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Abstract Plants with innate disease and pest resistance can contribute to more sustainable agri-
culture. Natural defence compounds produced by plants have the potential to provide a general 
protective effect against pathogens and pests, but they are not a primary target in resistance 
breeding. Here, we identified a wild relative of potato, Solanum commersonii, that provides us with 
unique insight in the role of glycoalkaloids in plant immunity. We cloned two atypical resistance 
genes that provide resistance to Alternaria solani and Colorado potato beetle through the produc-
tion of tetraose steroidal glycoalkaloids (SGA). Moreover, we provide in vitro evidence to show 
that these compounds have potential against a range of different (potato pathogenic) fungi. This 
research links structural variation in SGAs to resistance against potato diseases and pests. Further 
research on the biosynthesis of plant defence compounds in different tissues, their toxicity, and the 
mechanisms for detoxification, can aid the effective use of such compounds to improve sustainability 
of our food production.

eLife assessment
This valuable study links natural variation in steroidal glycoalkaloid production to disease and insect 
resistance in potato species. The study design is straightforward and thorough, and the evidence 
supporting the main conclusions is solid. The work will be of interest to plant biologists and 
breeders.

Introduction
Worldwide, up to 20–40% of agricultural crop production is lost due to plant diseases and pests 
(Savary et al., 2019). Many crops have become heavily dependent on the use of pesticides, but this 
is unsustainable as these can negatively affect the environment and their use can lead to development 
of pesticide resistance (Calvo-Agudo et al., 2019; Hallmann et al., 2014; Mikaberidze et al., 2017; 
Lucas et al., 2015; Fairchild et al., 2013; Landschoot et al., 2017). The European Union’s ‘Farm to 
Fork Strategy’ aims to half pesticide use and risk by 2030 (European Commission Communication 
from the Commission to the European Parliament, the Council, the European Economic and 
Social Committee and the Committee of the Regions, 2020), a massive challenge that illustrates 
the urgent need for alternative disease control methods.

Wild relatives of crop species are promising sources of natural disease resistance (Rodewald and 
Trognitz, 2013; Vleeshouwers et al., 2011a; Wolters et al., 2019; Arora et al., 2019). Monogenic 
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resistance caused by dominant resistance (R) genes, typically caused by immune receptors that belong 
to the nucleotide-binding leucine-rich repeat (NLR) class, is successfully employed by plant breeders 
to develop varieties with strong qualitative disease resistance. However, this type of resistance is 
usually restricted to a limited range of pathogens (Flor, 1971; Jones and Dangl, 2006) and it is often 
not very durable.

More robust resistance can be obtained by combining NLRs with different recognition specifici-
ties (Kim et al., 2012; Zhu et al., 2012; Vleeshouwers et al., 2011b; Rietman et al., 2012), or by 
including pattern recognition receptors (PRRs), which recognise conserved (microbe- or pathogen-
derived) molecular patterns. Recent reports show that PRRs and NLRs cooperate to provide disease 
resistance (Ngou et al., 2021; Yuan et al., 2021; Rhodes et al., 2022). Alternatively, susceptibility 
(S) genes provide recessive resistance that can be both broad-spectrum and durable (van Schie and 
Takken, 2014; Jørgensen, 1992; Sun et al., 2022). Unfortunately, their recessive nature complicates 
the use of S genes in conventional breeding of autopolyploids and many mutated S genes come with 
pleiotropic effects.

Besides the defences mentioned above, most plants produce specialised metabolites with anti-
microbial or anti-insect activity, either constitutively (phytoanticipins) or in response to pathogen 
attack or herbivory (phytoalexins) (VanEtten et  al., 1994). These natural defence compounds are 
derived from a wide range of building blocks, leading to a large structural diversity throughout the 
plant kingdom (Piasecka et al., 2015; Dixon, 2001). Specific classes of compounds can be found in 
different plant families, for example glucosinolates are typically found in Brassicaceae and benzoxazi-
noids are widely distributed among Poaceae, with further chemical diversification within plant families 
(de Bruijn et al., 2018; Halkier and Gershenzon, 2006). Examples in various pathosystems show that 
the capacity for detoxification of plant defence compounds is important for pathogenicity, especially 

eLife digest Farmers often rely on pesticides to protect their crops from disease and pests. 
However, these chemicals are harmful to the environment and more sustainable strategies are 
needed. This is particularly true for a disease known as the early blight of potato, which is primarily 
treated using fungicides that stop the fungal pathogen responsible for the infection (Alternaria solani) 
from growing.

An alternative approach is to harness the natural defence systems that plants already have in place 
to protect themselves. Like humans, plants have an immune system which can detect and destroy 
specific pathogens. On top of this, they release defence compounds that are generally toxic to pests 
and microbes, stopping them from infiltrating and causing an infection.

In 2021, a group of researchers discovered a wild relative of the potato, known as Solanum 
commersonii, with strong resistance to early blight disease. Here, Wolters et al. – including some 
of the researchers involved in the 2021 study – set out to find how this plant defends itself from the 
fungus A. solani.

The team found that two closely linked genes are responsible for the resistant behaviour of S. 
commersonii, which both encode enzymes known as glycosyltransferases. Further experiments 
revealed that the enzymes protect S. commersonii from early blight disease by modifying steroidal 
glycoalkaloids, typical defence compounds found in potato and other plants from the same family. 
The glycosyltransferases alter glycoalkaloids in S. commersonii by adding a sugar group to a specific 
part of the compound called glycone.

Wolters et al. found that the glycoalkaloids from S. commersonii were able to slow the growth of 
other fungal pathogens that harm potatoes when tested in the laboratory. They also made plants 
resistant to another common destroyer of crops, the Colorado potato beetle.

These findings could help farmers breed potatoes and other crops that are more resistant to early 
blight disease and Colorado potato beetle, as well as potentially other fungi and pests. However, 
further experiments are needed to investigate how these glycone-modified glycoalkaloids affect 
humans, and how variants of glycoalkaloids are produced and degraded in different parts of the 
plants. Acquiring this knowledge will help to employ these defence compounds in a safe and effective 
manner.

https://doi.org/10.7554/eLife.87135
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for necrotrophic pathogens which encounter toxic plant metabolites as a consequence of their life-
style (VanEtten et  al., 1995; Westrick et  al., 2021). Similarly, plant defence compounds play an 
important role against herbivorous insects, which have evolved various mechanisms to deal with toxic 
plant compounds (Després et al., 2007; Heidel-Fischer and Vogel, 2015; Calla et al., 2017).

