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Abstract In motor cortex, behaviorally relevant neural responses are entangled with irrelevant 
signals, which complicates the study of encoding and decoding mechanisms. It remains unclear 
whether behaviorally irrelevant signals could conceal some critical truth. One solution is to accu-
rately separate behaviorally relevant and irrelevant signals at both single-neuron and single-trial 
levels, but this approach remains elusive due to the unknown ground truth of behaviorally relevant 
signals. Therefore, we propose a framework to define, extract, and validate behaviorally relevant 
signals. Analyzing separated signals in three monkeys performing different reaching tasks, we found 
neural responses previously considered to contain little information actually encode rich behavioral 
information in complex nonlinear ways. These responses are critical for neuronal redundancy and 
reveal movement behaviors occupy a higher-dimensional neural space than previously expected. 
Surprisingly, when incorporating often-ignored neural dimensions, behaviorally relevant signals can 
be decoded linearly with comparable performance to nonlinear decoding, suggesting linear readout 
may be performed in motor cortex. Our findings prompt that separating behaviorally relevant 
signals may help uncover more hidden cortical mechanisms.

eLife assessment
This study presents a useful method for the extraction of behaviour-related activity from neural 
population recordings based on a specific deep learning architecture, a variational autoencoder. 
Although the authors performed thorough benchmarking of their method in the context of 
decoding behavioural variables, the evidence supporting claims about encoding is incomplete as 
the results may stem, in part, from the properties of the method itself.

Introduction
Understanding how motor cortex encodes and decodes movement behaviors is a fundamental goal of 
neuroscience (Kriegeskorte and Douglas, 2019; Saxena and Cunningham, 2019). Here, we define 
behaviors as behavioral variables of interest measured within a given task, such as arm kinematics 
during a motor control task; we employ terms like ‘behaviorally relevant’ and ‘behaviorally irrelevant’ 
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only regarding such measured behavioral variables. However, achieving this goal faces significant 
challenges because behaviorally relevant neural responses are entangled with behaviorally irrelevant 
factors such as responses for other variables of no interest (Fusi et al., 2016; Rigotti et al., 2013) 
and ongoing noise (Azouz and Gray, 1999; Faisal et al., 2008). Generally, irrelevant signals would 
hinder the accurate investigation of the relationship between neural activity and movement behaviors. 
This raises concerns about whether irrelevant signals could conceal some critical facts about neural 
encoding and decoding mechanisms.

If the answer is yes, a natural question arises: what critical facts about neural encoding and decoding 
would irrelevant signals conceal? In terms of neural encoding, irrelevant signals may mask some small 
neural components, making their encoded information difficult to detect (Moreno-Bote et al., 2014), 
thereby misleading us to neglect the role of these signals, leading to a partial understanding of neural 
mechanisms. For example, at the single-neuron level, weakly tuned neurons are often assumed to 
contain little information and not analyzed (Georgopoulos et  al., 1986; Hochberg et  al., 2012; 
Wodlinger et al., 2015; Inoue et al., 2018); at the population level, neural signals composed of lower 
variance principal components (PCs) are typically treated as noise and discarded (Churchland et al., 
2012; Gallego et al., 2018; Gallego et al., 2020; Cunningham and Yu, 2014). So, do these ignored 
signals truly contain little information, or do they appear that way only because they are obscured 
by irrelevant signals? And what’s the role of these ignored signals? In terms of neural decoding, 
irrelevant signals would significantly complicate the information readout (Pitkow et al., 2015; Yang 
et al., 2021), potentially hindering the discovery of the true readout mechanism of behaviorally rele-
vant responses. Specifically, in motor cortex, in what form (linear or nonlinear) downstream neurons 
readout behavioral information is an open question. Current studies typically use noisy raw signals for 
decoding behavioral information (Georgopoulos et al., 1986; Hochberg et al., 2012; Wodlinger 
et al., 2015; Glaser et al., 2020; Willsey et al., 2022). The linear readout is biologically plausible and 
widely used (Georgopoulos et al., 1986; Hochberg et al., 2012; Wodlinger et al., 2015), but recent 
studies (Glaser et al., 2020; Willsey et al., 2022) demonstrate nonlinear readout outperforms linear 
readout. So which readout scheme is the motor cortex more likely to adopt for decoding information 
from behaviorally relevant signals? Whether irrelevant signals are the culprits for the performance gap 
observed with raw signals? Unfortunately, all the above issues remain unclear.

One approach to address the above issues is to accurately separate behaviorally relevant and 
irrelevant signals at both single-neuron and single-trial levels and then analyze noise-free behaviorally 
relevant signals, which enables us to gain a more accurate and comprehensive understanding of the 
underlying neural mechanisms. However, this approach is hampered by the fact that the ground truth 
of behaviorally relevant signals is unknown, which makes the definition, extraction, and validation of 
behaviorally relevant signals a challenging task. As a result, methods of accurate separation remain 
elusive to date. Existing methods for extracting behaviorally relevant patterns at the single-trial level 
mainly focus on the latent population level (Sani et al., 2021; Hurwitz, 2021; Zhou, 2020) rather than 
the single-neuron level, and they extract neural activities based on assumptions about specific neural 
properties, such as linear or nonlinear dynamics (Sani et al., 2021; Hurwitz, 2021). Although these 
methods have shown promising results, they fail to capture other parts of behaviorally relevant neural 
activity that do not meet their assumptions, thereby providing an incomplete picture of behaviorally 
relevant neural activity. Some studies (Kobak et al., 2016; Rouse and Schieber, 2018) are able to 
extract behaviorally relevant neural signals at the single-neuron level, but they utilize trial-averaged 
responses, thereby losing the single-trial information. To overcome these limitations and obtain accu-
rate behaviorally relevant signals at both single-neuron and single-trial levels, we propose a novel 
framework that defines, extracts, and validates behaviorally relevant signals by simultaneously consid-
ering such signals’ encoding (behaviorally relevant signals should be similar to raw signals to preserve 
the underlying neuronal properties) and decoding (behaviorally relevant signals should contain behav-
ioral information as much as possible) properties (see Methods and Figure 1). This framework estab-
lishes a prerequisite foundation for the subsequent detailed analysis of neural mechanisms.

