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Abstract The protein diversity of mammalian cells is determined by arrays of isoforms from 
genes. Genetic mutation is essential in species evolution and cancer development. Accurate long- 
read transcriptome sequencing at single- cell level is required to decipher the spectrum of protein 
expressions in mammalian organisms. In this report, we developed a synthetic long- read single- cell 
sequencing technology based on LOOPSeq technique. We applied this technology to analyze 447 
transcriptomes of hepatocellular carcinoma (HCC) and benign liver from an individual. Through 
Uniform Manifold Approximation and Projection analysis, we identified a panel of mutation mRNA 
isoforms highly specific to HCC cells. The evolution pathways that led to the hyper- mutation clus-
ters in single human leukocyte antigen molecules were identified. Novel fusion transcripts were 
detected. The combination of gene expressions, fusion gene transcripts, and mutation gene expres-
sions significantly improved the classification of liver cancer cells versus benign hepatocytes. In 
conclusion, LOOPSeq single- cell technology may hold promise to provide a new level of precision 
analysis on the mammalian transcriptome.

eLife assessment
The authors pair single- cell sequencing technology with the LoopSeq synthetic long- read method 
to examine samples of hepatocellular carcinoma and benign liver, with the goal of identifying muta-
tions and fusion transcripts specific to cancer cells. The authors present a valuable resource, and the 
overall support for the major claims is solid.

Introduction
Mammalian organisms are composed of numerous cells with multiple different roles. Individual cells 
are supported by a broad array of proteins with a variety of functions. While protein expression is 
dictated by the level of gene expression, the structure and function of the protein are largely deter-
mined by the isoforms of the mRNA of a given gene and are impacted by mutations or other structural 
alterations to the amino acids (Faustino and Cooper, 2003). To understand the role of each cell in an 
organism, broad- spectrum mRNA isoform and mutational gene expression analyses at the single- cell 
level are necessary.
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Human cancers have been known for their extensive genomic alterations (Hanahan, 2022), 
including mutations, chromosome rearrangements, insertion/deletion, etc. These genome alterations 
drive the clinical course of the disease through the expression of the mutated transcripts and proteins 
(Hollstein et al., 1991; Murugan et al., 2019). Even though the mutations or mutation clusters have 
been clearly demonstrated in the genome level (Bergstrom et  al., 2022; Gerstung et  al., 2020; 
Nam et al., 2021), it was unclear whether these mutations were expressed in the RNA transcripts and 
in what protein isoforms if they were expressed. Furthermore, it was unclear whether the mutations 
occurred in the same allele if multiple non- adjacent mutations were detected.

In the last 10 y, great strides in the field of long- read sequencing have enabled the quantification of 
mRNA isoforms in mammalian samples (Logsdon et al., 2020; Nakano et al., 2017). These sequencing 
technologies have been successfully employed to quantify mRNA isoforms from the bulk samples 
(Athanasopoulou et al., 2022). However, little progress has been made in developing a technology 
to analyze mutated mRNA expressions at the single- cell level. Among the long- read sequencing solu-
tions, LoopSeq synthetic long- read sequencing technology has been shown to produce the lowest 
error rate (Liu et al., 2021a) and thus may be most suited for the mutational isoform expression anal-
yses. In this report, we developed a strategy to integrate Element Biosciences’ LoopSeq intramolec-
ular barcoding technique with 10x Genomics’ cell barcoding scheme to create a single- cell long- read 
isoform analysis vehicle. To demonstrate the utility of this methodology, we analyzed the isoforms of 
over 440 transcriptomes from the cells originating from a hepatocellular carcinoma (HCC) patient. 
The results showed evolutionary patterns of single- molecule mutational gene expression from benign 
hepatocytes to liver cancer cells.

Results
Single-cell LoopSeq strategy
The strategy of incorporating LoopSeq long- read technology with single- cell sequencing starts with 
utilizing the output of 10x Genomics’ 3' single- cell assay. Approximately 200–300 cells from samples 
of both benign liver or HCC from a patient were encapsulated and unique molecular barcoded using 
a Gel Beads- in emulsion (GEM) system. The Gel Beads were dissolved, and any respectively associ-
ated cells were lysed prior to reverse transcription, template switching, and transcript extension. The 

Figure 1. Schema of the workflow for the single- cell LoopSeq assay. A total of 200–300 live cells per sample were co- partitioned with Gel Beads and 
subsequently lysed. The captured mRNAs were reverse- transcribed and barcoded using Chromium Next GEM 3' reagent 3.1 kit (10x Genomics). The 
cellular barcoded cDNAs were ligated with a LoopSeq Adapter (Element Biosciences) and enriched by human core exome capturing (Twist Biosciences). 
This was followed by amplification and intramolecular distribution of the LOOP unique molecular identifier (UMI) located on the LoopSeq Adapter. The 
LOOP UMI barcoded cDNAs were then fragmented and ligated with an adaptor to generate a short- read sequencing library before sequencing.

https://doi.org/10.7554/eLife.87607
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resulting 10× Adapter sequence contains a 16- base pair barcode, followed by a 12- base pair unique 
molecular identifier (UMI) and a 30- base pair poly(dT) sequence. Full- length cDNA was then amplified 
from purified first- strand cDNA (Figure 1, blue box). A Loop adapter (containing 12- base pair unique 
molecular identifiers [LOOP UMI] and a 6- base pair sample index [SI]) was ligated to the 10x Genomics 
barcoded cDNA and subsequently enriched by exome probe sets that represent 19,433 genes in the 
human genome. This was followed by amplification and the random intramolecular distribution of the 
LOOP UMIs throughout their respective cDNA molecules. The LOOP UMI- distributed fragments were 
then subjected to short- read library preparation for sequencing (Figure 1, green box). Binned cDNA 
short- reads from individual LOOP UMIs were de novo assembled to generate consensus sequences 
of long mRNA transcripts.

