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Abstract The hippocampus is a central modulator of the HPA- axis, impacting the regulation of 
stress on brain structure, function, and behavior. The current study assessed whether three different 
types of 3 months mental Training Modules geared towards nurturing (a) attention- based mindfulness, 
(b) socio- affective, or (c) socio- cognitive skills may impact hippocampal organization by reducing stress. 
We evaluated mental training- induced changes in hippocampal subfield volume and intrinsic func-
tional connectivity, by combining longitudinal structural and resting- state fMRI connectivity analysis 
in 332 healthy adults. We related these changes to changes in diurnal and chronic cortisol levels. We 
observed increases in bilateral cornu ammonis volume (CA1- 3) following the 3 months compassion- 
based module targeting socio- affective skills (Affect module), as compared to socio- cognitive skills 
(Perspective module) or a waitlist cohort with no training intervention. Structural changes were 
paralleled by relative increases in functional connectivity of CA1- 3 when fostering socio- affective as 
compared to socio- cognitive skills. Furthermore, training- induced changes in CA1- 3 structure and func-
tion consistently correlated with reductions in cortisol output. Notably, using a multivariate approach, 
we found that other subfields that did not show group- level changes also contributed to changes in 
cortisol levels. Overall, we provide a link between a socio- emotional behavioural intervention, changes 
in hippocampal subfield structure and function, and reductions in cortisol in healthy adults.

eLife assessment
This important work examines the potential utility of socio- emotional and socio- cognitive mental 
training on hippocampal subfield structure and function, and cortisol levels. The authors provide 
convincing evidence that CA1- 3 volume is sensitive to socio- emotional training, with changes 
related to function plasticity and cortisol levels. Further, the authors provide evidence of change 
across all subfields and training modules related to stress.
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Introduction
Stress- related disorders rank among the leading causes for disease burden world- wide (GBD 2015 
Disease and Injury Incidence and Prevalence Collaborators, 2016), and the global stress load has 
increased even more dramatically in recent years (Brooks et al., 2020; Robillard et al., 2020). It is 
therefore essential to find ways to efficiently prevent or reduce stress (Jorm et al., 2017). In recent 
years, research has shown that contemplative mental training programs can be efficient in stress 
reduction (Puhlmann et al., 2021b; Engert et al., 2023; Engert et al., 2017; for a meta- analysis see 
Khoury et al., 2015), while simultaneously inducing brain plasticity (Valk et al., 2017; Pernet et al., 
2021; Davidson, 2016). It is, however, still unclear which types of mental practices are most efficient 
in reducing stress and inducing stress- related brain plasticity. Furthermore, stress is a multi- layered 
construct (Engert et al., 2018), and most studies focused on stress- related self- reports and ques-
tionnaires (Khoury et al., 2015). A less investigated marker in the stress reduction context through 
contemplative mental training is diurnal cortisol, from which summary indices such as the cortisol 
awakening response (CAR), the total diurnal output and the diurnal cortisol slope are frequently inves-
tigated (Ross et al., 2014). The steroid hormone and glucocorticoid cortisol is the end- product of the 
hypothalamic- pituitary- adrenal (HPA) axis and a key player in stress regulation (for reviews see e.g., 
Chrousos, 2009; Sapolsky, 2000a). Moreover, cortisol is considered an important mediator of the 
relation between chronic stress and stress- related disease (Adam et al., 2006; Miller et al., 1995). 
Previous research suggests an association between hippocampal structural integrity and stress- related 
cortisol activity (McEwen et al., 2016; McEwen, 1999), although findings are inconclusive. To close 
these gaps, we here investigate the differential efficiency of three types of mental training (attention- 
based, socio- affective and socio- cognitive) on their ability to induce structural as well as functional 
plasticity of hippocampal subfields and reduce diurnal cortisol levels.

The hippocampus has a high glucocorticoid receptor density (Herman and Cullinan, 1997; Herman 
et al., 1995; Jacobson and Sapolsky, 1991; McEwen, 2013), making this region a target of investiga-
tions into stress- related brain changes. Having a three layered allocortex, the hippocampal formation 
consists of multiple subfields, or zones, starting at the subiculum (SUB) and moving inward to the 
hippocampus proper, the cornu ammonis (CA1- 3), and dentate gyrus (CA4/DG) (Palomero- Gallagher 
et al., 2020; Wisse et al., 2017; Yushkevich et al., 2015; DeKraker et al., 2018). These subfields 
have unique microstructure (Palomero- Gallagher et al., 2020; Wisse et al., 2017; Yushkevich et al., 
2015; DeKraker et al., 2018; Paquola et al., 2020) and participate differently in the hippocampal 
circuitry (de Flores et al., 2017), likely implicating different functional contributions (Hodgetts et al., 
2017; Berron et al., 2016; Plachti et al., 2019; Genon et al., 2021; Olsen et al., 2012; Vos de Wael 
et al., 2018). Indeed, intrinsic functional MRI analyses have shown that the hippocampal subfields 
show functional correlation with a broad range of cortical regions, part of visual, control, and default 
functional networks (Paquola et al., 2020; Vos de Wael et al., 2018; Bayrak et al., 2022; Zhong 
et al., 2019; Przeździk et al., 2019). Hippocampal subfield volumes and associated intrinsic func-
tional connectivity have been shown to be heritable (Bayrak et  al., 2022; Whelan et  al., 2016), 
indicating that individual variation in subfield structure and function is, in part, under genetic control. 
Other lines of research have reported hippocampal structure and function to be highly sensitive to 
contextual factors, such as stress (McEwen, 2013). Mediated through its dense network of gluco-
corticoid receptors, the hippocampus transmits the negative feedback signals of a wide range of 
glucocorticoid levels on HPA axis activity (Jacobson and Sapolsky, 1991). Through this inhibitory role 
on HPA axis dynamics, it is linked to emotional reactivity (Phelps, 2004), stress sensitivity (McEwen, 
1999; Bannerman et al., 2004; Franklin et al., 2012; Pruessner et al., 2010), and causally involved 
in a variety of stress- related disorders (O’Doherty et al., 2015).

Previous brain imaging research has examined the relationship between cortisol activity and 
hippocampal structure and function. Most of this research measured saliva cortisol levels to gauge 
the diurnal cortisol profile. Thus, a reduced cortisol awakening response, the response to the antic-
ipated demands of the upcoming day (Fries et al., 2009), has been associated with smaller hippo-
campal volume in healthy individuals (Pruessner et al., 2007; Pruessner et al., 2005; Bruehl et al., 
2009) and different psychiatric (Dedovic et al., 2010; Dedovic et al., 2009) and metabolic (Bruehl 
et  al., 2009; Ursache et  al., 2012) conditions. In fact, the examination of patients with temporal 
lobe damage suggested that hippocampal integrity may be a necessary condition for the proper 
mounting of the CAR (Buchanan et al., 2004; Wolf et al., 2005). Next, to changes in hippocampal 
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structure, alterations in hippocampal functional connectivity have been reported to be associated 
with changes in cortisol levels (Hakamata et al., 2019; Chang and Yu, 2019). There is also contrary 
work showing associations between elevated awakening, evening, diurnal, or 24 hour cortisol levels 
in healthy elderly with age- related hippocampal atrophy (Knoops et al., 2010; Lupien et al., 1999; 
Lupien et al., 1998; Sudheimer et al., 2014) and, again, samples with psychiatric conditions (Gold 
et al., 2010; Mondelli et al., 2010). While such inconsistencies in previous neuroimaging work may 
reflect the fact that different indices of diurnal cortisol tap different facets of HPA axis regulation, the 
samples studied have been diverse in terms of health status, small in size, and largely cross- sectional. 
In addition, associations between stress and hippocampal structure and function over time are incom-
pletely understood. Thus, longitudinal studies, such as mental training studies aimed at stress reduc-
tion that repeatedly assess both brain and cortisol release, may help to better understand the dynamic 
relationships between stress, cortisol, and hippocampal structure and function.