Here, we conducted experiments using datasets recorded from the motor cortex of three monkeys 
performing different reaching tasks, where the behavioral variable is movement kinematics. After 
signal separation by our approach, we first explored how the presence of behaviorally irrelevant signals 
affects the analysis of neural activity. We found that behaviorally irrelevant signals account for a large 
amount of trial-to-trial neuronal variability, and are evenly distributed across the neural dimensions 
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of behaviorally relevant signals. Then, we explored whether irrelevant signals conceal some facts of 
neural encoding and decoding. For neural encoding, irrelevant signals obscure the behavioral infor-
mation encoded by neural responses, especially for neural responses with a large degree of nonlin-
earity. Surprisingly, neural responses that are usually ignored (weakly tuned neurons and neural signals 
composed of small variance PCs) actually encode rich behavioral information in complex nonlinear 
ways. These responses underpin an unprecedented neuronal redundancy and reveal that movement 
behaviors are distributed in a higher-dimensional neural space than previously thought. In addition, 
we found that the integration of smaller and larger variance PCs results in a synergistic effect, allowing 
the smaller variance PC signals that cannot be linearly decoded to significantly enhance the linear 
decoding performance, particularly for finer speed control. This finding suggests that lower variance 
PC signals are involved in regulating precise motor control. For neural decoding, irrelevant signals 
complicate information readout. Strikingly, when uncovering small neural components obscured by 
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Figure 1. Semantic illustration of extracting and validating behaviorally relevant signals. (a–e) The ideal decomposition of raw signals. (a) The temporal 
neuronal activity of raw signals, where x-axis denotes time, and y-axis represents firing rate. Raw signals are decomposed to relevant (b) and irrelevant 
(d) signals. The red dotted line indicates the decoding performance of raw signals. The red and blue bars represent the decoding performance of 
relevant and irrelevant signals. The purple bar represents the reconstruction performance of relevant signals, which measures the neural similarity 
between generated signals and raw signals. The longer the bar, the larger the performance. The ground truth of relevant signals decodes information 
perfectly (c, red bar) and is similar to raw signals to some extent (c, purple bar), and the ground truth of irrelevant signals contains little behavioral 
information (e, blue bar). (f–h) Three different cases of behaviorally relevant signals distillation. (f) When the model is biased toward generating 
relevant signals that are similar to raw signals, it will achieve high reconstruction performance, but the decoding performance will suffer due to the 
inclusion of too many irrelevant signals. As it is difficult for models to extract complete relevant signals, the residuals will also contain some behavioral 
information. (g) When the model is biased toward generating signals that prioritize decoding over similarity to raw signals, it will achieve high decoding 
performance, but the reconstruction performance will be low. Meanwhile, the residuals will contain a significant amount of behavioral information. (h) 
When the model balances the trade-off of decoding and reconstruction capabilities of relevant signals, both decoding and reconstruction performance 
will be good, and the residuals will only contain a little behavioral information.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Semantic overview of distill-variational autoencoder (d-VAE).

Figure supplement 2. Visualization of latent variables.
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irrelevant signals, linear decoders can achieve comparable decoding performance with nonlinear 
decoders, providing strong evidence for the presence of linear readout in motor cortex. Together, our 
findings reveal unexpected complex encoding but simple decoding mechanisms in the motor cortex. 
Finally, our study also has implications for developing accurate and robust brain-machine interfaces 
(BMIs) and, more generally, provides a powerful framework for separating behaviorally relevant and 
irrelevant signals, which can be applied to other cortical data to uncover more neural mechanisms 
masked by behaviorally irrelevant signals.

Results
Framework for defining, extracting, and validating behaviorally 
relevant neural signals
What are behaviorally relevant neural signals?
Since the ground truth of behaviorally relevant signals is unknown, their precise definition is not yet 
well established. Before a definition is established, it is essential to first differentiate between rele-
vant and irrelevant signals. Behaviorally irrelevant signals refer to those not directly associated with 
the behavioral variables of interest and may include noise or signals from variables of no interest. In 
contrast, behaviorally relevant signals refer to those directly related to the behavioral variables of 
interest.

Here, we define behaviorally relevant signals based on the following two requirements: (1) they 
should closely resemble raw signals to preserve the underlying neuronal properties, without becoming 
so similar that they include irrelevant signals (encoding requirement), and (2) they should contain 
behavioral information as much as possible (decoding requirement). Signals that meet both require-
ments are considered effective behaviorally relevant signals.

In this study, we assume raw signals (Figure 1a) are additively composed of behaviorally relevant 
(Figure  1b) and irrelevant (Figure  1d) signals. Thus, behaviorally irrelevant signals are derived by 
subtracting the behaviorally relevant signals from raw signals.

How to extract behaviorally relevant signals?
One way to extract behaviorally relevant signals is to use a distillation model to generate them from 
raw signals while considering the remaining signals as behaviorally irrelevant. However, due to the 
unknown ground truth of behaviorally relevant signals, a key challenge for the model is to determine 
the optimal degree of similarity between the generated signals and raw signals. If the generated 
signals are too similar to raw signals, they may contain a large amount of irrelevant information, which 
would hinder the exploration of neural mechanisms. Conversely, if the generated signals are too 
dissimilar to raw signals, they may lose behaviorally relevant information, also hindering the explo-
ration of neural mechanisms. Therefore, finding the appropriate prior regularization knowledge to 
constrain the generated signals to resemble raw signals appropriately is key to modeling. We have 
formalized this extraction process as the following optimization problem:

	﻿‍
min

xr
E
(
xr, x

)
+ R(xr),

‍� (1)

where ‍x‍ denotes raw signals, ‍xr‍ denotes generated signals, ‍E(·, ·)‍ denotes reconstruction error, ‍R(·)‍ 
denotes regularization loss. The regularization constraint on the generated signals ‍R(xr)‍ is crucial 
for accurately extracting behaviorally relevant signals. However, existing works (Sani et  al., 2021; 
Hurwitz, 2021; Zhou, 2020) have not identified and addressed this key challenge.

To overcome this challenge, we exploited the trade-off between the similarity of generated signals 
to raw signals (encoding requirement) and their decoding performance of behaviors (decoding require-
ment) to extract effective behaviorally relevant signals (for details, see Methods and Figure 1—figure 
supplement 1). The core assumption of our model is that behaviorally irrelevant signals are noise 
relative to behaviorally relevant signals, and thereby irrelevant signals would degrade the decoding 
generalization of generated behaviorally relevant signals. Based on this assumption, we imposed 
decoding constraints to the generated signals ‍xr‍ to minimize the inclusion of irrelevant signals, which 
is the operation used for modeling ‍R(xr)‍.

https://doi.org/10.7554/eLife.87881
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Generally, the distillation model is faced with three cases: a bias toward reconstructing raw signals 
(Figure 1f), a bias toward decoding behaviors (Figure 1g), and a proper trade-off between reconstruc-
tion and decoding (Figure 1h). If the distillation model is biased toward extracting signals similar to 
raw signals, the distilled behaviorally relevant signals will contain an excessive amount of behaviorally 
irrelevant information, affecting the decoding generalization of these signals (Figure 1f). If the model 
is biased toward extracting parsimonious signals that are discriminative for decoding, the distilled 
signals will not be similar enough to raw signals, and some redundant but useful signals will be left in 
the residuals (Figure 1g), making irrelevant signals contain much behavioral information. Using face 
recognition as an example, if a model can accurately identify an individual using only the person’s eyes 
(assuming these are the most useful features), other useful information such as the nose or mouth will 
be left in the residuals, which could also be used to identify the individual. Neither of these two cases 
is desirable because the former loses decoding performance, while the latter loses some useful neural 
signals, which are not conducive to our subsequent analysis of the relationship between behaviorally 
relevant signals and behaviors. The behaviorally relevant signals we want should be similar to raw 
signals and preserve the behavioral information maximally, which can be obtained by balancing the 
encoding and decoding properties of generated behaviorally relevant signals (Figure 1h).