While plant immune receptors can offer resistance against a restricted range of pathogens, plant 
defence compounds have the potential to provide a more general protection, depending on their 
mode of action. Plants from the nightshade family (Solanaceae) produce saponins that are character-
ised by a steroidal alkaloid aglycone, linked to a variable oligosaccharide chain (steroidal glycoalka-
loids – SGAs) (Li et al., 2006; Heftmann, 1983). The protective effect of SGAs stems from their ability 
to interact with membrane sterols, disrupting the cell integrity from target organisms (Keukens et al., 
1995; Armah et al., 1999; Fenwick et al., 1991; Osbourn, 1996). In addition, they can act on the 
nervous system of pests and herbivores through their inhibitory effect on cholinesterase enzymes 
(Orgell et al., 1958; Wierenga and Hollingworth, 1992; Roddick, 1996). As a consequence, SGAs 
can have both antimicrobial and anti-insect activity (Chowański et al., 2016; Munafo and Gianfagna, 
2011; You and van Kan, 2021; Sinden et al., 1986; Sinden et al., 1980; Tai et al., 2015; Tai et al., 
2014; Paudel et al., 2019; Kaup et al., 2005; Seipke and Loria, 2008; Paudel et al., 2017).

Early blight is an important disease of tomato and potato that is caused by the necrotrophic fungal 
pathogen Alternaria solani (Christ, 1989; Rotem, 1994; Shtienberg et al., 1990). In a previous study, 
we found a wild potato species, Solanum malmeanum (also referred to as S. commersonii subsp. 
malmeanum [Spooner et  al., 2014]), with strong resistance against potato pathogenic Alternaria 
isolates and species from a number of different locations (Wolters et al., 2021). We showed that 
resistance is likely caused by a single dominant locus and that it can be introgressed in cultivated 
potato (Wolters et al., 2021). Resistance to necrotrophs is usually considered to be a complex, poly-
genic trait, or recessively inherited according to the inverse gene-for-gene model (Glazebrook, 2005; 
Vleeshouwers and Oliver, 2014; Lorang et al., 2007; Nagy and Bennetzen, 2008; Faris et al., 
2010; Shi et al., 2016). It therefore surprised us to find a qualitative dominant resistance against early 
blight in S. commersonii (Wolters et al., 2021).

In this study, we explored different accessions of S. commersonii and S. malmeanum and devel-
oped a population that segregates for resistance to early blight. Using a bulked segregant RNA-Seq 
(BSR-Seq) approach (Dobnik et al., 2021), we mapped the resistance locus to the top of chromosome 
12 of potato. We sequenced the genome of the resistant parent of the population and identified two 
glycosyltransferases (GTs) that can provide resistance to susceptible S. commersonii. We show that 
the resistance is based on the production of tetraose SGAs and provide in vitro evidence to show 
that they can be effective against other fungi besides A. solani. As SGAs can be involved in resistance 
against insects, we also tested if they can protect against Colorado potato beetle (CPB). Combined, 
our results show that the tetraose SGAs from S. commersonii have potential to provide resistance 
against a range of potato pathogens and pests.

Results
Early blight resistance maps to chromosome 12 of potato
To find suitable parents for a mapping study targeting early blight resistance, we performed a disease 
screen with A. solani isolate altNL03003 (Wolters et al., 2018) on 13 different accessions encompassing 
37 genotypes of S. commersonii and S. malmeanum (Supplementary file 1). The screen showed clear 
differences in resistance phenotypes between and within accessions (Figure 1a). Roughly half of the 
genotypes were highly resistant (lesion diameters <3 mm indicate that the lesions are not expanding 
beyond the size of the inoculation droplet) and the other half was susceptible (displaying expanding 
lesions), with only a few intermediate genotypes. CGN18024 is an example of an accession that segre-
gates for resistance, with CGN18024_1 showing strong resistance and CGN18024_3 showing clear 
susceptibility (Figure 1b). The fact that individual accessions can display such clear segregation for 
resistance suggests that resistance is caused by a single gene or locus. Because of its clear segrega-
tion, S. commersonii accession CGN18024 was selected for further studies.

Disease tests with an A. solani isolate from the US (ConR1H) and a recent Dutch isolate from the 
Netherlands (altNL21001) confirm that the resistance of CGN18024_1 is effective against additional A. 
solani isolates (Figure 1—figure supplement 1). To further study the genetics underlying resistance to 

https://doi.org/10.7554/eLife.87135
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Figure 1. Early blight resistance maps to chromosome 12 of potato. (a) Two to three genotypes of 13 different accessions of S. commersonii and S. 
malmeanum were inoculated with A. solani altNL03003. Three plants of each genotype were tested and three leaves per plants were inoculated with 
six 10 µl droplets with spore suspension. Lesion diameters were measured 5 days post inoculation and visualised using boxplots, with horizonal lines 
indicating median values and individual measurements plotted on top. Non-expanding lesions (<3 mm) indicate resistance and expanding lesions 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.87135
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early blight, we crossed resistant CGN18024_1 with susceptible CGN18024_3. Thirty progeny geno-
types were sown out and tested with A. solani isolate altNL03003. We identified 14 susceptible geno-
types and 16 resistant genotypes, with no intermediate phenotypes in the population (Figure 1c). This 
segregation supports a 1:1 ratio (Χ2 (1, N = 30) = 0.133, p = 0.72), which confirms that resistance to 
early blight is likely caused by a single dominant locus in S. commersonii.

To genetically localise the resistance, we isolated RNA from each progeny genotype and the 
parents of the population and proceeded with a BSR-Seq analysis (Dobnik et al., 2021). RNA from 
resistant and susceptible progeny genotypes were pooled in separate bulks and sequenced next 
to RNA from the parents on the Illumina sequencing platform (PE150). Reads were mapped to the 
DMv4.03 (Xu et al., 2011) and Solyntus potato genomes (Hoopes et al., 2022). To find putative SNPs 
linked to resistance, we filtered for SNPs that follow the same segregation as resistance (heterozygous 
in resistant parent CGN18024_1 and the resistant bulk, but absent or homozygous in susceptible 
parent and susceptible bulk). The resulting SNPs localise almost exclusively on chromosome 12 of the 
DM and Solyntus genomes, with most of them located at the top of the chromosome (Figure 1d). 
We used a selection of SNPs distributed over chromosome 12 as high-resolution melt (HRM) markers 
to genotype the BSR-Seq population. This rough mapping proves that the locus for early blight resis-
tance resides in a region of 3 Mb at the top of chromosome 12 (Figure 1—figure supplement 2).

Improved genome assembly of S. commersonii
A genome sequence of S. commersonii is already available (Aversano et al., 2015), but we do not 
know if the sequenced genotype is resistant to A. solani. To help the identification of additional 
markers and to explore the resistance locus of a genotype with confirmed resistance, we sequenced the 
genome of resistant parent CGN18024_1. High-molecular-weight genomic DNA from CGN18024_1 
was used for sequencing using Oxford Nanopore 
Technology (ONT) on a GridION X5 platform 
and for sequencing using DNA Nanoball (DNB) 
technology at the Beijing Genomics Institute 
(BGI) to a depth of approximately 30×. We used 
the ONT reads for the initial assembly and the 
shorter, more accurate, DNBseq reads to polish 
the final sequence. The resulting assembly has a 
size of 737 Mb, which is close to the size of the 
previously published genome of S. commersonii 
(730 Mb) (Aversano et al., 2015). N50 scores and 
Benchmarking Universal Single-Copy Orthologs 

Table 1. Genome assembly metrics of S. 
commersonii cmm1t (Aversano et al., 2015) 
and CGN18024_1.