In recent years, contemplative mental training interventions, such as the mindfulness- based stress 
reduction (MBSR) program (Kabat- Zinn, 1982) or compassion- focused therapy (Gilbert, 2014), have 
gained in popularity as potential therapeutic tools to improve mental and physical health (Goldberg 
et al., 2018) and reducing stress (Khoury et al., 2015). These mental training interventions can have 
a positive impact on the practitioner’s stress sensitivity, making them a suitable model to investi-
gate the interrelationship between training- related changes in hippocampal structure, function, and 
cortisol output. Next to reductions in reactive measures following acute psychosocial stress induction 
in the laboratory (Engert et al., 2017), reduced subjective- psychological stress load is the most widely 
reported outcome (for a review, see Khoury et al., 2015). Evidence for lower diurnal cortisol output 
stems mainly from mindfulness- based interventions, notably MBSR, for which reductions in CAR and 
afternoon/evening cortisol levels have been reported in healthy and diseased individuals (Brand 
et al., 2012; Carlson et al., 2007; Carlson et al., 2004). Moreover, other work in the current sample 
has shown that hair cortisol and cortisone are reduced through mental practice (Puhlmann et al., 
2021b). Hair cortisol measurements have been suggested to provide a window into long- term impact 
of cortisol exposure (Stalder et al., 2017). These findings are contrasted by numerous null results (for 
meta- analyses see: Pascoe et al., 2017; Sanada et al., 2016), possibly due to modest samples sizes 
and mixed effects of different training contents on stress- related processes. Furthermore, 8 weeks 

eLife digest Too much stress is harmful to the brain and overall health, as it can lead to chronically 
high levels of the stress hormone cortisol. The part of the brain that regulates memory and emotions, 
called the hippocampus, is especially sensitive to stress because it has a high number of receptors 
that bind to cortisol. This connection may explain why stress can lead to memory lapses or strong 
emotions.

Studies have shown that mental training exercises, such as mindfulness and meditation, may 
change the structure of the brain and reduce stress. However, the results from these experiments have 
been mixed due to the variation in mental practices used by different programs. Here, Valk, Engert et 
al. set out to find how distinct types of mental training affect the brain, focusing on the hippocampus 
and cortisol levels.

The team used various magnetic resonance imaging techniques to study the hippocampus of 
322 healthy adult volunteers who had undergone three months of mental training. The relationship 
between mental training, hippocampus size, and stress levels was complex when studying the results 
of each individual. However, when the results were grouped together, it revealed that volunteers who 
underwent training to increase empathy and compassion experienced expansion in parts of their 
hippocampus.

As these areas of the brain increased in size, these individuals experienced corresponding reduc-
tions in cortisol levels. But volunteers who underwent mental training focused on attention or devel-
oping perspective did not experience such increases.

These findings suggest that mental training to increase empathy and compassion alters brain struc-
ture and lowers cortisol levels. Future studies may explain how this happens, which could lead to 
improved mental training programs for mitigating stress.

https://doi.org/10.7554/eLife.87634
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mindfulness programs such as MBSR and others typically cultivate different types of mental practices, 
making it difficult to understand which type of mental practice is most efficient in reducing different 
types of outcomes, including various stress- markers (see also Puhlmann et al., 2021b; Engert et al., 
2023; Engert et al., 2017).

The current study, therefore, investigated differential effects of distinct mental training practices 
onto the association between changes in hippocampal subfields and underlying stress- related diurnal 
cortisol profiles changes in the context of a large- scale 9month mental training study, the ReSource 
Project (Singer et al., 2016). We explored impact of long- term exposure to stress onto hippocampal 
subfields as a function of mental training in a subset of individuals (Puhlmann et al., 2021b). Healthy 
participants attended three 3 months Training Modules termed Presence (cultivating attention and 
interoceptive awareness), Affect (cultivating compassion, prosocial motivation and dealing with diffi-
cult emotions) and Perspective (cultivating metacognition and perspective- taking on self and others) 

Figure 1. Training induced plasticity of hippocampal subfield volume. (A) Training modules; (B) Training design; (C) Subfield volumes in left and right 
hemispheres across individuals and timepoints; (D) Scatterplot of subfield volumes as a function of timepoints and training cohorts. Panels A and B are 
reproduced from Figure 1A, B of Valk et al., 2023a.

https://doi.org/10.7554/eLife.87634
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(Figure 1). Presence resembles typical mindfulness- based interventions, but excludes socio- emotional 
or socio- cognitive practices (Kabat- Zinn, 1982; Segal et al., 2002). By contrast, Affect and Perspec-
tive target social skills through the training of either socio- emotional and motivational skills such as 
empathy, compassion and care (Affect) or socio- cognitive skills such as perspective taking on self and 
others (Perspective). In previous work, stemming from the same participant sample as examined here, 
we found a reduction in CAR specifically after the training of socio- affective capacities (Engert et al., 
2023), and of acute stress reactivity after the training of socio- affective or socio- cognitive capacities 
(Engert et al., 2017). Alternatively, but also in the current sample, different types of mental prac-
tices equally reduced hair cortisol levels, a marker of long- term stress (Puhlmann et al., 2021b). This 
suggests that the content of mental training has a specific effect on daily cortisol changes but not on 
long- term stress levels. Our group could also show differentiable training- related changes in cortical 
structure and intrinsic functional organization following the three ReSource project Training Modules, 
illustrating the existence of training- related structural plasticity of the social brain (Valk et al., 2017; 
Valk et al., 2023b). Domain- specific changes in hippocampal subfield structure and intrinsic func-
tional connectivity, and how these relate to mental training specific changes in stress- related diurnal 
cortisol output, have not yet been studied. We, therefore, examined whether module- specific changes 
in diurnal cortisol levels may relate to specific structural and intrinsic functional changes in different 
hippocampal subfields and functional resting state data.

We evaluated the longitudinal relationship between hippocampal subfield volumetry, a quantita-
tive index of hippocampal grey matter, and studied whether volumetric changes were paralleled by 
subfields’ resting- state functional connectivity in a large sample of healthy adults participating in the 
ReSource Project (Singer et al., 2016). This enabled us to evaluate training effects on hippocampal 
structure, function, and their associations with cortisol as a function of mental training targeting either 
attention- based mindfulness (Presence), socio- affective (Affect), or socio- cognitive (Perspective) skills. 
Hippocampal structure was quantified via a surface- based multi- template algorithm that has been 
shown to perform with excellent accuracy in healthy and diseased populations of a comparable age 
range as the currently evaluated cohort (Caldairou et al., 2016). Such a model is good to represent 

Table 1. Sample size per timepoint.

Structural MRI data Structural and Functional MRI data

T0 288 (TC3:71) 258 (TC3: 70)

T1 272 (TC3:68) 238 (TC3: 64)

T2 193 172

T3 190 181

Table 2. Reason for missing data across the study duration.
MR incidental findings are based on T0 radiological evaluations; participants who did not meet 
MRI quality control criteria refers to movement and/or artefacts in the T1- weighted MRI; dropout 
details can be found in Singer et al., 2016; no MRT: due to illness / scheduling issues / discomfort 
in scanner; other: non- disclosed; functional MRI missing: no complete functional MRI; functional MRI 
quality:>0.3 mm movement (low quality in volume +surface).

Reason for dropout
(TC1, TC2, RCC: N=251) T0 T1 T2 T3

Structural MR incidental finding 5 (5 based on T0) (5 based on T0) (5 based on T0)

Structural MRI quality control 7 6 4 2

Dropout 2 7 (2 based on T0) 9 (7 based on T01) 16 (9 based on T012)

Medical reasons 1 7 (1 based on T0) 8 (7 based on T01) 15 (8 based on T012)

Other 4 10 7 7

Functional MRI missing/low QC 29 30 21 9

Hippocampal QC 15 12 25 16

https://doi.org/10.7554/eLife.87634
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different subfields in vivo, which have a differentiable structure and function (Paquola et al., 2020; 
DeKraker et al., 2021), and thus may show differentiable changes as a function of mental training. We 
expect that assessment of hippocampal sub- regions may help to accurately map circuit plasticity as a 
result of potential stress reduction, and to observe that changes in hippocampal structure are paral-
leled by changes in functional connectivity of hippocampal subfield functional networks. To model the 
interplay between individual- level correspondence in hippocampal and stress markers, we assessed 
the association of changes in hippocampal structure and function with changes in several indices of 
diurnal cortisol release.

Results
We analyzed structural MRI, resting- state functional MRI, as well as cortisol- based stress markers from 
the large- scale ReSource Project (Singer et al., 2016). For details, see http://resource-project.org and 
the preregistered trial https://clinicaltrials.gov/ct2/show/NCT01833104.