How to validate behaviorally relevant signals?
To validate the effectiveness of the distilled signals, we proposed three criteria. The first criterion is that 
the decoding performance of the behaviorally relevant signals (red bar, Figure 1) should surpass that of 
raw signals (the red dotted line, Figure 1). Since decoding models, such as deep neural networks, are 
more prone to overfit noisy raw signals than behaviorally relevant signals, the distilled signals should 
demonstrate better decoding generalization than the raw signals. The second criterion is that the 
behaviorally irrelevant signals should contain minimal behavioral information (blue bar, Figure 1). This 
criterion can assess whether the distilled signals maximally preserve behavioral information from the 
opposite perspective and effectively exclude undesirable cases, such as over-generated and under-
generated signals. Specifically, in the case of over-generation, suppose ‍z = x + y‍, where ‍z‍, ‍x‍, and ‍y‍ 
represent raw, relevant, and irrelevant signals, respectively. If the distilled relevant signals ‍̂x‍ are added 
extra signals ‍m‍ which do not exist in the real behaviorally relevant signals, i.e., ‍̂x = x + m‍, then the 
corresponding residuals ‍̂y‍ will be equal to the ideal irrelevant signals ‍y‍ plus the negative extra signals 
‍−m‍, namely, ‍̂y = y − m‍, thus the residuals ‍̂y‍ contain the amount of information preserved by negative 
extra signals ‍−m‍. Similarly, in the case of under-generation, if the distilled behaviorally relevant signals 
are incomplete and lose some useful information, this lost information will also be reflected in the 
residuals. In these cases, the distilled signals are not suitable for analysis. The third criterion is that the 
distilled behaviorally relevant signals should be similar to raw signals to maintain essential neuronal 
properties (purple bar, Figure 1). If the distilled signals do not resemble raw signals, they fail to retain 
the fundamental characteristics of raw signals, which are not qualified for subsequent analysis. Overall, 
if the distilled signals satisfy the above three criteria, we consider the distilled signals to be effective.

d-VAE extracts effective behaviorally relevant signals
To demonstrate the effectiveness of our model (distill-variational autoencoder [d-VAE]) in extracting 
behaviorally relevant signals, we conducted experiments on the synthetic dataset where the ground 
truth of relevant and irrelevant signals are already known (see Methods) and three benchmark data-
sets with different paradigms (Figure 2a, e, and i; see Methods for details), and compared d-VAE 
with four other distillation models, including pi-VAE (Zhou, 2020), PSID (Sani et al., 2021), TNDM 
(Hurwitz, 2021), and LFADS (Pandarinath et al., 2018). Specifically, we first applied these distillation 
models to raw signals to obtain the distilled behaviorally relevant signals, considering the residuals 
as behaviorally irrelevant signals. We then evaluated the decoding ‍R2‍ between the predicted velocity 
and actual velocity of the two partition signals using a linear Kalman filter (KF) and a nonlinear artifi-
cial neural network (ANN) and measured the neural similarity between behaviorally relevant and raw 
signals.

Overall, d-VAE successfully extracts effective behaviorally relevant signals that meet the three 
criteria outlined above on both synthetic (Figure 2—figure supplement 1) and real data (Figure 2). 
On the synthetic data (Figure 2—figure supplement 1), results show that d-VAE can strike an effec-
tive balance between the reconstruction and decoding performance of generated signals to extract 
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effective relevant signals that are similar to the ground truth relevant signals, meanwhile removing 
effective irrelevant signals that resemble the ground truth irrelevant signals (Figure 2—figure supple-
ment 1a–g), and outperforms other distillation models (Figure  2—figure supplement 1h–k). On 
the real data, specifically in the obstacle avoidance task (Figure 2a), the monkey is required to move 
the ball from the start point (blue) to the target point (yellow) without hitting the obstacle. For the 
decoding performance of behaviorally relevant signals (Figure  2b), the signals distilled by d-VAE 

KF ANN

** ****
****

****
**

D
at

as
et

 A

Behaviorally-relevant signals

0

0.5

1

D
ec

od
in

g 
R

2

Raw d-VAE PSID pi-VAE TNDM LFADS

KF ANN

**
*

**
**
**

Behaviorally-irrelevant signals

0

0.5

1

D
ec

od
in

g 
R

2

**
**
**
**

Neural similarity

0

0.5

1

N
eu

ra
l R

2

KF ANN

**
**
**

**
**

D
at

as
et

 B

0

0.5

1

D
ec

od
in

g 
R

2

KF ANN

**

**
**

0

0.5

1

D
ec

od
in

g 
R

2

**
**
**
**

0

0.2

0.4

0.6

N
eu

ra
l R

2

KF ANN

** ***
***

****
**

D
at

as
et

 C

0

0.5

1

D
ec

od
in

g 
R

2

KF ANN

** *
****

**

0

0.5

1

D
ec

od
in

g 
R

2

**
**
**
**

0

0.2

0.4

0.6

N
eu

ra
l R

2

Paradigm

Trial 1

R
aw

 fi
rin

g 
ra

te
 (1

59
 n

eu
ro

ns
)

1s

Trial 1

D
is

til
le

d 
fir

in
g 

ra
te

 (1
59

 n
eu

ro
ns

)Trial 2 Trial 2Trial 3 Trial 3Trial 4 Trial 4Trial 5 Trial 5

a b c d

e f g h

i j k l

m

Figure 2. Evaluation of separated signals. (a–d) Results for dataset A. (a) The obstacle avoidance paradigm. (b) The decoding ‍R2‍ between true velocity 
and predicted velocity of raw signals (purple bars with slash lines) and behaviorally relevant signals obtained by distill-variational autoencoder (d-VAE) 
(red), PSID (pink), pi-VAE (green), TNDM (blue), and LFADS (light green). Error bars denote mean ± standard deviation (s.d.) across five cross-validation 
folds. Asterisks represent significance of Wilcoxon rank-sum test with ∗p<0.05, ∗∗p<0.01. (c) Same as (b), but for behaviorally irrelevant signals obtained 
by five different methods. (d) The neural similarity (‍R2‍) between raw signals and behaviorally relevant signals extracted by d-VAE, PSID, pi-VAE, TNDM, 
and LFADS. Error bars represent mean ± s.d. across five cross-validation folds. Asterisks indicate significance of Wilcoxon rank-sum test with ∗∗p<0.01. 
(e–h and i–l). Same as (a–d), but for dataset B with the center-out paradigm (e) and dataset C with the self-paced reaching paradigm (i). (m) The firing 
rates of raw signals and distilled signals obtained by d-VAE in five held-out trials under the same condition of dataset B.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Evaluation of separated signals on the synthetic dataset.
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outperform the raw signals (purple bars with slash lines) and the signals distilled by all other distil-
lation models (PSID, pink; pi-VAE, green; TNDM, blue; and LFADS, light green) with the KF as well 
as the ANN. For the decoding performance of behaviorally irrelevant signals (Figure 2c), behavior-
ally irrelevant signals obtained by d-VAE achieves the lowest decoding performance compared with 
behaviorally irrelevant signals obtained by other approaches. Therefore, the combination of dVAE’s 
highest decoding performance for behaviorally relevant signals and lowest decoding performance for 
behaviorally irrelevant signals demonstrate its superior ability to extract behaviorally relevant signals 
from noisy signals. For the neural similarity between behaviorally relevant and raw signals (Figure 2d), 
the distilled signals obtained by d-VAE achieve the highest performance among competitors (p<0.01, 
Wilcoxon rank-sum test). Similar results were obtained for the center-out task (Figure 2e–h) and the 
self-paced reaching task (Figure 2i–l), indicating the consistency of d-VAE’s distillation ability across 
a range of motor tasks. To provide a more intuitive illustration of the similarity between raw and 
distilled signals, we displayed the firing rate of neuronal activity in five trials under the same condition 
(Figure 2m), and results clearly show that the firing pattern of distilled signals is similar to the corre-
sponding raw signals.

In summary, d-VAE distills effective behaviorally relevant signals that preserve behavioral informa-
tion maximally and are similar to raw signals. Meanwhile, the behaviorally irrelevant signals discarded 
by d-VAE contain a little behavioral information. Therefore, these signals are reliable for exploring the 
encoding and decoding mechanisms of relevant signals.

How do behaviorally irrelevant signals affect the analysis of neural 
activity at the single-neuron level?
Following signal separation, we first explored how behaviorally irrelevant signals affect the analysis of 
neural activity at the single-neuron level. Specifically, we examined the effect of irrelevant signals on 
two critical properties of neuronal activity: the preferred direction (PD) (Georgopoulos et al., 1986) 
and trial-to-trial variability. Our objective was to know how irrelevant signals affect the PD of neurons 
and whether irrelevant signals contribute significantly to neuronal variability.

