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Abstract The computational principles underlying attention allocation in complex goal-directed 
tasks remain elusive. Goal-directed reading, that is, reading a passage to answer a question in mind, 
is a common real-world task that strongly engages attention. Here, we investigate what compu-
tational models can explain attention distribution in this complex task. We show that the reading 
time on each word is predicted by the attention weights in transformer-based deep neural networks 
(DNNs) optimized to perform the same reading task. Eye tracking further reveals that readers sepa-
rately attend to basic text features and question-relevant information during first-pass reading and 
rereading, respectively. Similarly, text features and question relevance separately modulate attention 
weights in shallow and deep DNN layers. Furthermore, when readers scan a passage without a ques-
tion in mind, their reading time is predicted by DNNs optimized for a word prediction task. There-
fore, we offer a computational account of how task optimization modulates attention distribution 
during real-world reading.

eLife assessment
This study provides a valuable contribution to the study of eye-movements in reading, revealing 
that attention-weights from a deep neural network show a statistically reliable fit to the word-level 
reading patterns of humans. Its evidence is convincing and strengthens a line of research arguing 
that attention in reading reflects task optimization. The work would be of interest to psychologists, 
neuroscientists, and machine learning researchers.

Introduction
Attention profoundly influences information processing in the brain (Posner and Petersen, 1990; 
Treisman and Gelade, 1980; Rayner, 1998), and a large number of studies have been devoted to 
studying the neural mechanisms of attention. From the perspective of David Marr, the attention mech-
anism can be studied from three levels, that is, the computational, algorithmic, and implementational 
levels (Marr, 1982). At the computational level, attention is traditionally viewed as a mechanism to 
allocate limited central processing resources (Kahneman, 1973; Franconeri et  al., 2013; Lennie, 
2003; Carrasco, 2011; Borji and Itti, 2012). More recent studies, however, propose that attention is 
a mechanism to optimize task performance, even in conditions where the processing resource is not 
clearly constrained (Dayan et al., 2000; Gottlieb et al., 2014; Legge et al., 2002; Liu and Reichle, 
2010; Najemnik and Geisler, 2005). The optimization hypothesis can explain the attention distribu-
tion in a range of well-controlled learning and decision-making tasks (Najemnik and Geisler, 2005; 

RESEARCH ARTICLE

*For correspondence: 
ding_nai@zju.edu.cn

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 20

Sent for Review
16 April 2023
Preprint posted
25 April 2023
Reviewed preprint posted
23 June 2023
Reviewed preprint revised
31 October 2023
Version of Record published
30 November 2023

Reviewing Editor: Hang Zhang, 
Peking University, China

‍ ‍ Copyright Zou et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.87197
mailto:ding_nai@zju.edu.cn
https://doi.org/10.1101/2023.04.25.538252
https://doi.org/10.7554/eLife.87197.1
https://doi.org/10.7554/eLife.87197.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Zou et al. eLife 2023;12:RP87197. DOI: https://doi.org/10.7554/eLife.87197 � 2 of 23

Navalpakkam et al., 2010), but is rarely tested in complex processing tasks for which the optimal 
strategy is not obvious. Therefore, the computational principles that underlie the allocation of human 
attention during complex tasks remain elusive. Nevertheless, complex tasks are critical conditions 
to test whether the attention mechanisms abstracted from simpler tasks can truly explain real-world 
attention behaviors.

Reading is one of the most common and most sophisticated human behaviors (Li et al., 2022; Gagl 
et al., 2022), and it is strongly regulated by attention: Since readers can only recognize a couple of 
words within one fixation, they have to overtly shift their fixation to read a line of text (Rayner, 1998). 
Thus, eye movements serve as an overt expression of attention allocation during reading (Rayner, 
1998; Clifton et al., 2016). Computational modeling of the eye movements has mostly focused on 
normal reading of single sentences. At the computational level, it has been proposed that the eye 
movements are programmed to, for example, minimize the number of eye movements (Legge et al., 
2002). At the algorithmic and implementational level, models such as the E-Z reader (Reichle et al., 
2003) can accurately predict the eye movement trajectory with high temporal and spatial resolution. 
Everyday reading behavior, however, often engages reading of a multiline passage and generally 
has a clear goal, for example, information retrieval or inference generation (White et al., 2010). Few 
models, however, have considered how the reading goal modulates reading behaviors. Here, we 
address this question by analyzing how readers allocate attention when reading a passage to answer 
a specific question in mind. The question may require, for example, information retrieval, inference 
generation, or text summarization (Figure 1). We investigate whether the task optimization hypoth-
esis can explain the attention distribution in such goal-directed reading tasks.

Finding an optimal solution for the goal-directed reading task, however, is computationally chal-
lenging since the information related to question answering is sparsely located in a passage and 
their orthographic forms may not be predictable. Recent advances in DNN models, however, provide 
a potential tool to solve this computational problem since DNN models equipped with attention 
mechanisms have approached and even surpassed mean human performance on goal-directed 
reading tasks (Lan et al., 2020; Liu et al., 2019). Attention in DNN also functions as a mechanism to 
selectively extract useful information, and therefore, attention may potentially serve a conceptually 
similar role in DNN. Furthermore, recent studies have provided strong evidence that task-optimized 
DNN can indeed explain the neural response properties in a range of visual and language processing 
tasks (Yamins et al., 2014; Kell et al., 2018; Goldstein et al., 2022; Schrimpf et al., 2021; Hasson 
et al., 2020; Donhauser and Baillet, 2020; Rabovsky et al., 2018; Heilbron et al., 2022). Therefore, 
although the DNN attention mechanism certainly deviates from the human attention mechanism in 
terms of its algorithms and implementation, we employ it to probe the computational-level principle 
underlying human attention distribution during real-world goal-directed reading.

Here, we investigated what computational principles could generate human-like attention distri-
bution during a goal-directed reading task. We employed DNNs to derive a set of attention weights 
that are optimized for the goal-directed reading task and tested whether such optimal weights 
could explain human attention measured by eye tracking. Furthermore, since both human and DNN 
processing is hierarchical, we also investigated whether the human attention distribution during 
different processing stages, which are characterized through different eye-tracking measures, and 
the DNN attention weights in different layers may be differentially influenced by visual features, text 
properties, and the top-down task. Additionally, we recruited both native and non-native readers to 
probe how language proficiency contributed to the computational optimality of attention distribution.

