolution 
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Figure 1. Study overview. (A) The study utilized 2332 tumor samples representing six cancer types (bladder, uterine, stomach, ovarian, kidney, and colon) 
and transformed multi-omics data into images based on chromosome interaction networks. After the model was trained, we validated found genes with 
two independent cohorts representing early-stage bladder carcinoma (BLCA; UROMOL) and late-stage BLCA (Mariathasan). (B) The validation included 
looking at the most important genes driving metastatic disease, similar/different methylation patterns between cancer types, latent representation of 
genome data and looking at survival data. (C) The model architecture where the first part of the network encodes genome data into latent vector, L, 
followed by decoding where image is reconstructed. Next layers aim to extract information from the reconstructed image, concat it with L and make a 
final prediction.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Figure representing an example of genome image construction.

Figure supplement 2. Overall representation of a process where chromosomal instability information was included in genome image construction.

Figure supplement 3. Figure showing the percent of samples classified as metastatic when using the stage as a variable.

https://doi.org/10.7554/eLife.87133
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and max-pooling layers aiming to extract relevant information from the reconstructed image. The 
final part of the network flattens the learned features obtained from previous layers, concatenates 
them with the L vector, and forwards it to a fully connected dense feed-forward network where the 
final prediction is made (Figure 1C; LeNail, 2019). During training, the last module of this model was 
adopted to predict qualitative as well as quantitative types of data.

All models were trained with Adagrad optimizer with the following hyperparameters: starting 
learning rate = 9.9e−05 (including learning rate scheduler and early stopping), learning rate decay and 
weight decay = 1e−6, batch size = 256, except for memory-intensive chromosome images where the 
batch size of 240 was used. Adding chromosome interaction information to the data transformation 
showed improvement during training; next question was whether we should penalize the reconstruc-
tion of genome image during the training process. After multiple training scenarios and hyperpa-
rameter exploration, we concluded that by forcing the network to reconstruct genome images in 
the process of learning, we are limiting network performance. Instead, we used the appropriate loss 
function for prediction and allowed the network to reconstruct genome images that are optimal for 
making predictions.

Evaluating input image design
To evaluate the performance of GENIUS with an image-based transformation of input omics data, we 
tested four different image layouts of the genome. For each layout, we created a set of images where 
each sample is represented by one multi-channel image and each channel represented a specific 
type of omics data (gene expression, methylation, mutation, deletion, and amplification) (Figure 1A, 
Figure 1—figure supplement 1A-B). Each data type was encoded for each gene as a continuous 
value, where each gene was defined by a single pixel in each layer. We then tested the performance of 
the deep neural network on four different image layouts. First, we assembled the genome as a square 
image, measuring 198x198 pixels in total. Here, all genes were placed on the image sequentially 
according to their chromosomal locations, and individual chromosomes were organized by how close 
they were oriented in 3D space (Sarnataro et al., 2017). Second, we tested an image organized by 24 
× 3760 pixels, with 3760 pixels representing the most gene-rich chromosome, and each chromosome 
placed below the other on the image following the same order as in 198 × 198 images. Chromosomes 
containing fewer than 3760 genes had black pixels added to the end to create a rectangular image. 
Third, we tested a random 2D location, with each gene placed as a random pixel in a 198 × 198 
pixel square image. Lastly, we tested an image of a single vector with all genes placed in a randomly 
ordered sequence. Data transformation we performed and tested:

1.	 Square image (198 × 198 pixels), each gene represented by one pixel ordered by chromo-
some position. Chromosomes are ordered by interaction coefficient based on Hi-C sequencing 
(Sarnataro et al., 2017).

2.	 Square image (198 × 198 pixels), each gene is represented by one pixel located on the image 
in random order; thus, the 2D location carries no information.

3.	 Rectangular image (24 × 3760 pixels), each gene represented by one pixel ordered by chromo-
some position. Chromosomes are ordered by interaction coefficient based on Hi-C sequencing 
(Sarnataro et al., 2017).

4.	 A flat, one-dimensional vector containing all features from the five data sources in random order.

By using different image layouts, we wanted to investigate the spatial dependency of observations. 
Images were created by making a matrix for each source of data where each cell was represented by 
a single gene (Figure 1A, Figure 1—figure supplements 1 and 2). The genes in 198 × 198 and 24 × 
3760 images were ordered by position as well as by chromosome interaction coefficients resulting in 
the following order of chromosomes: 4, X, 7, 2, 5, 6, 13, 3, 8, 9, 18, 12, 1, 10, 11, 14, 22, 19, 17, 20, 16, 
15, 21. Finally, newly created observations for each data source were merged as a multi-channel image 
where each channel represents a single source of data (Figure 1A, Figure 1—figure supplement 1).