To explore how irrelevant signals affect the PD of neurons, we first calculated the PD of both raw 
and distilled signals separately and then quantified the PD deviation by the angle difference between 
these two signals. Results show that the PD deviation increases as the neuronal ‍R2‍ decreases (red 
curve, Figure 3a and e and Figure 3—figure supplement 1a). It is worth noting that when using ‍R2‍ to 
describe neurons, it indicates the extent to which neuronal activity is explained by the linear encoding 
model (Collinger et al., 2013; Wodlinger et al., 2015). Neurons with larger ‍R2‍ (strongly linear-tuned 
neurons) exhibit stable PDs with signal distillation (see example PDs in the inset), while neurons with 
smaller ‍R2‍ (weakly linear-tuned neurons) show a larger PD deviation. These results indicate that irrele-
vant signals have a small effect on strongly tuned neurons but a large effect on weakly tuned neurons. 
One possible reason for the larger PD deviation in weakly tuned neurons is that they have a lower 
degree of linear encoding but a higher degree of nonlinear encoding, and highly nonlinear structures 
are more susceptible to interference from irrelevant signals (Nogueira et al., 2023). Moreover, after 
filtering out the behaviorally irrelevant signals, the cosine tuning fit (‍R2‍) of neurons increases (p<10-20, 
Wilcoxon signed-rank test; Figure 3b and f and Figure 3—figure supplement 1b), indicating that 
irrelevant signals reduce the neurons’ tuning expression. Notably, even after removing the interfer-
ence of irrelevant signals, the ‍R2‍ of neurons remains relatively low and varies among neurons. These 
results demonstrate that the linear encoding model only explains a small fraction of neural responses, 
and neuronal activity encodes behavioral information in complex nonlinear ways.

To investigate whether irrelevant signals significantly contribute to neuronal variability, we compared 
the neuronal variability (measured with the Fano factor [FF]; Churchland et al., 2010) of relevant and 
raw signals. Results show that the condition-averaged FF of each neuron of distilled signals is lower 
than that of raw signals (p<10-20, Wilcoxon signed-rank test; Figure 3c and g), and the mean (broken 
line) and median FFs of all neurons under different conditions are also significantly lower than those 
of raw signals (p<0.01, Wilcoxon signed-rank test; Figure 3d and h), indicating that irrelevant signals 
significantly contribute to neuronal variability. We then visualized the single-trial neuronal activity of 
example neurons under different conditions (Figure 3i and Figure 3—figure supplement 2). Results 
demonstrate that the patterns of relevant signals are more consistent and stable across different trials 
than raw signals, and the firing activity of irrelevant signals varies randomly. These results indicate that 
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irrelevant signals significantly contribute to neuronal variability, and eliminating the interference of 
irrelevant signals enables us to observe the changes in neural pattern more accurately.

How do behaviorally irrelevant signals affect the analysis of neural 
activity at the population level?
The neural population structure is an essential characteristic of neural activity. Here, we examined how 
behaviorally irrelevant signals affect the analysis of neural activity at the population level, including 
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Figure 3. The effect of irrelevant signals on analyzing neural activity at the single-neuron level. (a–d) Results for dataset A. (a) The angle difference 
(AD) of preferred direction (PD) between raw and distilled signals as a function of the ‍R2‍ of raw signals. When employing ‍R2‍ to characterize neurons, it 
indicates the extent to which neuronal activity is explained by the linear encoding model. Smaller ‍R2‍ neurons have a lower capacity for linearly tuning 
(encoding) behaviors, while larger ‍R2‍ neurons have a higher capacity for linearly tuning (encoding) behaviors. Each black point represents a neuron 
(n=90). The red curve is the fitting curve between ‍R2‍ and AD. Five example larger ‍R2‍ neurons’ PDs are shown in the inset plot, where the solid and 
dotted line arrows represent the PDs of relevant and raw signals, respectively. (b) Comparison of the cosine tuning fit (‍R2‍) before and after distillation 
of single neurons (black points), where the x-axis and y-axis represent neurons’ ‍R2‍ of raw and distilled signals, respectively. (c) Comparison of neurons’ 
Fano factor (FF) averaged across conditions of raw (x-axis) and distilled (y-axis) signals, where FF is used to measure the neuronal variability of different 
trials in the same condition. (d) Boxplots of raw (purple) and distilled (red) signals under different conditions for all neurons (12 conditions). Boxplots 
represent medians (lines), quartiles (boxes), and whiskers extending to ±1.5 times the interquartile range. The broken lines represent the mean FF across 
all neurons. (e–h) Same as (a–d), but for dataset B (n=159, 8 conditions). (i) Example of three neurons’ raw firing activity decomposed into behaviorally 
relevant and irrelevant parts using all trials under two conditions (2 of 8 directions) in held-out test sets of dataset B.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The effect of irrelevant signals on relevant signals at the single-neuron level.

Figure supplement 2. The firing activity of example neurons.

https://doi.org/10.7554/eLife.87881
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four aspects: (1) the population properties of relevant and irrelevant signals, (2) the subspace overlap 
relationship between the two signal components, (3) how the two partitions contribute to raw signals, 
and (4) the difference in population properties between raw and distilled signals.

To explore the population properties of relevant and irrelevant signals, we separately applied prin-
cipal component analysis (PCA) on each partition to obtain the corresponding cumulative variance 
curve in a descending variance order. Our results show that the primary subspace (capturing the top 
90% variance) of relevant signals (thick red line, Figure 4a and e and Figure 4—figure supplement 
1a) is only explained by a few dimensions (7, 13, and 9 for each dataset), indicating that the primary 
part of behaviorally relevant signals exists in a low-dimensional subspace. In contrast, the primary 
subspace of irrelevant signals (thick blue line, Figure 4b and f and Figure 4—figure supplement 
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Figure 4. The effect of irrelevant signals on analyzing neural activity at the population level. (a–d) Results for dataset A. (a) The cumulative variance 
curve for different signals, including relevant signals (red), irrelevant signals (blue), and random Gaussian noise ‍N (0, I)‍ (gray, representing the chance 
level), projected onto the principal components (PCs) of relevant signals. Specifically, principal component analysis (PCA) is applied to relevant signals 
to get relevant PCs. Subsequently, the three types of signals are projected onto these relevant PCs to obtain their respective cumulative variance 
curves. The thick lines represent the cumulative variance explained for the signals on which PCA has been performed, while the thin lines represent the 
variance explained by those PCs for other signals. The horizontal dotted lines represent the percentage of variance explained. The vertical lines indicate 
the number of dimensions that accounted for 90% of the variance in behaviorally relevant (left) and irrelevant (right) signals. For convenience, we 
defined the PC subspace describing the top 90% variance as the primary subspace and the subspace capturing the last 10% variance as the secondary 
subspace. (b) Same as (a), but for irrelevant PCs. (c) The composition of raw signals and each raw PC. Specifically, PCA is applied to the raw signals 
to obtain raw PCs. Then, the relevant and irrelevant signals are projected onto these raw PCs to determine the variance of the raw signals explained 
by each type of signal. The bar plot shows the composition of each raw PC. The inset pie plot shows the overall proportion of raw signals, where red, 
blue, and purple colors indicate relevant signals, irrelevant signals, and the correlation between relevant and relevant signals. The PC marked with a 
red triangle indicates the last PC where the variance of relevant signals is greater than or equal to that of irrelevant signals. (d) The cumulative variance 
explained by raw PCs for different signals, where the thick line represents the cumulative variance explained for raw signals (purple), while the thin line 
represents the variance explained for relevant (red) and irrelevant (blue) signals. (e–h) Same as (a–d), but for dataset B.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The effect of irrelevant signals on analyzing neural activity at the population level.