Results
Experiment 1: Task and performance
In Experiment 1, the participants (N = 25 for each question) first read a question and then read a 
passage based on which the question should be answered (Figure 1A). After reading the passage, the 
participants chose from four options which option was the most suitable answer to the question. In 
total, 800 question/passage pairs were adapted from the RACE dataset (Lai et al., 2017), a collection 
of English reading comprehension questions designed for Chinese high school students who learn 
English as a second language. The questions fell into six types (Figure 1B and C): three types of ques-
tions required attention to details, for example, retrieving a fact or generate inference based on a fact, 
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Figure 1. Experiment and performance. (A) Experimental procedure for Experiments 1–3. In each trial, participants saw a question before reading 
a passage. After reading the passage, they chose the answer to the question from four options. (B) Accuracy of question answering for humans and 
computational models. The question type is color coded and an example question is shown for each type. trans_pre: pre-trained transformer-based 
models; trans_fine: transformer-based models fine-tuned on the goal-directed reading task. (C) Time spent on reading each passage. The box plot 

Figure 1 continued on next page
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which were referred to as local questions. The other three types of questions concerned the general 
understanding of a passage, for example, summarizing the main idea or identifying the purpose of 
writing, which were referred to as global questions. None of the question directly appeared in the 
passage, and the longest string that overlapped in the passage and question was 1.8 ± 1.5 words on 
average.

Participants in Experiment 1 were Chinese college or graduate students who had relatively high 
English proficiency. The participants correctly answered 77.94% questions on average and the accu-
racy was comparable across the six types of questions (Figure  1B). We employed computational 
models to analyze what kinds of computations were required to answer the questions. The simplest 
heuristic model chose the option that best matched the passage orthographically (Figure 1—figure 
supplement 1A). This orthographic model achieved 25.6% accuracy (Figure  1B). Another simple 
heuristic model only considered word-level semantic matching between the passage and option, and 
achieved 27.3% accuracy (Figure 1B). The low accuracy of the two models indicated that the reading 
comprehension questions could not be answered by word-level orthographic or semantic matching.

Next, we evaluated the performance of four context-dependent DNN models, that is, Stanford 
Attentive Reader (SAR) (Chen et al., 2016), BERT (Devlin et al., 2019), ALBERT (Lan et al., 2020), 
and RoBERTa (Liu et al., 2019), which could integrate information across words to build passage-level 
semantic representations. The SAR used the bidirectional recurrent neural network (RNN) to integrate 
contextual information (Figure 1—figure supplement 1B) and achieved 47.6% accuracy. The other 
three models, that is, BERT, ALBERT, and RoBERTa, were transformer-based models that were trained 
in two steps, that is, pre-training and fine-tuning (Figure 1D). Since the three models had similar 
structures, we averaged the performance over the three models (see Figure 1—figure supplement 2 
for the results of individual models). The model performance on the reading task was 37.08 and 73%, 
respectively, after pre-training and fine-tuning (Figure 1B).

Computational models of human attention distribution
In Experiment 1, participants were allowed to read each passage for 2  min. Nevertheless, to 
encourage the participants to develop an effective reading strategy, the monetary reward the partic-
ipant received decreased as they spent more time reading the passage (see ‘Materials and methods’ 
for details). The results showed that the participants spent, on average, 0.7 ± 0.2 min reading each 
passage (Figure 1C), corresponding to a reading speed of 457 ± 142 words/min when divided by 
the number of words per passage. The speed was almost twice the normal reading speed for native 
readers (Rayner, 1998), indicating a specialized reading strategy for the task.

Next, we employed eye tracking to quantify how the readers allocated their attention to achieve 
effective reading and analyze which computational models could explain the reading time on each 
word, that is, the total fixation duration on each word during passage reading. In other words, we 
probed into what kind of computational principles could generate human-like attention distribution 
during goal-directed reading. A simple heuristic strategy was to attend to words that were orthograph-
ically or semantically similar to the words in the question (Figure 1—figure supplement 1A). The 
predictions of the heuristic models were not highly correlated with the human word reading time, and 
the predictive power, that is, the Pearson correlation coefficient between the predicted and real word 
reading time, was around 0.2 (Figure 3—figure supplement 1A).

The DNN models analyzed here, that is, SAR, BERT, ALBERT, and RoBERTa, all employed the atten-
tion mechanism to integrate over context to find optimal question answering strategies. Roughly 
speaking, the attention mechanism applied a weighted integration across all input words to generate 

shows the mean (horizontal lines inside the box), 25th and 75th percentiles (box boundaries), and 25th/75th percentiles ±1.5× interquartile range 
(whiskers) across participants (N = 25). (D) Illustration of the training process for transformer-based models. The pre-training process aims to learn 
general statistical regularities in a language based on large corpora, while the fine-tuning process trains models to perform the reading comprehension 
task.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Illustration of the word-level heuristic models and the recurrent neural network (RNN)-based Stanford Attentive Reader (SAR) 
model.

Figure supplement 2. Question answering accuracy for individual transformer-based models.

Figure 1 continued
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a passage-level representation and decide whether an option was correct or not, and the weight 
on each word was referred to as the attention weight (see Figure 1—figure supplement 1B and 
Figure 2B for illustrations about the attention mechanisms in the SAR and transformer-based models, 
respectively). When the attention weights of the SAR were used to predict the human word reading 
time, the predictive power was about 0.1 (Figure 3A, Supplementary file 1a).

In contrast to assigning a single weight on a word, the transformer-based model employed a multi-
head attention mechanism: Each of the 12 layers had 12 parallel attention modules, that is, heads. 
Consequently, each word had 144 attention weights (12 layers × 12 heads), which were used to 
model the word reading time of humans based on linear regression. Since the attention weights of 
three transformer-based models showed comparable power to predict human word reading time, we 
reported the predictive power averaged over models (see Figure 3—figure supplement 1A for the 
results of individual models). The attention weights of randomly initialized transformer-based models 
could predict the human word reading time and the predictive power, which was around 0.3, was 
significantly higher than the chance level and the SAR (Figure 3A, Supplementary file 1a). The atten-
tion weights of pre-trained transformer-based models could also predict the human word reading 
time, the predictive power was around 0.5, significantly higher than the predictive power of heuristic 
models, the SAR, and randomly initialized transformer-based models (Figure 3A, Supplementary file 
1a). The predictive power was further boosted for local but not global questions when the models 
were fine-tuned to perform the goal-directed reading task (Figure 3A, Supplementary file 1a). The 
weights assigned to attention heads in the linear regression are shown in Figure 3—figure supple-
ment 2. For the fine-tuned models, we also predict the human word reading time using an unweighted 
averaged of the 144 attention heads and the predictive power was 0.3, significantly higher than that 
achieved by the attention weights of SAR (p=4 × 10–5, bootstrap). These results suggested that the 
human attention distribution was consistent with the attention weights in transformer-based models 
that were optimized to perform the same goal-directed reading task.

Factors influencing human word reading time
The attention weights in transformer-based DNN models could predict the human word reading time. 
Nevertheless, it remained unclear whether such predictions were purely driven by basic text features 
that were known to modulate word reading time. Therefore, in the following, we first analyzed how 
basic text features modulated the word reading time during the goal-directed reading task, and then 
checked whether transformer-based DNNs could capture additional properties of the word reading 
time that could not be explained by basic text features.