To produce sufficient long- reads for single- cell analysis, 2.985 billion short- reads were sequenced 
across the benign liver cells, while 3.814 billion short- reads were evaluated from the HCC cells. The 
assembly of these short- read sequences resulted in 5.8 million long- read transcripts for the benign 
liver sample and 6 million for the HCC sample. The mapping of 10x Genomics cell barcodes resulted in 
447 valid single- cell transcriptomes (162 from the benign liver sample and 285 from the HCC sample). 
There were an average number of 1186 genes per cell and 1331 isoforms per cell in the benign liver 
sample and 1266 genes and isoforms in the HCC sample. Interestingly, there was a total of 8646 novel 
isoforms identified in benign liver tissue (based on SCANTI v1.2). This generated an average of 442 
novel isoforms per cell. For the HCC sample, there was a total of 14,229 novel isoforms. This trans-
lated into an average of 450 novel isoforms per cell.

Mutational gene and isoform expressions in the cells from the benign 
liver and HCC samples
To identify the mutational gene expressions in each cell, exome sequencing was performed on benign 
liver, HCC, and gallbladder samples from the same individual. The sequencing results from the gall-
bladder were used as a germline reference to establish whether the structural variants found in the 
benign hepatocytes or the HCC samples were somatic mutations. The expression data were then 
limited to including only non- synonymous mutations detected in the exomes of the benign liver or 
the HCC samples. The expressions of these mutations were further filtered by the requirement of 
detecting the same mutation in a minimum of three different cells. Based on these criteria, a total of 
2939 mutations were found to be expressed in the HCC and benign hepatocyte samples.

To investigate the role of mutational gene expression in HCC development, mutated gene expres-
sion levels were normalized to ‘share’ of the mutated transcripts relative to all the transcripts of a given 
gene, while mutational isoform expressions were normalized to ‘share’ of the mutation isoforms relative 
to all the transcripts of a given isoform (see nomenclature in ‘Methods’ for definition). When mutational 

A      B
Muta�on gene expression share SD distribu�on Muta�on isoform expression share SD distribu�on

Figure 2. Mutation expression standard deviations. (A) Mutational gene expressions share standard deviation across all transcriptomes. (B) Mutational 
isoform expression share standard deviation across all transcriptomes.

https://doi.org/10.7554/eLife.87607
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gene expressions were compared across all the transcriptomes, variations of mutated gene expressions 
were found (Figure 2A and B). To achieve an unbiased classification of cells, we chose a knowledge- 
blind approach to analyze the cell populations in both samples. To remove potential non- contributing 
mutational gene expressions, genes with a normalized mutated gene expression standard deviation 
(SD) < 0.4 across all the cells were removed. This resulted in 282 genes with mutated gene expression 
SDs > 0.4. Uniform Manifold Approximation and Projection (UMAP) analysis was then applied to 447 
transcriptomes from the HCC and benign liver samples based on these genes. As shown in Figure 3A, 
Supplementary file 1, and Figure 3—figure supplement 1A, many cells from the HCC sample clus-
tered to a pole position relative to the cells from the benign liver, while other cells from the HCC 
sample moved in proximity to the cells from the benign liver. To investigate whether mutational isoform 
expressions contributed to the development of HCC, similar removal of isoforms with mutated isoform 
expression SDs < 0.4 was performed. The resulting 205 mutational isoforms were then assessed in cells 
from the benign liver and HCC samples for UMAP clustering. As shown in Figure 3B, Supplementary 
file 2, and Figure 3—figure supplement 1B, three distinct clusters emerged: one cluster was entirely 
composed of cells from the HCC sample, while the other two were mixtures of cells from the benign 
liver and the HCC samples, suggesting that some of these cells were in the transitional stage.
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Figure 3. Mutation expression clustering of cells from hepatocellular carcinoma (HCC) and its benign liver counterpart. (A) Uniform Manifold 
Approximation and Projection (UMAP) clustering of cells from the HCC and benign liver, based on mutational gene expressions shares with standard 
deviations ≥ 0.4. Red cells are from HCC; Blue cells are from benign liver. (B) UMAP clustering of cells from the HCC and benign liver based on 
mutational isoform expression shares with standard deviations ≥ 0.4. (C) Relabeling of clusters from (B) as ‘A’, ‘B’, and ‘C’. (D) Venn diagram of mutational 
isoform expressions in cells from clusters A, B, and C. (E) UMAP clustering of cells from the HCC and benign liver based on the mutational isoform 
expressions from clusters A, B, and C. (F) UMAP clustering of cells from the HCC and benign liver based on the mutational isoform expression in at least 
five cells from clusters A, B, and C.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Heatmaps of mutational gene expression.
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Mutations of genes involving antigen presentation dominated the 
mutation expression landscape
To investigate the classifier mutation isoform expression in these transcriptomes that segregate these 
clusters, the clusters of the mutational isoform expressions in the UMAP were relabeled as A, B, and 
C groups (Figure 3C). A total of 3335 mutation isoforms were found in cluster A, while 2175 and 1783 
mutation isoforms were found in clusters B and C, respectively. The overlapping of the mutations from 
these three groups, as pictured in a Venn diagram (Figure 3D), indicated that 1523 mutation isoforms 
were uniquely present in cluster A, while only 442 and 288 mutations were present in clusters B and 
C, respectively. To investigate whether these mutation isoform expressions can further classify the 
cell population, these mutational isoforms were then combined and applied to the cluster analysis of 
447 transcriptomes. The UMAP clustering generated four distinct clusters (Figure 3E), with three of 
the clusters composed entirely of cells from the HCC samples, distinctly separated from the fourth 
cluster, which was a mixture of cells from the benign liver and the HCC. We then limited the muta-
tional isoforms to those that were expressed in at least five single- cell transcriptomes. This uncovered 
104 mutations which met the established criteria (Supplementary file 3). When UMAP analysis was 
performed based on these 104 mutation isoforms, eight distinctive clusters were resolved. Cells in all 
but one clusters co- migrated with cells of their sources (Figure 3F).