Figure supplement 2. The effect of irrelevant signals obtained by pi-VAE on analyzing neural activity at the population level.

Figure supplement 3. The rotational dynamics of raw, relevant, and irrelevant signals.

Figure supplement 4. The cumulative variance curve for raw and behaviorally relevant signals.

https://doi.org/10.7554/eLife.87881
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1b) requires more dimensions (46, 81, and 59). The variance distribution of behaviorally irrelevant 
signals across dimensions (thick blue line, Figure 4b and f and Figure 4—figure supplement 1b) is 
more even than behaviorally relevant signals (thick red line, Figure 4a and e and Figure 4—figure 
supplement 1a) but not as uniform as Gaussian noise ‍N (0, I)‍ (thin gray line, Figure 4b and f and 
Figure 4—figure supplement 1a), indicating that irrelevant signals are not pure noise but rather bear 
some significant structure, which may represent information from other irrelevant tasks.

To investigate the subspace overlap between relevant and irrelevant signals, we calculated how 
many variances of irrelevant signals can be captured by relevant PCs by projecting irrelevant signals 
onto relevant PCs and vice versa (Elsayed et al., 2016; Rouse and Schieber, 2018; Jiang et al., 2020) 
(see Methods). We found that the variance of irrelevant signals increases relatively uniformly over rele-
vant PCs (thin blue line, Figure 4a and e and Figure 4—figure supplement 1a), like random noise’s 
variance accumulation explained by relevant PCs (thin gray line, Figure 4a and e and Figure 4—
figure supplement 1a); similar results are observed for relevant signals explained by irrelevant PCs 
(thin red line, Figure 4b and f and Figure 4—figure supplement 1b). These results indicate that 
relevant PCs cannot match the informative dimensions of irrelevant signals and vice versa, suggesting 
the dimensions of behaviorally relevant and irrelevant signals are unrelated. It is worth mentioning that 
the signals obtained by pi-VAE are in contrast to our findings. Its results show that a few relevant PCs 
can explain a considerable variance of irrelevant signals (thin red line, Figure 4—figure supplement 
2b, f, j), which indicates that the relevant and irrelevant PCs are closely related. The possible reason 
is that the pi-VAE leaves many relevant signals within the irrelevant signals. Notably, Figure 4a and e 
and Figure 4—figure supplement 1a show that the behaviorally relevant primary subspace captures 
only a minor portion of the variance from irrelevant signals when they are projected onto it (9%, 12%, 
and 9%), indicating that the primary subspace of behaviorally relevant signals is nearly orthogonal to 
irrelevant space.

To investigate the composition of raw signals by the two partitions, we performed PCA on raw 
neural signals to obtain raw PCs, and then projected the relevant and irrelevant signals onto these PCs 
to assess the proportion of variance of raw signals explained by each partition. First, we analyzed the 
overall proportion of relevant and irrelevant signals that constitute the raw signals (the inset pie plot, 
Figure 4c and g and Figure 4—figure supplement 1c). The variance of the raw signals is composed 
of three parts: the variance of relevant signals, the variance of irrelevant signals, and the correlation 
between relevant and irrelevant signals (see Methods). The results demonstrate that the irrelevant 
signals account for a large proportion of raw signals, suggesting the motor cortex encodes consid-
erable information that is not related to the measured behaviors. In addition, there is only a weak 
correlation between relevant and irrelevant signals, implying that behaviorally relevant and irrelevant 
signals are nearly uncorrelated.

We then examined the proportions of relevant and irrelevant signals in each PC of raw signals. 
We found that relevant signals (red) occupy the dominant proportions in the larger variance raw PCs 
(before the PC marked with a red triangle), while irrelevant signals (blue) occupy the dominant propor-
tions in the smaller variance raw PCs (after the PC marked with a red triangle) (Figure 4c and g and 
Figure 4—figure supplement 1c). Similar results are observed in the accumulation of each raw PC 
(Figure 4d and h and Figure 4—figure supplement 1d). Specifically, the results show that the vari-
ance accumulation of raw signals (purple line) in larger variance PCs is mainly contributed by relevant 
signals (red line), while irrelevant signals (blue line) primarily contribute to the lower variance PCs. 
These results demonstrate that irrelevant signals have a small effect on larger variance raw PCs but 
a large effect on smaller variance raw PCs. This finding eliminates the concern that irrelevant signals 
would significantly affect the top few PCs of raw signals and thus produce inaccurate conclusions. To 
further validate this finding, we used the top six PCs as jPCA (Churchland et al., 2012) did to examine 
the rotational dynamics of distilled and raw signals (Figure 4—figure supplement 3). Results show 
that the rotational dynamics of distilled signals are similar to those of raw signals.

Finally, to directly compare the population properties of raw and relevant signals, we plotted the 
cumulative variance curves of raw and relevant signals (Figure  4—figure supplement 4). Results 
(upper left corner curves, Figure 4—figure supplement 4) show that the cumulative variance curve 
of relevant signals (red line) accumulates faster than that of raw signals (purple line) in the preceding 
larger variance PCs, indicating that the variance of the relevant signal is more concentrated in the 
larger variance PCs than that of raw signals. Furthermore, we found that the dimensionality of primary 

https://doi.org/10.7554/eLife.87881
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subspace of raw signals (26, 64, and 45 for datasets A, B, and C) is significantly higher than that of 
behaviorally relevant signals (7, 13, and 9), indicating that using raw signals to estimate the neural 
dimensionality associated with behaviors leads to an overestimation.

Distilled behaviorally relevant signals uncover that smaller ‍R2‍ neurons 
encode rich behavioral information in complex nonlinear ways
The results presented above regarding PDs (Figure 3 and Figure 3—figure supplement 1) demon-
strate that irrelevant signals significantly impact smaller ‍R2‍ neurons and weakly impact larger ‍R2‍ 
neurons. Under the interference of irrelevant signals, it is difficult to explore the amount of behavioral 
information in neuronal activity. Given that we have accurately separated the behaviorally relevant and 
irrelevant signals, we explored whether irrelevant signals would mask some encoded information of 
neuronal activity, especially for smaller ‍R2‍ neurons.

To answer the question, we divided the neurons into two groups of smaller ‍R2‍ (‍R2‍<=0.03) and 
larger ‍R2‍ (‍R2‍>0.03), and then used decoding models to assess how much information is encoded 
in raw and distilled signals. As shown in Figure 5a, for the smaller ‍R2‍ neuron group, both KF and 
ANN decode behavioral information poorly on raw signals, but achieve high decoding performance 
using relevant signals. Specifically, the KF decoder (left plot, Figure 5a) improves the decoding ‍R2‍ 
significantly from 0.044 to 0.616 (improves by about 1300%, Wilcoxon rank-sum test) after signal 
distillation; the ANN decoder (right plot, Figure 5a) improves from 0.374 to 0.753 (improves by about 
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Figure 5. Smaller ‍R2‍ neurons encode rich behavioral information in complex nonlinear ways. (a–c) Results for dataset A. (a) The comparison of decoding 
performance between raw (purple) and distilled signals (red) with different neuron groups, including smaller ‍R2‍ neuron (‍R2‍<=0.03), larger ‍R2‍ neuron 
(‍R2‍>0.03), and all neurons. Error bars indicate mean ± standard deviation (s.d.) across five cross-validation folds. Asterisks denote significance of 
Wilcoxon rank-sum test with ∗p<0.01, ∗∗p<0.01. (b) The correlation matrix of all neurons of raw (left) and behaviorally relevant (right) signals. Neurons 
are ordered to highlight correlation structure (details in Methods). (c) The decoding performance of Kalman filter (KF) (left) and artificial neural network 
(ANN) (right) with neurons dropped out from larger to smaller ‍R2‍. The vertical gray line indicates the number of dropped neurons at which raw and 
behaviorally relevant signals have the greatest performance difference. (d–f) Same as (a–c), but for dataset B.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Neural responses usually considered to contain little information actually encode rich behavioral information in complex 
nonlinear ways.