Here, we further decomposed text features into visual layout features, that is, position of a word 
on the screen, and word features, for example, word length, frequency, and surprisal. Layout features 
were features that were mostly induced by line changes, which could be extracted without recog-
nizing the words, while word features were finer-grained features that could only be extracted when 
the word or neighboring words were fixated. Linear regression analyses revealed layout features could 
significantly predict the word reading time (Figure 3B, Supplementary file 1b). Furthermore, the 
predictive power was higher for global than local questions (p=4 × 10–5, bootstrap, false discovery 
rate [FDR] corrected for comparisons across three features, i.e., layout features, word features, and 
question relevance), suggesting a question-type-specific reading strategy. Word features could also 
significantly predict human reading time, even when the influence of layout features was regressed 
out. Additionally, a linear mixed effect model revealed significant fixed effects for question type and 
all text/task-related features, as well as significant interactions between question type and these text/
task-related features (Supplementary file 1c; Pinheiro and Bates, 2006; Kuznetsova et al., 2017).

The predictive power of the layout and word features, however, was lower than the predictive power 
of attention weights of transformer-based models (p=4 × 10–5, bootstrap, FDR corrected for compar-
isons across two features, i.e., layout and word features). When the layout and word features were 
regressed out, the residual word reading time was still significantly predicted by the attention weights 
in transformer-based models (Figure 3—figure supplement 1B, predictive power about 0.3). This 
result indicated that what the transformer-based models extracted were more than basic text features. 
Next, we analyzed whether the transformer-based models, as well as the human word reading time, 
were sensitive to task-related features. To characterize the relevance of each word to the question 
answering task, we asked another group of participants to annotate which words contributed most to 
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Figure 2. Human attention distribution and computational models. (A) Examples of human attention distribution, quantified by the word reading 
time. The histograms on the right showed the mean reading time on each line for both human data and model predictions. trans_pre: pre-trained 
transformer-based models; trans_fine: transformer-based models fine-tuned on the goal-directed reading task. (B) The general architecture of the 
12-layer transformer-based models. The model input consists of all words in the passage and an integrated option. Output of the model relies on the 

Figure 2 continued on next page
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question answering. The annotated question relevance could significantly predict word reading time, 
even when the influences of layout and word features were regressed out (Figure 3B, Supplementary 
file 1b). When the question relevance was also regressed out, the residual word reading time was 
still significantly predicted by the attention weights in transformer-based models (Figure 3—figure 
supplement 1C, p=0.003, bootstrap, FDR corrected for comparisons across 12 models × 6 question 
types), but the predictive power dropped to about 0.2. Furthermore, a linear mixed effect model 
also revealed that more than 85% of the DNN attention heads contribute to the prediction of human 
reading time when considering text features and question relevance as covariates (Supplementary 
file 1c). These results demonstrated that the DNN attention weights provided additional information 
about the human word reading time than the text-related and task-related features analyzed here.

Further analyses revealed two properties of the distribution of question-relevant words. First, 
for local questions, the question-relevant words were roughly uniformly distributed in the passage, 
while for global questions, the question-relevant words tended to be near the passage beginning 
(Figure 3—figure supplement 3A). The eye-tracking data showed that readers also spent more time 
reading the passage beginning for global than local questions (Figure 3C), explaining why layout 
features more strongly influenced the answering of global than local questions. Second, few lines in 
the passage were question relevant (Figure 3—figure supplement 3B), and the eye-tracking data 
showed that readers spent more time reading the line with the highest question relevance (Figure 3D), 
confirming the influence of question relevance on word reading time.

Attention in different processing stages for humans and DNNs
Next, we investigated whether humans and DNNs attended to different features in different processing 
stages. The early stage of human reading was indexed by the gaze duration, that is, duration of first-
pass reading of a word, and the later stage was indexed by the counts of rereading. Results showed 
the influence of layout features increased from early to late reading stages for global but not local 
questions (Figure 4A, Supplementary file 1d). Consequently, the passage beginning effect differed 
between global and local questions only for the late reading stage (Figure 4—figure supplement 1A). 
The influence of word features did not strongly change between reading stages, while the influence 
of question relevance significantly increased from early to late reading stages (Figure 4A, Figure 4—
figure supplement 1B). These results suggested that attention to basic text features developed early, 
while the influence of task mainly influenced late reading processes.

In the following, we further investigated whether transformer-based DNN attended to different 
features in different layers, which represented different processing stages. This analysis did not include 
layout features that were not available to the models. The attention weights in shallow layers were 
sensitive to word features in randomized, pre-trained, and fine-tuned models (Figure 4B and C). Only 
in the fine-tuned models, however, the attention weights in deep layers were sensitive to question 
relevance (see Figure 4—figure supplements 2 and 3 for results of individual models). Therefore, the 
shallow and deep layers separately evolved text-based and goal-directed attention, and goal-directed 
attention was induced by fine-tuning on the task.

Experiment 2: Question type specificity of the reading strategy
In Experiment 1, different types of questions were presented in blocks which encouraged the partic-
ipants to develop question type-specific reading strategies. Next, we ran Experiment 2, in which 
questions from different types were mixed and presented in a randomized order, to test whether the 
participants developed question type-specific strategies in Experiment 1. Since it was time consuming 
to measure the response to all 800 questions, we randomly selected 96 questions for Experiment 2 (16 
questions per type). In Experiment 2, the reading speed was on average 298 ± 123 words/min, lower 
than the speed in Experiment 1 (p=6 × 10–4, bootstrap, FDR corrected for the comparisons across four 
experiments), but still much faster than normal reading speed (Rayner, 1998).

node CLS (Legge et al., 2002), which is used to calculate a score reflecting how likely an option is the correct answer. The CLS node is a weighted sum 
of the vectorial representations of all words and tokens, and the attention weight for each word in the passage, that is, α, is the deep neural network 
(DNN) attention analyzed in this study.