In the Resource study, participants were randomly assigned to two training cohorts (TC1, N=80; 
TC2, N=81) and underwent a 9  months training consisting of three sequential Training Modules 
(Presence, Affect, and Perspective) with weekly group sessions and daily exercises, completed via 
cell- phone and internet platforms (Figure 1, Tables 1 and 2, Table 3, Materials and Methods and 
Supplementary file 1 for more details). TC1 and TC2 started their training regimen with the Presence 
module, and then underwent the latter two modules in different orders (TC1: Affect- Perspective; 
TC2 Perspective- Affect) to serve as active control groups for each other (Figure 1C). Another active 
control group (TC3; N=81) completed three months of Affect training only. Additionally, a matched 
test- retest control cohort did not undergo any training (RCC, N=90). All participants were examined 
at the end of each 3 months module (T1, T2, T3) using 3T MRI, behavioral and peripheral- physiological 
measures that were identical to the baseline (T0) measures.

Change in bilateral CA1-3 volume following Affect mental training
The above design allowed us to examine whether the volume of hippocampal subfields shows 
increases or decreases following the distinct Training Modules. We tracked longitudinal changes in 
hippocampal subfield volumes using mixed- effects models (Caldairou et al., 2016). Excluding partici-
pants with missing or low quality structural and functional data, the sample included 86 individuals for 
Presence, 92 individuals for Affect, 83 individuals for Perspective, and 61 active controls (Affect) with 
hippocampal change scores. We included 164 change scores of retest controls over T1, T2, T3. To study 
whether there was any training module- specific change in hippocampal subfield volumes following 
mental training, we compared training effects between all three Training Modules (Presence, Affect, 
and Perspective). Main contrasts were: Presence vs Active control (between subjects) and Affect vs 
Perspective (within subjects). Supplementary comparisons were made vs retest controls and within 
training groups. We observed relative increases in right cornu ammonis 1–3 (CA1- 3), but not in 

Table 3. Reason for missing data across the study duration.
MR incidental findings are based on T0 radiological evaluations; participants who did not survive MRI 
quality control refers to movement and/or artefacts in the T1- weighted MRI; dropout details can 
be found in Singer et al., 2016; no MRT: due to illness / scheduling issues / discomfort in scanner; 
other: non- disclosed.

Reason for dropout (TC3, N=81) T0 T1

MR incidental finding 3 (3 based on T0)

MRI quality control 0 0

Dropout 0 3

Medical reasons 1 2

Other 5 3

Functional MRI missing 1 4

Hippocampal QC 1 2

https://doi.org/10.7554/eLife.87634
http://resource-project.org
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subiculum (SUB) or CA4 and dentate gyrus (CA4/DG) subfields, following Affect versus Perspective 
training (left: t=2.360, p=0.019, FDRq(q)>0.1, Cohens D=0.282; right: t=2.930, p=0.004, q=0.022, 
Cohens D=0.350), that could be attributed to subtle increases (p<0.05) in bilateral CA1- 3 volume 
following Affect (left: t=2.495, p=0.013, q=0.08, M: 25.511, std: 130.470, CI [–1.509 52.531]; right: 
t=2.374, p=0.018, q>0.1, M: 40.120, std: 181.300, CI [2.573 77.666]), and subtle decreases (p<0.05) 
in right CA1- 3 volume following Perspective (left: t=−1.143, p>0.1, q>0.1, M:–23.048, std: 137.810, 
CI [–53.139 7.043]; right: t=−2.118, p=0.035, q>0.1, M:–39.602, std: 208.470, CI [–85.122 5.917]). We 
did not observe differences between Presence and the Active control cohort, Affect TC3. Overall, for 
all hippocampal subfields, findings associated with volume increases in CA1- 3 following the Affect 
training were most consistent across timepoints and contrasts (Supplementary file 1a- g). Moreover, 
associations between CA1- 3 and Affect, relative to Perspective, seemed to go largely above and 
beyond changes in the other subfields (left: t- value: 2.298, p=0.022, Q>0.1; right: t- value: 3.045, 
p=0.0025, Q=0.015, see further Supplementary file 1h). We observed no overall change in hippo-
campal subfield volume following mental training of nine months (Supplementary file 1i). Although 
stereotaxic normalization to MNI space would in theory account for global sex differences in intra- 
cranial volume (ICV), we still observed sex differences in various subfield volumes at baseline. Yet, 
accounting for ICV did not impact our main results, suggesting changes in CA1- 3 following Affect 
were robust to sex differences in overall brain volume (Supplementary file 1j).

Figure 2. Training induced plasticity of CA1- 3 functional connectivity. (A) upper: CA1- 3 functional connectivity at baseline, top 10% of regions 
representing the CA1- 3 functional network; lower: scatter plot visualizing change within the CA1- 3 network across timepoints and groups; networks 
and scatters of SUB and CA4/DG are available in the supplements; (B) Regional change within CA1- 3 functional network Affect versus Perspective 
(FDRq <0.05); right: scatter plot visualizing mean change within the CA1- 3, FDRq <0.05 regions across timepoints and groups.

https://doi.org/10.7554/eLife.87634
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Increased functional connectivity of CA1-3 following socio-affective 
versus socio-cognitive mental training
Subsequently, we studied whether volumetric change in hippocampal CA1- 3 would show corre-
sponding changes in intrinsic function following the Affect mental training. To probe the CA1- 3 
functional connectivity networks per subfield, we mapped the top 10% of normalized functional 
connections at baseline. Functional connectivity was strongest to medial prefrontal regions, precu-
neus extending to posterior cingulate, anterior temporal regions and angular gyrus (CA1- 3: Figure 2; 
see Supplementary file 1 for other subfields). Evaluating functional connectivity changes, we found 
that the right CA1- 3 functional network showed differential changes when comparing Affect training 
to Perspective training (2.420, p=0.016, q=0.032, Cohens D=0.289), which could be attributed to 
subtle (p<0.05) decreases in right CA1- 3 mean FC following Perspective (t=−2.012, p=0.045, q>0.1, 
M:–0.024, std: 0.081, CI [-0.041–0.006]), but not Affect training (t=1.691, p=0.092, q>0.1, M: 0.010, 
std: 0.098, CI [–0.01 0.031]); changes were not present when comparing Affect training versus retest 
control (Table 4 and Supplementary file 1k- q). Comparing Affect TC3 relative to Presence training, 
we did not observe changes (Table 4). No other subfield showed differential changes in main contrasts 
within its functional network.

Exploring whether particular regions within the CA1- 3 network showed alterations in intrinsic func-
tional connectivity when comparing Affect to Perspective, we investigated connectivity changes within 
regions of the subfields’ functional networks. Left CA1- 3 connectivity showed decreases in connec-
tivity to left posterior insula when comparing Affect to Perspective training (FDRq <0.05; t=−3.097, 
p=0.003, Cohens D=−0.370). On the other hand, we observed connectivity increases between right 
CA1- 3 to right mPFC for the same contrast (FDRq <0.05; t=3.262, p=0.002, Cohens D=0.389). No 
other subfield’s functional connectivity showed alterations when comparing Affect to Perspective 
or Presence to Affect TC3. These analyses indicate an overlap between volumetric increases and 
functional alterations when comparing changes following socio- affective mental training in CA1- 3. In 
particular, the moderately consistent CA1- 3 volume increases following Affect training were comple-
mented with differential functional connectivity alterations of this subfield when comparing Affect to 
Perspective training.

Association between change in subfield volume, function, and stress 
markers
Last, we probed whether group- level changes in hippocampal subfield CA1- 3 volume would correlate 
with individual- level changes in diurnal cortisol indices (Presence: n=86; Affect: n=92; Perspective: 
n=81), given that the hippocampal formation is a nexus of the HPA- axis (McEwen, 1999). We took 
a two- step approach. First, we studied univariate associations between cortisol and subfield change, 
particularly focusing on the Affect module and CA1- 3 volume based on increases in CA1- 3 volume 
identified in our group- level analysis. We observed that increases in bilateral CA1- 3 following Affect 
showed a negative association with change in total diurnal cortisol output (operationalized as the 
area under the curve with respect to ground; AUCg) (Table 5, left: t=–2.237, p=0.028, q=0.056; right: 
t=−2.283, p=0.025, q=0.05), indicating that with a reduction in stress- levels as measured by AUCg, 

Table 4. Changes in mean CA1- 3 functional network between training and active control cohorts 
[T0- T1] and [T1- T3].

