

Two distinct pituitary cell types are involved in the external coincidence model for the avian photoperiodic response. Short photoperiods activate an endogenously generated programmed to increase $F S H \beta$ expression in the pars distalis of the pituitary gland. A gradual increase in non-stimulatory photoperiods, such as 10 v and 12 v , establish the photosensitive state and characterised by constituently expressed $F S H \beta$. Photoperiods that extend beyond the critical day length (e.g., $>12 \mathrm{v}$) activates thyrotropes $T S H \beta$ expression in the pars tuberalis of the pituitary gland. The coincidence timing of long day $T S H \beta$ with the short day photosensitivity induced by increased $F S H \beta$ expression results in gonadal development. Figure was created using BioRender.