Figure 2 continued

https://doi.org/10.7554/eLife.87197
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Figure 3. Model word reading time in Experiment 1. (A, B) Predict the word reading time based on the attention 
weights of deep neural network (DNN) models, text features, or question relevance. The predictive power is the 
correlation coefficient between the predicted word reading time and the actual word reading time. Predictive 
power significantly higher than chance is denoted by stars on the top of each bar. **p<0.01. trans_rand: 
transformer-base models with randomized parameters; trans_pre: pre-trained transformer-based models; trans_
fine: transformer-based models fine-tuned on the goal-directed reading task. (C) Relationship between the word 
reading time and line index. The word reading time is longer near the beginning of a passage and the effect is 

Figure 3 continued on next page
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The word reading time was better predicted by fine-tuned than pre-trained transformer-based 
models (Figure  5A, Supplementary file 1e). For the influence of text and task-related features, 
compared to Experiment 1, the predictive power in Experiment 2 was higher for layout and word 
features, but lower for question relevance (Figure 5B, Supplementary file 1f). For local questions, 
consistent with Experiment 1, the effects of question relevance significantly increased from early 
to late processing stages that are separately indexed by gaze duration and counts of rereading 
(Figure 5—figure supplement 1A, Supplementary file 1d). The passage beginning effect was higher 
for global than local questions (Figure 5C, second column, p=2 × 10–4, bootstrap, FDR corrected 
for the comparisons across four experiments), but the difference was smaller than in Experiment 1 
(Figure 5C, Figure 5—figure supplement 2A, p=2 × 10–4, bootstrap, FDR corrected for the compar-
isons across four experiments). The question relevance effect was also smaller in Experiment 2 than 
Experiment 1 (Figure 5D, Figure 5—figure supplement 2B, p=2 × 10–4, bootstrap, FDR corrected 
for the comparisons across four experiments). All these results indicated that the readers developed 
question type-specific strategies in Experiment 1, which led to faster reading speed and stronger task 
modulation of word reading time.

Experiment 3: Effect of language proficiency
Experiments 1 and 2 recruited L2 readers. To investigate how language proficiency influenced task 
modulation of attention and the optimality of attention distribution, we ran Experiment 3, which was 
the same as Experiment 2 except that the participants were native English readers. In Experiment 3, 
the reading speed was on average 506 ± 155 words/min, higher than that in Experiment 2 (p=6 × 
10–4, bootstrap, FDR corrected for the comparisons across four experiments). The question answering 
accuracy was comparable to L2 readers (Figure 1B).

The word reading time for native readers was slightly better predicted by fine-tuned than pre-
trained transformer-based models (Figure 5A, Supplementary file 1e). For the influence of text and 
task-related features, compared to Experiment 2, the predictive power in Experiment 3 was higher for 
word features, but lower for layout features and question relevance (Supplementary file 1f). For local 
questions, the layout effect was more salient for gaze duration than for counts of rereading. In contrast, 
the effect of word-related features and task relevance was more salient for counts of rereading than 
gaze duration (Figure 5—figure supplement 1B, Supplementary file 1d). The passage beginning 
effect was higher for global than local questions, but the difference was smaller than in Experiment 2 
(Figure 5C, Figure 5—figure supplement 2A, p = 2 × 10–4, bootstrap, FDR corrected for the compar-
isons across four experiments). The question relevance effect was also smaller for Experiment 3 than 
Experiment 2 (Figure 5D, Figure 5—figure supplement 2B, p=2 × 10–4, bootstrap, FDR corrected for 
the comparisons across four experiments). These results showed that the word reading time of native 
readers was significantly modulated by the task, but the effect was weaker than that on L2 readers.

Experiment 4: General-purpose reading
In the goal-directed reading task, participants read a passage to answer a question that they knew in 
advance, and the eye-tracking results revealed that participants spent more time reading question-
relevant words. Question-relevant words, however, were generally longer content words (Figure 3—
figure supplement 3C and D) that were often associated with longer reading time even without a 

stronger for global questions than local questions. (D) Relationship between the word reading time and question 
relevance. Line 0 refers to the line with the highest question relevance. The word reading time is higher for the 
question-relevant line. Color indicates the question type. The shade area indicates 1 standard error of the mean 
(SEM) across participants (N = 25).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Transformer-based models can explain word reading time even when the influences of text 
features and question relevance are regressed out.

Figure supplement 2. Weights on individual attention heads in the linear regression when predicting human word 
reading time.

Figure supplement 3. Properties of the question relevance of words.

Figure 3 continued

https://doi.org/10.7554/eLife.87197
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Figure 4. Factors influencing attention distribution in different processing stages for humans and deep neural 
networks (DNNs). (A) Human attention in early and late reading stages is differentially modulated by text features 
and question relevance. The early and late stages are separately characterized by gaze duration, that is, duration 
for the first reading of a word, and counts of rereading, respectively. **p<0.01; ***p<0.001. (B) DNN attention 
weights in different layers are also differentially modulated by text features and question relevance. Each attention 
head is separately modeled and averaged within each layer, and the results are further averaged across the three 
transformer-based models. Shallow layers of both fine-tuned and pre-trained models are more sensitive to text 

Figure 4 continued on next page
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task (Rayner, 1998). Therefore, to validate the question relevance effect, we ran Experiment 4 in 
which the participants read the passages without knowing the question to answer. The experiment 
used the same 96 questions as in Experiments 2 and 3, but adopted a different experimental proce-
dure: participants previewed a passage before reading the question and were allowed to read the 
passage again to answer the question. We analyzed the reading pattern during passage preview, 
which was referred to as general-purpose reading.

The participants were given 1.5 min to preview the passage, and the reading speed was on average 
225 ± 40 words/min, lower than that in Experiments 1–3 (p=6 × 10–4, bootstrap, FDR corrected for 
comparisons across four experiments). Before question answering, they were given another 0.5 min to 
reread the passage, but on average they spent only 0.04 min on rereading it. During passage preview, 
the word reading time was similarly predicted by the pre-trained and fine-tuned transformer-based 
models (Figure 5A, Supplementary file 1e). Furthermore, the word reading time was significantly 
predicted by layout and word features, but not question relevance (Figure 5B, Supplementary file 
1e). Both the early and late processing stages of human reading were significantly affected by layout 
and word features, and the effects were larger for the late processing stage indexed by counts of 
rereading (Figure 5—figure supplement 1C, Supplementary file 1d). The passage beginning effect 
was not significantly different between local and global questions (Figure 5C, fourth column, p=0.994, 
bootstrap, FDR corrected for comparisons across four experiments), and the question relevance effect 
was significantly smaller than the question relevance effect in Experiments 1–3 (Figure 5D, Figure 5—
figure supplement 2B, p=2 × 10–4, bootstrap, FDR corrected for comparisons across four experi-
ments). These results confirmed that the question relevance effects observed during goal-directed 
reading were indeed task dependent.

Discussion
Attention is a crucial mechanism to regulate information processing in the brain, and it has been 
hypothesized that a common computational role of attention is to optimize task performance. Previous 
support for the hypothesis mostly comes from tasks for which the optimal strategy can be easily 
derived. The current study, however, considers a real-world reading task in which the participants 
have to actively sample a passage to answer a question that cannot be answered by simple word-level 
orthographic or semantic matching. In this challenging task, it is demonstrated that human attention 
distribution can be explained by the attention weights in transformer-based DNN models that are 
optimized to perform the same reading task but blind to the human eye-tracking data. Furthermore, 
when participants scan a passage without knowing the question to answer, their attention distribution 
can also be explained by transformer-based DNN models that are optimized to predict a word based 
on the context.