Figure supplement 2. Using synthetic data to demonstrate that conclusions are not a by-product of distill-variational autoencoder (d-VAE).

https://doi.org/10.7554/eLife.87881
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100%, Wilcoxon rank-sum test). For the larger ‍R2‍ neuron group, the decoding performance of rele-
vant signals with ANN does not improve much compared with the decoding performance of raw 
signals, but the decoding performance of relevant signals with KF is significantly better than that of 
raw signals (p<0.01, Wilcoxon rank-sum test). Similar results are obtained with datasets B (Figure 5d) 
and C (Figure 5—figure supplement 1a). These results indicate that irrelevant signals mask behav-
ioral information encoded by neuronal populations, especially for smaller ‍R2‍ neurons with a higher 
degree of nonlinearity, and that smaller ‍R2‍ neurons actually encode rich behavioral information.

The fact that the smaller ‍R2‍ neurons encode rich information seems unexpected, and interestingly, 
we cannot obtain this rich information solely by distilling smaller ‍R2‍ neurons. This observation gives 
rise to two alternative scenarios. The first is that larger ‍R2‍ neurons introduce additional signals to 
smaller ‍R2‍ neurons, which they do not inherently possess, resulting in an excessive amount of behav-
ioral information within the smaller ‍R2‍ neurons. The second is that the smaller ‍R2‍ neurons inherently 
possess a substantial amount of information, and larger ‍R2‍ neurons utilize their neural activity, which is 
correlated with that of small ‍R2‍ neurons, to aid in restoring the small ‍R2‍ neurons’ original appearance; 
this process is analogous to image denoising, where damaged noisy pixels necessitate the assistance 
of their correlated, clean neighboring pixels to recover their original appearance. We initially tested 
the first scenario and found it to be unsupported for two key reasons. First, our model enforces 
that distilled neuronal activity closely resembles the corresponding original neuronal activity, effec-
tively preventing the generation of arbitrarily shaped neuronal activity, such as that of other neurons. 
As shown in Figure 3i and Figure 3—figure supplement 2, our distilled relevant neuronal activity 
exhibits a high degree of similarity to the corresponding raw neuronal activity. To assess whether the 
distilled neurons exhibit the highest similarity to the corresponding raw neurons, we compared the 
neural similarity (‍R2‍) of each distilled neuron to all raw neurons. The results indicate that 78/90 (87%, 
dataset A), 153/159 (96%, dataset B), and 91/91 (100%, dataset C) distilled neurons are most similar 
to the corresponding neurons. The remaining distilled neurons rank among the top four in similarity 
to the corresponding neurons, further confirming the close resemblance of distilled neuronal activity 
to the corresponding raw neuronal activity. Second, as we emphasized in the section on validating 
behaviorally relevant signals with the second criterion, if this large amount of information is compen-
sated by other neurons, the residuals should also contain a large amount of information. However, 
as illustrated in Figure 2c, g, and k, the residuals contain only little information. Therefore, based on 
these two reasons, the first scenario is rejected. Then, we tested the second scenario. To verify this 
scenario, we conducted experiments using synthetic data with known ground truth (see Methods). 
In this dataset, small ‍R2‍ neurons inherently contained a substantial amount of information but were 
obscured by noise, making them undecodable. We aimed to assess whether d-VAE could recover the 
lost information and restore the damaged neuronal activity. The results demonstrate that, with the 
assistance of large ‍R2‍ neurons, d-VAE effectively recovers a significant amount of information that 
is obscured by noise (Figure 5—figure supplement 2a). Additionally, the distilled signals exhibit a 
remarkable improvement in neural similarity to the ground truth signals compared to the raw signals 
(p<0.01, Wilcoxon rank-sum test; Figure 5—figure supplement 2b). Therefore, these results support 
the second scenario and collectively confirm that smaller ‍R2‍ neurons indeed contain rich behavioral 
information, and this finding is not a by-product of d-VAE.

Given that both smaller and larger ‍R2‍ neurons encode rich behavioral information, it is worth noting 
that the sum of the decoding performance of smaller ‍R2‍ neurons and larger ‍R2‍ neurons is significantly 
greater than that of all neurons for relevant signals (red bar, Figure 5a and d and Figure 5—figure 
supplement 1a), demonstrating that movement parameters are encoded very redundantly in neuronal 
population. In contrast, we cannot find this degree of neural redundancy in raw signals (purple bar, 
Figure 5a and d and Figure 5—figure supplement 1a) because the encoded information of smaller 
‍R2‍ neurons are masked by irrelevant signals. Therefore, these smaller ‍R2‍ neurons, which are usually 
ignored, are actually useful and play a critical role in supporting neural redundancy. Generally, cortical 
redundancy can arise from neuronal correlations, which are critical for revealing certain aspects of 
neural circuit organization (Yatsenko et al., 2015). Accordingly, we visualized the ordered correlation 
matrix of neurons (see Methods) for both raw and relevant signals (Figure 5b and e and Figure 5—
figure supplement 1b) and found that the neuronal correlation of relevant signals is stronger than 
that of raw signals. These results demonstrate that irrelevant signals weaken the neuronal correlation, 
which may hinder the accurate investigation of neural circuit organization.

https://doi.org/10.7554/eLife.87881
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Considering the rich redundancy and strong correlation of neuronal activity, we wondered whether 
the neuronal population could utilize redundant information from other neurons to exhibit robust-
ness under the perturbation of neuronal destruction. To investigate this question, we evaluated the 
decoding performance of dropping out neurons from larger ‍R2‍ to smaller ‍R2‍ on raw and relevant 
signals. The results (Figure 5c and f and Figure 5—figure supplement 1c) show that the decoding 
performance of the KF and ANN on raw signals (purple line) decreases steadily before the number of 
neurons marked (vertical gray line), and the remaining smaller ‍R2‍ neurons decode behavioral infor-
mation poorly. In contrast, even if many neurons are lost, the decoding performance of KF and ANN 
on relevant signals (red line) maintains high accuracy. This finding indicates that behaviorally relevant 
signals are robust to the disturbance of neuron drop-out, and smaller ‍R2‍ neurons play a critical role 
in compensating for the failure of larger ‍R2‍ neurons. In contrast, this robustness cannot be observed 
in raw signals because irrelevant signals mask neurons’ information and weaken their correlation. 
Notably, the ANN outperforms the KF when only smaller ‍R2‍ neurons are left (Figure 5c and f and 
Figure 5—figure supplement 1c), suggesting that smaller ‍R2‍ neurons can fully exploit their nonlinear 
ability to cope with large-scale neuronal destruction.

Distilled behaviorally relevant signals uncover that signals composed 
of smaller variance PCs encode rich behavioral information in complex 
nonlinear ways
The results presented above regarding subspace overlap (Figure 4 and Figure 3—figure supplement 
1) show that irrelevant signals have a small impact on larger variance PCs but dominate smaller vari-
ance PCs. Therefore, we aimed to investigate whether irrelevant signals would mask some encoded 
information of neural population, especially signals composed of smaller variance PCs.