To examine the mutational isoform expressions in these clusters, eight clusters were relabeled 
as A–H (Figure 4A). Among 104 mutation isoforms, the major histocompatibility complex (human 
leukocyte antigen [HLA]) was the most prominent, with 68 iterations (60.2%) (Supplementary file 
3, Figure 4B). Specifically, HLA- B NM_005514_2 mutations G283A and C44G were mostly present 
in cluster A. Cells in cluster B had mutations G572C, G539T, A527T, C463T, and G283A of HLA- B 
NM_005514_2, and cells in cluster C had mutations G379C and A167T of the same molecule. Cells 
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in cluster D had up to 25 different mutations in HLA- DQB1 NM_002123. Cells in cluster E had partial 
mutations overlapped with those of clusters A and B. Surprisingly, cells in cluster F, which were from 
the benign liver, contained unique mutations in HLA- C NM_002117 molecule (T539G, C419T, G176A), 
while cells in cluster G, another cluster from the benign liver, had mutation G176A in the same mole-
cule in addition to a mutation in ribosomal protein S9 (G525C, RPS9 NM_001013_5). Cluster H was 
a collection of cells with few mutations in the list. When the clusters were relabeled with mutations 
in HLA, all cells from clusters A–G were positive for some HLA mutations (Figure 4C). On the other 
hand, only 10 cells from group H were positive for the HLA mutation, suggesting that these mutations 
in HLA molecules are highly cancer- specific (2.9 × 10–30).

Evolution of mutations in HLA molecules
Long- read sequencing enabled us to identify multiple mutations in the same molecule. Indeed, most 
HLA molecules contained multiple mutations. A salient example of a multi- mutation molecule is 
HLA- DQB1, where up to 25 missense mutations were identified in a single molecule of NM_002123 
(Figure 5A). We hypothesize that the collection of these mutations started from sporadic isolated 
mutations and accumulated over time in the development of HCC. To look for the origin of the muta-
tion clusters, we searched for isolated mutation(s) that were the common denominators amongst the 
larger mutation clusters. We also hypothesize that mutation is irreversible once it occurs. As shown in 
Figure 5B, the largest cluster (49 cells) of mutations occurred in the HLA- DQB1 NM_002123 mole-
cule. The mutation cluster contained 25 single- nucleotide variants that caused 24 amino acid changes 
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within the single molecule. There were several possible nucleotide mutation accumulation pathways 
that could have led to the formation of this hypermutation cluster. One of the pathways appears to 
have started at aa252 with the modification of arginine to histidine. The spread of the mutations 
would have been in one direction from 3' end to 5' end in a mostly contiguous fashion. However, the 
main pathway of accumulation of mutations is likely to have come from the mid- segment of the mole-
cule since many cells containing subsets of mutations in this segment were detected, albeit they have 
larger hops in the accumulation process. Some isolated mutations, such as R252H, S214N+R199H, 
occurred in cells from the benign liver sample. They were associated with malignancy when more 
mutations were accumulated.

The stepwise accumulation of mutations in single molecules also occurred in HLA- B, HLA- C, and 
HLA- DRB1. In the HLA- B NM_005514_2 molecule, a total of 11 mutations were identified. The hyper-
mutation cluster in the single protein started from nine different isolated mutations. The main pathway 
of mutation accumulation appeared to start from the isolated mutations of W191S or A15G (Figure 6A 
and B). These mutations expanded in a contiguous fashion and reached the peak at eight mutations, 
as evidenced in 149 cells. One cell continued to expand its mutation repertoire up to 10 (Figure 6B). 
For HLA- C NM_002117, 14 different missense mutations were identified (Figure  7A and B). The 
major cascade of the mutation accumulation appeared to start from the isolated mutations of L180R 
or S140F. The expressions of the combination of L180R and S140F mutations accounted for most cells 
(n = 222) that contained HLA- C mutants, followed by the combination of L180, S140F, and R59Q (n = 
147). One cell accumulated eight mutations in the single molecule (Figure 7B). The accumulation of 
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Figure 6. Evolution of mutations in HLA- B molecules. (A) Somatic mutations in single molecules of HLA- B NM_005514_2. The position of the mutations 
is indicated at the bottom of the graph. Mutations are numerically numbered from C- terminus to N- terminus. The numbers of cells expressing these 
mutation transcripts from each cluster or sample are indicated in the right panel. Close circle, mutation codon; open circle, wild- type codon. (B) Pathway 
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in red text indicates the number of cells expressing the mutation(s).
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these mutations appeared non- contiguous. For HLA- DRB1 NM_002124, up to five different mutations 
in a single molecule were identified (Figure 8A and B). All five isolated mutations were identified. The 
peak mutation accumulation (as seen in 81 cells) is the combination of S133A, A103P, A102G, and 
T80R. Multiple pathways were detected that might lead to this pattern of mutation accumulation.

Mutation expression of DOCK8 and STEAP4
DOCK8 is a member of the gene family responsible for guanine nucleotide exchange and has been 
shown to interact with Rho GTPase (El Masri and Delon, 2021; Harada et  al., 2012). DOCK8 is 
an important component in intracellular signaling. Isoform expression analysis showed a significant 
increase in mutation isoform expression in HCC cells (Supplementary file 3). Overall, three muta-
tions were detected in DOCK8 (Figure 9A). Six types of novel isoforms were detected. Interestingly, 
no known wild- type isoform expressions were found in either benign liver or HCC cells. All DOCK8 
transcripts from HCC cells contained at least one mutation. Some HCC cells expressed two patterns 
of mutations, suggesting that the mutations occurred in both alleles. The lack of wild- type transcript 
expression in benign and cancer cells implies that mutation may play a role in DOCK8 expression. 
On the other hand, STEAP4 is a metalloreductase and carries out the reduction of Fe(3+) to Fe(2+) 
(Oosterheert et al., 2018). STEAP4 was found to contain tumor suppressor activity in several human 
malignancies (Tang et al., 2022; Wu et al., 2020; Zhao et al., 2021). The G75D mutation appeared 
to be somatic since this variant was not found in the genome of the gallbladder from the same 
individual. This mutation is located within the domain of NADP- binding site. Thus, it may impact 
the enzymatic function of the protein. The expression of STEAP4 transcripts was exclusively found 
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Figure 7. Evolution of mutations in HLA- C molecules. (A) Somatic mutations in single molecules of HLA- C NM_002117. The position of the mutation 
is indicated at the bottom of the graph. The mutation is numerically numbered from C- terminus to N- terminus. The numbers of cells expressing these 
mutation transcripts from each cluster or sample are indicated in the right panel. Close circle, mutation codon; open circle, wild- type codon; open 
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in white text indicates specific mutation(s) in a molecule. The number in red text indicates the number of cells expressing the mutation(s).
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Figure 9. Mutation isoform expression of DOCK8 and STEAP4. (A) Heatmap of wild- type and mutation isoform expressions of DOCK8. The number 
of transcript, the position of mutation, and the specific isoforms is indicated. Some transcripts have multiple assignment due to detection of partial 
transcripts. *Prediciton based on sequence of NM_203447. (B) Heatmap of wild- type and mutation isoform expression of STEAP4. The number of 
transcript, the position of mutation, and the specific isoforms is indicated.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. TaqMan RT- PCR of fusion transcripts in hepatocellular carcinoma (HCC) and benign liver samples.
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in HCC cells (Figure 9B). Both wild- type and mutant STEAP4 transcripts were identified. One HCC 
cell expressed mutant and wild- type transcripts in multiple isoforms. In contrast to DOCK8, STEAP4 
mutation expression was not biased.