Genome CMM1t* CGN18024_1

Total size (Mb) 730 737

Contig number 278,460 637

Largest contig (Mb) 0.17 21.2

N50 (Mb) 0.007 4.02

Complete BUSCO (%) 81.9 95.7

*Aversano et al., 2015.

indicate susceptibility. Some accessions segregate for resistance. (b) Accession CGN18024 is an example of an accession that segregates for resistance 
to A. solani, with CGN18024_1 displaying resistance and CGN18024_3 displaying susceptibility at 5 days after spray-inoculation. (c) Progeny from 
CGN18024_1 × CGN18024_3 was inoculated with A. solani. Three plants of each genotype were tested and three leaves per plants were inoculated with 
six 10 µl droplets with spore suspension each. Lesion diameters were measured 5 days post inoculation. 16 progeny genotypes are resistant (with lesion 
diameters <2–3 mm) and 14 are susceptible (with expanding lesions). This corresponds to a 1:1 segregation ratio (Χ2 (1, N = 30) = 0.133, ρ = 0.72). (d) 
SNPs derived from a BSR-Seq analysis (heterozygous in resistant parent CGN18024_1 and the resistant bulk, but absent or homozygous in susceptible 
parent and susceptible bulk) using bulks of susceptible and resistant progeny were plotted in 1 Mb windows over the 12 chromosomes of the potato 
DMv4.03 genome (Xu et al., 2011). They are almost exclusively located on chromosome 12.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Numerical data underlying Figure 1a.

Source data 2. Numerical data underlying Figure 1c.

Source data 3. Numerical data underlying Figure 1d.

Figure supplement 1. Resistance of S commersonii genotypes CGN18024_1 and CGN18024_3 against different isolates of A.solani.

Figure supplement 2. Resistance fromS.commersonii to A. solani is mapped to the top of chromosome 12.

Figure 1 continued

https://doi.org/10.7554/eLife.87135
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(BUSCO) score indicate a highly complete and contiguous genome assembly of S. commersonii 
(Table 1).

Identification of two GT resistance genes
To identify candidate genes that can explain the resistance of S. commersonii, it was necessary to 
further reduce the mapping interval. By aligning the ONT reads to the CGN18024_1 genome assembly, 
we could identify new polymorphisms that we converted to additional PCR markers (Figure 2—figure 
supplements 1–4). We performed a recombinant screen of approximately 3000 genotypes from the 
population to fine map the resistance region to a window of 20 kb (Figure 2—figure supplements 5 
and 6).

We inferred that the resistance locus is heterozygous in CGN18024_1 from the segregation in 
the mapping population. We used polymorphisms in the resistance region to separate and compare 
the ONT sequencing reads from the resistant and susceptible haplotype. This comparison showed a 
major difference between the two haplotypes. The susceptible haplotype contains a small insertion 
of 3.7 kb inside a larger region of 7.3 kb. The larger region is duplicated in the resistant haplotype 
(Figure 2a). As a result, the resistance region of the resistant haplotype is 27 kb, 7 kb larger than the 
corresponding region of the susceptible haplotype (20 kb).

Two genes coding for putative GTs are located within the rearrangement of the resistant haplotype. 
The corresponding allele from the susceptible haplotype contains a frameshift mutation, leading to a 
truncated protein (Figure 2—figure supplement 7). Several other short ORFs with homology to GTs 
were predicted in the resistant haplotype, but ScGTR1 (S. commersonii GT linked to resistance 1) and 
ScGTR2 are the only full-length genes in the region. Reads from the BSR-Seq experiment show that 
both genes are expressed in bulks of resistant progeny and not in susceptible progeny (Figure 2b), 
suggesting a putative role for these genes in causing resistance. ScGTR1 and ScGTR2 are homologous 
genes with a high similarity (the predicted proteins that they encode share 97% amino acid identity). 
We compared the predicted amino acid sequences with previously characterised GTs (Bowles et al., 
2005; McCue et al., 2007; McCue et al., 2006; McCue et al., 2005; Masada et al., 2009; Itkin et al., 
2013; Itkin et al., 2011; Tikunov et al., 2013) and found that they share some similarity with GTs with 
a role in zeatin biosynthesis (Martin et al., 1999a; Martin et al., 1999b; Mok et al., 2005) and with 
GAME17, an enzyme involved in biosynthesis of the SGA α-tomatine typically found in tomato (Itkin 
et al., 2013; Figure 2—figure supplement 8, Supplementary file 2).

To test whether the identified candidate genes are indeed involved in resistance, we transiently 
expressed both alleles of the resistant haplotype (ScGTR1 and ScGTR2) as well as the corresponding 
allele from the susceptible haplotype (ScGTS), in leaves of resistant CGN18024_1 and susceptible 
CGN18024_3 and S. tuberosum cultivar Atlantic, using agroinfiltration (Lazo et al., 1991). Following 
agroinfiltration, the infiltrated areas were drop inoculated with a spore suspension of A. solani 
altNL03003. Transient expression of ScGTR1 as well as ScGTR2 significantly reduced the size of the A. 
solani lesions in susceptible CGN18024_3, compared to ScGTS and the empty vector control. Resis-
tant CGN18024_1 remained resistant, whereas susceptible Atlantic remained susceptible regardless 
of the treatment (Figure 2c). We conclude that both ScGTR1 and ScGTR2 can affect resistance in 
susceptible S. commersonii CGN18024_3, but not in S. tuberosum cv. Atlantic.

Leaf compounds from resistant S. commersonii inhibit growth of 
diverse fungi, including pathogens of potato
GTs are ubiquitous enzymes that catalyse the transfer of saccharides to a range of different substrates. 
To test if resistance of S. commersonii to A. solani can be explained by a host-specific defence 
compound, we performed a growth inhibition assay using crude leaf extract from resistant and suscep-
tible S. commersonii. Leaf material was added to PDA plates to equal 5% (wt/vol) and autoclaved (at 
121°C) or semi-sterilised at 60°C. Interestingly, leaf material from resistant CGN18024_1 strongly 
inhibited growth of A. solani isolate altNL03003, while we did not see any growth inhibition on plates 
containing leaves from susceptible CGN18024_3 (Figure 3a). Remarkably, ample contamination with 
diverse fungi appeared after a few days on the plates containing semi-sterilised leaves from suscep-
tible S. commersonii but not on plates with leaves from CGN18024_1 (Figure 3a). Thus, leaves from 
CGN18024_1 contain compounds that can inhibit growth of a variety of fungi besides A. solani.

https://doi.org/10.7554/eLife.87135
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Figure 2. Identification of two glycosyltransferase resistance genes. (a) Comparison of the susceptible and resistant haplotype of the Solanum 
commersonii CGN18024_1 resistance region (delimited by markers 817K and 797K) in a comparative dot plot shows a rearrangement. Locations 
of markers used to map the resistance region are indicated in grey along the x- and y-axis. The duplicated region of the resistant haplotype 
contains marker 807K (white asterisk) and two predicted glycosyltransferase genes (ScGTR1 and ScGTR2). Several short ORFs with homology to 

Figure 2 continued on next page
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To quantify the inhibitory effect of leaves from S. commersonii against different fungal pathogens 
of potato, we performed a growth inhibition assay with A. solani (altNL03003 [Wolters et al., 2018]), 
Botrytis cinerea (B05.10 [Amselem et al., 2011]), and Fusarium solani (1992 vr). As before, we added 
5% (wt/vol) of leaf material from CGN18024_1 or CGN18024_3 to PDA plates and we placed the fungi 
at the centre of the plates. We measured colony diameters in the following days and compared it with 
the growth on PDA plates without leaf extract. Indeed, growth of all three potato pathogens was 
significantly reduced on medium containing leaf material from CGN18024_1 (Figure 3b), compared 
to medium containing material from CGN18024_3 or on normal PDA plates. These results indicate 
that phytoanticipins from the leaves of resistant S. commersonii have the potential to protect against 
diverse fungal pathogens of potato.