Samples and training data
We obtained gene expression, exome mutation, methylation, and copy number data from six cancer 
types from the Cancer Genome Atlas (TCGA). These were picked to filter out cancer types with less 
than 400 samples. Next, cancer types with an extremely high or extremely low proportion of metastatic 
samples (0.85 < Proportion > 0.15) were removed, resulting in ovarian serous cystadenocarcinoma 
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(OV), colon adenocarcinoma (COAD), uterine corpus endometrial carcinoma (UCEC), kidney renal 
clear cell carcinoma (KIRC), urothelial bladder carcinoma (BLCA), and stomach adenocarcinoma (STAD) 
(Figure 1A, Figure 1—figure supplement 3). RNAseq was obtained from the University of California 
Santa Cruz (UCSC) Toil pipeline (Vivian et al., 2017) and summarized to transcript per million (TPM) 
on the gene level. SNP6 copy number data were segmented using ASCAT v2.4 (Adzhubei et al., 
2010; Raine et al., 2016) and converted into a ploidy and purity normalized log R value by dividing 
the total copy number with ploidy and taking the log2 value. The weighted genome integrity index 
(wGII) (Burrell et al., 2013) was calculated on the available segmented copy number data, as previ-
ously described. Mutation calls were annotated using Polyphen2 to assess the mutation’s impact on 
the protein structure. Methylation was summarized by the mean methylation score for each gene.

Validation cohorts acquisition and processing
Two independent cohorts of bladder cancer patients were used for validation. The UROMOL cohort 
(Zuiverloon et  al., 2013; Lindskrog et  al., 2021) contains molecular data from 535 tumors from 
patients with early-stage bladder cancer (Ta and T1) and was included to evaluate the progression to 
muscle-invasive bladder cancer. The Mariathasan cohort (Mariathasan et al., 2018) contains molec-
ular data from 348 tumors from patients with advanced or metastatic bladder cancer (stages III and 
IV), treated with checkpoint immunotherapy. This cohort was included to evaluate the ability of the 
GENIUS framework to predict the likelihood of developing metastatic disease.

For both cohorts, RNAseq data was aligned against hg38 using STAR (Dobin et al., 2013) version 
2.7.2 and processed to generate count and TPM expression values with Kallisto (Ayers et al., 2017) 
version 0.46.2. Whole exome sequence data was processed using GATK (Van der Auwera, 2020) 
version 4.1.5 and ASCAT version 2.4.2 to obtain mutation and allele-specific copy number, purity, and 
ploidy estimates.

Data transformation
All mutations were ranked by PolyPhen scores, ranging between 0 and 1. Log R segmented copy 
number data was analyzed as deletion and amplification separately. Copy number deletion was 
defined as log R scores <log2 of 0.5/2, copy number amplification was defined as log R scores >log2 
of 5/2. All data types were defined on the gene level. For copy number alterations, we defined genes 
as amplified if the entirety of the gene was found within the amplified DNA segment. Genes were 
defined as deleted if they were partially or wholly within the deleted DNA segment (Figure  1A, 
Figure 1—figure supplement 2A, B). Finally, to enable data integration and for more stable training 
of machine-learning models, we generated mathematically equivalent values for each data source 
ranging from 0 to 1 through a simple linear transformation (min–max scaling). This enabled compari-
sons between individual data types, and was performed on each data source.

Training scenarios
We used the GENIUS framework to make six models predicting the following conditions:

1.	 Metastatic cancer (binary classification), defined as stage IV versus stages I–III.
2.	 TP53 mutation (binary classification), where the TP53 mutation was removed from the input data 

and used only as a binary outcome label.
3.	 The tissue of origin (multi-class classification).
4.	 Age (continuous variable).
5.	 wGII (Burrell et al., 2013), a chromosomal instability marker (continuous variable).
6.	 Randomized tissue of origin (multi-class variable). By randomizing the tissue of origin labels, a 

negative control was created. The purpose of this negative control was to confirm the model 
would fail to predict a pattern when none existed.

In order to adapt the network for predicting different variables, we simply changed the output 
layer and loss function for training. Binary classifications and the multi-class classification used 
softmax as the output layer and the cross entropy loss function. When predicting continuous values, 
the model used the output from the activation function with the mean squared error loss function. 
When predicting multi-class labels, the performance measure was defined by the F1 score, a standard 
measure for multi-class classification that combines the sensitivity and specificity scores and is defined 
as the harmonic mean of its precision and recall. To evaluate model performance against the binary 
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outcome, ROC analysis was performed, and the area under the curve (AUC) was used as the perfor-
mance metric.