Fusion gene expression in single-cell level
Gene fusion is one of the hallmarks of human cancers. To identify fusion gene transcripts in the sample, 
we applied SQANTI (Tardaguila et al., 2018) annotation to the long- reads in order to identify tran-
scripts that mapped to two different genes using the criteria described previously (Liu et al., 2021a; 
Yu et al., 2019a; Yu et al., 2014a) and in the methods. To rule out potential artificial chimera, the 
fusion gene must be corroborated by at least two different cells. After multilayer screening, 21 fusion 
genes were identified, and 3 fusion genes were selected to validate experimentally. Among these 
fusion genes, ACTR2- EML4 was detected only in the cancer sample (Figure 10 and Figure 9—figure 
supplement 1). ACTR2 is a major component of ARP2/3 complex and is responsible for cell shape and 
motility, while EML4 contains WD repeats that are essential for protein- protein interaction. The fusion 
retains most of the WD repeat domain from EML4 while removing most of the amino acid sequence 
from ACTR2. The loss of microtubule- binding domain may negatively impact the microtubule orga-
nization activity of the EML4 domain of the fusion protein. PDCD6 is an EF- hand domain- containing 
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protein and has calcium and magnesium- binding activity. CCDC127 is a coiled- coil domain containing 
transcription repressor. The PDCD6- CCDC127 fusion retained most of the coiled- coil domain from 
CCDC127 and a single EF- hand domain from PDCD6. The signaling response of the fusion protein 
may be altered because of the new calcium- binding motif in the molecule. Finally, the FLG- FGG fusion 
is a unique chromosomal translocation product where the chromosome breakpoint is located in the 
exons. The fusion is a truncation of plasminogen. The removal of the C- terminus from plasminogen 
may lead to constitutive activation of its protease and enhance blood coagulation and other cell 
signaling activities of plasminogen.

To investigate whether fusion transcripts had an impact on transcriptome clusters, we added 
these fusion genes to the mix of 104 mutational isoforms to perform UMAP analysis. As shown in 
Figure 11A–C, the cancer cell clusters A–D appeared to shift significantly to the left and underwent 
major reshuffling among the groups. On the other hand, clusters F–H remained in similar positions, 
while cluster E moved to the right, indicating that fusions impacted mostly the characteristics of 
cancer cells but had a very limited impact on benign hepatocytes.

Mutational gene expression and fusion transcript enhanced 
transcriptome clustering of benign hepatocytes and HCC
Cell clustering and segregation can be determined by the differential expression of transcripts. Our 
mutational gene expression analyses suggested that some benign hepatocytes harbored mutations 
that resembled those of malignant cells. To reduce the complexity amongst the transcriptomes, we 
removed genes or isoforms across all samples with expression SDs < 0.5, 0.8, 1.0, and 1.4, respec-
tively. As shown in Figure 12, Figure 12—figure supplements 1–8, and Supplementary files 4–11, 
the segregation of two groups of cells occurred when genes or isoforms had SDs > 0.5. The segrega-
tion became more pronounced when the SDs were larger, with mostly malignant cells in one group 
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and a mixture of malignant and benign hepatocytes in the other. Such cluster segregations were 
similarly found in either genes or isoform analyses. To examine the relationship between the isoforms 
and genes, the lists of isoforms and genes at each SD were overlapped through Venn diagrams 
(Figure 13A–D). Interestingly, gene lists included all the isoforms within the same range of SD. To 
investigate the roles of gene expression alterations that were not accompanied with isoform expres-
sion changes, UMAP analyses were performed based on the non- overlapped genes. The results 
indicated a dramatic reduction of segregation of cells between benign liver and HCC. In contrast, 
gene- based clustering using genes that showed both gene and isoform- level changes had segre-
gations between benign hepatocytes and HCC cells similar to those performed with the full lists, 
suggesting that the isoform alterations were the underlying causes that separated the cells between 
these two samples. Examination of the gene list (182, Supplementary file 6) with SDs ≥ 1.0 showed 
a consistent down- expression of genes of apolipoprotein family, up- expression of genes of ribosomal 
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The online version of this article includes the following figure supplement(s) for figure 12:

Figure supplement 1. Segregation of cells between hepatocellular carcinoma (HCC) and benign liver samples.

Figure supplement 2. Segregation of cells between hepatocellular carcinoma (HCC) and benign liver samples.

Figure supplement 3. Segregation of cells between hepatocellular carcinoma (HCC) and benign liver samples.

Figure supplement 4. Segregation of cells between hepatocellular carcinoma (HCC) and benign liver samples.

Figure supplement 5. Segregation of cells between hepatocellular carcinoma (HCC) and benign liver samples.

Figure supplement 6. Segregation of cells between hepatocellular carcinoma (HCC) and benign liver samples.

Figure supplement 7. Segregation of cells between hepatocellular carcinoma (HCC) and benign liver samples.