Furthermore, we demonstrate that both humans and transformer-based DNN models achieve task-
optimal attention distribution in multiple steps: For humans, basic text features strongly modulate the 
duration of the first reading of a word, while the question relevance of a word only modulates how 
many times the word is reread, especially for high-proficiency L2 readers compared to native readers. 
Similarly, the DNN models do not yield a single attention distribution, and instead they generate 
multiple attention distributions, that is, heads, for each layer. Here, we demonstrate that basic text 
features mainly modulate the attention weights in shallow layers, while the question relevance of 

features. Deep layers of fine-tuned models are sensitive to question relevance. trans_rand: transformer-base 
models with randomized parameters; trans_pre: pre-trained transformer-based models; trans_fine: transformer-
based models fine-tuned on the goal-directed reading task.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Passage beginning effects (A) and question relevance effects (B) in early and late reading 
stages.

Figure supplement 2. Factors influencing attention weights in each layer of deep neural networks (DNNs) for local 
questions.

Figure supplement 3. Factors influencing attention weights in each layer of deep neural networks (DNNs) for 
global questions.

Figure 4 continued
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Figure 5. Influence of task and language proficiency on word reading time. (A, B) Predict the word reading time using attention weights of deep neural 
network (DNN) models, text features, and question relevance for all four experiments. Predictive power significantly higher than chance is marked by 
stars of the same color as the bar. Significant differences between experiments are denoted by black stars. trans_pre: pre-trained transformer-based 

Figure 5 continued on next page
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a word modulates the attention weights in deep layers, reflecting hierarchical control of attention 
to optimize task performance. The attention weights in both the shallow and deep layers of DNN 
contribute to the explanation of human word reading time (Figure 3—figure supplement 2).

Computational models of attention
A large number of computational models of attention have been proposed. According to Marr’s 
three levels of analysis (Marr, 1982), some models investigate the computational goal of attention 
(Dayan et al., 2000; Legge et al., 2002) and some models provide an algorithmic implementation 
of how different factors modulate attention (Reichle et al., 2003; Itti et al., 1998). Computationally, 
it has been hypothesized that attention can be interpreted as a mechanism to optimize learning and 
decision-making, and empirical evidence has been provided that the brain allocates attention among 
different information sources to optimally reduce the uncertainty of a decision (Dayan et al., 2000; 
Gottlieb et al., 2014; Legge et al., 2002). The current study provides critical support to this hypoth-
esis in a real-world task that engages multiple forms of attention, for example, attention to visual 
layout features, attention to word features, and attention to question-relevant information. These 
different forms of attention, which separately modulate different eye-tracking measures (Figure 4A), 
jointly achieve an attention distribution that is optimal for question answering.

The transformer-based DNN models analyzed here are optimized in two steps, that is, pre-training 
and fine-tuning. The results show that pre-training leads to text-based attention that can well explain 
general-purpose reading in Experiment 4, while the fine-tuning process leads to goal-directed atten-
tion in Experiments 1–3 (Figures 4B and 5A). Pre-training is also achieved through task optimization, 
and the pre-training task used in all the three models analyzed here is to predict a word based on the 
context. The purpose of the word prediction task is to let models learn the general statistical regu-
larity in a language based on large corpora, which is crucial for model performance on downstream 
tasks (Lan et al., 2020; Liu et al., 2019; Devlin et al., 2019), and this process can naturally introduce 
the sensitivity to word surprisal, that is, how unpredictable a word is given the context. Previous 
eye-tracking studies have suggested that the predictability of words, that is, surprisal, can modulate 
reading time (Hale, 2016), and neuroscientific studies have also indicated that the cortical responses 
to language converge with the representations in pre-trained DNN models (Goldstein et al., 2022; 
Schrimpf et al., 2021). The results here further demonstrate that the DNN optimized for the word 
prediction task can evolve attention properties consistent with the human reading process. Addition-
ally, the tokenization process in DNN can also contribute to the similarity between human and DNN 
attention distributions: DNN first separates words into tokens (e.g., ‘tokenization’ is separated into 
‘token’ and ‘ization’). Tokens are units that are learned based on co-occurrence of letters and is not 
strictly linked to any linguistically defined units. Since longer words tend to be separated into more 
tokens, that is, fragments of frequently co-occurred letters, longer words receive more attention even 
if the model pay uniform attention to each of its input, that is, a token.

A separate class of models investigates which factors shape human attention distribution. A large 
number of models are proposed to predict bottom-up visual saliency (Tatler et al., 2011; Borji et al., 
2013), and recently DNN models are also employed to model top-down visual attention. It is shown 
that, through either implicit (Anderson et al., 2018; Xu et al., 2015) or explicit training (Das et al., 
2017), DNNs can predict which parts of a picture relate to a verbal phrase, a task similar to goal-
directed visual search (Wolfe and Horowitz, 2017). The current study distinguishes from these studies 
in that the DNN model is not trained to predict human attention. Instead, the DNN models natu-
rally generate human-like attention distribution when trained to perform the same task that humans 
perform, suggesting that task optimization is a potential cause for human attention distribution during 
reading.

models; trans_fine: transformer-based models fine-tuned on the goal-directed reading task. *p<0.05; **p<0.01; ***p<0.001. (C, D) Passage beginning 
and question relevance effects for all four experiments. The shade area indicates 1 SEM across participants (N = 25 for Exp 1; N = 20 for Exps 2-4).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Factors influencing human reading in different processing stages in Experiment 2 (A), Experiment 3 (B), and Experiment 4 (C).

Figure supplement 2. Passage beginning effects (A) and question relevance effects (B) in four experiments.

Figure 5 continued
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Models for human reading and human attention to question-relevant 
information
How human readers allocate attention during reading is an extensively studied topic, mostly based 
on studies that instruct readers to read a sentence in a normal manner, not aimed to extract a specific 
kind of information (Clifton et al., 2016). Previous eye-tracking studies have shown that the readers 
fixate longer upon, for example, longer words, words of lower-frequency, words that are less predict-
able based on the context, and words at the beginning of a line (Rayner, 1998). A number of models, 
for example, the E-Z reader (Reichle et  al., 2003) and SWIFT (Engbert et  al., 2005), have been 
proposed to predict the eye movements during reading based on basic oculomotor properties or 
lexical processing (Reichle et al., 2003). Some models also view reading as an optimization process 
that minimizes the time or the number of saccades required to read a sentence (Legge et al., 2002; 
Liu and Reichle, 2010). These models can generate fine-grained predictions, for example, which 
letter in a word will be fixated first, for the reading of simple sentences, but have only been occa-
sionally tested for complex sentences or multiline texts (Mancheva et al., 2015) or to characterize 
different reading tasks, for example, z-string reading and visual searching (Reichle et al., 2012).