Latent representation of genome
The purpose of latent vectors is to capture the most significant information from the entire genome 
data and compress it into a vector of size 128. This vector was later appended into a feed-forward 
network when making the final prediction. This way, the model had access to extracted informa-
tion before and after image reconstruction. After successful model training, we extracted the latent 
representations of each genome and performed the Uniform Manifold Approximation and Projection 
(UMAP) of the data for the purpose of visual inspection of a model (Figure 2A, B). The UMAP projected 
latent representations into two dimensions which could then be visualized. In order to avoid modeling 
noise, this step was used to inspect if the model is distinguishing between variables of interest. We 
observed that all training scenarios successfully utilized genome images to make predictions with the 
exception of Age, where no pattern was found from the genomic data, and randomized cancer type, 
which served as negative control where no pattern was expected (Figure 2B). Information in latent 
vectors extracted from Age-Model and randomized cancer type showed no obvious patterns, which 
is likely the cause of poor performance (Figure 2—figure supplement 2A-B).

Identifying genes relevant to the tested outcome
Once the model was trained on the data, the appropriate loss function and output layer, including 
the model weights, were stored in a .pb file. The model and final weights were analyzed using the 
IG method implemented by Capture (Sundararajan et al., 2017). IG is an attribution method that 
assigns an ‘attribution score’ to each feature of the input data based on predictions the model makes. 
The attribution score is calculated based on the gradient associated with each feature of each image 
channel with respect to the output of the model. This information indicates to the neural network 
the extent of weight decrease or increases needed for certain features during the backpropagation 
process. Next, the created attribution images are used to extract information for each image channel 
and for every pixel. Since the pixels represent individual genes, this information can be reformatted 
and filtered to show the most important genes from every data source included in the analysis. All 
attribution scores were scaled using a min–max scaler for every cancer type to address biological 
differences between cancer types.

Code availability
All code is available on the public GitHub repository (https://github.com/mxs3203/GENIUS; copy 
archived at Sokač, 2023), where the framework is easily available for analysis of private or public 
data. The framework provides tools to transform gene-oriented data into an image, train a model 
using existing model architecture and infer the most informative genes from the model using IG. The 
GitHub repository contains example data and instructions on how to use the GENIUS framework.

Computational requirements
In order to train the model, we used the following hardware configuration: Nvidia RTX3090 GPU, 
AMD Ryzen 9 5950X16 core CPU, and 32 Gb of RAM memory. In our study, we used a batch size 
of 256, which occupied around 60% of GPU memory. Training of the model was dependent on the 
output variable. For metastatic disease prediction, we trained the model for approximately 4 hr. This 
could be changed since we used early stopping in order to prevent overfitting. By reducing the batch 
size to smaller numbers, the technical requirements are reduced making it possible to run GENIUS on 
most modern laptops.

Results
Building genome images to utilize spatial connections in genomic data
We endeavored to present genomic data as an image with genes represented as individual pixels 
to be processed by our deep learning architecture. To evaluate the relevance of the spatial orienta-
tion of the genes relative to model performance, we tested four different image layouts (Methods, 
Figure 2A): (1) Square image (198 × 198 pixels), each gene represented by one pixel ordered by 

https://doi.org/10.7554/eLife.87133
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Figure 2. Data transformation overview. (A) The multi-omics genome data was transformed into four image types: square image organized by 
chromosome interaction network, chromosome image organized by chromosome interaction network, randomly organized image, and flat vector 
containing all multi-omics data. (B) The x-axis represents epochs and the y-axis represents area under the curve (AUC) score of fixed 25% data we 
used for accuracy assessment within the TCGA cohort. All four image types were used in training for metastatic disease prediction and the square 
image organized by chromosome interaction network resulted in best model performance (green color). The red line shows where the model resulted 
in the best loss. All curves stopped when the loss started increasing, indicating overfitting. The bar plot shows the proportion of correctly predicted 
(metastatic disease) in every cancer type included in the study. (C) Two-dimensional representation of vector L using Uniform Manifold Approximation 
and Projection (UMAP) for each predicted variable. Colors indicate the output variable which was used in the specific run.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Figure showing the process of training four image transformations in classification scenarios.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.87133
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chromosome position. Chromosomes are ordered by interaction coefficient based on Hi-C sequencing 
(Yang et al., 2022). (2) Square image (198 × 198 pixels), each gene is represented by one pixel located 
on the image in random order; thus, the 2D location carries no information. (3) Chromosome image 
(24 × 3760 pixels), each gene represented by one pixel ordered by chromosome position. Chromo-
somes are ordered by interaction coefficient based on Hi-C sequencing (Yang et al., 2022). (4) A flat, 
one-dimensional vector containing all features from the five data sources in random order. To evaluate 
the image layout, we used each type of layout to train against six biological states: (1) metastatic 
disease (stage IV vs. I–III), (2) cancer type, (3) burden of copy number alterations (defined by the wGII), 
(4) patient age, (5) TP53 status (where the TP53 pixel was set to ‘0’ for all samples), and (6) randomized 
tissue type (negative control) (Figure 2A, Figure 2—figure supplement 1A-E). Every model output 
variable was trained until we observed no change in loss function or until validation loss values started 
increasing, indicating overfitting, which we handled by implementing early stopping.

