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Abstract The nearly neutral theory of molecular evolution posits variation among species in 
the effectiveness of selection. In an idealized model, the census population size determines both 
this minimum magnitude of the selection coefficient required for deleterious variants to be reliably 
purged, and the amount of neutral diversity. Empirically, an ‘effective population size’ is often 
estimated from the amount of putatively neutral genetic diversity and is assumed to also capture 
a species’ effectiveness of selection. A potentially more direct measure of the effectiveness of 
selection is the degree to which selection maintains preferred codons. However, past metrics that 
compare codon bias across species are confounded by among- species variation in %GC content 
and/or amino acid composition. Here, we propose a new Codon Adaptation Index of Species 
(CAIS), based on Kullback–Leibler divergence, that corrects for both confounders. We demon-
strate the use of CAIS correlations, as well as the Effective Number of Codons, to show that the 
protein domains of more highly adapted vertebrate species evolve higher intrinsic structural 
disorder.

eLife assessment
This study develops a useful metric for quantifying codon usage adaptation - the Codon Adaptation 
Index of Species (CAIS). This metric permits direct comparisons of the strength of selection at the 
molecular level across species. The study is based on solid evidence, and the authors identify rela-
tionships between CAIS and the presence of disordered protein domains. Other correlations, such 
as the one between CAIS and body size, are weak and non- significant. In summary, the study intro-
duces an interesting new approach to quantifying codon usage across species, which may be helpful 
in attempts to measure selection at the molecular level.
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Introduction
Species differ from each other in many ways, including mating system, ploidy, spatial distribution, 
life history, size, lifespan, genome size, mutation rate, selective pressure, and population size. These 
differences make the process of purifying selection more efficient in some species than others. Our 
understanding of both the causes and consequences of these differences is limited in part by a reli-
able metric with which to measure them. In the long term, the probability that a gene is fixed for 
one allele rather than another allele is given by the ratio of fixation and counter- fixation probabilities 
(Bulmer, 1991). In an idealized population of constant population size and no selection at linked sites, 
a mutation–selection–drift model describes how this ratio of fixation probabilities depends on the 
census population size N (Kimura, 1962), and hence gives the fraction of sites expected to be found 
in preferred vs. non- preferred states (Figure 1).

This reasoning has been extended to real populations by positing that species have an ‘effective’ 
population size, Ne (Ohta, 1973). Ne is the census population size of an idealized population that 
reproduces a property of interest in the focal population. Ne is therefore not a single quantity per 
population, but instead depends on which property is of interest.

The amount of neutral polymorphism is the usual property used to empirically estimate Ne 
(Charlesworth, 2009; Doyle et al., 2015; Lynch et al., 2016). However, the property of most rele-
vance to nearly neutral theory is instead the inflection point s at which non- preferred alleles become 
common enough to matter (Figure 1), and hence the degree to which highly exquisite adaptation 
can be maintained in the face of ongoing mutation and genetic drift (Kimura, 1962; Ohta, 1972; 
Ohta, 1992). While genetic diversity has been found to reflect some aspects of life history strategy 

eLife digest Evolution is the process through which populations change over time, starting with 
mutations in the genetic sequence of an organism. Many of these mutations harm the survival and 
reproduction of an organism, but only by a very small amount.

Some species, especially those with large populations, can purge these slightly harmful mutations 
more effectively than other species. This fact has been used by the ‘drift barrier theory’ to explain 
various profound differences amongst species, including differences in biological complexity. In this 
theory, the effectiveness of eliminating slightly harmful mutations is specified by an ‘effective' popula-
tion size, which depends on factors beyond just the number of individuals in the population.

Effective population size is normally calculated from the amount of time a ‘neutral’ mutation (one 
with no effect at all) stays in the population before becoming lost or taking over. Estimating this 
time requires both representative data for genetic diversity and knowledge of the mutation rate. A 
major limitation is that these data are unavailable for most species. A second limitation is that a brief, 
temporary reduction in the number of individuals has an oversized impact on the metric, relative to its 
impact on the number of slighly harmful mutations accumulated.

Weibel, Wheeler et al. developed a new metric to more directly determine how effectively a 
species purges slightly harmful mutations. Their approach is based on the fact that the genetic code 
has ‘synonymous’ sequences. These sequences code for the same amino acid building block, with one 
of these sequences being only slightly preferred over others.

The metric by Weibel, Wheeler et al. quantifies the proportion of the genome from which less 
preferred synonymous sequences have been effectively purged. It judges a population to have a 
higher effective population size when the usage of synonymous sequences departs further from the 
usage predicted from mutational processes.