Figure supplement 8. Segregation of cells between hepatocellular carcinoma (HCC) and benign liver samples.
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protein family and HLA family in cells from the HCC sample, indicating that cancer cells were less 
hepatic differentiated but more active in protein synthesis and immune evasion. These abnormalities 
appeared similar to previous gene expression analyses in both single- cell and bulk sample levels (Liu 
et al., 2022; Liu et al., 2021b; Luo et al., 2006; Ng et al., 2021).

To investigate whether the mutation analysis improved the segregation between cells from the 
benign liver and HCC, UMAP analysis was performed using gene expressions with SDs ≥ 1.0 (182 
non- mutated genes) and gene mutation expression with SDs > 0.4 (282 mutated genes). The results 
showed that the combination of gene and mutational gene expressions generated three clusters: with 
two clusters comprised mostly cells from the cancer sample and one cluster of cells mostly from the 
benign liver (Figure 14A–C). When the clusters were relabeled as A, B, and C, cluster A (mostly benign 
hepatocyte group) had a gain of 7 cells from the benign liver sample and loss of 27 cells from the HCC 
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isoforms. Right panel: UMAP clustering with genes overlapping with isoforms. Blowup panel: UMAP clustering with genes overlapping with isoforms in 
three subsampling trials. (C) The role of isoform expression in segregating cells between the HCC and benign liver when the standard deviation ≥ 1.0. 
Left panel: Venn diagram between gene expressions and isoform expressions with standard deviations ≥ 1.0. Middle panel: UMAP clustering with genes 
not overlapping with isoforms. Right panel: UMAP clustering with genes overlapping with isoforms. (D) The role of isoform expression in segregating 
cells between the HCC and benign liver when the standard deviation was ≥1.4. Left panel: Venn diagram between gene expressions and isoform 
expressions with a standard deviation ≥ 1.4. Middle panel: UMAP clustering with genes not overlapping with isoforms. Right panel: UMAP clustering 
with genes overlapping with isoforms.
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sample in comparison with that of gene expression analysis alone (Figure 12—figure supplement 
3), suggesting that the mutation analysis helped to reclassify some of the cells misassigned by gene 
expression analysis. To investigate whether fusion gene analysis would add value to the clustering of 
cells from HCC and benign liver, fusion genes were added to the UMAP analysis. The results showed 
that cluster B moved closer to the cancer cell cluster (cluster C, Figure 15A–C and Supplementary 
file 12). Cluster A gained one cell from the benign liver sample and four cells from the HCC sample. 
Five cells from the benign liver were consistently classified as cancer by the cluster analysis. Further 
analysis showed that these cells had significant down- expression of genes of apolipoprotein family, 
up- expression of genes of ribosomal protein and HLA families, and extensive mutations in HLA mole-
cules, suggesting that they were probably the cancer cells embedded in the benign liver sample. The 
pathway analyses based on gene expression showed that genes in the eukaryotic initiation factor 
signaling pathway dominated the differential expression gene list with a -log p- value of 104, followed 
by acute phase response signaling pathway (- log p=35.8) (Supplementary file 13). EIF2 pathway is 
essential for protein translation and thus cell survival and proliferation and were shown to be misreg-
ulated in a variety of human cancer (Silvera et al., 2010), while acute phase response signaling may 
play a role in anti- apoptotic activity of cancer cells and signals a poor clinical outcome (Janciauskiene 
et al., 2021). The dysregulation of these pathways appeared to underlie the molecular mechanisms 
of HCC carcinogenesis.

Discussion
Long- read sequencing is essential to detect isoform expressions from genes. Synthetic long- read 
sequencing offers a valuable solution to analyze isoform transcripts of a gene because of its high 
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accuracy, low- error rate, and quantification suitability. However, due to the low- yield nature of most 
synthetic long- read sequencing methodologies for transcriptome analysis, analyses are mostly limited 
to a few targeted genes (Gupta et al., 2018). To our knowledge, this is the first study to analyze broad- 
spectrum mutational isoform expression at the single- cell level using synthetic long- read sequencing 
technology. The technology described in this study may have broad utility in biology and medicine: 
it can be applied to quantify the diversity of isoform expression, resolve mutational gene expression, 
and be used to discover novel fusion genes and new isoforms in any mammalian biological system. 
For medical research, the technology may help determine which specific protein structure should be 
targeted by making the specific mutational isoform expression information available.

Currently, there is a lack of studies on multiple mutations in a single- molecule or mutational gene 
expression at the single- cell level due to the absence of a reliable method. In comparison with previous 
long- read studies in HCC, which were largely limited to splicing abnormality analysis (Chen et al., 
2019; Kiyose et al., 2022; van Buuren et al., 2022), our study suggested that gene expressions 
were mainly dominant by one or two specific isoforms for a given cell (Figure 16). The expressions of 
HLA- B, -C, -DQB1, and -DRB1, regardless of mutation status, were restricted to one known isoform. 
Currently, it is still unclear what the translation efficiency of these mutation isoform is. The preference 
of specific isoform expression in a given cell may be due to the preferred splicing process of cells of 
different lineages or of varying differentiation stages. Interestingly, mutational gene expression of 
antigen- presenting genes dominated the expressed mutation list from HCC cells. Most mutations 
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occurred in the extracellular domain of the HLA molecules. For HLA- B and HLA- C, all three α-domains 
were mutated, and for HLA- DQB1 and HLA- DRB1, both β-domains and the peptide- binding motifs 
were impacted. These mutations may alter the interaction with T lymphocytes (Chan et al., 2018; 
Kondo et al., 2004). There was a broad spectrum of somatic mutations that affected the HLA gene 
since both cytosolic and endocytic pathways of antigen presentation may be blocked (Arnaiz- Villena 
et al., 2022; Manoury et al., 2022). Interestingly, the expression levels of the mutated HLA molecules 
also increased in comparison with wild- type alleles from the benign hepatocytes. The hypermutations 
of these HLA molecules may shield cancer cells from being recognized and targeted by T lymphocytes 
and allow the cancer cells to evade the host immune surveillance.