While predicting metastatic disease, we observed that the Square Image data transformation 
outperformed all other data transformations, reaching a validation AUC of 0.87. The chromosome 
image and shuffled squared image performed similarly with AUC of 0.72 and 0.70, respectively 
(Figure 2B). Interestingly, the flat vector of features scored validation AUC around 0.84; however, the 
loss function started increasing as training epochs increased, indicating that the model was overfitted 
(Figure 2B, Figure 2—figure supplement 1). In the second scenario, we tested multi-class prediction 
using six cancer types in our dataset. Square Image outperformed other image layouts, reaching an 
F1 score of 0.81. Chromosome Image followed with an F1 score of 0.74, and the flat vector of features 
performed similarly to the random square image, reaching F1 scores of 0.66 and 0.71, respectively 
(Figure 2A, Figure 2—figure supplement 1). In order to address the framework’s capabilities for 
predicting numeric output variables, we used wGII and patient age. Predicting wGII showed that the 
flat vector of features reached the least favorable Root Mean Squared Error (RMSE) score of 0.22, 
where chromosome image, shuffled square image, and square image reached similar RMSE scores of 
0.16, 0.15, and 0.14, respectively (Figure 2A, Figure 2—figure supplement 2).

These results suggest that data layout does not play a major role when predicting wGII as the 
number of events in the genome would be predictive regardless of location. The age prediction model 
using square image data transformation outperformed other data transformations and obtained a 
validation RMSE of 0.19. The shuffled image performed the worst, reaching an RMSE of 0.49, while 
the chromosome-organized image and flat vector of features scored similar RMSE values of 0.38 
and 0.31, respectively (Figure 2A, Figure 2—figure supplement 2). Additionally, the flat vector was 
inconsistent during training, but it did outperform the chromosome image. In the fifth scenario, we 
predicted the TP53 mutation status but removed the TP53 mutation itself from the data. Square 
Image performed the best, reaching a validation AUC of 0.83, whereas no major difference could 
be observed between a flat vector of features and Chromosome Image, reaching a validation AUC 
of 0.75 (Figure 2A, Figure 2—figure supplement 1). Finally, we tested the framework by predicting 
randomized cancer types as the negative control. All data transformations had similar and poor results 
(Figure  2A, Figure  2—figure supplement 3). For each output variable, we trained four different 
models utilizing the four data transformations. In all cases, the square image (198 × 198, ordered by 
chromosomes) outperformed the other transformations and was chosen as the layout for the final 
GENIUS framework, which was used for all subsequent analyses.

Latent representation of genome captures relevant biology
The model architecture contains an encoder and decoder connected by a latent vector of size 128 (L), 
which provides the opportunity to inspect model performance (Figure 1C). The L vector is considered 
the latent representation of the genome data because it extracts and captures the most relevant 
data with respect to the output variable. This implies that an optimally trained model would show a 
perfect latent representation of the genome when overlaid with the output variable. Furthermore, 
this vector was later appended into a feed-forward network when making the final prediction. This 
way, the model had access to extracted information before and after image reconstruction. In order 

Figure supplement 2. Figure showing the process of training four image transformations in regression scenarios.

Figure supplement 3. Figure showing the process of training four image transformations in classification scenarios (negative control).

Figure 2 continued

https://doi.org/10.7554/eLife.87133
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to visually inspect patterns captured by the model, we extracted the latent representations of each 
genome and performed the UMAP of the data to project it into two dimensions. We observed that all 
training scenarios successfully utilized genome images to make predictions that clustered into distinct 
groups, with the exception of Age. As expected, randomized cancer type, which served as negative 
control, also performed poorly (Figure 2C). Information in latent vectors extracted from Age-Model 
and randomized cancer type-model showed no obvious patterns, which is likely the cause of poor 
performance.