To answer the question, we compared the decoding performance of raw and distilled signals with 
different raw PC groups. Specifically, we first divided the raw PCs into two groups, i.e., smaller vari-
ance PCs and larger variance PCs, defined by ratio of relevant to irrelevant signals in the raw PCs 
(the red triangle, see Figure 4c and g and Figure 3—figure supplement 1c). Then, we projected 
raw and distilled signals onto these two PC groups and got the corresponding signals. Results show 
that, for the smaller variance PC group, both KF and ANN achieve much better performance on 
distilled signals than raw signals (p<0.01, Wilcoxon rank-sum test, for ANN), whereas for the larger 
variance PC group, the decoding performance of relevant signals does not improve a lot compared 
with the decoding performance of raw signals (see Figure 6a and d and Figure 5—figure supple-
ment 1d). These results demonstrate that irrelevant signals mask the behavioral information encoded 
by different PC groups, especially for signals composed of smaller variance PCs (smaller variance PC 
signals), and smaller variance PC signals actually encode rich behavioral information.

The above results are based on raw PCs. However, raw PCs are biased by irrelevant signals and 
thus cannot faithfully reflect the characteristics of relevant signals. As we have successfully separated 
the behaviorally relevant signals, we aimed to explore how behavioral information of distilled signals is 
distributed across relevant PCs. To do so, we used decoding models to evaluate the amount of behav-
ioral information contained in cumulative PCs of relevant signals (using raw signals as a comparison). 
The cumulative variance explained by PCs in descending and ascending order of variance and the 
dimensionality corresponding to the top 90% variance signals (called primary signals) and the last 10% 
variance signals (called secondary signals) are shown in Figure 4—figure supplement 4.

Here, we first investigated secondary signals’ decoding ability solely by accumulating PCs from 
smaller to larger variance. The results show that, for relevant signals, KF can hardly decode behavioral 
information solely using secondary signals (red line; left plot, Figure 6b and e and Figure 5—figure 
supplement 1e), but ANN can decode rich information (red line; right plot, Figure 6b and e and 
Figure 5—figure supplement 1e). These results indicate that smaller variance PC signals encode rich 
information in complex nonlinear ways. In contrast, when using raw signals composed of the same 
number of dimensions as the secondary signals (purple line, Figure 6b and e and Figure 5—figure 
supplement 1e), the amount of information identified by ANN is significantly smaller than that of 
relevant secondary signals (p<0.01, Wilcoxon rank-sum test). These results demonstrate that signals 
composed of these neural dimensions actually encode rich behavioral information, and irrelevant 
signals make them seem insignificant, indicating that behavioral information is distributed in a higher-
dimensional subspace than expected from raw signals.

https://doi.org/10.7554/eLife.87881
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We then investigated the effect of superimposing secondary signals on primary signals by accumu-
lating PCs from larger to lower variance. The results (Figure 6c and f and Figure 5—figure supple-
ment 1f) show that secondary signals improve the decoding performance of ANN a little but improve 
the decoding performance of KF a lot. The discrepancy between the two decoders reflects their 
different abilities to utilize the information within the signal. KF cannot use the nonlinear information 
in primary signals as effectively as ANN can and thus require secondary signals to improve decoding 
performance. Notably, KF shows steady growth in decoding performance on relevant signals across 
10–30 dimensions, and requires approximately 30–40 dimensions to achieve performance saturation. 
These results demonstrate that these smaller variance PC signals actually encode behavioral infor-
mation, and suggest that behavioral information exists in a higher-dimensional subspace than antici-
pated from raw signals. Interestingly, we can find that although secondary signals nonlinearly encode 
behavioral information and are decoded poorly by linear decoders, they considerably improve KF 
performance by superimposing on primary signals (left plot, Figure 6c and f and Figure 5—figure 
supplement 1f); and the sum of the sole decoding performance of primary and secondary signals 
is lower than the decoding performance of full signals. These results indicate that the combination 
of smaller and larger variance PCs produces a synergy effect (Narayanan et  al., 2005), enabling 
secondary signals that cannot be linearly decoded to improve the linear decoding performance.
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Figure 6. Signals composed of smaller variance principal components (PCs) encode rich behavioral information in complex nonlinear ways. (a–c) Results 
for dataset A. (a) The comparison of decoding performance between raw (purple) and distilled signals (red) composed of different raw PC groups, 
including smaller variance PCs (the proportion of irrelevant signals that make up raw PCs is higher than that of relevant signals), larger variance PCs 
(the proportion of irrelevant signals is lower than that of relevant ones). Error bars indicate mean ± standard deviation (s.d.) across five cross-validation 
folds. Asterisks denote significance of Wilcoxon rank-sum test with ∗p<0.01, ∗∗p<0.01. (b) The cumulative decoding performance of signals composed of 
cumulative PCs that are ordered from smaller to larger variance using Kalman filter (KF) (left) and artificial neural network (ANN) (right). The red patches 
indicate the decoding ability of the last 10% variance of relevant signals. (c) The cumulative decoding performance of signals composed of cumulative 
PCs that are ordered from larger to smaller variance using KF (left) and ANN (right). The red patches indicate the decoding gain of the last 10% variance 
signals of relevant signals superimposing on their top 90% variance signals. The inset shows the partially enlarged plot for view clearly. (d–f) Same as 
(a–c), but for dataset B.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Smaller variance principal component (PC) signals preferentially improve lower-speed velocity.
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Finally, considering the substantial enhancement in KF decoding performance when superim-
posing the secondary signals on the primary ones, we explored which aspect of movement param-
eters was most improved. In BMIs, directional control has achieved great success (Georgopoulos 
et  al., 1986; Hochberg et  al., 2012), but precise speed control, especially at lower speeds such 
as hold or stop, has always been challenging (Wodlinger et al., 2015; Inoue et al., 2018). Thus, 
we hypothesized that these signals might improve the lower-speed velocity. To test this, we divided 
samples into lower-speed and higher-speed regions and assessed which region improved the most 
by superimposing the secondary signals (see details in Methods). After superimposing the secondary 
signals, the absolute improvement ratio of the lower-speed region is significantly higher than that of 
the higher-speed region (p<0.05, Wilcoxon rank-sum test; Figure 6—figure supplement 1a, b, and 
c). Furthermore, we visualized the relative improvement ratio of five example trials for the two regions, 
and the results (Figure 6—figure supplement 1d) demonstrate that secondary signals significantly 
improve the estimation of lower speed. These results demonstrate that the secondary signals enhance 
the lower-speed control, suggesting that smaller variance PC signals may be involved in regulating 
precise motor control.

Distilled behaviorally relevant signals potentially suggest that motor 
cortex may use a linear readout mechanism to generate movement 
behaviors
Understanding the readout mechanism of the motor cortex is crucial for both neuroscience and neural 
engineering, which remains unclear. By filtering out the interference of behaviorally irrelevant signals, 
we found a stunning result: the linear decoder KF achieves comparable performance to that of the 
nonlinear decoder ANN (p=0.10, 0.15, and 0.55 for datasets A, B, and C, Wilcoxon rank-sum test; 
Figure 2b, f, and j). Considering the decoding performance and model complexity (the simplicity 
principle, also called Occam’s razor), movement behaviors are more likely to be generated by the 
linear readout, suggesting linear readout may be performed in the motor cortex.