The hypermutations in several HLA molecules are of interest because they probably did not 
happen overnight. Several isolated mutations were also detected in cells from the benign liver 
samples, suggesting that these mutations accumulated through a clonal progression fashion from 
a relatively benign background. In the process of malignant transformation, additional mutations in 
the HLA molecules were acquired due to the pressure from the cellular immune response. Malignant 
cells with few mutations in the HLA molecules may be destroyed by T lymphocytes, while those with 
newer mutations evaded the attack. Presumably, the cellular immune system adapted to the new 
mutations of these HLA molecules and resumed the response to the cancer cells. These cycles may 
continue to the extent that the mutations overwhelmed the cellular immune system. However, such 
hyper- mutation clusters may make cancer cells highly vulnerable to artificial immune intervention such 
as drug conjugated (Thomas et al., 2016) or radio- isotope (Bush, 2002; Guleria et al., 2017) labeled 
humanized antibody specific for these mutations or cancer vaccine since almost all of these mutations 
are in the extracellular domains. CRISPR- cas9- mediated genome targeting (Chen et  al., 2017) at 
these mutation sites could be an option.
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Methods
Nomenclature
Mutation gene expression share is defined as a mutated transcript fraction of all the transcripts of 
a given gene. For example, if 50 transcripts of gene α are detected and 10 of these transcripts are 
mutated, the mutation gene expression share for gene α is 10/50 = 0.2. Mutation isoform expression 
share is defined as a mutated isoform fraction of all the transcripts of a given isoform. For example, 
if 30 transcripts of gene α are A isoform and 20 transcripts B isoform, and 10 mutated transcripts are 
A isoform transcripts, the mutation isoform expression share for A isoform is 10/30 = 0.3, and for B 
isoform 0/20 = 0. Fusion gene expression share is defined as a fusion transcript fraction of all the 
transcripts from head gene and tail gene. For example, if 5 transcripts of fusion gene κ are detected 
while 10 head gene and 15 tail gene transcripts are also found, the fusion gene expression share is 5/
(5 + 10 + 15) = 0.167.

Single-cell sample preparation
HCC samples and benign liver samples were freshly dissected from a patient who underwent liver 
transplantation. The procurement procedure was approved by the institution review board of Univer-
sity of Pittsburgh. The procedure was compliant with all regulations related to the protocol (Study# 
19030097). The dissected tissues were minced by scalpel and digested with collagenase/protease 
solution (VitaCyte, 007- 1010) until the tissue was fully digested. The digestion time for each prepara-
tion was in a range 45–60 min. The digested tissue was removed and immediately cooled with ice- cold 
Leibovitz’s L- 15 Medium (Invitrogen, 11415114) supplemented with 10% fetal bovine serum (Sigma, 
F4135). The single- cell suspension was verified under the microscope. The number of live cells was 
estimated by trypan blue staining using a hemacytometer.

10x Genomics single-cell and UMI barcoding
Approximately 200–300 cells from both HCC or benign liver samples were loaded onto the Chromium 
next GEM chip G, where the cells were encapsulated with oligo- dT- coated Gel Beads and partitioning 
oil. The Gel Beads are subsequently dissolved, and the individual cells are lysed. Using the Chromium 
Next GEM Single Cell 3ʹReagent Kit v3.1 from 10x Genomics, Inc, first- strand synthesis was performed 
using the following thermal cycler parameters: with the lid set at 53°C, incubate at 53°C for 45 min, 
followed by 85°C for 5 min. The first- strand cDNA was then purified using the kit provided Dynabead 
clean- up mix. cDNA was then amplified using the provided primers using the following program: with 
the lid set at 105°C, 98°C for 3 min, then 11 cycles of 98°C for 15 s, 63°C for 20 s, 72°C for 1 min, 
ended with 72°C for 1 min. Samples were pooled by group prior to long- read library preparation.

LoopSeq UMI ligation and transcriptome enrichment
The 10X Genomics barcoded cDNA were appended with a LoopSeq- specific adapter (containing the 
LoopSeq UMI) using a one- step barcoding method. Then, 4 μL of water, 11 μL of Barcoding Master 
Mix, and 5 μL of 10 ng of single- cell cDNA were combined. The 20 µL reaction is incubated with a 
100°C heated lid at 95°C for 3 min, 95°C for 30 s, 60°C for 45 s, and 72°C for 10 min. The LoopSeq- 
adapted cDNA was then purified using 0.6× SPRI and resuspended in 20 μL of pre- warmed Hybrid-
ization Mix. The bead slurry was then enriched by a human core exome capture procedure (Twist 
Bioscience, CA). In brief, 5 μL of Buffer EB, 5 μL blocker solution, 6 μL LoopSeq adapter blocker, 4 μL 
biotinylated exome probe solution, and 30 μL hybridization enhancer were added to the bead slurry 
and incubated at 95°C for 5 min followed by 70°C for 16 hr. The hybridized cDNA was then captured 
by streptavidin beads following the protocol recommended by the manufacturer. Then, 10 μL of the 
probe captured, LoopSeq- adapted cDNA was then combined with 5 μL of barcode oligo primers, and 
35 μL of a PCR Barcoding cocktail for amplification using the following parameters: 95°C for 3 min, 12 
cycles of 95°C for 30 s, 68°C for 45 s, 72°C for 2 min. The amplified captured cDNA underwent a 0.6× 
SPRI purification and was eluted in 30 μL of Buffer EB. This product is diluted with Buffer EB to adjust 
for a desired long- read barcode complexity. Then, 2 μL of each diluted product were independently 
combined with 18 μL of an Amp Mix S and an Amplification Additive Master mix and underwent ther-
mocycling using the following parameters: with a 100°C heated lid, amplify samples at 95°C for 3 min, 
followed by 22 cycles of 95°C for 30 s, 60°C for 45 s, and 72°C for 2 min. Then, 10 μL of each amplifica-
tion reaction was pooled and underwent a 0.6× SPRI purification before elution in 40 μL of Buffer EB.