GENIUS classification identifies tumors likely to become metastatic
To explore the utility of the GENIUS framework to classify tumors from multi-omics data and to inter-
pret the biological drivers behind the classification, we further investigated the GENIUS model trained 
against metastatic disease using the TCGA datasets (Figure 2B). This analysis included primary tumors 
from six cancer types, a total of 2307 tumors, with 53% progressing to metastatic disease BLCA (277 
metastatic/133 not-metastatic), OV (535 metastatic/47 not-metastatic), COAD (196 metastatic/254 
not-metastatic), STAD (230 metastatic/189 not-metastatic), KIRC (208 metastatic/326 not-metastatic), 
and UCEC (117 metastatic/394 not-metastatic). The omics data types included somatic mutations, 
gene expression, methylation, copy number gain, and copy number loss. Using holdout type cross-
validation, where we split the data into training (75%) and validation (25%), we observed a gener-
ally high performance of GENIUS, with a validation AUC of 0.83 for predicting metastatic disease 
(Figure 2B). The GENIUS framework allows us to explore the attribution of individual data layers to 
the final prediction. Across the cohort, gene expression and methylation data were generally the most 
informative data layers when it comes to classifying metastatic disease (Figure 3A). We noted that 
expression and methylation overall ranked the highest in terms of mean scaled attribution, with the 
exception of OV, which showed enrichment in methylation followed by copy number gain and loss. 
The same analysis was performed for cancer type, wGII, patient age, TP53 status, and randomized 
tissue type (Figure 3A, Figure 3—figure supplements 1 and 2).

Figure 3. The most important events in metastatic disease development. (A) Pieplot showing the relative importance of each data source when 
predicting metastatic disease for each cancer type included in the study. (B) Top 50 genes for every cancer type scale by cancer type. The star symbol 
below the gene names indicates that the gene is part of COSMIC gene consensus. The color of the gene name indicates the data source and color of 
the bar indicates the cancer type.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The figure shows the relative attribution of each variable we predicted using the GENIUS framework.

Figure supplement 2. The figure shows the relative attribution of each variable we predicted using the GENIUS framework (x-axis) but split by cancer 
type.

Figure supplement 3. The figure shows patterns of methylation across chromosomes 1–22.

https://doi.org/10.7554/eLife.87133
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Interpreting the GENIUS model classifying metastatic cancer biology
Analyzing raw attribution scores we concluded the most informative data type overall regarding the 
development of metastatic disease was methylation (Figure  3A). To identify the individual genes 
driving the prediction, we pulled the 100 genes with the highest methylation attribution according to 
the GENIUS classification. We observed that many methylated regions overlapped between the six 
cancer types. These regions included methylation on specific regions of chromosomes 1, 6, 11, 17, 
and 19 (Figure 3A, Figure 3—figure supplement 3). Additionally, OV showed a unique methylation 
pattern spanning most of chromosome 7, while KIRC, COAD, and BLCA displayed regions of overlap-
ping methylation on chromosome 22. We also noticed that mutation data often had a single mutation 
with a large attribution score while expression and methylation showed multiple genes with high 
attribution scores. To determine the genes that overall across the multi-omics data analysis contrib-
uted the most to the GENIUS classification of metastatic disease, we normalized gene attribution by 
cancer type and compared the top 50 genes for each cancer type (total of 152 genes, Figure 3B, 
Supplementary file 1). Unsurprisingly, we observed that TP53 mutations held the highest attribution 
score, followed by mutations to VHL. Both of these genes are well-established drivers of cancer and 
were previously reported as enriched in metastatic cancer (Pandey et al., 2021; Christensen et al., 
2022), likely representing a more aggressive disease. However, of the 152 top genes, we noted only 
11 genes previously reported as either oncogenes or tumor suppressor genes in the COSMIC cancer 
gene census (Figure 3B, indicated with a star), leaving 141/152 as potentially novel cancer genes. 
The highest scoring gene not previously associated with cancer was SLC3A1, the expression of which 
was found to be strongly associated with metastatic disease in clear cell renal cancer. SLC3A1 gene 
is a protein-coding gene associated with the transportation of amino acids in the renal tubule and 
intestinal tract, and aberrations in this gene have been associated with cystinuria, a metabolic disorder 
of the kidneys, bladder, and ureter (Jiang et  al., 2017; Woodard et  al., 2019). Furthermore, we 
identified PLVAP, often involved in MAPK cascades as well as in cellular regulatory pathways and the 
tumor necrosis factor-mediated signaling pathway. In BLCA, one of our most significant findings was 
increased expression of KRT17, a gene associated with a cytoskeletal signaling pathway, glucocorti-
coid receptor regulatory network, and MHC class II receptor activity (Wu et al., 2021; Li et al., 2021). 
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Figure 4. Validation on late-stage immunotherapy-treated bladder cancer (Mariathasan). (A) Forest plot showing top 10 expressed/methylated genes 
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associated with high stage and improved immunotherapy response).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Histogram of correlation coefficients between each gene found in BLCA TCGA gene expression data and methylation data.