When readers read a passage to answer a question that can be answered using a word-matching 
strategy (Hermann et  al., 2015), a recent study has demonstrated that the specific reading goal 
modulates the word reading time and the effect can be modeled using an RNN model (Hahn and 
Keller, 2023). Here, we focus on questions that cannot be answered using a word-matching strategy 
(Figure 1B) and demonstrate that, for these challenging questions, attention is still modulated by the 
reading goal but the attention modulation cannot be explained by a word-matching model (Figure 3—
figure supplement 1). Instead, the attention effect is better captured by transformer models than an 
advanced RNN model, that is, the SAR (Figure 3A). Combining the current study and the study by 
Hahn and Keller, 2023, it is possible that the word reading time during a general-purpose reading 
task can be explained by a word prediction task, the word reading time during a simple goal-directed 
reading task that can be solved by word matching can be modeled by an RNN model, while the word 
reading time during a more complex goal-directed reading task involving inference is better modeled 
using a transformer model. The current study also further demonstrates that elongated reading time 
on task-relevant words is caused by counts of rereading and further studies are required to establish 
whether earlier eye movement measures can be modulated by, for example, a word-matching task. In 
addition, future studies can potentially integrate classic eye movement models with DNNs to explain 
the dynamic eye movement trajectory, possibly with a letter-based spatial resolution.

When human readers read a passage with a particular goal or perspective, previous studies have 
revealed inconsistent results about whether the readers spent more time reading task-relevant 
sentences (Yeari et  al., 2015; Grabe, 1979; Kaakinen et  al., 2002). To explain the inconsistent 
results, it has been proposed that the question relevance effect weakens for readers with a higher 
working memory and when readers read a familiar topic (Kaakinen et al., 2003). Similarly, here, we 
demonstrate that non-native readers indeed spend more time reading question-relevant information 
than native readers do (Figure 5D, Figure 5—figure supplement 2B). Therefore, it is possible that 
when readers are more skilled and when the passage is relatively easy to read, their processing is so 
efficient so that they do not need extra time to encode task-relevant information and may rely on 
covert attention to prioritize the processing of task-relevant information.

DNN attention to question-relevant information
A number of studies have investigated whether the DNN attention weights are interpretable, but the 
conclusions are mixed: some studies find that the DNN attention weights are positively correlated 
with the importance of each word (Yang et al., 2016; Lin et al., 2017), while other studies fail to find 
such correlation (Serrano and Smith, 2019; Jain and Wallace, 2019). The inconsistent results are 
potentially caused by the lack of gold standard to evaluate the contribution of each word to a task. A 
few recent studies have used the human word reading time as the criterion to quantify word impor-
tance, but these studies do not reach consistent conclusions either. Some studies find that the atten-
tion weights in the last layer of transformer-based DNN models better correlates with human word 
reading time than basic word frequency measures (Bolotova et al., 2020), and integrating human 
word reading time into DNN can slightly improve task performance (Malmaud et al., 2020). Other 
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studies, however, find no meaningful correlation between the attention weights in transformer-based 
DNNs and human word reading time (Sood et al., 2020).

The current results provide a potential explanation for the discrepancy in the literature: The last 
layer of transformer-based DNNs is tuned to task relevant information (Figure 4B), but the influence 
of task relevance on word reading time is rather weak for native readers (Figure 5B). Consequently, 
the correlation between the last-layer DNN attention weights and human reading time may not be 
robust. The current results demonstrate that the reading time of both native and non-native readers 
are reliably modulated by basic text features, which can be modeled by the attention weights in shal-
lower DNN layers.

Finally, the current study demonstrates that transformer-based DNN models can automatically 
generate human-like attention in the absence of any prior knowledge about the properties of the 
human reading process. Simpler models that fail to explain human performance also fail to predict 
human attention distribution. It remains possible, however, different models can solve the same 
computational problem using distinct algorithms, and only some algorithms generate human-like 
attention distribution. In other words, human-like attention distribution may not be a unique solu-
tion to optimize the goal-directed reading task. Sharing similar attention distribution with humans, 
however, provides a way to interpret the attention weights in computational models. From this 
perspective, the dataset and methods developed here provide an effective probe to test the biolog-
ical plausibility of NLP models that can be easily applied to test whether a model evolves human-like 
attention distribution.

Materials and methods
Participants
Totally, 162 participants took part in this study (19–30 years old, mean age, 22.5 years; 84 females). 
All participants had normal or corrected-to-normal vision. Experiment 1 had 102 participants. Experi-
ments 2–4 had 20 participants. No participant took part in more than one experiment. Additional 17 
participants were recruited but failed to pass the calibration process for eye tracking and therefore did 
not participant in the reading experiments.

In Experiments 1, 2, and 4, participants were native Chinese readers. They were college students 
or graduate students from Zhejiang University, and were thus above the level required to answer high-
school-level reading comprehension questions. English proficiency levels were further guaranteed by 
the following criterion for screening participants: a minimum score of 6 on IELTS, 80 on TOEFL, or 
425 on CET6 (The National College English Test (CET) is a national English test system developed to 
examine the English proficiency of college students in China. The CET includes tests of two levels: 
a lower level test CET4 and a higher level test CET6.). In Experiment 3, participants were native 
English readers. The experimental procedures were approved by the Research Ethics Committee of 
the College of Medicine, Zhejiang University (2019-047). The participants provided written consent 
and were paid.

Experimental materials
The reading materials were selected and adapted from the large-scale RACE dataset, a collection of 
reading comprehension questions in English exams for middle and high schools in China (Lai et al., 
2017). We selected 800 high-school-level questions from the test set of RACE and each question was 
associated with a distinct passage (117–456 words per passage). All questions were multiple-choice 
questions with four alternatives including only one correct option among them. The questions fell 
into six types, that is, Cause (N = 200), Fact (N = 200), Inference (N = 120), Theme (N = 100), Title 
(N = 100), and Purpose (N = 80). The Cause, Fact, and Inference questions concerned the location, 
extraction, and comprehension of specific information from a passage, and were referred to as local 
questions. Questions of Theme, Title, and Purpose tested the understanding of a passage as a whole 
and were referred to as global questions.

In a separate online experiment, we acquired annotations about the relevance of each word to the 
question answering task. For each passage, a participant was allowed to annotate up to five key words 
that were considered relevant to answering the corresponding question. Each passage was annotated 
by N participants (N ≥ 26), producing N versions of annotated key words. Each version of annotation 
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was then validated by a separate participant. In the validation procedure, the participant was required 
to answer the question solely based on the key words of a specific annotation version; if the person 
could not derive the correct answer, this version of annotation was discarded. The percentage of 
questions correctly answered in the validation procedure was 75.9 and 67.6% for local and global 
questions, respectively. If M versions of annotation passed the validation procedure and a word was 
annotated in K versions, the question relevance of the word was K/M. More details about the question 
types and the annotation procedures could be found in Zou et al., 2021.