https://doi.org/10.7554/eLife.87607
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LOOP UMI distribution and library construction
Then, 30 μL of the eluate was combined with 10 μL distribution mix and 4 μL distribution enzyme and 
incubated at 20°C for 15 min. The reaction was then terminated by heating to 75°C for 5 min. The 
distributed UMIs were activated by incubating the reaction with 56 μL of activation mixture cocktail 
at 20°C for 2 hr and neutralized with the addition of 6 μL of neutralization enzyme and heating at 
37°C for 15 min. The samples were then 0.8× SPRI purified to remove small undistributed UMI DNA. 
Then, 35 μL of the LOOP UMI- distributed cDNA was fragmented with 15 μL of fragmentation enzyme 
master mix at 32°C for 5 min, followed by 65°C for 30 min. The fragmented LOOP UMI- distributed 
cDNA was ligated with 40 μL of Ligation master and 10 μL of Ligation Enzyme at 20°C for 15 min. 
The ligated DNA was 0.6× SPRI purified, eluted in 20 μL of Buffer EB, and amplified using 25 μL of 
Index Master Mix and 5 μL of index primers in the following condition: 95°C for 3 min, then 12 cycles 
of 95°C for 30 s, 65°C for 45 s, and 72°C for 30 s. The amplified product undergoes a final 0.6× SPRI 
purification and 20 μL elution in Buffer EB. After the final short- read library was quantified via qPCR 
and assessed for quality using a Agilent bioanalyzer 2100, the library cocktail was sequenced on an 
Illumina NovaSeq.

TaqMan qRT-PCR assay for fusion genes
Total RNA was extracted using TRIzol (Invitrogen, CA; Chen et al., 2015; Yu et al., 2019a; Yu et al., 
2019b; Yu et al., 2014b; Zuo et al., 2017). Then, 2 µg of RNA were used to synthesize the first- strand 
cDNA with random hexamer primers and Superscript II (Invitrogen). Also, 1 μL of each cDNA sample 
was used for TaqMan PCR (Eppendorf RealPlex Mastercycler and Applied Biosystems QuantStudio 
3) with 50 heating cycles at 94°C for 30 s, 61°C for 30 s, and 72°C for 30 s using the following primer 
sequences:  GAGT  GATA  TCAG  ACAC  CGAG C/ TTTC  TGGG  ACTC  CCTA  GACC A and the following 
TaqMan probe: 5'-/56- FAM/AA GCTCTCT/ZEN/CCAA CGGT TGGA /3IABkFQ/–3' for PDCD6- 
CCDC127,  AGGA  AGGT  GGTG  GTGT  GCGA / TTGG  GTGA  AACT  CCAC  AGCC A and the following 
TaqMan probe: 5'-/56- FAM/AACGGCACC/ZEN/GGGA CAAC AAAT /3IABkFQ/–3' for ACTR2- EML4,  
CCAC  AGGA  AAGA  AGTG  TCAG  TC/ GTTA  TGGA  GTTT  TCAA  CATG  GGG and the following TaqMan 
probe: 5'-/56- FAM/AAGCTCTCT/ZEN/CCAA CGGT TGGA /3IABkFQ/–3' for PLG- FGG in an Eppen-
dorf RealPlex thermocycler.

De novo assembly of long-read transcripts, short-read trimming, and 
long-read alignment
The long- read transcripts were assembled using SPADES (Bankevich et  al., 2012) from a Python 
script with the following parameters: command =  spades. py -k 21,33,55,77,99,127 -t 1 --careful 
--sc --pe1- 1  left. fq --pe1- 2  right. fq --pe1- s  unpaired. fq -o spades_output --disable- 
gzip- output. Short- read trimming was performed using Trimmomatics (Bolger et al., 2014) with 
the following parameters: command = ['java -jar '+pipeline.prog_path + '/Trimmomatic- 0.36/ trim-
momatic-  0. 36. jar PE -threads 32 -trimlog '+trim_log_file + ' ','.../'+pipeline.input_params['raw_file_
R1'], '../'+pipeline.input_params['raw_file_R2'],' '.join(trim_output_files), 'ILLUMINACLIP:'+pipeline.
prog_path + '/ JAStrim. fa: 2: 40: 14: 3: true TRAILING:20 SLIDINGWINDOW:4:15 MINLEN:36']. Long- 
read alignment through BLAST was performed from a Python script with default parameters: blastn 
-db<reference database> -query  contig_ list. fa -perc_identity=<pct_id_threshold> -qcov_hsp_perc = 
<qcov_threshold> -max_target_seqs = <max_seqs> -num_threads=16 -outfmt=6 >  mapping. blst.

Gene and isoform expression analysis on LoopSeq single-cell data
Paired HCC samples (HCC and benign liver) were compared by LoopSeq single- cell transcriptome 
sequencing. In total, six runs were performed on each library and were pooled together for analysis. 
LoopSeq long- reads were analyzed using SQANTI (Tardaguila et  al., 2018) for gene and isoform 
annotation (human reference hg38). Based on the cell (10×) barcodes and molecule (Loop) barcodes 
from both long- reads and short- reads, long- read molecules were able to be assigned to cells and 
unique molecules. UMIs were quantified at both gene and isoform levels based on the SQANTI anno-
tation and cell/molecule assignment. Valid cells were defined as cells with more than 1000 long- read 
molecules. In total, 162 normal cells and 285 tumor cells were used for the downstream analysis, with 
the highest number of long- read transcripts reaching 56,745/cell for HCC and 49,476/cell for benign 
liver.
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Single- cell expression data were integrated using the R/Bioconductor package Seurat (Hao et al., 
2021). Expression SDs per gene and isoforms across all the cells were calculated. Genes or isoforms 
(SDGs and SDIs, respectively) with SDs above a certain threshold were defined. Cell clustering was 
performed based on the expression profile of these selected genes/isoforms and was visualized using 
UMAP algorithm (McInnes et al., 2018). Markers identifying each cluster were detected by comparing 
the cells in a specific cluster and all the other cells not in that cluster.