Affect TC3 vs Presence LCA1- 3 RCA1- 3

t- value 0.366 –0.411

p- and q- value p>0.1, q>0.1 p>0.1, q>0.1

Cohens D 0.052 –0.058

Affect vs Perspective

t- value 0.137 2.420

p- and q- value p=0.891, q>0.1 p=0.016, q=0.032

Cohens D 0.016 0.289

https://doi.org/10.7554/eLife.87634
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there were increases in CA1- 3 volume. Post- hoc analyses indicated no other subfield showed an asso-
ciation with AUCg, or with any of the other cortisol indices, below p<0.05 (Supplementary file 1r). 
Assessing the associations between cortisol indices and the right CA1- 3 subfield functional networks in 
Affect (n=92), we could not observe individual level modulation of diurnal cortisol markers and group- 
level effects (right CA1- 3 functional network change and cortisol markers or within the PI or mPFC 
ROI, Table 6 and Supplementary file 1s). Yet, we observed positive associations between mean func-
tional network of left CA1- 3 and diurnal slope (t=2.653, p=0.01, q=0.02) and AUCg (t=2.261, p=0.026, 
q=0.052), Table 6 and Supplementary file 1t. When assessing whether particular regions within the 
CA1- 3 network showed alterations in intrinsic functional connectivity, we observed that AUCg modu-
lated increases in connectivity between left CA1- 3 and parietal occipital area (q<0.05). These analyses 
extend group- level observations regarding the relation between socio- affective mental training and 
CA1- 3 structure to the individual- level. Again, we observed some consistency in structure and func-
tion in case of CA1- 3. We did not observe alterations in CA1- 3 volume in relation to change in cortisol 
markers in Presence or Perspective. Yet, for Presence we observed association between slope and 
LCA4/DG change (t=−2.89, p=0.005, q=0.03) (Supplementary file 1uv). In case of intrinsic function, 
we also did not observe alterations in CA1- 3 in relation to change in cortisol markers in Presence or 
Perspective, nor in other subfields (Supplementary file 1wx). When evaluating overall associations 
between diurnal cortisol change in CA1- 3 volume in all modules combined, (Presence, Affect, and 
Perspective), we observed comparable patterns as for Affect only, further underscoring the asso-
ciation between cortisol markers and CA1- 3 (Figure  3B; Supplementary file 1y and z). Last, we 
explored whether associations of subfield volume were found with levels of hair cortisol, a long- term 
marker of systemic cortisol exposure, in a sub- sample of N=44 participants repeatedly tested across 
modules (Presence, Affect, and Perspective), based on previous observations of domain- general 
effects of mental training on cortisol and cortisone (Puhlmann et al., 2021b). We identified consistent 
associations between increases in LCA1- 3 volume and intrinsic function and hair cortisol decreases 
(volume: t=−2.574, p=0.011, q=0.022, function: t=−2.700, p=0.008, q=0.016). Exploring effects in 
subfields other than CA1- 3 we revealed associations between right CA4/DG volume and hair cortisol 
(t=−3.138, p=0.002, q=0.01) and left SUB function (t=−2.890, p=0.005, q=0.03; Figure 3B; Supple-
mentary file 1za and zb).

We employed a multivariate partial least squares method, with 1000 permutations to account for 
stability (McIntosh and Lobaugh, 2004; Kebets et al., 2019) and bootstrapping (100 times) with 
replacement, which aims to identify the directions in the predictor space that account for the most 
variance in changes observed, by creating latent variables. Initially, we investigated whether there 
was a general connection between CA1- 3 subfields and cortisol changes, regardless of which Training 
Module produced these effects (Figure 4). This analysis was motivated by our observations that the 
bilateral CA1- 3 showed increases in volume following Affect training and differential change between 
Affect and Perspective training in our resting state analyses. In a second model included structural and 
functional data of all subfields. Both models included all stress markers, and we regressed out age, 
sex and random effects of subject. We found that both models could identify significant associations 

Table 5. Correlating change in CA1- 3 subfield volume and diurnal cortisol indices in Affect.
LCA1- 3 RCA1- 3

CAR –0,355, p>0.1 –1,543, p>0.1

Slope –0,878, p>0.1 –1,245, p>0.1

AUCg –2,237, p=0.028, q=0.056 –2,283, p=0.025, q=0.05

Table 6. Correlating change in CA1- 3 subfield functional network and diurnal cortisol indices in 
Affect.

LCA1- 3 RCA1- 3

CAR –0,476, p>0.1 –0,425, p>0.1

Slope 2,653, p=0.009, q=0.018 0,773, p>0.1

AUCg 2,261, p=0.026, q=0.052 0,024, p>0.1

https://doi.org/10.7554/eLife.87634
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Figure 3. Associations between changes in structure and function of hippocampal subfield volume and markers of 
stress change. (A). Upper left: Correlation between hippocampal subfield volume change in Affect and CAR, slope, 
and AUC markers of stress change, Upper right: Correlation between hippocampal subfield intrinsic functional 
change in Affect and CAR, slope, and AUC markers of stress change, middle: Scatter plots visualize the correlation 
between volume change and cortisol marker change (below p<0.05), bottom: region level change within left CA1- 
3, FDRq <0.05. CA1- 3 is the focus of this analysis based on our group- level findings and highlighted with boxes 
in A; (B). Upper: Overall impact of diurnal cortisol markers on hippocampal subfield volume and function over 
Presence, Affect and Perspective; Lower: Overall impact of hair cortisol markers on hippocampal subfield volume 
and function over Presence, Affect and Perspective.

https://doi.org/10.7554/eLife.87634
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between cortisol stress markers and hippocampal plasticity (FDRq <0.05), and that in particular Affect 
showed strongest associations with the latent markers for CA1- 3 (Table 7). Both analyses showed 
inverse effects of subfield structure and function in relation to stress markers and both slope and AUC 
changes showed strongest associations with the latent factor.

Figure 4. Multivariate associations between changes in structure and function of hippocampal subfield volume and markers of stress change in Affect. 
(A). Multivariate associations between bilateral CA1- 3 volume and intrinsic function and stress markers. Left: Scatter of loadings, colored by Training 
Module; Right upper: individual correlations of stress markers; Right lower: individual correlation of subfields; (B). Multivariate associations between all 
subfields’ volume and intrinsic function and stress markers. Left: Scatter of loadings, colored by Training Module; Right upper: individual correlations of 
stress markers; Right lower: individual correlation of subfields.

https://doi.org/10.7554/eLife.87634
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Discussion
The goal of the current work was to investigate the effects of different types of mental training regi-
mens on stress- related changes in the human hippocampus. The hippocampal formation is a highly 
plastic allocortical structure implicated in stress and emotional reactivity (Chrousos, 2009; Sapolsky, 
2000a; McEwen, 1999). In this study, we used automated segmentation to examine if the volumes of 
hippocampal subfields (SUB, CA1- 3, CA4/DG) change in a large healthy sample over a 9- month longi-
tudinal mental training study, the ReSource project (Singer et al., 2016). We investigated whether 
three different interoceptive and social mental Training Modules could lead to changes in hippo-
campal subfield volume. Additionally, we explored if these changes were associated with alterations in 
both intrinsic brain function and stress- related physiological changes, as indicated by shifts in diurnal 
and hair cortisol levels due to training.

When comparing the differential efficiency of the 3 months mental Training Modules Presence, 
Affect, and Perspective against each other and a retest- control group on hippocampal subfield struc-
ture, we observed consistent increases in bilateral CA1- 3 volume following socio- emotional Affect 
training relative to socio- cognitive Perspective training and no training in retest controls. Moreover, 
alterations in structure were mirrored by changes in functional connectivity of right CA1- 3 following 
Affect versus Perspective training. In particular, we observed relative increases of functional connec-
tivity between right CA1- 3 and mPFC, and decreases between left CA1- 3 and posterior insula, mainly 
driven by changes in connectivity following Perspective training. Evaluating training- related changes 
in diurnal cortisol output (cortisol awakening response, total diurnal output and diurnal slope), we 
observed that bilateral CA1- 3 volume increases correlated with decreases in total diurnal cortisol 
output (assessed as the area under the curve with respect to ground, AUCg, sampled on 10 occasions 
over two consecutive days). Intrinsic connectivity of CA1- 3 following Affect showed a positive asso-
ciation with left CA1- 3 network change and diurnal slope and total diurnal cortisol output, where the 
latter associated with increased connectivity between left CA1- 3 and parietal- occipital area. Interest-
ingly, these associations were similar when combining Training Modules, suggesting the association 
between CA1- 3 and diurnal cortisol markers is present irrespective of training content. Moreover, we 
additionally observed consistent associations between left CA1- 3 and hair cortisol, a systemic marker 
of chronic stress, across trainings in a sub- sample of the current study. Finally, through conducting 
multivariate analysis, we once more noticed associations between changes in CA1- 3 volume and func-
tional adaptability and alterations in stress levels, particularly prominent within the Affect Module. 
Integrating all subfields into a unified model highlighted a distinct significance of CA1- 3, although for 
the left hemisphere, we observed a more diverse range of contributions across subfields. In summary, 
we establish a connection between a socio- emotional behavioral intervention, shifts in hippocampal 
subfield structure and function, and decreases in cortisol levels among healthy adults.