Figure supplement 2. Histogram showing distribution of number of randomly picked significant genes in Mariathasan dataset.

https://doi.org/10.7554/eLife.87133
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KRT17 has previously been reported as a potential cancer gene, but with an uncertain role (Zhang 
et al., 2022). Across cancer types, TOP3A was found to be commonly methylated in BLCA, COAD, 
STAD, and UCEC. TOP3A is associated with homology-directed repair and methylation may lead to 
increased chromosomal instability, a hallmark of cancer (Hanahan and Weinberg, 2011). The top 
10 most important events driving the prediction of every output variable included in the study are 
summarized in Supplementary files 2 and 3.

Validation of bladder cancer metastasis-associated genes in an 
independent cohort of advanced and metastatic bladder cancer
To investigate if the genes with the highest attribution score in the TCGA bladder cancer analysis were 
indeed associated with metastatic bladder cancer, we utilized an immunotherapy-treated predomi-
nantly late-stage (mainly stage III and IV) bladder cancer cohort with gene expression data available 
for 348 tumors (Mariathasan et  al., 2018). For this analysis, we considered only the methylation 
and gene-expression-associated genes from the TCGA analysis. For methylation, we restricted the 
analysis to genes showing a significantly negative correlation between gene expression and gene-
specific methylation levels (Figure 4, Figure 4—figure supplement 1). We then combined the meth-
ylation and gene-expression-based attribution scores and took the top 10 genes: RBMX, COL7A1, 
KRT17, JUP, WIPI2, TOP3A, EIF3B, WTAP, POTEI, and MRRF. Next, we implemented 10 multivariate 
Cox proportional hazard models (one for each gene), including available clinical parameters such 
as tumor stage, gender, neoantigen burden and baseline performance status (Supplementary file 
4). This showed that in multivariate analysis, 7/10 genes had a significant association with outcome 
(Figure 4A). To evaluate the results of this analysis, we compared it to an identical model run 1000 
times, but where the 10 genes were randomly picked. In 1000 runs, not one returned at least 7 signifi-
cant genes (p < 0.001) (Figure 4A, Figure 4—figure supplement 2). The median percentage of signif-
icant genes for each run is reported in Figure 4B. Next, we performed two independent analyses, 
comparing the expression values of the top 10 genes between either (1) tumors defined as stage IV 
versus stages I and III, and (2) patients that responded to immunotherapy (CR and PR) versus patients 
that did not respond to immunotherapy (stable disease [SD] and progressive disease [PD]). Following 
correction for multiple hypothesis testing, we observed that TOP3A showed significantly increased 
expression in stage IV tumors, while JUP and KRT17 were significantly increased in stage I–III tumors 
(Figure 4C, brown dots). When comparing gene expression to response to immunotherapy, TOP3A, 
RBMX, and WIPI2 were significantly more expressed in complete response (CR)/partial response (PR) 
while KRT17 and COL7A1 were significantly more expressed in SD/PD. Interestingly, we observed 
increased expression of TOP3A in stage IV tumors, suggesting a role in metastatic disease, yet we 
also observed that the same gene was more expressed in tumors that responded to immunotherapy. 
This suggests that TOP3A is associated with the development of metastatic disease, but its expression 
may result in the development of a bladder cancer phenotype that is more sensitive to checkpoint 
immunotherapy.

Validation of metastasis-associated genes in an independent cohort of 
early-stage bladder cancer
To investigate if the metastasis-associated genes found through the GENIUS framework also plays 
a role in the development of aggressive features in early-stage bladder cancer, we acquired the 
UROMOL dataset (Lindskrog et al., 2021), which includes gene expression data from 535 low-stage 
tumors. We again investigated the top 10 methylated or expressed genes found in the TCGA anal-
ysis of BLCA, using the gene expression data from UROMOL. First, we performed Cox proportional 
hazard analysis with progression-free survival (PFS) using the top 10 genes found by the GENIUS 
framework, again creating 10 individual models containing the selected genes and available clinical 
factors such as age, tumor stage, and sex. This showed that in multivariate analysis, 5/10 genes had 
a significant association with outcome (Figure 5A). The results were compared with cox proportional 
hazard models utilizing random sets of 10 genes, repeated 1000 times. Of these, 216 runs showed at 
least five significant genes (p = 0.216) (Figure 5A, Figure 5—figure supplement 1), indicating that in 
early-stage bladder cancer, the genes found by GENIUS to be associated with cancer metastasis were 
not uniquely relevant for disease progression. However, when we computed the median percentage of 
significant genes and compared it to the top 10 genes picked by the GENIUS framework, by random 