Tetraose SGAs from S. commersonii provide resistance to A. solani and 
CPB
Solanum leaves usually contain SGAs, which are known phytoanticipins against fungi and other plant 
parasites (Friedman, 2006). S. tuberosum typically produces the triose SGAs α-solanine (solanidine-
Gal-Glu-Rha) and α-chaconine (solanidine-Glu-Rha-Rha), while five major tetraose SGAs were 
previously identified in S. commersonii: commersonine (demissidine-Gal-Glu-Glu-Glu), dehydrocom-
mersonine (solanidine-Gal-Glu-Glu-Glu), demissine (demissidine-Gal-Glu-Glu-Xyl), dehydrodemissine 
(solanidine-Gal-Glu-Glu-Xyl), and α-tomatine (tomatidine-Gal-Glu-Glu-Xyl) (Friedman, 2006; Osman 
et al., 1976; Friedman et al., 1997; Distl and Wink, 2009; Caruso et al., 2011; Vázquez et al., 
1997). To test if SGAs can explain resistance of S. commersonii, we measured SGA content in leaves 
from Atlantic and susceptible/resistant S. commersonii by ultra high-performance liquid chromatog-
raphy (UPLC) coupled to mass spectrometry (MS). As expected, we could detect the triose SGAs α-so-
lanine and α-chaconine in susceptible S. tuberosum cv. Atlantic, but we found a remarkable difference 
in the SGA profile of resistant and susceptible S. commersonii. We detected tetraose SGAs in resistant 
S. commersonii CGN18024_1, whereas susceptible S. commersonii CGN18024_3 accumulates triose 
SGAs (Figure 4a and Supplementary files 3 and 4). The mass spectra of the four major tetraose SGAs 
from S. commersonii correspond to (dehydro-) commersonine and (dehydro-) demissine, matching the 
data from previous studies (Osman et al., 1976; Distl and Wink, 2009; Caruso et al., 2011; Vázquez 
et al., 1997). Notably, the mass spectra of the two major SGAs from susceptible CGN18024_3 corre-
spond to the triose precursors of these SGAs (solanidine-Gal-Glu-Glu and demissidine-Gal-Glu-Glu, 
respectively) (Supplementary files 3 and 4). These results suggest that the triose SGAs present in 

glycosyltransferase genes that were predicted in the resistance region are indicated by white boxes, but ScGTR1 and ScGTR2 are the only full-length 
genes. As a result of the rearrangement, the resistance region of the resistant haplotype (27 kb) is 7 kb larger than the corresponding region of the 
susceptible haplotype (20 kb). (b) Alignment of RNAseq reads from the BSR-Seq analysis shows that ScGTR1 and ScGTR2 are expressed in bulks 
of resistant progeny, but not in bulks of susceptible progeny. (c) S. tuberosum cv. ‘Atlantic’, S. commersonii CGN18024_1 and CGN18024_3 were 
agroinfiltrated with expression constructs for ScGTR1 and ScGTR2, ScGTS, and empty vector (-), combined as seperate spots on the three middle 
leaves of each genotype (8 plants per genotype). A. solani is inoculated in the middle of agroinfiltrated areas at 2 days after agroinfiltration and lesion 
diameters are measured 5 days after inoculation. Lesion sizes were visualised with boxplots, with horizonal lines indicating median values and individual 
measurements plotted on top. Agroinfiltration with expression constructs for ScGTR1 and ScGTR2 results in a significant (Welch’s two-sample t-test, 
**p < 0.01, ***p < 0.001) reduction of lesion sizes produced by Alternaria solani altNL03003 in S. commersonii CGN18024_3, but not in S. tuberosum cv. 
‘Atlantic’.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Numerical data underlying Figure 2c.

Figure supplement 1. Overview of marker 817K.

Figure supplement 2. Overview of marker 807K.

Figure supplement 3. Overview of marker 797K.

Figure supplement 4. Overview of marker 764K.

Figure supplement 5. Fine mapping the resistance locus in CGN18024_1.

Figure supplement 6. Early blight disease symptoms on key recombinants.

Figure supplement 7. Alignment of putative S. commersonii glycosyltransferases (ScGTs) linked to resistance.

Figure supplement 8. Comparative phylogenetic analysis of glycosyltransferases with a known function (Supplementary file 2).

Figure 2 continued

https://doi.org/10.7554/eLife.87135
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susceptible CGN18024_3 are modified to produce the tetraose SGAs in resistant CGN18024_1, by 
addition of an extra glucose or xylose moiety.

To investigate a possible role for ScGTR1 and ScGTR2 in the production of tetraose SGAs from 
CGN18024_1 and their link to resistance, we generated stable transformants of ScGTR1 and ScGTR2 
in triose SGA producing CGN18024_3 (Figure 4—figure supplement 1). UPLC–MS analysis showed 
that both ScGTR1 and ScGTR2 transformants accumulate tetraose SGAs, while the amount of triose 
SGAs is markedly reduced (Figure  4a). Strikingly, ScGTR1 and ScGTR2 appear to have different 
specificities. Overexpression of ScGTR1 resulted in the addition of a hexose to the triose SGAs 
from CGN18024_3 (corresponding to a commertetraose), while overexpression of ScGTR2 caused 

Figure 3. Leaf compounds from resistant S. commersonii inhibit growth of diverse fungi, including pathogens of potato. (a) Crude leaf extract from 
CGN18024_1/CGN18024_3 was added to PDA plates (5%, wt/vol) and autoclaved (left) or semi-sterilised for 15 min at 60°C (right). Growth of Alternaria 
solani altNL03003 was strongly inhibited on PDA plates with autoclaved leaf extract from CGN18024_1 compared to plates with CGN18024_3, as shown 
on the left two pictures taken at 7 days after placing an agar plug with mycelium of A. solani at the centre of each plate. Abundant fungal contamination 
appeared after 4 days on plates containing semi-sterilised leaf from CGN18024_3, but not on plates containing material from CGN18024_1 (right two 
pictures). (b) Growth of potato pathogenic fungi A. solani (altNL03003), B. cinerea (B05.10), and F. solani (1992 vr) was followed by measuring the colony 
diameter on PDA plates containing autoclaved leaf material from CGN18024_1/CGN18024_3. Growth of all three fungi was measured on PDA plates 
containing CGN18024_1 (red squares), CGN18024_3 (green circles), or plates with PDA and no leaf material (blue triangles). Three replicates were used 
per isolate/substrate combination. Significant differences in growth on PDA plates containing plant extract compared to PDA plates without leaf extract 
are indicated with asterisks (Welch’s two-sample t-test, **p < 0.01, ***p < 0.001).