Our longitudinal, multi- modal approach could thus show that compassion- based mental training 
alters CA1- 3 structure. Second, training- based increases in CA1- 3 volume related to decreases in 
total diurnal cortisol release, suggesting that mental training and CA1- 3 volume changes are linked to 
cortisol release. The results regarding changes in functional connectivity profiles were not as straight-
forward, but they did reveal a distinction between Affect and Perspective mental training in the CA1- 3 
region. Moreover, CA1- 3 intrinsic functional change was associated with changes in diurnal cortisol 
slope and release, and long- term cortisol exposure. While the experimental nature of our training 
study allows concluding that CA1- 3 structure changed as a function of Affect training, and that indi-
vidual differences in CA1- 3 structural change corresponded to cortisol release change, we cannot 
make any claims about which training- induced change caused the other. Thus, it is possible that, 
owing to the Affect module, the activation of emotion/motivation- related functional processes is key 
to reducing the daily stress load and associated cortisol release (Klimecki et al., 2013; McCall and 

Table 7. Multivariate PLS analyses linking cortisol markers to hippocampal subfield volume and 
function.

LC1 Overall Presence Affect Perspective

CA1- 3 p<0.01, 67% r=0.20 r=0.17 r=0.27 r=0.16

all p<0.01, 71% r=0.24 r=0.16 r=0.30 r=0.26

https://doi.org/10.7554/eLife.87634
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Singer, 2012). Such reduction in cortisol levels may then explain the observed downstream brain 
alterations. According to this interpretation, changes in CA1- 3 volume may come secondary to stress 
reduction and consequently alterations in cortisol release following compassion training. Alternatively, 
emotion/compassion training may specifically targets CA volume and function, and, as per its role as 
the central break of the HPA axis, improves its capacity to inhibit cortisol release. This explanation 
could explain the lack of average diurnal cortisol (i.e., AUCg) change following Affect training per se 
(Engert et al., 2023), as it may be relevant for individual variations in brain change and thus be more 
difficult to detect based only on average change per module. In sum, it is likely that observed alter-
ations in hippocampal structure and function, as well as their associations with diurnal cortisol change, 
are not explained by a single mechanism, but rather result as a combination of different factors. This 
interpretation is also supported by our multivariate observations. For example, given the anatomical 
and functional complexity of the hippocampal formation (Yushkevich et  al., 2015; Genon et  al., 
2021) as well as the multifaceted cognitive processes underlying stress, it seems plausible that our 
observations are an emergent effect of multiple, cognitively distinct, functional sub- processes. Thus, 
future studies may directly test the potential specificity of the interrelationship between stress on the 
hippocampus using further targeted measurements.

The observed increases in CA1- 3 volumes following socio- affective mental training were small- 
sized effects. However, findings were consistent when independently assessing the left and right 
hippocampus subfields. In particular, we observed that increases in CA1- 3 volume after Affect training 
corresponded to a decrease in total diurnal cortisol as well as hair cortisol output. These results can be 
interpreted in line with the mainly inhibitory role of the hippocampus in stress regulation (Herman and 
Cullinan, 1997; Herman et al., 1995; Jacobson and Sapolsky, 1991; Herman et al., 2005). Specif-
ically, the hippocampus is involved in the negative feedback inhibition of the HPA axis. Mineral- and 
glucocorticoid receptors are present in abundance in hippocampal neurons, from where they transmit 
the negative feedback signals of a wide range of glucocorticoid levels on HPA axis activity (Jacobson 
and Sapolsky, 1991). The extremely high numbers of mineral- and glucocorticoid receptors make 
the hippocampus a prominent target for the neurotoxic effects of glucocorticoids (Sapolsky, 2000b; 
Sapolsky et al., 1985a; Sapolsky and Pulsinelli, 1985b). In particular the CA1 may be susceptive to 
stress- based environmental effects due to synaptogenesis associated with NR2B subunits of glutamate 
receptors (NMDAR) (Coultrap et al., 2005). Along these lines, sustained exposure to high glucocorti-
coid levels was shown to relate to calcium influx, and may produce CA3 pyramidal neuronal damage, 
which has been reported in rodents and tree shrews (McKittrick et al., 2000; Magariños et al., 1998; 
Magariños and McEwen, 1995). Next to demonstrating a consistent relationship between total daily 
cortisol output and hippocampal structure, the absence of univariate findings for cortisol awakening 
response (CAR), diurnal slope or hair cortisone levels may a divergence in the sensitivity of alternative 
cortisol- based stress markers to structural neuroimaging markers. It is of note that the current work 
relies on a segmentation approach of hippocampal subfields including projection to MNI template 
space, an implicit correction for total brain volume through the use of a stereotaxic reference frame. 
Some caution for this method may be warranted, as complex hippocampal anatomy can in some cases 
lead to over- as well as underestimation of subfield volumes, as well as subfield boundaries may not 
always be clearly demarcated (Wisse et al., 2021). Future work, studying the hippocampal surface at 
higher granularity, for example though unfolding the hippocampal sheet (Vos de Wael et al., 2018; 
DeKraker et al., 2021; DeKraker et al., 2022; Bernhardt et al., 2016), may further help with both 
alignment and identification of not only subfield- specific change but also alterations as a function of 
the hippocampal long axis, a key dimension of hippocampal structural and functional variation that 
was not assessed in the current work (Genon et al., 2021; Vogel et al., 2020).

Structural MRI findings were complemented by the separate assessment of task- free ("resting- 
state") functional connectivity networks. Identification of networks that show coupled spontaneous 
brain activity through resting- state fMRI is currently considered an effective approach to study whole- 
brain functional connectivity (Smith et al., 2011; Biswal et al., 1995; Greicius et al., 2003). In the 
current cohort, we could demonstrate widespread patterns of hippocampal functional connectivity to 
mesiotemporal, lateral temporal, together with anterior as well as posterior midline regions, lateral 
temporo- parietal, and dorsolateral prefrontal cortices - a pattern in excellent accordance to previous 
studies probing hippocampal functional connectivity at rest in healthy populations (Paquola et al., 
2020; Vos de Wael et al., 2018; Przeździk et al., 2019; Buckner and Vincent, 2007; Vincent et al., 
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2006), and outlining ‘mesiotemporal’ components of default- mode networks (Andrews- Hanna et al., 
2010; Yeo et al., 2011). Assessing modulations of connectivity by mental training, we could provide 
independent, yet weak, support for a specific relationship of the socio- affective Affect training, 
relative to socio- cognitive Perspective Training Modules, on hippocampal network embedding. In 
particular, we observed an increased functional integration of the right CA1- 3 with medial prefrontal 
cortical regions (mPFC) in individuals following Affect relative to Perspective training. Studies in rats 
and non- human primates have demonstrated a high density of glucocorticoid receptors in the mPFC 
(Sánchez et  al., 2000; Ahima and Harlan, 1990). Accordingly, the mPFC, like the hippocampus, 
was shown to play a key role in HPA- axis regulation (Dedovic et al., 2009; Herman et al., 2005; 
Radley and Sawchenko, 2011; Diorio et  al., 1993). In a previous positron emission tomography 
study, glucose metabolism in the mPFC was negatively associated with acute stress- induced salivary 
cortisol increases; notably, the authors observed a negative metabolic coupling between mPFC areas 
and the mesiotemporal lobe (Kern et al., 2008). In related work on isocortical changes in structure 
and intrinsic function following the ReSource training, we have observed structural changes in insular, 
opercular and orbitofrontal regions following Affect training (Valk et al., 2017; Valk et al., 2023b). 
At the same time, we observed little change in large- scale functional organization, relative to changes 
observed following Presence and Perspective training. Previous work has implicated the hippocampal 
formation at the nexus of multiple large- scale networks and cortical organization (Paquola et  al., 
2020; Vogel et al., 2020). Indeed, it may be that particular changes in the CA1- 3 are central in coordi-
nating the signal flow within the hippocampal complex, coordinating the balance between large- scale 
association networks in the iso- cortex (Paquola et al., 2020). Integrating this with our empirical obser-
vation of Affect training taking up a regulatory or stabilizing functional role, relative to Perspective and 
Presence training, it is possible that such alterations are orchestrated by adaptive processes (McEwen 
et al., 2015). Future work may be able to further disentangle the causal relationship between iso- and 
allo- cortical structure and function, and the role of specific hippocampal subfields.