The researchers expected that natural selection would favour ‘ordered’ proteins with robust three- 
dimensional structures, i.e., that species with a higher effective population size would tend to have 
more ordered versions of a protein. Instead, they found the opposite: species with a higher effective 
population size tend to have more disordered versions of the same protein. This changes our view of 
how natural selection acts on proteins.

Why species are so different remains a fundamental question in biology. Weibel, Wheeler et al. 
provide a useful tool for future applications of drift barrier theory to a broad range of ways that 
species differ.

https://doi.org/10.7554/eLife.87335
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(Romiguier et al., 2014), there remain concerns about whether neutral genetic diversity and the limits 
to weak selection always remain closely coupled in non- equilibrium settings.

As a practical matter, Ne is usually calculated by dividing some measure of the amount of putatively 
neutral (often synonymous) polymorphism segregating in a population by that species’ mutation rate 
(Charlesworth, 2009). As a result, Ne values are only available for species that have both polymor-
phism data and accurate mutation rate estimates, limiting their use. Worse, Ne is not a robust statistic. 
In the absence of a clear species definition, polymorphism is sometimes calculated across too broad a 
range of genomes, substantially inflating Ne (Daubin and Moran, 2004); a poor sampling scheme can 
have the converse effect of deflating genetic diversity. Transient hypermutation (Plotkin et al., 2006), 
which is common in microbes, causes further short- term inconsistencies in polymorphism levels. 
Perhaps most importantly, a recent bottleneck will deflate Ne based on the coalescence time, even if 
too brief to lead to significant erosion of fine- tuned adaptations. But drift barrier theory concerns the 
level with which adaptation is fine- tuned, and so a better metric would capture that directly, rather 
than indirectly rely on neutral diversity.

An alternative approach to measure the efficiency of selection exploits codon usage bias, which 
is influenced by weak selection for factors such as translational speed and accuracy (Hershberg and 
Petrov, 2008; Plotkin and Kudla, 2011; Hunt et al., 2014). The degree of bias in synonymous codon 
usage that is driven by selective preference offers a more direct way to assess how effective selection 
is at the molecular level in a given species (Li, 1987; Bulmer, 1991; Akashi, 1996; Subramanian, 
2008). Conveniently, it can be estimated from only a single genome, that is, without polymorphism or 
mutation rate data for that species.

One commonly used metric, the Codon Adaptation Index (CAI) (Sharp and Li, 1987; Sharp et al., 
2010) takes the average of Relative Synonymous Codon Usage (RSCU) scores, which quantify how 
often a codon is used, relative to the codon that is most frequently used to encode that amino acid in 
that species. While this works well for comparing genes within the same species, it unfortunately means 
that the species- wide strength of codon bias appears in the normalizing denominator (see Equation 4 
and Figure 3—figure supplement 1A). Paradoxically, this can make more exquisitely adapted species 

Figure 1. The effectiveness of selection, calculated as the long- term ratio of time spent in fixed deleterious: fixed 
beneficial allele states given symmetric mutation rates, is a function of the product  sN  . Assuming a diploid Wright–

Fisher population with s << 1, the probability of fixation of a new mutation  π
(
N, s

)
= 1−e−

s
2

1−e−Ns   , and the y- axis is 
calculated as  π
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)
/
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π
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)
+ π
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))
 . s is held constant at a value of 0.001 and N is varied. Results for 

other small magnitude values of s are superimposable. For small  sN  , selection is ineffective at producing codon 
bias. For large  sN  , selection is highly effective. For only a relatively narrow range of intermediate values of  sN  , the 
degree of codon bias depends quantitatively on  sN  .

https://doi.org/10.7554/eLife.87335
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have lower rather than higher species- averaged CAI scores (Figure 3—figure supplement 1B; Rocha, 
2004; Botzman and Margalit, 2011).

To compare species using CAI, it has been suggested that instead of taking a genome- wide 
average, one should consider a set of highly expressed reference genes (Sharp et al., 2005; Vicario 
et al., 2007; Subramanian, 2008; dos Reis and Wernisch, 2009). This approach assumes that the 
relative strength of selection on those reference genes (often a function of gene expression) remains 
approximately constant across the set of species considered (red distributions in Figure 2). Its use also 
requires careful attention to the length of reference genes (Urrutia and Hurst, 2001; Doherty and 
McInerney, 2013), and some approaches also require information about tRNA gene copy numbers 
and abundances (dos Reis and Wernisch, 2009).