The online version of this article includes the following source data for figure 3:

Source data 1. Numerical data underlying Figure 3b.

https://doi.org/10.7554/eLife.87135
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Figure 4. Tetraose steroidal glycoalkaloids (SGAs) from Solanum commersonii provide resistance to Alternaria 
solani and Colorado potato beetle. Data are visualised with boxplots, with horizonal lines indicating median 
values and individual measurements plotted on top. (a) Tetraose SGAs were detected in resistant CGN18024_1 
and in CGN18024_3 transformed with ScGTR1/ScGTR2. Susceptible S. tuberosum cv. ‘Atlantic’ and wildtype (WT) 

Figure 4 continued on next page
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the addition of a pentose (corresponding to a lycotetraose) (Figure 4a, d). This in planta evidence 
suggests that ScGTR1 is a glucosyltransferase and that ScGTR2 is a xylosyltransferase. However, we 
detect a slight overlap in activity. In addition to the lycotetraose products, we detected small amounts 
of commertetraose product in ScGTR1 transformants and vice versa in the ScGTR2 transformants 
(Figure 4a and Supplementary file 3). A multivariate principal components analysis (PCA) on the full 
metabolic profile consisting of all 1041 detected mass peaks revealed that ScGTR1 and ScGTR2 are 
highly specific towards SGAs since 75% of the metabolic variation between the transformants and 
the wild types could be explained by the SGA modifications (Figure 4—figure supplement 2). Modi-
fications catalysed by both enzymes can lead to resistance, as ScGTR1 and ScGTR2 transformants 
are both resistant to A. solani isolate altNL03003 (Figure 4b). Atlantic ScGTR1 and ScGTR2 transfor-
mants did not show differences in SGA profile, probably because they contain different triose SGA 
substrates than found in S. commersonii CGN18024_3 (Supplementary files 3 and 4).

Leptine and dehydrocommersonine SGAs from wild potato relatives have previously been linked 
to resistance to insects such as CPB (Chowański et al., 2016; Sinden et al., 1986; Sinden et al., 
1980; Tai et al., 2015; Tai et al., 2014; Paudel et al., 2019; Sagredo et al., 2009). To see if the SGAs 
from S. commersonii can protect against insects as well, we performed a test with larvae of a CPB 
genotype collected in the Netherlands on wildtype CGN18024_1/CGN18024_3 and on CGN18024_3 
transformed with ScGTR1 or ScGTR2 (Figure 4b). Wildtype CGN18024_3 is susceptible to the CPB 
genotype that was tested, but CGN18024_1 and CGN18024_3 transformed with ScGTR1 or ScGTR2 
are resistant, as illustrated by a very low larvae weight and survival (Figure 4c). Thus, the conversion 
of triose SGAs from CGN18024_3 to tetraose SGAs produced by CGN18024_1, carried out by both 
ScGTR1 and ScGTR2, can provide protection against A. solani as well as CPB (Figure 4a–d).

Discussion
In this study, we set out to characterise resistance of S. commersonii to A. solani. We showed that 
it is caused by a single dominant locus containing two GT candidate resistance genes. Both GTs are 
involved in the production of tetraose SGAs in S. commersonii, but they transfer distinct sugars. Both 

CGN18024_3 contain only triose SGAs. Overexpression of ScGTR1 resulted in the addition of a hexose to the 
triose SGAs from CGN18024_3, resulting in a commertetraose (Gal-Glu-Glu-Glu), while overexpression of ScGTR2 
caused the addition of a pentose, resulting in a lycotetraose (Gal-Glu-Glu-Xyl). Each boxplot displays the data of 
three seperate measurements (b) WT CGN18024_1/CGN18024_3 and CGN18024_3 transformants were inoculated 
with Alternaria solani altNL03003. Three plants of each genotype were tested and three leaves per plants were 
inoculated with six 10 µl droplets with spore suspension each. Lesions diameters were measured 5 days post 
inoculation. Significant differences with WT CGN18024_3 are indicated with asterisks (Welch’s two-sample t-test, 
***p < 0.001). ScGTR1 and ScGTR2 can both complement resistance to A. solani in CGN18024_3, as the lesion 
sizes produced on CGN18024_3 transformants are comparable to resistant CGN18024_1. (c) Three plants per 
genotype were challenged with five Colorado potato beetle larvae each. The tetraose SGAs produced by ScGTR1 
and ScGTR2 can provide resistance to Colorado potato beetle, as indicated by reduced larvae survival and total 
larvae weight. Significant differences with WT CGN18024_3 are indicated with asterisks (Welch’s two-sample 
t-test, *p < 0.05, ***p < 0.001). (d) Putative structures of SGAs detected in CGN18024_1 and CGN18024_3, based 
on previous studies (Osman et al., 1976; Distl and Wink, 2009; Caruso et al., 2011; Vázquez et al., 1997). 
CGN18024_3 produces triose SGAs and is susceptible to Colorado potato beetle and A. solani. ScGTR1 and 
ScGTR2 from CGN18024_1 convert these triose SGAs from susceptible S. commersonii to tetraose SGAs, through 
the addition of a glucose or xylose moiety, respectively. Both sugar additions can provide resistance to Colorado 
potato beetle and A. solani.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Numerical data underlying Figure 4a.

Source data 2. Numerical data underlying Figure 4b.

Source data 3. Numerical data underlying Figure 4c.

Figure supplement 1. Validation of ScGTR1 and ScGTR2 transformants using PCR.

Figure supplement 2. Principal component analysis (PCA) on Solanum commersonii genotypes and 
transformants.

Figure 4 continued
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modifications can cause resistance to A. solani. We provide in vitro evidence to show that the tetraose 
SGAs from S. commersonii have the potential to protect against other fungi besides A. solani and we 
demonstrate that plants producing the compounds are resistant to CPB. Collectively, our data link the 
tetraose SGAs from S. commersonii to disease and pest resistance.

It is known that specialised metabolites from plants can act in plant defence and compounds with 
antimicrobial effects have been characterised in many different plant species (Piasecka et al., 2015; 
Dixon, 2001; Polturak and Osbourn, 2021). They may also influence other aspects of the crop, such 
as flavour or taste and they can have dietary benefits or be toxic to humans. SGAs from potato can 
cause risks for human health, but a total SGA content of less than 200 mg/kg is generally consid-
ered to be safe for human consumption (Friedman, 2006; Valkonen et al., 1996; Schrenk et al., 
2020; Dolan et al., 2010). Potato breeders generally try to reduce SGA content in tubers, to prevent 
problems with toxicity and to meet safety regulations, but they do not usually consider the effect on 
disease resistance. There is not much known about how modifications to SGAs of potato affect human 
toxicity and resistance to biotic stress, but additional knowledge on this topic could help breeders to 
optimise the metabolite profile of their cultivars (Baur et al., 2022).