https://doi.org/10.7554/eLife.87133
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chance, only 20% of genes overall were found to be significantly associated with PFS compared to 
50% of GENIUS genes (Figure 5B). To further investigate the top 10 genes picked by GENIUS, we 
compared the mean expression of each gene between different clinical risk groups (EORTC, 2017) 
and tumor grade. In this analysis, six of the 10 genes were significantly associated with EORTC status 
(Figure 5C, Supplementary file 4), and seven with grade (Figure 5D, Supplementary file 5).

Discussion
In this work, we explored multiple options on how to transform multi-omics data into an image, 
leading to the utilization of deep learning models, which are often described as ‘black box’ models. 
The model architecture was evaluated in six different training scenarios, with a focus on validating 
the prediction of metastatic cancer. In this process, we also evaluated four different image layouts, 
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Figure 5. Validation on early-stage bladder cancer (UROMOL). (A) Forest plot showing top 10 expressed/methylated genes picked by GENIUS for 
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The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Histogram showing distribution of number of randomly picked significant genes in UROMOL dataset.
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concluding that of these, projecting the genome into a 198 × 198 square image with genes organized 
based on chromosome interaction (Sarnataro et al., 2017) performed the best. While that spatial 
organization improved the prediction, we recognize that there may exist a more optimal representa-
tion of multi-omics data which should be explored further in future work. Potential methods for orga-
nizing gene orientation in a multi-channel image could consider integrating topologically associating 
domains (Beagan and Phillips-Cremins, 2020) along with the spatial information from Hi-C. With the 
current implementation of GENIUS, gene layout can be set manually by the user to explore this issue 
further. For GENIUS, we have also included an auto-encoder in the network to recreate the input 
information without reconstruction loss. In this manner, the model itself can reconstruct the image of 
a genome in a format that is optimal for the prediction it is trying to make. The model also produces a 
latent representation of multi-omics data in a shape of a vector of a size 128 (L), which is later concat-
enated in a model when making final predictions. In order to investigate training effectiveness, we 
performed a UMAP clustering analysis of the L vector, where we compared the 2D representation of 
L with the variables of interest (Figure 2C). It is clear from this analysis that the L vector itself holds 
information that may be particularly relevant for multi-class prediction, but further analysis is needed 
to decipher what information is encoded in the L vector.

The main purpose behind the study was to demonstrate the feasibility of leveraging the power 
of deep learning techniques optimized for image analysis to interpret genome-derived multi-omics 
data. A key element of this approach includes the transformation of genomic data into images with 
genes arranged as pixels organized by chromosomal location. Beyond the readout from multi-omics 
data, this approach provides spatial information to the deep learning framework, which significantly 
improves the performance of the models (Figure 2B). To the best of our knowledge, we are the first 
to demonstrate the utility of spatial information and to provide a ready-to-use framework that incor-
porates spatial information and deep learning for the analysis of genome-derived multi-omics data. 
Furthermore, within the GENIUS framework, we facilitate the interpretation of the trained model 

Table 1. Summary of BLCA genes in two validation cohorts.

Gene Early stage Late stage (immunotherapy) Description

TOP3A
HR > 0 (PFS), high 
grade, high EORTC

HR = 0 (OS), enriched in stage IV, 
enriched in CR/PR

Catalyses the transient breaking and rejoining of a single strand of DNA, 
involved in regulation of recombination and homology-directed repair. Positive 
association to OS in OV (de Nonneville et al., 2022)

RBMX
HR < 0 (PFS), low 
grade, low EORTC HR > 0 (OS), enriched in CR/PR

Associated with translational control and DNA damage pathways. Reported to 
be negatively correlated with tumor stage, histological grade, and poor patient 
prognosis in BLCA (Song et al., 2020)

POTEI HR = 0 (PFS) HR = 0 (OS) POTE family of proteins is associated with apoptotic cells (Yu et al., 2023)

KRT17

HR < 0 (PFS),
low grade, low 
EORTC

HR > 0 (OS), enriched in stages I–
III, enriched in SD/PD

Associated with structural molecule activity and MHC class II receptor activity. 
Associated with metastasis and angiogenesis in variety of tumor types (Ji et al., 
2021)