Since codon bias varies quantitatively within only a small range of  sN   (Figure  1), a promising 
approach is to measure the proportion of sites at which codon adaptation is effective. We posit that 
more highly adapted species have a higher proportion of both genes and sites subject to effective 
selection on codon bias (Figure 2; Galtier et al., 2018). Indeed, CAI might also rely in part on varia-
tion in the fraction of sites within the reference genes that is subject to effective selection as a function 
of species (Figure 2, red). Here we take this logic further, considering all sites in a proteome- wide 
approach. Averaging across the entire proteome provides robustness to shifts in the expression level 
of or strength of selection on particular genes. The proteome- wide average depends on the fraction 
of sites whose selection coefficients exceed the ‘drift barrier’ for that particular species (Figure 2, blue 
threshold).

In estimating the effects of selection, it is critical to control for other causes of codon bias. In partic-
ular, species differ in their mutational bias with respect to the proportion of the genome that consists 
of guanine- cytosine base pairs (GC), and in the frequency of GC- biased gene conversion (Urrutia 
and Hurst, 2001; Duret and Galtier, 2009; Doherty and McInerney, 2013; Figuet et al., 2014). 
Here, we control for %GC, capturing species differences both in mutation and in gene conversion, by 
calculating the Kullback–Leibler divergence of the observed codon frequencies away from the codon 

Figure 2. More highly adapted species (bottom) have a higher proportion of their sites subject to effective 
selection on codon bias (blue area). The Codon Adaptation Index (CAI) attempts to compare the intensity of 
selection (Figure 1, x- axis) in a subset of genes under strong selection (red areas). Given the narrow range 
of quantitative dependence of codon bias on  sN   shown in Figure 1, our new metric is intended to capture 
differences in the proportion of the proteome subject to substantial selection (blue areas).

https://doi.org/10.7554/eLife.87335
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frequencies that we would expect to see given the genomic %GC content of the species. Kullback–
Leibler divergence measures the distance of an observed probability distribution from an expected 
reference distribution, capturing a measure of surprise (Kullback and Leibler, 1951). This method 
does not require us to specify preferred vs. non- preferred codons, and can thus also accommodate 
situations in which different genes have different codon preferences (Gingold et  al., 2014; Cope 
et al., 2018).

An alternative metric, the Effective Number of Codons (ENC) originally quantified how far the 
codon usage of a sequence departs from equal usage of synonymous codons (Wright, 1990), with 
lower ENC values indicating greater departure. This approach creates a complex relationship with 
GC content (Fuglsang, 2008), and so ENC was later modified to correct for GC content (Novembre, 
2002). However, a remaining issue with this modified ENC is that differences among species in amino 
acid composition might act as a confounding factor, even after controlling for GC content. Specifically, 
species that make more use of an amino acid for which there is stronger selection among codons 
(which is sometimes the case Vicario et al., 2007) would have higher codon bias, even if each amino 
acid considered on its own had identical codon bias irrespective of which species it is in. Confounding 
with amino acid frequencies has been shown to be a problem at the individual protein level (Cope 
et  al., 2018). Neither ENC (Fuglsang, 2004; Fuglsang, 2008) nor the CAI (Sharp and Li, 1987) 
adequately control for differences in amino acid composition when applied across species. Despite 
early claims to the contrary (Wright, 1990), this problem is not easy to fix for ENC (Fuglsang, 2004; 
Fuglsang, 2008).

Here, we extend the CAI, using the information- theory- based Kullback–Leibler divergence, so that 
it corrects for both GC and amino acid composition (see Methods) to create a new Codon Adaptation 
Index of Species (CAIS). The availability of a complete genome allows both metrics to be readily calcu-
lated without data on polymorphism or mutation rate, without selecting reference genes, and without 
concerns about demographic history. Our purpose is to find an accessible metric that can quantify the 
limits to weak selection important to nearly neutral theory; this differs from past evaluations focused 

Figure 3. Codon Adaptation Index (CAI) is seriously confounded with GC content (A), while Effective Number of Codons (ENC) and Codon Adaptation 
Index of Species (CAIS) are not (B and C). We control for phylogenetic confounding via Phylogenetic Independent Contrasts (PIC) (Felsenstein, 1985); 
this yields an unbiased R2 estimate (Rohlf, 2006). Each datapoint is one of 118 vertebrate species with ‘Complete’ intergenic genomic sequence 
(allowing for %GC correction) and TimeTree divergence dates (allowing for PIC correction). Red line shows unweighted lm(y ~ x) with gray region as 
95% confidence interval. Figure 3—figure supplement 1 shows in more detail why CAI is not appropriate for species- wide effectiveness of selection 
measurements. Plots without PIC correction are shown in Figure 3—figure supplement 2. The impact of amino acid frequency correction on CAIS is 
shown in Figure 3—figure supplement 3.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Codon Adaptation Index (CAI) is not appropriate for species- wide effectiveness of selection measurements.