Using univariate approaches, we could observe that training- induced HC volume increases following 
socio- affective mental training overlapped with reductions in cumulative diurnal cortisol release. Addi-
tionally, we observed functional connectivity decrease between left CA1- 3 and parietal- occipital area 
in individuals showing reduced diurnal cortisol release and overall connectivity decreases of left CA1- 3 
relating to reductions in diurnal cortisol slope. Importantly, these associations could be found also 
when including Presence and Perspective in our analysis, suggesting of a domain- general relationship 
between diurnal cortisol alterations and CA1- 3 volume and function. In line with our observations in 
univariate analysis, we found multivariate associations between hippocampal subfield volume, intrinsic 
function and cortisol markers. Again, the contribution of volume and intrinsic function was inverse. 
This may possibly relate to the averaging procedure of the functional networks. Combined, outcomes 
of our univariate and multivariate analyses point to an association between change in hippocampal 
subfields and stress markers, and that these changes, at the level of the individual, ultimately reflect 
complex interactions within and across hippocampal subfields and may capture different aspects of 
diurnal stress. Future work may more comprehensively study the plasticity of the hippocampal struc-
ture, and link this to intrinsic functional change and cortisol to gain full insights in the specificity 
and system- level interplay across subfields, for example using more detailed hippocampal models 
(DeKraker et  al., 2022). Incorporating further multivariate, computational, models is needed to 
further unpack and investigate the complex and nuanced association between hippocampal structure 
and function, in particular in relation to subfield plasticity and short and long- term stress markers. In 
line with our multivariate observations, in other work from the ReSource study we observed mixed 
specificity of stress- reducing effects as a function of mental training. For example, both social modules, 
that is the Affect and Perspective trainings, reduced acute cortisol reactivity to a psychosocial stressor 
(Kirschbaum et al., 1993), which is considered a dynamic state of HPA axis activity (Engert et al., 
2017). Regarding the CAR, only Affect training was able to reduce this dynamic cortisol response to 
awakening, known to reflect anticipatory stress (Engert et al., 2023). Lastly, regarding hair cortisol, 
a long- term measure of systemic stress, all Training Modules were shown to be equally effective in 
stress reduction over a training period of three to nine months (Puhlmann et al., 2021b). In our work 
we observed a consistent association between left CA1- 3 volume and functional increases and hair 
cortisol decreases, hinting at a potential relationship between CA1- 3 and both short- term and long- 
term stress level changes.
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Overall, different types of mental training result in stress reduction (e.g. Puhlmann et al., 2021b; 
Engert et al., 2023; Engert et al., 2017). In a recent paper we argue that the variable pattern of 
mental training effects on different cortisol indices may be explained by the functional roles of these 
indices (Engert et  al., 2023). Thus, indices reflecting dynamic HPA axis properties, such as acute 
stress reactivity and the CAR, were suggested to change with Affect and Perspective training (also 
see Engert et al., 2017). Hair cortisol as a marker of cumulative stress load likely reflecting the low- 
grade and continuous strain inherent to daily hassles (Almeida, 2005; DeLongis et al., 1982; Lazarus 
and Folkman, 1984), was contrarily suggested to change independent of training type (also see 
Puhlmann et al., 2021b). The current findings do not necessarily contradict this reasoning, due to 
differences in interpretation of group- level and individual- level changes. Although we observed that 
CA1- 3 volume was selectively increased by socio- affective mental training at the group level, and that 
individual differences in CA1- 3 volume increase within the Affect module correlated with reduced 
diurnal cortisol release, the pattern linking bilateral CA1- 3 volume increases with reduced diurnal 
cortisol release was also present when all modules were combined. Similarly, in follow- up analysis on 
functional alterations of hippocampal subfields, we could observe group- level increases in connec-
tivity to mPFC for right, but not left, CA1- 3, when comparing socio- affective and socio- cognitive 
training. Though right CA1- 3 group- level changes did not link to individual level change in cortisol 
markers following Affect training, individual level changes in left CA1- 3 corresponded to changes in 
cortisol markers, again following Affect but also across all practices combined. Thus, we cannot at 
this point derive a consistent pattern of how mental training influences different indices of cortisol 
activity, yet we do find a consistent change in CA1- 3 following Affect training, and observe domain- 
general patterns of change associations between CA1- 3 and cortisol markers, indicating CA1- 3 may 
play a central role within the context of Affect training and diurnal stress reduction based on univariate 
analysis. Although the univariate examination of changes specific to modules in volume and connec-
tions within the Affect Module presents how changes in cortisol align with group- level rises in CA1- 3 
volume, the multivariate analysis extended this observation through considering individual- level 
alterations not discernible at the group level through a data- driven method. These results gener-
ally corresponded with observations at the group level but offer additional insights into specificity, 
and hint at system- level alterations. Lastly, from a mechanistic viewpoint, we hypothesize that Affect 
training stimulates emotion- motivational (reward) systems associated with positive affect (Klimecki 
et al., 2013; McCall and Singer, 2012), and regulated by oxytocin and opiates (Depue and Morrone- 
Strupinsky, 2005; Nelson and Panksepp, 1998). Since these neuropeptides are also involved in 
stress regulation (Carter, 2014; Drolet et al., 2001), they could be considered to provide a double 
hit, and prime candidates to mediate hippocampal volume increase and stress reduction in particular 
following compassion- based practice, yet also present following other practices.

It is of note that non- adherence to saliva sampling in ambulatory settings has been shown to exert a 
significant impact on the resulting cortisol data (Kudielka et al., 2007; Kudielka et al., 2003) and that 
the present data does not fully conform to the recently provided consensus guidelines on the assess-
ment of the CAR (Stalder et al., 2022; Stalder et al., 2016), which were published after the concep-
tion of our study. Most importantly, we did not employ objective measures for the verification of 
participants’ sampling times. Hence, diurnal cortisol data have to be treated with some caution since 
the possibility of non- adherence- related confounding cannot be excluded (Kudielka et  al., 2007; 
Kudielka et al., 2003; Stalder et al., 2022; Stalder et al., 2016). We nevertheless addressed the 
issue of non- adherence through an experience sampling approach based on mobile phones handed 
out to our participants. As shown by the relatively low proportion of missing data, these devices may 
have boosted adherence by reminding participants of a forthcoming sampling time- point.

To conclude, using a longitudinal model, we investigated how different types of mental training 
differentially result in changes in hippocampal subfield volume, resting- state functional networks, and 
stress- related markers of diurnal cortisol and hair cortisol. We find that only the 3  months Affect 
training module cultivating compassion and care, rather than attention- based (Presence) or socio- 
cognitive (Perspective) training, related to an increase of hippocampal CA1- 3 subfield volume, with 
corresponding alterations in functional connectivity and a reduction in total diurnal cortisol output. 
Across analyses we observed consistent alterations between cortisol change and CA1- 3 volume and 
function, pinpointing this region as a potential target for further investigations on stress and the 
human brain. Lastly, our multivariate analyses also point to a circuit level understanding of latent 
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diurnal stress scores. Our results may be informative for the development of targeted interventions to 
reduce stress, and inspire the update of models on the role of different hippocampal formations for 
human socio- emotional and stress- related processes.

Methods
The specifics on the experimental design are the similar to related works in the same sample (Valk 
et al., 2017; Trautwein et al., 2020). They are provided again here for completeness.