Experimental procedures
Experiment 1
Experiment 1 included all 800 passages, and different question types were separately tested in 
different sessions, hence six sessions in total. Each session included 25 participants and one partic-
ipant could participate in multiple sessions. Before each session, participants were familiarized with 
five questions that were not used in the formal session. During the formal session, questions were 
presented in a randomized order. Considering the quantities of questions, for Cause and Fact ques-
tions, the session was carried out in three separate days (one third questions on each day), and for 
other question types, the session was carried out in two separate days (50% of questions on each day).

The experiment procedure in Experiment 1 is illustrated in Figure 1A. In each trial, participants 
first read a question, pressed the space bar to read the corresponding passage, pressed the space bar 
again to read the question coupled with four options, and chose the correct answer. The time limit for 
passage reading was 120 s. To encourage the participants to read as quickly as possible, the bonus 
they received for a specific question would decrease linearly from 1.5 to 0.5 RMB over time. They did 
not receive any bonus for the question, however, if they gave a wrong answer. Furthermore, before 
answering the comprehension question, the participants reported whether they were confident about 
that they could correctly answer the question (yes or no). Participants selected yes for 90.47% of 
questions (89.62 and 92.04% for local and global questions, respectively). After answering the ques-
tion, they also rated their confidence about their answer on the scale of 1–4 (low to high). The mean 
confidence rating was 3.25 (3.28 and 3.18 for local and global question, respectively), suggesting that 
the participants were confident about their answers.

Experiments 2 and 3
Experiments 2 and 3 included 96 reading passages and questions that were randomly selected from 
the questions used in Experiment 1 and included 16 questions for each question type. The six types 
of questions were mixed and presented in a randomized order. The trial structure, as well as the famil-
iarization procedure, in Experiments 2 and 3 was identical to that in Experiment 1. Experiments 2 and 
3 were identical except that Experiment 2 recruited high-proficiency L2 readers while Experiment 3 
recruited native English readers.

Experiment 4
Experiment 4 included the 96 questions presented in Experiments 2 and 3, which were presented in a 
randomized order. The trial structure in Experiment 4 is similar to that in Experiments 1–3, except that 
a 90 s passage preview stage was introduced at the beginning of each trial. During passage preview, 
participants had no prior information of the relevant question. The participants could press the space 
bar to terminate the preview and to read a question. Then, participants read the passage again with 
a time limit of 30 s, before proceeding to answer the question. The payment method was similar to 
Experiment 2, and the bonus was calculated based on the duration of second-pass passage reading.

Stimulus presentation and eye tracking
The text was presented using the bold Courier New font, and each letter occupied 14 × 27 pixels. 
We set the maximum number of letters on each line to 120 and used double space. We separated 
paragraphs by indenting the first line of each new paragraph. Participants sat about 880 mm from a 
monitor, at which each letter horizontally subtended approximately 0.25° of visual angle.

Eye-tracking data were recorded from the left eye with 500 Hz sampling rate (Eyelink Portable Duo, 
SR Research). The experiment stimuli were presented on a 24-inch monitor (1920 × 1080 resolution; 
60 Hz refresh rate) and administered using MATLAB Psychtoolbox (Brainard, 1997). Each experiment 
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started with a 13-point calibration and validation of eye tracker, and the validation error was required 
to be below 0.5° of visual angle. Furthermore, before each trial, a 1-point validation was applied, 
and if the calibration error was higher than 0.5° of visual angle, a recalibration was carried out. Head 
movements were minimized using a chin and forehead rest.

Word-level reading comprehension models
The orthographic and semantic models probed whether the reading comprehension questions could 
be answered based on word-level orthographic or semantic information. Both models calculated 
the similarity between each content word in the passage and each content word in an option, and 
averaged the word-by-word similarity across all words in the passage and all words in the option 
(Figure 1—figure supplement 1A). The option with the highest mean similarity value was chosen 
as the answer. For the orthographic model, similarity was quantified using the edit distance (Leven-
shtein, 1966). For the semantic model, similarity was quantified by the correlation between vectorial 
representations of word meaning, that is, the glove model (Pennington et al., 2014). Performance of 
the models remained similar if the answer was chosen based on the maximal word-by-word similarity, 
instead of the mean similarity.

RNN-based reading comprehension models
The SAR was a classical RNN-based model for the reading comprehension task (Chen et al., 2016). In 
contrast to the word-level models, the SAR was context sensitive and employed bidirectional RNNs 
to integrate information across words (Figure 1—figure supplement 1B). Independent bidirectional 
RNNs were employed to build a vectorial representation for the question and each option. An addi-
tional bidirectional RNN was applied to construct a vectorial representation for each word in the 
passage, and a passage representation was built by a weighted sum of the representations of indi-
vidual words in the passage. The weight on each word, that is, the attention weight, captured the 
similarity between the representation of the word and the question representation using a bilinear 
function. Finally, based on the passage representation and each option representation, a bilinear dot 
layer calculated the possibility that the option was the correct answer.

Transformer-based reading comprehension models
We tested three popular transformer-based DNN models, that is, BERT (Devlin et al., 2019), ALBERT 
(Lan et al., 2020), and RoBERTa (Liu et al., 2019), which were all reported to reach high performance 
on the reading comprehension task. ALBERT and RoBERTa were both adapted from BERT and had the 
same basic structure. RoBERTa differed from BERT in its pre-training procedure (Liu et al., 2019) while 
ALBERT applied factorized embedding parameterization and cross-layer parameter sharing to reduce 
memory consumption (Lan et  al., 2020). Following previous studies (Lan et  al., 2020; Liu et  al., 
2019), each option was independently processed. For the ith option (i = 1, 2, 3, or 4), the question and 
the option were concatenated to form an integrated option. As shown in the left panel of Figure 2B, 
for the ith option, the input to models was the following sequence:

	﻿‍ CLSi, P1, P2, ..., PN, Si,1, Oi,1, Oi,2, ..., Oi,M, Si,2,‍�

where CLSi, Si,1, and Si,2 denote special tokens separating different components of the input. P1, P2, 
…, PN denote all the N words of a passage, and Oi,1, Oi,2, …, Oi,M denote all the M words in the ith 
integrated option. Each of the token was represented by a vector. The vectorial representation was 
updated in each layer, and in the following the output of the lth layer is denoted as a superscript, for 
example, CLSi

l. Following previous studies (Lan et al., 2020; Liu et al., 2019), we calculated a score 
for each option, which indicated the possibility that the option was the correct answer. The score was 
calculated by first applying a linear transform to the final representation of the CLS token, that is,

	﻿‍ si = ΦCLS12
i ,‍�

where CLSi
12 is the final output representation of CLS and Φ is a vector learned from data. The score 

was independently calculated for each option and then normalized using the following equation:

	﻿‍
scorei =

exp
(
si
)

∑4
i=1 exp

(
si
)
‍�
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The answer to a question was determined as the option with the highest score, and all the models 
were trained to maximize the logarithmic score of the correct option. The transformer-based models 
were trained in two steps (Figure  1D). The pre-training process aimed to learn general statistical 
regularities in a language based on large corpora, that is, BooksCorpus (Zhu et al., 2015) and English 
Wikipedia, while the fine-tuning process trained models to perform the reading comprehension task 
based on RACE dataset. All models were implemented based on HuggingFace (Wolf et al., 2020), 
and all hyperparameters for fine-tuning were adopted from previous studies (Lan et al., 2020; Liu 
et al., 2019; Zhang et al., 2020; Ran et al., 2019; see Supplementary file 1g).