Figure supplement 2. The same relationships are shown as in Figure 3, but without correction for phylogenetic confounding, suggesting GC 
confounding for the Effective Number of Codons (ENC) but not the Codon Adaptation Index of Species (CAIS).

Figure supplement 3. Vertebrate Codon Adaptation Index of Species (CAIS) values are not greatly affected by computation for a standardized amino 
acid composition vs. computation for the amino acid frequencies in the species in question.

https://doi.org/10.7554/eLife.87335
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on comparing different genes of the same species and recapitulating ‘ground truth’ simulations 
thereof (Sun et al., 2013; Zhang et al., 2012; Liu et al., 2018). To demonstrate the usefulness of our 
method, we identify a novel correlation with intrinsic structural disorder (ISD), pointing to what else 
might be subject to weak selective preferences at the molecular level. While ENC can also identify 
subtle selection on ISD, CAIS can do so without the risk of confounding with amino acid frequencies.

Results
Both ENC and CAIS solve the GC confounding problem that plagues 
CAI
CAI is seriously confounded with GC content (Figure 3A). ENC is not confounded with GC content 
(Figure 3B), while CAIS has only a very weak correlation that is not significant after correction for 
multiple comparisons (Figure 3C).

Proteins in better adapted species evolve more structural disorder
As an example of how correlations with codon adaptation metrics can be used to identify weak 
selective preferences, we investigate protein ISD. Disordered proteins are more likely to be harmful 
when overexpressed (Vavouri et al., 2009), and ISD is more abundant in eukaryotic than prokaryotic 
proteins (Schad et al., 2011; Xue et al., 2012; Basile et al., 2019), suggesting that low ISD might be 
favored by more effective selection.

However, compositional differences among proteomes might not be driven by differences in 
how a given protein sequence evolves as a function of the effectiveness of selection. Instead, they 
might be driven by the recent birth of ISD- rich proteins in animals (James et al., 2021), and/or by 
differences among sequences in their subsequent tendency to proliferate into many different genes 
(James et al., 2023). To focus only on the effects of descent with modification, we use a linear mixed 
model, with each species having a fixed effect on ISD, while controlling for Pfam domain identity as 
a random effect. We note that once GC is controlled for, codon adaptation can be assessed similarly 

Figure 4. Protein domains have higher intrinsic structural disorder (ISD) when found in more exquisitely adapted species, according to (A) the Codon 
Adaptation Index of Species (CAIS) and (B) the Effective Number of Codons (ENC). We plot -ENC rather than ENC to more easily compare results with 
those from CAIS. (C) Correcting for local rather than genome- wide %GC removes the relationship. Each datapoint is one of 118 vertebrate species 
with ‘complete’ intergenic genomic sequence available (allowing for %GC correction), and TimeTree divergence dates (allowing for Phylogenetic 
Independent Contrasts [PIC] correction). ‘Effects’ on ISD shown on the y- axis are fixed effects of species identity in our linear mixed model, after PIC 
correction. Red line shows unweighted lm(y ~ x) with gray region as 95% confidence interval. Panels without PIC correction are presented in Figure 4—
figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The same relationships are shown as in Figure 4, here without correction for phylogenetic confounding.

https://doi.org/10.7554/eLife.87335
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in intrinsically disordered vs. ordered proteins 
(Gossmann et  al., 2012). Controlling for Pfam 
identity is supported, with standard deviation in 
ISD of 0.178 among Pfams compared to residual 
standard deviation of 0.058, and a p- value on the 
significance of the Pfam random effect term of 3 
× 10−13. Controlling in this way for Pfam identity, 
we then ask whether the fixed species effects on 
ISD are correlated with CAIS and with ENC.

Surprisingly, more exquisitely adapted species 
have more disordered protein domains (Figure 4). 
Results using ENC and CAIS are similar, with ENC 
having higher power; the correlation coefficient is 
0.36 for CAIS compared to 0.50 for ENC, and the 
p- value for ENC is 3 orders of magnitude lower. 
We note, however, that amino acid frequencies 
strongly influence ISD (Theillet et  al., 2013). 
The CAIS correlation is more reliable than the 
ENC correlation because by construction, CAIS 
controls for differences in amino acid frequencies 
among species.