Mutation calling on whole-exome sequencing data
Whole- exome sequencing (WES) was performed on the same HCC patient with three libraries: 
HCC cells, benign liver cells, and normal gallbladder tissue. For each library, low- quality reads and 
adapter sequences were trimmed from the raw sequencing reads using the tool Trimmomatic (Bolger 
et al., 2014). After pre- processing, the surviving reads were aligned to human reference genome 
hg38 using Burrows- Wheeler Aligner. Picard (http://broadinstitute.github.io/picard; Broad Institute, 
2019) Version: 2.18.12; (RRID:SCR_006525) was employed to sort the aligned files and mark dupli-
cates. Alternative (single- nucleotide variants or SNPs) calling was then performed using the SAMtools 
mpileup function (Li, 2011; Li et al., 2009), and somatic mutations on paired samples (normal gall-
bladder vs. benign liver pair, or normal gallbladder vs. HCC liver pair) were called using the GATK 
MuTect2 function (McKenna et al., 2010). Amino acids were annotated to those alternatives using 
SnfEff (Cingolani et al., 2012). The mutations of interest were selected by the following criteria: (1) 
the mutation must be non- synonymous or stop gain; and (2) the mutation must be present in either 
HCC or benign liver samples but not in the normal gallbladder tissue. These mutations will serve as a 
validation set for the long- read single- cell transcriptome data analysis. All the pipelines were run by 
default parameter settings.

Mutation isoform analysis on LoopSeq single-cell data
Single- cell transcriptome long- reads were aligned to human reference genome hg38 by long- 
read aligner Minimap2 (Li, 2018). Alternative (single- nucleotide variants or SNPs) calling was then 
performed using the SAMtools mpileup function (Li, 2011; Li et  al., 2009). To avoid sequencing 
errors, RNA- editing events, and non- tumor- specific mutations, only mutations validated by the whole- 
exome sequencing method were used. Based on the long- read cell barcode, the number of reference 
reads and alternative reads per mutation position and per valid single cell were quantified for the 
downstream analysis. The mutation rate was calculated by the number of alternative reads over the 
total reads (sum of reference and alternative reads). Based on the SQANTI annotation (Tardaguila 
et al., 2018) of the long- read, mutations were quantified both at gene and isoform levels.

The SD of the mutation rate (per gene or isoform mutation) was calculated across all the valid cells. 
High variable mutations were defined as those with SDs > 0.4. These SD mutations were then used as 
features to perform cell clustering and UMAP visualization. Isoform- level mutation analysis resolved 
three clusters based on SD ≥ 0.4 mutations. Mutations per cluster were defined by the mutations that 
exist in at least five cells of that cluster, but not in any of the cells in the other two clusters. A total of 
104 mutations were found among the three clusters. Based on these mutations, additional clustering 
was performed, and eight sparse clusters were detected and used to group the cells. HLA- related 
mutations were specifically examined and quantified across the eight clusters. Evolution flowcharts 
were generated based on the progression of the mutation sites.

Fusion transcript detection on LoopSeq single-cell data
Fusion transcripts were called by two pipelines: (1) SQANTI (Tardaguila et al., 2018) performs the 
fusion annotation on the long- read sequencing data. (2) Based on the Minimap2 (Li, 2018) alignment 
and hg38 UCSC annotation file, fusions were called from the long- reads that were aligned to two 
genes. Based on all the fusion calling, the following filtering criteria were applied: (1) eliminate the 
fusions where the head and tail genes were in cis- direction and were less than 40 kb apart; (2) elimi-
nate the fusions whose head genes have more than two tail partners in all the fusion callings; (3) elim-
inate the fusions whose tail genes have more than two head gene partners in all the fusion callings; 
(4) only keep those fusions whose joining points are located at the edge of the exons; and (5) fusions 
must be detected in at least two cells. These selected fusions and experimentally validated fusions 
were subsequently used for downstream analysis.

https://doi.org/10.7554/eLife.87607
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Integrative analysis to combine expression, mutation, and fusion data
High SD expression genes (or isoforms), high SD mutation genes (or isoforms), and selected fusion 
transcripts were integrated. UMAP (McInnes et al., 2018) cell visualization was applied, combining all 
three feature sets to perform the cell clustering. Data visualization was performed using the R/Biocon-
ductor package ComplexHeatmap (Gu et al., 2016) and ggplot2 (Wickham, 2016).

Bioinformatic pipeline script

OUTPUT=$outPath/alignment.arg.sorted.dedup.realigned.fixmate.bamSO
=coordinate CREATE_INDEX =true

# base quality score recalibration

knownSite1=$refPath/GATKreference/hg38/dbsnp_138.hg38.vcf 
 
knownSite2=$refPath/GATKreference/hg38/resources_broad_hg38_v0_1000G_
phase1.snps.high_confidence.hg38.vcf 
 
knownSite3=$refPath/GATKreference/hg38/Mills_and_1000G_gold_standard.
indels.hg38.vcf 
 
java-Xmx20g-Djava.io.tmpdir=$tmpFolder-jar$GATK-T 
BaseRecalibrator-R$refFile-knownSites$knownSite1-knownSites 
$knownSite2-knownSites$knownSite3-I$outPath/alignment.arg.sorted.dedup.
realigned.fixmate.bam-o 
$outPath/recal_data.table-covReadGroupCovariate-cov 
QualityScoreCovariate-covCycleCovariate

# print reads

java-Xmx20g-Djava.io.tmpdir=$tmpFolder-jar$GATK-TPrintReads-R 
$refFile-BQSR$outPath/recal_data.table-I 
$outPath/alignment.arg.sorted.dedup.realigned.fixmate.bam-o 
$outPath/alignment.arg.sorted.dedup.realigned.fixmate.recal.bam

## MuTect2 for somatic mutation calling

dbSNPfile=$refPath/GATKreference/hg38/dbsnp_138.hg38.vcf 
 
COSMICfile=$refPath/MuteckRef/GRCh38/CosmicCodingMuts_chr.vcf 
 
java-Xmx20g-Djava.io.tmpdir=$tmpFolder-jar$GATK-TMuTect2-nct2-R 
$refFile-I:tumor$outPathT/alignment.arg.sorted.dedup.realigned.fixmate.
recal. bam - 
I:normal 
$outPathN/alignment.arg.sorted.dedup.realigned.fixmate.recal.bam--cosmic
$COSMICfile--dbsnp 
$dbSNPfile-o$outPath/NormalTumorPair.muTect2.vcf

## snpEff and snpSift for SNP and AA annotation
java-Xmx40g-jar/zfs2/sliu/tools/snpEff/snpEff.jarGRCh38.86$sample.vcf
>$sample.anno.vcf

https://doi.org/10.7554/eLife.87607
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