Attention in transformer-based models
The transformer-based models we applied had 12 layers, and each layer had 12 parallel attention 
heads. Each attention head calculated an attention weight between any pair of inputs, including words 
and special tokens. The vectorial representation of each input was then updated by the weighted sum 
of the vectorial representations of all inputs (Vaswani et al., 2017). Since only the CLS token was 
directly related to question answering, here we restrained the analysis to the attention weights that 
were used to calculate the vectorial representation of CLS (Figure 2B, right panel). In the hth head, 
the vectorial representation of CLS was computed using the following equations. For the sake of 
clarity, we did not distinguish the input words and special tokens and simply denoted them as Xi.

	﻿‍
CLSh =

N+M+3∑
i=1

αiVi = αCLSVCLS +
N∑

n=1
αPnVPn + αS1VS1 +

M∑
m=1

αOmVOm + αS2VS2,
‍�

	﻿‍
αi =

exp
(

QCLSKT
i

)

∑N+M+3
i=1 exp

(
QCLSKT

i
) ,

‍�

	﻿‍ Vi = XiWV + bV, Ki = XiWK + bK, QCLS = XCLSWQ + bQ,‍�

where WV, WQ, WK, bV, bQ, and bK are parameters to learn from the data, and αi is the attention weight 
between CLS and Xi. The attention weight between CLS and the nth word in the passage, that is, 
αPn, was compared to human attention. Here, we only considered the attention weights associated 
with the correct option. Additionally, DNNs used byte-pair tokenization which split some words into 
multiple tokens. We converted the token-level attention weights to word-level attention weights by 
summing the attention weights over tokens within a word (Bolotova et al., 2020; Clark et al., 2019).

Eye-tracking measures
We analyzed eye movements during passage reading in Experiments 1–3, and the passage preview 
in Experiment 4. For each word, the total fixation time, gaze duration, and run counts was extracted 
using the SR Research Data Viewer software. The total fixation time of a word is referred to as the 
word reading time. The gaze duration was how long a word was fixated before the gaze moved to 
other words, reflected first-pass processing of a word. To characterize late processing of a word, we 
further calculated the counts of rereading, which were defined as the run counts minus 1. Words that 
were not reread were excluded from the analysis of counts of rereading. Each of the eye-tracking 
measure was averaged across all participants who correctly answered the question.

Regression models
We employed linear regression to analyze how well each model, as well as each set of text/task-related 
features, could explain human attention measured by eye tracking. In all regression analyses, each 
regressor and the eye-tracking measure were normalized within each passage by taking the z-score. 
The predictive power, that is, the Pearson correlation coefficient between the predicted eye-tracking 
measure and the actual eye-tracking measure, was calculated based on fivefold cross-validation.

For the SAR, each word had one attention weight, which was used as the regressor. For transformer-
based models, since each model contained 12 layers and each layer contained 12 attention heads, 
altogether there were 144 regressors. Text features included layout features and word features. The 
layout features concerned the visual position of text, including the coordinate of the leftmost pixel of a 
word, ordinal paragraph number of a word in a passage, ordinal line number of a word in a paragraph, 
and ordinal line number of a word in a passage. The word features included word length, logarithmic 
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word frequency estimated based on the BookCorpus (Zhu et al., 2015) and English Wikipedia using 
SRILM (Stolcke, 2002), and word surprisal estimated from GPT-2 Medium (Radford et al., 2018). The 
task-related feature referred to the question relevance annotated by another group of participants 
(see ‘Experimental materials’ for details).

Additionally, we also applied linear regression to probe how DNN attention was affected by text 
features and question relevance. Since information of lines and paragraphs was not available to DNNs, 
the layout features only included the ordinal position of a word in a sentence, ordinal position of a 
word in a passage, and ordinal sentence number of a word in this analysis.

Linear mixed effect model
To characterize the influences of different factors on human word reading time, we employed linear 
mixed effects models (Pinheiro and Bates, 2006) implemented in the lmerTest package (Kuznetsova 
et al., 2017) of R. For the baseline model, we treated the type of questions (local vs. global; local = 
baseline) and all text/task-related features as fixed factors, and considered the interaction between 
the type of questions and these text/task-related features. We included participants and items (i.e., 
questions) as random factors, each with associated random intercepts. The formulation of the baseline 
model was reading-time ~ ParagraphNumber * QuestionType + LineNumberInPassage * Question-
Type + LeftMostPixel * QuestionType + LineNumberInParagraph * QuestionType + LogWordFreq 
* QuestionType + WordLength * QuestionType + Surprisal * QuestionType + QuestionRelevance * 
QuestionType + (1 | Participant) + (1 | question). Additionally, starting from the baseline model, we 
augmented the baseline model by adding DNN attention as additional fixed factors. This augmen-
tation facilitated an examination of whether DNN attention demonstrated a statistically significant 
contribution to the prediction of human word reading time. Notably, the DNN attention was derived 
from diverse sources, including SAR, randomized BERT, pre-trained BERT, and fine-tuned BERT.

Statistical tests
In the regression analysis, we employed a one-sided permutation test to test whether a set of features 
could statistically significantly predict an eye- tracking measure. A total of 500 chance-level predic-
tive power was calculated by predicting the eye-tracking measure shuffled across all words within a 
passage: the eye-tracking measure to predict was shuffled but the features were not. The procedure 
was repeated 500 times, creating 500 chance-level predictive power. If the actual correlation was 
smaller than N out of the 500 chance-level correlation, the significance level was (N + 1)/501.

When comparing the responses to local and global questions, the three types of local/global ques-
tions were pooled. The comparison between local and global questions, as well as the comparison 
between experiments, was based on bias-corrected and accelerated bootstrap (Efron and Tibshi-
rani, 1994). For example, to test whether the predictive power differed between the two types of 
questions, all global questions were resampled with replacement 50,000 times and each time the 
predictive power was calculated based on the resampled questions, resulting in 50,000 resampled 
predictive power. If the predictive power for local questions was greater (or smaller) than N out of the 
50,000 resampled predictive power for global questions, the significance level of their difference was 
2(N + 1)/50,001. When multiple comparisons were performed, the p-value was further adjusted using 
the FDR correction.
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