Different parts of the genome have different 
GC contents (Bernardi, 2000; Eyre- Walker and 
Hurst, 2001; Lander et  al., 2001), primarily 
because the extent to which GC- biased gene 
conversion increases GC content depends on the 

local rate of recombination (Galtier et al., 2001; Meunier and Duret, 2004; Duret et al., 2006; Duret 
and Galtier, 2009). We therefore also calculated a version of CAIS whose codon frequency expec-
tations are based on local intergenic GC content. This performed worse (Figure 4C) than our simple 
use of genome- wide GC content (Figure 4A) with respect to the strength of correlation between 
CAIS and ISD. If GC- biased gene conversion is a more powerful force than weak selective preferences 
among codons, then local GC content will evolve more rapidly than codon usage (Kondrashov et al., 
2010). In this case, genome- wide GC may serve as an appropriately time- averaged proxy. It is also 
possible that the local non- coding sequences we used were too short (at 3000 bp or more), creating 
excessive noise that obscured the signal.

Many vertebrates have higher recombination rates and hence GC- biased gene conversion near 
genes; in this case genome- wide GC content would misestimate the codon usage expected from the 
combination of mutation bias and GC- biased gene conversion in the vicinity of genes. If GC- biased 
gene conversion drove CAIS, we expect high  |local GC − global GC|  to predict high CAIS. We do not 
see this relationship (Figure 5), suggesting that gene conversion strength is not a confounding factor 
impacting CAIS.

Younger animal- specific protein domains have higher ISD (James et al., 2021). It is possible that 
selection in favor of high ISD is strongest in young domains, which might use more primitive methods 
to avoid aggregation (Foy et  al., 2019; Bertram and Masel, 2020). To test this, we analyze two 
subsets of our data: those that emerged prior to the last eukaryotic common ancestor (LECA), here 
referred to as ‘old’ protein domains, and ‘young’ protein domains that emerged after the divergence 
of animals and fungi from plants. Young and old domains show equally strong trends of increasing 
disorder with species’ adaptedness (Figure 6).

Discussion
When different properties are each causally affected by a species’ exquisiteness of adaptation, this will 
create a correlation between the properties. We use codon adaptation as a reference property, such 
that correlations with codon adaptation indicate selection. To detect ISD as a novel property under 
selection, we used a linear mixed model approach that controls for Pfam identity as a random effect. 

Figure 5. Codon Adaptation Index of Species (CAIS) 
is not correlated with the degree to which local 
genomic regions differ in their GC content from global 
GC content. If CAIS were driven by GC- biased gene 
conversion, genomes with more heterogeneous %GC 
distributions should have higher CAIS scores.

https://doi.org/10.7554/eLife.87335
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Figure 6. More exquisitely adapted species have higher intrinsic structural disorder (ISD) in both young (A and B) and old (C and D) protein domains, 
according to both the Codon Adaptation Index of Species (CAIS) (A, C), and the Effective Number of Codons (ENC) (B, D). Age assignments are 
taken from James et al., 2021, with vertebrate protein domains that emerged prior to last eukaryotic common ancestor (LECA) classified as ‘old’, and 
vertebrate protein domains that emerged after the divergence of animals and fungi from plants as ‘young’. ‘Effects’ on ISD shown on the y- axis are fixed 
effects of species identity in our linear mixed model. The same n = 118 datapoints are shown as in Figures 3 and 4. Red line shows lm(y ~ x), with gray 
region as 95% confidence interval. Panels without Phylogenetic Independent Contrasts (PIC) correction are shown in Figure 6—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Without correction for phylogenetic confounding, more highly adapted species have higher intrinsic structural disorder (ISD) 
in both young (A and B) and old (C and D) protein domains, according to both the Codon Adaptation Index of Species (CAIS) (A, C), and the Effective 
Number of Codons (ENC) (B, D).

https://doi.org/10.7554/eLife.87335
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This approach shows that the same Pfam domain tends to be more disordered when found in a well- 
adapted species (i.e. a species with a higher CAIS or ENC). This is true for both ancient and recently 
emerged protein domains.

It is important that no additional variable such as GC content or amino acid frequencies creates a 
spurious correlation by affecting both CAIS and our property of interest. For this reason, we define 
CAIS as the observed Kullback–Leibler divergence (Kullback and Leibler, 1951) from the codon usage 
expected given the GC content. The GC content pertinent to this expectation depends primarily on 
mutation bias and GC- biased gene conversion (Romiguier and Roux, 2017), but potentially also 
on selection on individual nucleotide substitutions that is hypothesized to favor higher %GC (Long 
et al., 2018). By controlling for %GC, we exclude all these forces from influencing CAIS or ENC. We 
thus capture the extent of adaptation in codon bias, including translational speed, accuracy, and any 
intrinsic preference for GC over AT that is specific to coding regions. These remaining codon- adaptive 
factors do not create a statistically convincing correlation between CAIS and GC (Figure 3C), nor 
between ENC and GC (Figure 3B), although CAI is strongly correlated with GC (Figure 3A). Notably, 
our new CAIS metric of codon adaptation controls for amino acid frequencies, rather than, like ENC, 
only GC content.