WIPI2
HR = 0 (PFS), high 
grade HR > 0 (OS), enriched in CR/PR

Component of the autophagy machinery that controls the major intracellular 
degradation process. WIPI2 is suggested as a biomarker for predicting colorectal 
cancer prognosis (Yu et al., 2023)

MRRF
HR = 0 (PFS),
low grade HR > 0 (OS)

Associated with the ribosome recycling factor, which is a component of the 
mitochondrial translational machinery. High expression is associated with poor 
outcome in ovarian cancer (Song et al., 2020)

EIF3B
HR = 0 (PFS), high 
EORTC HR > 0 (OS)

Eukaryotic translation initiation factor 3 subunit B is a promoter associated with 
pancreatic cancer (de Nonneville et al., 2022)

JUP HR = 0 (PFS)
HR > 0 (OS),
enriched in stages I–III

Common junctional plaque protein. Controversial role in different malignancies. 
Knockdown of JUP in epithelium-like GC cells causes EMT and promotes GC cell 
migration and invasion (Chen et al., 2021)

WTAP

HR <0 (PFS), low 
EORTC,
low grade HR = 0 (OS)

Wilms’ tumor 1-associating protein is associated to RNA methylation 
modifications, which regulate biological processes such as RNA splicing, cell 
proliferation, cell cycle, and embryonic development (Chen et al., 2021)

COL7A1 HR = 0 (PFS)
HR > 0 (OS),
enriched in SD/PD

Associated with metabolism of proteins and integrins in angiogenesis. Aberrant 
gene expression is associated with distinct tumor environment, metastasis and 
survival in multiple cancer types (Oh et al., 2021)

https://doi.org/10.7554/eLife.87133
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in order to explore the biology behind the prediction without the need for data preprocessing and 
multiple hypothesis correction. This was achieved by combining a deep learning network with IG 
(Sundararajan et al., 2017), allowing us to infer the attribution score for the input, resulting in non-
parametric, ready-to-analyze output.

For every cancer type included in the dataset, we listed the top 10 genes driving metastatic disease 
and investigated in detail genes associated with BLCA metastasis and aggressiveness (Table 1). For 
this, we used two independent cohorts, one representing late-stage and metastatic cancer, and one 
representing early-stage cancer. In both cohorts, we tested if methylation and expression of genes 
found by the GENIUS framework were associated with survival at higher rates than when compared to 
randomly picked genes. In the late-stage BLCA cohort, seven out of 10 genes were significantly asso-
ciated with overall survival, while in the early-stage BLCA cohort, we found that five out of 10 were 
significantly associated with PFS. That the results in the early-stage bladder cancer cohort (UROMOL) 
are less significant may relate to the model being trained to predict metastatic cancer. It is likely that 
the drivers of malignancy are different in early relative to late-stage disease, thus the top 10 genes 
found by GENIUS might not be prognostic in early-stage setting. In this regard, it is also worth noting 
that two of the top 10 genes (RBMX and KRT17) were associated with poor outcome in late-stage 
disease, while they were associated with improved outcome in early-stage disease. Interestingly, in the 
late-stage bladder cancer cohort, we observed that high expression of TOP3A associated with stage 
IV disease (Figure 4C). However, we also observed that high expression associated with improved 
response to immunotherapy. It is known that TOP3A has an important role in homology-directed 
repair and loss may be associated with chromosomal instability, which has shown a positive associa-
tion with immunotherapy response (Bakhoum and Cantley, 2018; Chen et al., 2022; Sokač et al., 
2022), potentially offering a likely explanation for this finding. Similarly, we observed that KRT17 was 
enriched in stages I–III, suggesting it may be associated with a less aggressive disease type. However, 
in the immunotherapy-treated cohort, KRT17 is associated with poor response to immunotherapy. In 
previous studies, KRT17 has been reported as associated with the development of metastatic disease, 
MHC type II receptor activity and angiogenesis (Zhang et al., 2022; Ji et al., 2021). This indicates that 
the KRT17 gene plays an important role as tumor suppressor gene in early-stage cancer, and that loss 
may further promote the development of aggressive, metastatic disease. While further research in this 
field is required to properly assess the utility of the reported genes, this work provides a framework 
that unlocks powerful machine-learning for more direct analysis of multi-omics data.

Taken together, we provide here the GENIUS framework along with analysis demonstrating the 
utility in multi-omics analysis. While we have focused on cancer analysis here, we believe GENIUS 
may find utility in a diverse range of genome-based multi-omics analyses. We have provided a git-
hub repository that can be used to transform data into images and train the same model predicting 
variables of user’s interest and inferring the importance of input with respect to the desired output.
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