Biosynthesis of SGAs in Solanum is controlled by many genes. The discovery of S. commersonii geno-
types with and without tetraose SGAs provides us with unique insight in the role of these compounds 
in plant immunity. Similar compounds are produced in Solanum species such as S. chacoense, S. 
chomatophilum, S. oplocense, S. paucisectum, and S. piurae, which may explain why these (or their 
descendants) display resistance to A. solani or CPB (Sinden et al., 1980; Tai et al., 2015; Tai et al., 
2014; Ding et al., 2019; Alam, 1985). The compounds that are found in resistant S. commersonii are 
an interesting combination of a solanidine or demissidine aglycone and a lycotetraose or commer-
tetraose sugar moiety. Solanidine forms the aglycone backbone of α-solanine and α-chaconine from 
potato, while the lycotetraose decoration is found on α-tomatine from tomato (Distl and Wink, 2009; 
Cárdenas et al., 2015). The biosynthesis pathways leading to the production of these major SGAs 
from cultivated potato and tomato have largely been elucidated in recent years and it was found that 
the underlying genes occur in conserved clusters (Itkin et al., 2013; Cárdenas et al., 2015). This 
knowledge and the similarities between SGAs from S. commersonii and cultivated potato/tomato will 
help to identify the missing genes from the pathway through comparative genomics.

The broad-spectrum activity of tetraose SGAs is attractive, but this non-specificity also presents a 
risk. The antifungal and anti-insect activity of SGAs from S. commersonii is not restricted to potato 
pathogens and pests, but could also affect beneficial or commensal micro-organisms or other animals 
that feed on plants (Roddick, 1996; Eich, 2008). In tomato fruit, α-tomatine is converted to esculeo-
side A during fruit ripening in a natural detoxification process from the plant (Nakayasu et al., 2020; 
Szymański et al., 2020) to facilitate dispersal of the seeds by foraging animals. Unintended toxic 
effects of SGAs should also be taken into account when used in resistance breeding.

Studies on α-tomatine and avenacin A-1 show that changes to the sugar moiety of these saponins 
from tomato and oat, respectively, can affect their toxicity (You and van Kan, 2021; Roddick, 1974; 
Campbell and Duffey, 1979; Sandrock and Vanetten, 1998). Tomato and oat pathogens produce 
enzymes that can detoxify these compounds through removal of one or more glycosyl groups (You 
and van Kan, 2021; Kaup et al., 2005; Seipke and Loria, 2008; Ökmen et al., 2013; Osbourn et al., 
1995; Bowyer et al., 1995). The degradation products of saponins can also suppress plant defence 
responses (Ito et al., 2004; Bouarab et al., 2002). Conversely, here we show that the resistance of 
S. commersonii is based on the addition of a glycosyl group to a triose saponin from S. commer-
sonii. There is large variation in both the aglycone and the sugar moiety of SGAs from wild Solanum, 
with likely over 100 distinct SGAs produced in tubers (Distl and Wink, 2009; Shakya and Navarre, 
2008). This diversity suggests a pressure to evolve novel molecules, possibly to resist detoxification or 
other tolerance mechanisms, reminiscent of the molecular arms race that drives the evolution of plant 
immune receptors (Jones and Dangl, 2006). Thus, wild Solanum germplasm is not only a rich source 
of immune receptors, it also provides a promising source of natural defence molecules. Studies of how 
pathogens that naturally occur on S. commersonii, or other Solanum species producing tetraose SGAs, 
can tolerate SGAs produced by their hosts could help judge the durability of this type of resistance.

As crops are usually affected by multiple diseases and pests, significant reduction of pesticide use 
can only be achieved if plants are naturally protected against a range of pathogen species and pests. 
Different strategies towards this goal have been proposed and our study underlines the potential of 

https://doi.org/10.7554/eLife.87135
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defence compounds that are naturally produced by plants. The fact that genes for specialised plant 
metabolites can occur in biosynthetic gene clusters (Itkin et al., 2013; Qi et al., 2004; Nützmann 
and Osbourn, 2014; Nützmann et al., 2016), means that introgression breeding could help to move 
these compounds from wild relatives to crop species. We had already created S. commersonii × S. 
tuberosum hybrids with resistance to early blight in a previous study (Wolters et al., 2021), but it is 
clear that potential negative effects of SGA variants on human health and the environment should be 
considered before these can be developed into a cultivar.

Additional insight in the biosynthesis pathway of the tetraose SGAs produced by S. commersonii 
would make it possible to employ them through metabolic engineering and allow for a more precise 
control of the amounts that are produced and in which tissues (Polturak and Osbourn, 2021). Alter-
natively, the defence compounds could be produced in non-crop plants or other organisms and 
applied on crops as biological protectants. Studies on how natural defence compounds are produced 
in different plant tissues, their toxicity and how they are detoxified, combined with studies on how 
different modifications ultimately affect plant immunity and toxicity, are essential to employ them in 
a safe and effective manner. Such studies at the interface of plant immunity and metabolism can help 
to design innovative solutions to complement existing resistance breeding strategies and improve 
sustainability of our food production.

Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Gene (Solanum commersonii) ScGTR1
This paper, sequence 
deposited at GenBank

GenBank: 
OM830430

Gene (S. commersonii) ScGTR2
This paper, sequence 
deposited at GenBank

GenBank: 
OM830431

Strain, strain background (S. 
commersonii) CGN18024 CGN WUR CGN18024

Strain, strain background 
(Alternaria solani) altNL03003

Wolters et al., 2019; CBS-
KNAW

altNL03003; CBS 
143772

Genetic reagent (S. 
commersonii)

CGN18024_3-ScGTR1-1,2 
and 3 This paper

Maintained at plant breeding, WUR; 
available upon reasonable request

Genetic reagent (S. 
commersonii)

CGN18024_3-ScGTR2-6,7 
and 9 This paper

Maintained at plant breeding, WUR; 
available upon reasonable request

BSR-Seq was carried out as described in Dobnik et  al., 2021 and A. solani disease test were 
performed following Wolters et al., 2019.

Plant material
Seeds from S. commersonii and S. malmeanum accessions (Supplementary file 1) were obtained from 
the CGN germplasm collection (Wageningen, the Netherlands). Seeds were sterilised by washing them 
in 70% ethanol, followed by a 15-min incubation in a 1.2% sodium hypochlorite solution. Sterilised 
seeds were rinsed three times in sterile tap water and sown out on MS20 medium (4.4 g Murashige 
and Skoog basal salt mixture including vitamins, 20 g sucrose and 8 g/l micro agar, pH = 5.8) (Savary 
et al., 2019) and incubated in the dark until germinated.

The mapping population was generated by crossing S. commersonii CGN18024_1 with 
CGN18024_3 and vice versa. Ripe berries were harvested about 6 weeks after pollination. Seeds were 
harvested from the ripe berries, washed with tap water and dried at room temperature on filter paper 
for 2 weeks. Dry seeds were stored at 4°C until use.