A direct effect of ISD on fitness agrees with studies of random Open Reading Frames (ORFs) in 
Escherichia coli, where fitness was driven more by amino acid composition than %GC content, after 
controlling for the intrinsic correlation between the two (Kosinski et al., 2022). However, we have 
not ruled out a role for selection for higher %GC in ways that are general rather than restricted to 
coding regions, whether in shaping mutational biases (Smith and Eyre- Walker, 2001; Hershberg and 
Petrov, 2009; Hildebrand et al., 2010; Novoa et al., 2019; Forcelloni and Giansanti, 2020) or the 
extent of gene conversion, or even at the single- nucleotide level in a manner shared between coding 
regions and intergenic regions (Long et al., 2018).

A more complex metric could control for more than just GC content and amino acid frequen-
cies. First vs. second vs. third codon positions have different nucleotide usage on average, but while 
correcting for this might be useful for comparing genes (Zhang et al., 2012), correcting for it while 
comparing species might remove the effect of interest. Similarly, while it might be useful to control 
for dinucleotide and trinucleotide frequencies (Brbić et al., 2015), to avoid circularity these would 
need to be taken from intergenic sequences, with care needed to avoid influence from unannotated 
protein- coding genes or even pseudogenes.

Note that if a species were to experience a sudden reduction in census population size, for example 
due to habitat loss, leading to less effective selection, it would take some multiple of the neutral 
coalescent time for CAIS to fully adjust. CAIS thus represents a relatively long- term historical pattern 
of adaptation. The timescales setting neutral polymorphism- based  Ne  estimates are likely shorter, 
based on a single round of coalescence. It is possible that the reason that we obtained correlations 
when we controlled for genome- wide GC content, but not when we controlled for local GC content, is 
also that codon adaptation adjusts slowly relative to the timescale of fluctuations in local GC content.

Here, we developed a new metric of species adaptedness at the codon level, capable of quan-
tifying degrees of codon adaptation even among vertebrates. We chose vertebrates partly due to 
the abundance of suitable data, and partly as a stringent test case, given past studies finding limited 
evidence for codon adaptation (Kessler and Dean, 2014). It remains to be seen how CAIS behaves 
among species with stronger codon adaptation. We restricted our analysis to only the best annotated 
genomes, in part to ensure the quality of intergenic %GC estimates, and in part limited by the feasi-
bility of running linear mixed models with 6 million datapoints. The phylogenetic tree is well resolved 
for vertebrate species, with an overrepresentation of mammalian species. Despite the focus on verte-
brates, we were able to discover new results regarding selection on ISD.

Our finding that more effective selection prefers higher ISD was unexpected, given that lower- Ne 
eukaryotes have more disordered proteins than higher- Ne prokaryotes (Ahrens et al., 2017; Basile 
et al., 2019). However, this can be reconciled in a model in which highly disordered sequences are less 
likely to be found in high- Ne species, but the sequences that are present tend to have slightly higher 
disorder than their low- Ne homologs. High ISD might help mitigate the trade- off between affinity and 
specificity in protein–protein interactions (Dunker et al., 1998; Huang and Liu, 2013; Lazar et al., 
2022); non- specific interactions might be short- lived due to the high entropy associated with disorder, 
which specific interactions are robust to.

https://doi.org/10.7554/eLife.87335
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Codon adaptation metrics more directly quantify how species vary in their exquisiteness of adap-
tation, than do estimates of effective population size that are based on neutral polymorphism. Both 
CAIS and ENC can also be estimated for far more species because they do not require polymorphism 
or mutation rate data, nor tRNA gene copy numbers and abundances, but only a single complete 
genome. CAIS has the additional advantage of not being confounded with amino acid frequencies. 
This makes CAIS a useful tool for applying nearly neutral theory to protein evolution, as shown by our 
worked example of ISD.

Methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm IUPRED2 DOI: https://doi.org/10.1093/nar/gky384 RRID:SCR_014632

Software, algorithm
Codon Adaptation Index of 
Species This paper

See Materials and 
methods

Software, algorithm Codon Adaptation Index DOI: https://doi.org/10.1093/nar/15.3.1281

Software, algorithm ape
DOI: https://doi.org/10.1093/bioinformatics/ 
bty633 RRID:SCR_017343 R package

Software, algorithm
Effective Number of 
Codons

DOI: https://doi.org/10.1093/oxfordjournals. 
molbev.a004201

Species
Pfam sequences and IUPRED2 estimates of ISD predictions were taken from James et al., 2021, who 
studied species marked as ‘Complete’ in the GOLD database, with divergence dates available in Time-
Tree (Kumar et al., 2017). James et al., 2021 applied a variety of quality controls to exclude contam-
inants from the set of Pfams and assign accurate dates of Pfam emergence. Pfams that emerged prior 
to LECA are classified here as ‘old’, and Pfams that emerged after the divergence of animals and fungi 
from plants are classified as ‘young’, following annotation by James et al., 2021. Species list and 
other information can be found at https://github.com/MaselLab/Codon-Adaptation-Index-of-Species 
(copy archived at MaselLab, 2024).