Participants
We recruited a total of 332 healthy adults (197 women, mean ± SD = 40.7±9.2 years, 20–55 years), 
in the winters of 2012/2013 and 2013/2014. Participant eligibility was determined through a multi- 
stage procedure that involved several screening and mental health questionnaires, together with a 
phone interview [for details, see Singer et al., 2016]. Subsequently, a face- to- face mental health 
diagnostic interview with a trained clinical psychologist was carried out. The interview included a 
computer- assisted German version of the Structured Clinical Interview for DSM- IV Axis- I disorders, 
SCID- I DIA- X (Wittchen and Pfister, 1997), and a personal interview, SCID- II, for Axis- II disorders 
(Wittchen et al., 1997; First et al., 2012). Participants were excluded if they fulfilled criteria for: (i) 
an Axis- I disorder within the past two years, (ii) schizophrenia, psychotic disorders, bipolar disorder, 
or substance dependency, or (iii) an Axis- II disorder at any time in their life. Participants taking 
medication influencing the HPA axis were also excluded. None of the participants had a history of 
suffering from neurological disorders or head trauma, based on an in- house self- report questionnaire 
completed prior to the neuroimaging investigations. Included participants furthermore underwent 
a diagnostic radiological evaluation to rule out the presence of mass lesions (e.g. tumors, vascular 
malformations). The study was approved by the Research Ethics Committees of University of Leipzig 
(#376/12- ff) and Humboldt University in Berlin (#2013–02, 2013–29, 2014–10), and all participants 
provided written informed consent prior to participation. The study was registered with the Protocol 
Registration System of  ClinicalTrials. gov under the title ‘Plasticity of the Compassionate Brain’ with 
the Identifier: NCT01833104. For more details on recruiting and sample selection, please see Singer 
et al., 2016.

Sample size estimation and group allocation
Overall, 2595 people signed up for the ReSource study in winter 2012/2013. Of these individuals, 311 
potential participants met all eligibility criteria. From the latter group, 198 were randomly selected 
as the final sample. Participants were selected from the larger pool of potential participants and 
assigned to cohorts using bootstrapping without replacement, creating cohorts that did not differ 
(omnibus test p<0.1) in demographics (age, gender, marital status, income, and IQ) or self- reported 
traits (depression, empathy, interoceptive awareness, stress level, compassion for self and others, 
alexithymia, general mental health, anxiety, agreeableness, conscientiousness, extraversion, neurot-
icism, and openness). Seven participants dropped out of the study after assignment but before data 
collection began, leaving 30 participants in RCC1, 80 in TC1, and 81 in TC2.

2144 people applied for the second wave of the study in winter 2013/2014. Of these people, 248 
potential participants met all the eligibility criteria. From the latter pool, 164 were then randomly 
selected as the final sample. Participants were selected from the larger pool of potential partici-
pants and assigned to cohorts using bootstrapping without replacement, creating cohorts that did 
not differ significantly (omnibus test, p>0.1) from the Winter 2012/2013 cohorts or from one another 
in demographics (age, gender, marital status, income, and IQ) or self- reported traits (depression, 
empathy, interoceptive awareness, stress level, compassion for self and others, alexithymia, general 
mental health, anxiety, agreeableness, conscientiousness, neuroticism, and openness). The control 
cohorts (RCC1, RCC2, and RCC1&2) were significantly lower in extraversion than TC3; participants 
in the control cohorts were also more likely to have children than participants in TC3. Twenty- three 
participants dropped out of the study after assignment but before data collection began, leaving 81 
participants in TC3 and 60 in RCC2. See further (Singer et al., 2016).
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ReSource training program
In the ReSource Project, we investigated the specific effects of commonly used mental training tech-
niques by parceling the training program into three separate modules (Presence, Affect, and Perspec-
tive). Participants were selected from a larger pool of potential volunteers by bootstrapping without 
replacement, creating cohorts not differing significantly with respect to several demographic and 
self- report traits (Singer et al., 2016). Each cultivated distinct cognitive and socio- affective capac-
ities (Pascoe et al., 2017). Participants were divided in two 9- month training cohorts experiencing 
the modules in different orders, one 3- month Affect training cohort and one retest control cohort. 
In detail, two training cohorts (TC1, TC2) started their training with the mindfulness- based Presence 
module. They then underwent Affect and Perspective modules in different orders thereby acting as 
mutual active control groups. To isolate the specific effects of the Presence module, a third training 
cohort (TC3) underwent the 3- month Affect module only (Figure 1B).

As illustrated in Figure 1A, the core psychological processes targeted in the Presence module 
are attention and interoceptive awareness, which are trained through the two meditation- based core 
exercises Breathing Meditation and Body Scan. The Affect module targets the cultivation of social 
emotions such as compassion, loving kindness and gratitude. It also aims to enhance prosocial moti-
vation and dealing with difficult emotions. The two core exercises of the Affect module are Loving- 
kindness Meditation and Affect Dyad. In the Perspective module participants train meta- cognition 
and perspective- taking on self and others through the two core exercises Observing- thoughts 
Meditation and Perspective Dyad. The distinction between Affect and Perspective modules reflects 
research identifying distinct neural routes to social understanding: One socio- affective route including 
emotions such as empathy and compassion, and one socio- cognitive route including the capacity to 
mentalize and take perspective on self and others (for details on the scientific backbone of this divi-
sion see: Singer et al., 2016).

The two contemplative dyads are partner exercises that were developed for the ReSource training 
(Kok and Singer, 2017). They address different skills such as perspective taking on self and others 
(Perspective dyad) or gratitude, acceptance of difficult emotions and empathic listening (Affect dyad), 
but are similar in structure (for details see: Singer et al., 2016). In each 10 min dyadic practice, two 
randomly paired participants share their experiences with alternating roles of speaker and listener. The 
dyadic format is designed to foster interconnectedness by providing opportunities for self- disclosure 
and non- judgmental listening (Singer et al., 2016; Kok and Singer, 2017). Our recommendation was 
to train for a minimum of 30 min (e.g. 10 min contemplative dyad, 20 min classic meditation) on five 
days per week.

MRI acquisition
MRI data were acquired on a 3T Siemens Magnetom Verio (Siemens Healthcare, Erlangen, Germany) 
using a 32- channel head coil. Structural images were acquired using a T1- weighted 3D- MPRAGE 
sequence (repetition time [TR]=2300ms, echo time [TE]=2.98ms, inversion time [TI]=900ms, flip angle 
= 7°; 176 sagittal slices with 1 mm slice thickness, field of view [FOV]=240 × 256 mm2, matrix = 240 
× 256, 1×1 × 1 mm3 voxels). We recorded task- free functional MRI using a T2*-weighted gradient EPI 
sequence (TR = 2000ms, TE = 27ms, flip angle = 90°; 37 slices tilted at approximately 30° with 3 mm 
slice thickness, FOV = 210 × 210 mm2, matrix = 70 × 70, 3×3 × 3 mm3 voxels, 1 mm gap; 210 volumes 
per session). During the functional session, participants were instructed to lie still in the scanner, think 
of nothing in particular, and fixate a white cross in the center of a black screen.

Structural MRI analysis: Hippocampal subfield volumetry
Based on the available high- resolution T1- weighted images subiculum (SUB), CA1- 3, and CA4/DG 
were segmented using a patch- based algorithm in all participants individually (see further Caldairou 
et al., 2016). Shortly, this procedure uses a population- based patch normalization relative to a template 
library (Kulaga- Yoskovitz et al., 2015), providing good time and space complexity. In previous valida-
tions work, this algorithm has shown high segmentation accuracy of hippocampal subfields (Caldairou 
et al., 2016), and in detecting hippocampal subfield pathology in patients with epilepsy (Bernhardt 
et al., 2016). It was furthermore demonstrated that these representations can be used to probe sub- 
regional functional organization of the hippocampus (Vos de Wael et al., 2018; Bayrak et al., 2022). 
Hippocampal volumes were estimated based on T1w data that were linearly registered to MNI152 
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using FSL flirt (http://www.fmrib.ox.ac.uk/fsl/), such that intracranial volume was implicitly controlled 
for.

As previously reported (Puhlmann et al., 2021a), for successful hippocampus segmentations, an 
initial quality check was conducted by two independent raters, R.L. and L.P. Both raters were blind to 
participant characteristics including age, sex, and training or control group. In short, each segmenta-
tion was rated for quality on a scale of 1–10, with points being subtracted depending on the severity 
of detected flaws. One point was subtracted for minor flaws, for example part of a segmentation 
extends slightly beyond the hippocampal boundary, or does not cover a small aspect of the hippo-
campal formation. Two points were subtracted for medium flaws, for example gaps between subfield 
segmentations. Finally, major flaws immediately qualified for resampling, and included for example 
one or more subfield segmentations being clearly misplaced. Given a minimum of 70% inter- rater reli-
ability, segmentation ratings were then averaged and evaluated, with scores of 5 and lower qualifying 
for reprocessing with the algorithm. Following this second round of processing, segmentations were 
rated again. Any remaining segmentations with average scores lower than 5 were excluded from the 
analysis.