All plants were maintained in tissue culture on MS20 medium. Fresh shoots were propagated 2 
weeks prior to transferring plants to soil. Plants were grown in a greenhouse under long-day condi-
tions (16 hr light/8 hr dark).

Isolation of nucleic acids and sequencing
RNA isolations were performed from leaf material that was harvested from fully expanded leaves 
of 3-week-old CGN18024_1 and CGN18024_3 and from young leaves from the top of the plant of 

https://doi.org/10.7554/eLife.87135
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3-week-old progeny derived from the cross between these genotypes and of transformants. RNA 
was extracted using the RNeasy Plant Mini Kit following the manufacturer’s instructions, including 
an on-column DNase treatment (QIAGEN). RNA sequencing was performed on the Illumina platform 
(PE150) by Novogene (United Kingdom), using around 4 µg of RNA.

Genomic DNA was isolated using the DNeasy Plant Mini Kit (QIAGEN) or in a 96-well format 
(Dobnik et  al., 2021). High-molecular-weight genomic DNA was isolated from young leaves of 
CGN18024_1 and CGN18024_3 as described previously (Hoopes et al., 2022; Bernatzky and Tank-
sley, 1986). Quality and integrity of RNA and DNA samples were assessed using nanodrop, Qubit, 
and gel electrophoresis. ONT sequencing was performed on a Nanopore GridION system, using 
three flow cells, using about 1 µg of DNA per flow cell and a run-time of 72 hr. Approximately 4 µg of 
genomic DNA was sent to BGI Europe for sequencing on the DNBseq platform.

Genome assembly and separation of haplotypes covering resistance 
region
ONT reads were filtered using Filtlong v0.2.0 (https://github.com/rrwick/Filtlong; Wick, 2018) with 
--min_length 1000 and --keep_percent 90. Adapter sequences were removed using Porechop (Wick 
et al., 2017). Fastq files were converted to Fasta using seqtk v1.3 (https://github.com/lh3/seqtk; Li, 
2018). Assembly was performed with smartdenovo (https://github.com/ruanjue/smartdenovo/; Liu 
et al., 2021) and a k-mer size of 17, with the option for generating a consensus sequence enabled. 
ONT reads were mapped back to the assembly using minimap2 v2.17 (Li and Birol, 2018) and used 
for polishing with racon v1.4.3 (Vaser et al., 2017) using default settings. DNBseq reads were mapped 
to the resulting sequence using bwa mem v0.7.17 (Li, 2013) and used for a second round of polishing 
with racon v1.4.3. This procedure to polish the assembly using DNBseq reads was repeated once. 
ONT reads were mapped back to the polished CGN18024_1 assembly using minimap2 v2.17 (Li and 
Birol, 2018). The alignment was inspected using IGV v2.6.3 (Robinson et al., 2011) to identify poly-
morphisms for new markers and marker information was used to identify ONT reads representative for 
both haplotypes spanning the resistance region of CGN18024_1. Bedtools v2.25.0 (Quinlan and Hall, 
2010) was used extract the resistance region from the reads and to mask the corresponding region 
from the original CGN18024_1 assembly. The extracted resistance regions from both reads were 
appended to the assembly and the polishing procedure described above was repeated to prepare 
a polished genome assembly of CGN18024_1, containing a sequence of both haplotypes covering 
the resistance region. Quality of the genome was assessed using quast v5.0.2 with --eukaryote 
--large (Gurevich et al., 2013).

Comparing haplotypes covering resistance region
Genes were predicted using the funannotate v1.7.4 (https://github.com/nextgenusfs/funannotate/; 
Palmer and Stajich, 2020) pipeline. Briefly, funannotate was used to sort and mask the genome and 
training was performed using the BSA-RNAseq data (--max_intronlen 10000). Gene prediction 
was prepared using the --optimize_augustus --organism other and --max_intronlen 
10000 options. The two haplotypes covering the resistance region were compared using nucmer and 
visualised using mummerplot from the MUMmer4 package (Marçais et al., 2018).

Development of markers and genotyping
Bedtools v2.25.0 (Quinlan and Hall, 2010) was used to extract the regions surrounding polymor-
phisms from the DMv4.03, Solyntus and CGN18024_1 genomes. Primers were designed using Batch-
Primer3 (You et al., 2008; Supplementary file 5). HRM markers were amplified with Phire Hot Start 
II DNA Polymerase (Thermo Fisher Scientific) and genotyped on a LightScanner System (Bio Fire) as 
described previously (Dobnik et al., 2021). InDel markers were amplified using DreamTaq DNA Poly-
merase (Thermo Fisher Scientific) and visualised using gel electrophoresis following standard labora-
tory protocols.

Cloning of candidate resistance genes
ScGTR1, ScGTR2, and ScGTS were amplified from genomic DNA from CGN18024_1 using Phusion 
Polymerase (New England BioLabs) and the primers listed in Supplementary file 6 following standard 
laboratory protocols. cacc was included at the 5′ end of each forward primer to facilitate cloning in 
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the pENTR D-TOPO vector (Thermo Fisher Scientific), following the manufacturer’s instructions. Insert 
sequences were validated through Sanger sequencing (Macrogen Europe). The genes were cloned 
into the pK7WG2 vector (Karimi et al., 2002) using Gateway LR Clonase II (Thermo Fisher Scientific) 
following the manufacturer’s instructions and transformed to electrocompetent A. tumefaciens AGL1 
(Lazo et al., 1991) containing the helper plasmid pVirG (van der Fits et al., 2000).

Transient disease assay
Agroinfiltration was performed as described previously using Agrobacterium tumefaciens strain AGL1 
(Lazo et al., 1991; Domazakis et al., 2017). Agrobacterium suspensions were used at an OD600 of 0.3 
to infiltrate fully expanded leaves of 3-week-old CGN18024_1, CGN18024_3 and S. tuberosum cv. 
Atlantic. pK7WG2-ScGTR1, pK7WG2-ScGTR2, pK7WG2-ScGTS, and pK7WG2-empty were combined 
as four separate spots on the same leaf and the infiltrated areas were encircled with permanent 
marker. The plants were transferred to a climate cell 48 hr after agroinfiltration and each infiltrated 
area was inoculated with A. solani by pipetting a 10-µl droplet of spore suspension (1 × 105 conidia/
ml) at the centre of each spot. Lesion diameters were measured 5 days post inoculation. Eight plants 
were tested of each genotype, using three leaves per plant.

Fungal growth inhibition assays
Mature leaf material from 5-week-old plants was extracted in phosphate-buffered saline buffer using 
a T25 Ultra Turrax disperser (IKA) and supplemented to obtain a 5% (wt/vol) suspension in PDA and 
autoclaved (20 min at 121°C), or added to PDA after autoclaving, followed by an incubation step for 
15 min at 60°C to semi-sterilise the medium. The medium was poured into Petri dishes. Small agar 
plugs containing mycelium from A. solani (altNL03003) or F. solani (1992 vr) were placed at the centre 
of each plate and the plates were incubated at 25°C in the dark. Similarly, approximately 100 spores 
of B. cinerea B05.10 (Amselem et al., 2011) were pipetted at the centre of PDA plates containing the 
different leaf extracts and the plates were incubated at room temperature in the dark. Three plates 
per fungal isolate/leaf extract combination were prepared and colony diameters were measured daily 
using a digital calliper.