Codon Adaptation Index
Sharp and Li, 1987 quantified codon bias through the CAI, a normalized geometric mean of synon-
ymous codon usage bias across sites, excluding stop and start codons. We modify this to calculate 
CAI including stop and start codons, because of documented preferences among stop codons in 
mammals (Wangen and Green, 2020). While usually used to compare genes within a species, among- 
species comparisons can be made using a reference set of genes that are highly expressed (Sharp and 
Li, 1987). Each codon i is assigned an RSCU value:

 

RSCUi = Ni
1
na

∑na
j=1 Nj

,

  
(1)

where  Ni  denotes the number of times that codon  i  is used, and the denominator sums over all  na  
codons that code for that specific amino acid. RSCU values are normalized to produce a relative adap-
tiveness values  wi  for each codon, relative to the best adapted codon for that amino acid:

 
wi ≡

RSCUi
RSCUmax

.
  

(2)

Let  L  be the number of codons across all protein- coding sequences considered. Then

 
CAI =

[
ΠL

i=1wi

] 1
L .

  
(3)

To understand the effects of normalization, it is useful to rewrite this as:

https://doi.org/10.7554/eLife.87335
https://doi.org/10.1093/nar/gky384
https://identifiers.org/RRID/RRID:SCR_014632
https://doi.org/10.1093/nar/15.3.1281
https://doi.org/10.1093/bioinformatics/bty633
https://doi.org/10.1093/bioinformatics/bty633
https://identifiers.org/RRID/RRID:SCR_017343
https://doi.org/10.1093/oxfordjournals.molbev.a004201
https://doi.org/10.1093/oxfordjournals.molbev.a004201
https://github.com/MaselLab/Codon-Adaptation-Index-of-Species
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CAI =

[
ΠL

i=1
RSCUi

RSCUmax

] 1
L = CAIraw

CAImax
,
  

(4)

where  CAIraw  is the geometric mean of the ‘unnormalized’ or observed synonymous codon usages, 
and  CAImax  is the maximum possible CAI given the observed codon frequencies.

GC content
We calculated total %GC content (intergenic and genic) during a scan of all six reading frames across 
genic and intergenic sequences available from NCBI with access dates between May and July 2019 
(described in James et al., 2023). Of the 170 vertebrates meeting the quality criteria of James et al., 
2021, 118 had annotated intergenic sequences within NCBI, so we restricted the dataset further to 
keep only the 118 species for which total GC content was available.

Codon Adaptation Index of Species
Controlling for GC bias in synonymous codon usage
Consider a sequence region  r  within species  s  where each nucleotide has an expected probability 
of being G or C =  gr . For our main analysis, we consider just one region  r  encompassing the entire 
genome of a species  s . In a secondary analysis, we break the genome up and use local values of  gr  in 
the non- coding regions within and surrounding a gene or set of overlapping genes. To annotate the 
boundaries of these local regions, we first selected 1500 base pairs flanking each side of every coding 
sequence identified by NCBI annotations. Coding sequence annotations are broken up according to 
exon by NCBI. When coding sequences of the same gene did not fall within 3000 base pairs of each 
other, they were treated as different regions. When two coding sequences, whether from the same 
gene or from different genes, had overlapping 1500 bp catchment areas, we merged them together. 

 gr  was then calculated based on the non- coding sites within each region, including both genic regions 
such as promoters and non- genic regions such as introns and intergenic sequences.

With no bias between C vs. G, nor between A vs. T, nor patterns beyond the overall composition 
taken one nucleotide at a time, the expected probability of seeing codon  i  in a triplet within  r  is

 
pi,r = gr

2
kGC

(
1 − gr

2

)kAT
,
  

(5)

where  kGC + kAT = 3  total positions in codon  i . The expected probability that amino acid  a  in region  r  
is encoded by codon  i  is

 
Ei,r =

pi,r∑na
j=1 pj,r

.
  

(6)

We can then measure the degree to which the observed codon frequencies diverge from these 
expected probabilities using the Kullback–Leibler divergence. This gives a CAIS metric for a species  s  
where  Oi,s  is the observed frequency of codon i:

 
CAIS

(
s
)

= Σ64
i=1Oi,s log

(
Oi,s
Ei,s

)
.
  