Task-free functional MRI analysis: Hippocampal connectivity
Processing was based on DPARSF/REST for Matlab [http://www.restfmri.net (Chao- Gan and Yu- Feng, 
2010)]. We discarded the first five volumes to ensure steady- state magnetization, performed slice- 
time correction, motion correction and realignment, and co- registered functional time series of a 
given subject to the corresponding T1- weighted MRI. Images underwent unified segmentation and 
registration to MNI152, followed by nuisance covariate regression to remove effects of average WM 
and CSF signal, as well as 6 motion parameters (3 translations, 3 rotations). We included a scrubbing 
(Power et al., 2012) that modeled time points with a frame- wise displacement of ≥0.5 mm, together 
with the preceding and subsequent time points as separate regressors during nuisance covariate 
correction.

We linearly co- registered the extracted hippocampal subfield volumes with the functional MRI 
data for each individual using FSL flirt (http://www.fmrib.ox.ac.uk/fsl/), followed by nearest neighbor 
interpolation. Following, we generated functional connectivity maps from both the left and right 
hippocampal subfields in each individual. Functional connectivity was calculated as the correlation 
between the mean time series of the seed region and the time series of all cortical parcels based on 
the Schaefer 400 parcellation. To render them normally distributed and scale the profiles across partic-
ipants, correlation coefficients underwent a Fisher r- to- z transformation and were rescaled, resulting 
in connectivity profiles between 0 and 1 for each participant and timepoint. Functional networks were 
defined as the top 10% regions based on mean connectivity profile of the respective subfield in the 
ipsilateral hemisphere at baseline. Individuals with a framewise- displacement of >0.3 mm (<5%) were 
excluded.

Diurnal cortisol assessments
For cortisol assessment, 14 saliva samples (7 per day) were obtained over the course of two consec-
utive weekdays (Mondays/Tuesdays, Wednesdays/Thursdays or Thursdays/Fridays, depending on 
participant availability). In detail, samples were taken upon free awakening (while still in bed; S1) and 
at 30 min, 60 min, 4, 6, 8, and 10 hr after awakening. Saliva was collected using Salivette collection 
devices (Sarstedt, Nuembrecht, Germany). Participants were instructed to place collection swabs in 
their mouths and to refrain from chewing for 2 min. They were asked to not eat, drink (except water), 
or brush their teeth during the 10 min before sampling, and to not smoke during the 30 min before 
sampling. If deviating from this guideline, they were asked to thoroughly rinse their mouth with water 
before taking a sample. Participants otherwise followed their normal daily routine. To maximize adher-
ence to the sampling protocol, participants were given pre- programmed mobile devices using an 
in- house application that reminded them to take each (except the first) Salivette at the designated 
time. Sampling times of the non- morning probes were jittered (+/-15 min) to avoid complete predict-
ability. Samples were kept in the freezer until returned to the laboratory, where they were stored 
at –30  °C until assay (at the Department of Biological and Clinical Psychology, University of Trier, 
Germany). Cortisol levels (expressed in nmol/l) were determined using a time- resolved fluorescence 
immunoassay (Dressendörfer et al., 1992) with intra-/inter- assay variability of 10/12%.
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Raw cortisol data were each treated with a natural log transformation to remedy skewed distri-
butions. Across the full sample, any values diverging more than 3 SD from the mean were labeled 
outliers and winsorized to the respective upper or lower 3 SD boundary to avoid influential cases. 
Logged and winsorized cortisol data was then averaged across the two sampling days, and the most 
commonly used summary indices of diurnal cortisol activity were calculated (Ross et al., 2014). The 
CAR was quantified as a change score from S1 to either the 30- or 60 min post- awakening sample, 
depending on the individual peak in hormone levels. If participants peaked at S1 rather than at 30 
or 60 min thereafter, the 30- min data point was used to operationalize the (inverse) CAR, given that 
it was always closer in magnitude to S1 than the 60- min data point. The cortisol decline over the 
course of the day (diurnal slope) was operationalized as a change score from baseline to the final 
sample of the day (at 600 min after awakening). Total daily cortisol output was operationalized as 
the area under the curve with respect to ground, AUCg (Pruessner et al., 2003), which considers the 
difference between the measurements from each other (i.e. the change over time) and the distance 
of these measures from zero (i.e., the level at which the change over time occurs). Awakening, 240, 
360, 480, and 600 min post- awakening cortisol values were included in the calculation of the AUCg. 
To prevent it from having an undue influence, the CAR samples at 30 and 60 min were excluded from 
the total output score calculation. On each sampling day, awakening time and sleep duration were 
registered using the pre- programmed mobile device immediately upon awakening in parallel to 
taking the first Salivette. These measures were averaged across the two sampling days to minimize 
situational influences.

Assay of steroid hormone concentration in hair
Please see further details on sample and dropout in Puhlmann et al., 2021b. To evaluate cortisol and 
cortisone, hair strands were taken as close as possible to the scalp from a posterior vertex position at 
T0 and after each following timepoint (T0- T3). Hair samples were enfolded in aluminum foil and stored 
in the dark at room temperature until assay at the Department of Psychology, TU Dresden, Germany. 
We evaluated the proximal 3  cm segment of hair to study accumulation of cortisol and cortisone 
over each 3- month period, based on the assumption of an average hair growth rate of 1 cm/month 
(Wennig, 2000). Hormone concentrations were captured using liquid chromatography–tandem mass 
spectrometry, the current criterion standard approach for hair steroid analysis (Gao et  al., 2016). 
All hormone concentrations were reported in picograms per milligram. For the current longitudinal 
research aim, all samples of one participant were always run with the same reagent batch to avoid 
intraindividual variance due to batch effects.

Quality control and case selection
Structural MRI data without artifacts and acceptable automated segmentations were available in 943 
participants. Functional MRI data were available in 849 participants. We opted to have consistent 
sample sizes in structure and function and therefor including only people that had both structural and 
functional data available. Please see Table 5 for participant numbers across timepoints and measures 
for structural and functional data.

Among those, salivary cortisol measures were available in Presence n=85 (53 females, age = 
40.87 std 9.69, 20–55), Affect n=89 (50 females, age = 40.11 std 9.87, 20–55), Perspective n=81 (48 
females, age = 40.14 std 9.78, 20–55). Hair cortisol change scores were available in Presence n=31 
(21 females, age = 39.55 std 10.40, 20–54), Affect n=44 (24 females, age = 37.52 std 10.78, 20–54), 
Perspective n=41 (24 females, age = 38.14 std 10.51, 20–54).

Statistical analyses
Using SurfStat (Worsley et  al., 2009; Larivière et  al., 2023), we carried out structural and func-
tional MRI analysis for the left and right hippocampal subfield difference scores between different 
3- month timepoints. All models statistically corrected for nuisance effects of age and sex, as well as 
random effect of subject. Main contrasts considered in the group analyses concern Presence versus 
Active Control (T0- T1) and Affect versus Perspective (T1- T3). Additionally, investigations include anal-
yses versus Retest Control Cohort as well as subgroups defined by training cohort and timepoint. In 
case of multiple comparison, we performed Bonferroni correction (Benjamini and Hochberg, 1995).
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Partial least squares analysis
To assess potential relationships between cortisol change and hippocampal subfield volume and func-
tional change, we performed a partial least squares analysis (PLS; McIntosh and Lobaugh, 2004; 
Kebets et al., 2019). PLS is a multivariate associative model that to optimizes the covariance between 
two matrices, by generating latent components (LCs), which are optimal linear combinations of the 
original matrices (McIntosh and Lobaugh, 2004; Kebets et al., 2019). In our study, we utilized PLS to 
analyze the relationships between change in volume and intrinsic function of hippocampal subfields 
and diurnal cortisol measures. Here, we included all Training Modules and regressed out effects of 
age, sex, and random effects of subject on the brain measures before conducting the PLS analysis. 
The PLS process involves data normalization within training groups, cross- covariance, and singular 
value decomposition. Subsequently, subfield and behavioral scores are computed, and permutation 
testing (1000 iterations) is conducted to evaluate the significance of each latent factor solution (FDR 
corrected). We report then the correlation of the individual hippocampal and cortisol markers with 
the latent factors. To estimate confidence intervals for these correlations, we applied a bootstrapping 
procedure that generated 100 samples with replacement from subjects’ RSFC and behavioral data.
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