Potato transformation
Internodes from in vitro grown plants were used to generate stable transformants using previously 
described methods (Hoekema et al., 1989; Fillatti et al., 1987). Transformants were selected on 
MS20 containing 100 µg/ml kanamycin. Successful transformants were characterised using primers 
listed in Supplementary file 7.

SGA measurements
Mature leaves were harvested from three different 5-week-old plants of each genotype in 2 ml 
tubes containing two steel beads and flash frozen in liquid nitrogen. Leaf material was ground 
using a TissueLyser II bead mill (QIAGEN). Approximately 100  mg of ground leaf material was 
extracted in 1 ml of 70% methanol and 0.1% formic acid. Samples were vortexed and sonicated 
for 15 min in an Ultrasonic Cleaner (VWR). Samples were vortexed once more and centrifuged 
for 15 min in a tabletop centrifuge at 17,000 × g. The supernatant was passed through 0.45 µm 
syringe filters (BGB) and diluted 5×. The extracts were separated on Acquity UPLC HSS T3 1.8 µm 
(2.1 × 150 mm) column Acquity UPLC H Class Plus system (Waters). The separation was performed 
using the following water + 0.1 formic acid/acetonitrile + 0.1% formic acid gradient: initial – A/B 
= 95/5%, 65/35% – 14 min, 55/45% – 20 min, 15/85% – 24 min, 95/5% – 25 min, 95/5% – 30 min. 
The MS data were acquired using an Acquity QDa mass spectrometer (Waters) in negative and 
positive mode (in separate runs) from 150 to 1250 Da, cone voltage 15 V, capillary voltage 0.8 kV at 
2 scans/s acquisition rate. The raw chromatograms were subjected to full spectra alignment using 
Metalign software (https://www.wur.nl/en/show/MetAlign-1.htm). SGAs were putatively identified 
using MS fragmentation patterns (Supplementary files 3 and 4), which were compared with MS 
information available in literature (Osman et al., 1976; Distl and Wink, 2009; Caruso et al., 2011; 
Vázquez et al., 1997).

https://doi.org/10.7554/eLife.87135
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CPB test
CPB was reared on S. tuberosum cultivar ‘Bintje’ in insect rearing cages in a greenhouse compartment 
at 25/23°C and 16/8 hr light/dark photoperiod and 70% relative humidity. Freshly laid egg packages 
were removed from the rearing every day and, once hatched, 1-day-old larvae were used for the 
experiment. Resistance to CBP was measured by assessing mortality and weight of CPB larvae on 
three plants of each genotype in a non-choice assay. At the start of the experiment, five 1-day-old 
larvae were placed in a clip-cage on a leaf and an insect sleeve was used to enclose every plant to 
restrict the larvae to the plant. Larvae were able to feed for 9 days, after which surviving larvae were 
counted and weighed on a scale. If less than five larvae were found on the plant, the remainder was 
assumed dead.

Data analysis
Data were analysed in RStudio (R version 4.02) (RStudio Team, 2020; R Development Core Team, 
2020), using the tidyverse package (Wickham et  al., 2019). Most figures were generated using 
ggplot2 (Wickham, 2016), but genomic data were visualised using Gviz and Bioconductor (Hahne 
and Ivanek, 2016). PCA was performed using PAST3 software (https://past.en.lo4d.com/windows). 
p values for comparisons between means of different groups were calculated in R using Welch’s 
two-sample t-test. Experimental replicates are from biological distinct samples. Experiments were 
repeated at least twice with similar results.

Data availability
RNAseq data from the BSR-Seq experiment were deposited in the NCBI Sequence Read Archive with 
BioProject ID PRJNA792513 (Sequencing Read Archive accession IDs SRR17334110, SRR17334111, 
SRR17334112, and SRR17334113). Raw reads used in the assembly of the CGN18024_1 genome were 
deposited with BioProject ID PRJNA789120 (Sequencing Read Archive accession IDs SRR17348659 
and SRR17348660). The assembled genome sequence of CGN18024_1 was archived on NCBI as WGS 
project JAJTWQ01 (GenBank assembly GCA_029007595.1). Sequences of ScGTR1 and ScGTR2 were 
deposited in GenBank under accession numbers OM830430 and OM830431. Numerical data under-
lying the figures of this manuscript are included as source data files.
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deposited in GenBank under accession numbers OM830430 and OM830431. Numerical data under-
lying the figures of this manuscript are included as Figure source data files.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Wolters PJ, Wouters 
D, Tikunov YM, 
Ayilalath S, Kodde 
L, Strijker M, Caarls 
L, Visser RGF, VGAA 
Vleeshouwers

2023 BSR-Seq data https://www.​ncbi.​nlm.​
nih.​gov/​sra/?​term=​
PRJNA792513

BioProject, PRJNA792513

Wolters PJ, Wouters 
D, Tikunov YM, 
Ayilalath S, Kodde 
L, Strijker M, Caarls 
L, Visser RGF, VGAA 
Vleeshouwers

2023 Solanum commersonii 
isolate:CGN18024_1 
(Commerson's wild potato)

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/?​
term=​PRJNA789120

BioProject, PRJNA789120

Wolters PJ, Wouters 
D, Tikunov YM, 
Ayilalath S, Kodde 
L, Strijker M, Caarls 
L, Visser RGF, VGAA 
Vleeshouwers

2023 Genome assembly 
CGN18024_1v5_2

https://www.​ncbi.​nlm.​
nih.​gov/​datasets/​
genome/​GCA_​
029007595.​1/

GenBank assembly, 
GCA_029007595.1

Wolters PJ, Wouters 
D, Tikunov YM, 
Ayilalath S, Kodde 
L, Strijker M, Caarls 
L, Visser RGF, VGAA 
Vleeshouwers

2023 Solanum commersonii 
glucosyltransferase (GTR1) 
mRNA, complete cds

https://www.​ncbi.​
nlm.​nih.​gov/​nuccore/​
OM830430

NCBI GenBank, OM830430

Wolters PJ, Wouters 
D, Tikunov YM, 
Ayilalath S, Kodde 
L, Strijker M, Caarls 
L, Visser RGF, VGAA 
Vleeshouwers

2023 Solanum commersonii 
xylosyltransferase (GTR2) 
mRNA, complete cds

https://www.​ncbi.​
nlm.​nih.​gov/​nuccore/​
OM830431

NCBI GenBank, OM830431

The following previously published datasets were used:
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Xu X, Pan S, Cheng S, 
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van Lieshout N, van 
der Burgt A, de Vries 
ME, ter Maat M, 
Eickholt D, Esselink D

2020 Solyntus v1.1 genome 
assembly

https://www.​
plantbreeding.​wur.​nl/​
Solyntus/

Solyntus Genome 
Sequencing Consortium, 
v1.1
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