(7)

Controlling for amino acid composition
Some amino acids may be more intrinsically prone to codon bias. We want a metric that quantifies 
effectiveness of selection (not amino acid frequency), so we re- weight CAIS on the basis of a stan-
dardized amino acid composition, to remove the effect of variation among species in amino acid 
frequencies.

Let  Fa  be the frequency of amino acid  a  across the entire dataset of 118 vertebrate genomes. We 
want to re- weight  Oi,s  on the basis of  Fa  to ensure that differences in amino acid frequencies among 
species do not affect CAIS, while preserving relative codon frequencies for the same amino acid. We 
do this by solving for  αa,s  so that

 Fa = αa,sΣ
na
j=1Oj,s.  (8)

https://doi.org/10.7554/eLife.87335
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We then define  f
′

i,s = αa,sOi,s  to obtain an amino acid frequency adjusted CAIS:

 
CAIS

(
S
)

= Σ64
i=1 f

′

i,s log
(

Oi,s
Ei,s

)
.
  

(9)

The  Fa  values for our species set are at https://github.com/MaselLab/Codon-Adaptation-Index-of- 
Species/blob/main/CAIS_ENC_calculation/Total_amino_acid_frequency_vertebrates.txt. Use of the 
standardized set of amino acid frequencies  Fa  has only a small effect on computed CAIS values rela-
tive to using each vertebrate species’ own amino acid frequencies (Figure 3—figure supplement 3).

CAIS corrected for local intergenic GC content but not species- wide amino acid composition is

 
CAISlocalGC

(
s
)

=
(
ΠG

r=1Σ
64
i=1Oi,r log

(
Oi,r
Ei,r

)) 1
L ,

  
(10)

where  Oi,r  is the number of times codon  i  appears in region  r  of species  s ,  Ei,r  is the expected number 
of times codon  i  would appear in region  r  of species  s  given the local intergenic GC content,  G  is the 
number of regions, and  L =

∑G
r=1

∑64
i=1 Oi,r  is the total number of codons in the genome. Rewritten 

for greater computational ease:

 CAISlocalGC
(
s
)

= e

1
L
ΣG

r=1 ln

(
∑64

i=1 Oi,r log

(Oi,r
Ei,r

))

.  
(11)

Given the limited impact of amino acid frequency correction, we used Equation 11 for the local 
GC results, but we could correct for amino acid composition by replacing the  Oi,r  prefactor with  f

′

i,s , 
or even  f

′

i,r .

Novembre’s ENC controlled for total GC content
The expected number of codons is based on the squared deviations  X2

a  of the frequencies of the 
codons for each amino acid  a  from null expectations:

 
X2

a = Σna
i=1

Na
(
Oi − Ei

)2

Ei
,
 
 
  

(12)

where  Na  is the total number of times that amino acid  a  appears. Novembre, 2002 defines the 
corrected ‘F value’ of amino acid  a  as

 
�F′a = X2

a + Na − na

na
(
Na − 1

)
  

(13)

and

 
ENC = 2 + 9

F̂′2
+ 1

F̂′3
+ 5

F̂′4
+ 3

F̂′6
,
  

(14)

where each  F′
na  is the average of the ‘F values’ for amino acids with  na  synonymous codons. Past 

measures of ENC do not contain stop or start codons (Wright, 1990; Novembre, 2002; Fuglsang, 
2004), but as we did for CAI and CAIS above, we include stop codons as an ‘amino acid’ and therefore 
amend Equation 14 to

 
ENC = 2 + 9

F̂′2
+ 2

F̂′3
+ 5

F̂′4
+ 3

F̂′6
.
  

(15)

Statistical analysis
All statistical modeling was done in R 3.5.1. Scripts for calculating CAI and CAIS were written in 
Python 3.7.

https://doi.org/10.7554/eLife.87335
https://github.com/MaselLab/Codon-Adaptation-Index-of-Species/blob/main/CAIS_ENC_calculation/Total_amino_acid_frequency_vertebrates.txt
https://github.com/MaselLab/Codon-Adaptation-Index-of-Species/blob/main/CAIS_ENC_calculation/Total_amino_acid_frequency_vertebrates.txt
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Phylogenetic Independent Contrasts
Spurious phylogenetically confounded correlations can occur when closely related species share 
similar values of both metrics. One danger of such pseudoreplication is Simpson’s paradox, where 
there are negative slopes within taxonomic groups, but a positive slope among them might combine 
to yield an overall positive slope. We avoid pseudoreplication by using Phylogenetic Independent 
Contrasts (PIC) (Felsenstein, 1985) to assess correlation. PIC analysis was done using the R package 
‘ape’ (Paradis and Schliep, 2019).
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