Given the significant improvement in linear decoding performance, one might doubt that it is our 
distillation model that makes signals that are inherently nonlinearly decodable become linearly decod-
able. In practice, this situation does not hold for two reasons. First, our criterion that irrelevant signals 
should contain minimal information can effectively exclude this situation. Specifically, if this situation 
occurs, the model would significantly modify the structure of the generated signals, causing a devia-
tion from the structure of the ground truth signals. Consequently, these uncharacterized or modified 
ground truth signals would remain within the residuals, resulting in residuals that contain a substantial 
amount of information. To illustrate this, consider an example where ‍z = x + y = n2 + y‍, with ‍z‍, ‍x‍, ‍y‍, and 
‍n‍ representing raw signals, relevant signals, irrelevant signals, and behavioral variables, respectively. 
If the distilled relevant signals are ‍̂x = n‍, the corresponding irrelevant signals are ‍n2 − n + z‍. Clearly, 
the distilled signal can be linearly decoded, but this results in the residuals containing a large amount 
of information. However, as demonstrated in Figure 2c, g, and k, the irrelevant signals obtained by 
d-VAE only contain little information, thus excluding this situation. Second, our synthetic experiments 
offer additional evidence supporting the conclusion that d-VAE does not make inherently nonlinearly 
decodable signals become linearly decodable ones. As depicted in Figure 5—figure supplement 2c, 
there exists a significant performance gap between KF and ANN when decoding the ground truth 
signals of smaller ‍R2‍ neurons (p<0.01, Wilcoxon rank-sum test). KF exhibits notably low performance, 
leaving substantial room for compensation by d-VAE. However, following processing by d-VAE, KF’s 
performance of distilled signals fails to surpass its already low ground truth performance and remains 
significantly inferior to ANN’s performance (p<0.01, Wilcoxon rank-sum test). These results collec-
tively confirm that our approach does not convert signals that are inherently nonlinearly decodable 
into linearly decodable ones.

In summary, these findings demonstrate that behaviorally irrelevant signals significantly complicate 
the readout of behavioral information and provide compelling evidence supporting the notion that 
the motor cortex may use a linear readout mechanism to generate movement behaviors.

https://doi.org/10.7554/eLife.87881


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Li et al. eLife 2023;12:RP87881. DOI: https://doi.org/10.7554/eLife.87881 � 16 of 29

Discussion
In this study, we proposed a new perspective for studying neural mechanisms, namely, using sepa-
rated accurate behaviorally relevant signals instead of raw signals; and we provided a novel distillation 
framework to define, extract, and validate behaviorally relevant signals. By separating behaviorally 
relevant and irrelevant signals, we found that neural responses previously considered to contain little 
information actually encode rich behavioral information in complex nonlinear ways, and they play an 
important role in neural encoding and decoding. Furthermore, we found that linear decoders can 
achieve comparable performance to that of nonlinear decoders, providing compelling evidence for 
the presence of linear readout in the motor cortex. Overall, our results reveal unexpected complex 
encoding but simple decoding mechanisms in the motor cortex.

Signal separation by d-VAE
Behaviorally relevant patterns can be extracted either at single-neuron or latent neural population 
levels. In our study, we focused on the single-neuron level, aiming to preserve the underlying proper-
ties of individual neurons. By maintaining the properties of each neuron, researchers can investigate 
how the neuronal population performs when one of the neurons is destroyed. This kind of analysis 
is particularly useful in closed-loop stimulation experiments that use electrophysiological (Sun et al., 
2022) or optogenetic (Zhang et al., 2023) interventions. Furthermore, behaviorally relevant signals 
also allow for population-level analysis and provide clean benchmark signals to test and compare the 
variance capture ability of different hypothesis-driven models.

At the single-neuron level, it is common practice to use trial-averaged neuronal responses of the 
same task parameters to analyze neural mechanisms (Kobak et al., 2016; Rouse and Schieber, 2018). 
However, trial averaging sacrifices single-trial information, thereby providing an incomplete charac-
terization of neural activity. Furthermore, trial-averaged responses still contain a significant amount 
of behaviorally irrelevant signals caused by uninstructed movements (Musall et al., 2019), which can 
lead to a contaminated version of behaviorally relevant signals. In contrast, our model is capable of 
extracting clean behaviorally relevant neural activity for every single trial. At the latent population level, 
existing latent variable models (Sani et al., 2021; Pandarinath et al., 2018; Yu, 2008; Zhou, 2020; 
Hurwitz, 2021) focus on modeling some specific properties of latent population representations, 
such as linear or nonlinear dynamics (Sani et al., 2021; Pandarinath et al., 2018; Churchland et al., 
2012; Hurwitz, 2021), temporal smoothness (Yu, 2008), and interpretability (Zhou, 2020). Since 
these models make restrictive assumptions involving characterizing specific neural properties, they fail 
to capture other parts of behaviorally relevant signals that do not meet their assumptions, providing 
no guarantee that the generated signals preserve behavioral information maximally. In contrast, our 
objective is to extract accurate behaviorally relevant signals that closely approximate the ground truth 
relevant signals as much as possible. To ensure this, we deliberately impose constraints on the model, 
ensuring that it generates signals that retain neuronal properties while preserving behavioral infor-
mation to the highest degree possible. Notably, the pivotal operation of striking a balance between 
the reconstruction and decoding performance of generated signals to extract relevant signals is a 
distinctive feature absent in other models. At the population level, dimensionality reduction methods 
aided by task parameters (Kobak et al., 2016; Schneider et al., 2023) are another important way to 
discover the latent neural embeddings relevant to task parameters, which may provide new insight 
into neural representations. In contrast with this class of methods, our model focuses on the signal 
level, not the latent embedding level.

Although we made every effort, our model is still not able to perfectly extract behaviorally relevant 
neural signals, resulting in a small amount of behavioral information leakage in the residuals. Never-
theless, the signals distilled by our model are reliable, and the minor imperfections do not affect the 
conclusions drawn from our analysis. In the future, better models can be developed to extract behav-
iorally relevant signals more accurately, such as incorporating multiple time step information (Pandari-
nath et al., 2018; Sani et al., 2021; Hurwitz, 2021) and contrastive learning (Schneider et al., 2023) 
or metric learning (Li et al., 2021) techniques into models.

https://doi.org/10.7554/eLife.87881
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Implications for analyzing neural activity by separation
Studying neural mechanisms through noisy signals is akin to looking at flowers in a fog, which makes 
it difficult to discern the truth. Thus, removing the interference of irrelevant signals is necessary and 
beneficial for analyzing neural activity, whether at the single-neuron level or population level.

At the single-neuron level, trial-to-trial neuronal variability poses a significant challenge to iden-
tifying the actual neuronal pattern changes. The variability can arise from various sources, including 
meaningless noise (Faisal et al., 2008), meaningful but behaviorally irrelevant neural processes (Musall 
et al., 2019), and intrinsic components of neural encoding (Walker et al., 2020). However, it is still 
unclear to what extent each source contributes to the variability (Faisal et al., 2008). By separating 
behaviorally relevant and irrelevant parts, we could roughly determine the extent to which these two 
parts contribute to the variability and explore which type of variability these two parts may contain. 
Our results demonstrate that behaviorally irrelevant signals are a significant contributor to variability, 
which may include both meaningless noise and meaningful but behaviorally irrelevant signals as behav-
iorally irrelevant signals are not pure noise and may carry some structures (thick blue line, Figure 4b 
and f and Figure 4—figure supplement 1b). Notably, behaviorally relevant signals also exhibit some 
variability, which may arise from intrinsic components of neural encoding and provide the neural basis 
for motor learning (Dhawale et al., 2017). Moreover, eliminating the variability caused by irrelevant 
signals enables us to better observe and compare actual neuronal pattern changes and may facilitate 
the study of learning mechanisms (Sadtler et al., 2014; Hennig et al., 2021).

At the population level, the dimensionality of neural manifolds quantifies the degrees of freedom 
required to describe population activity without significant information loss (Lee and Verleysen, 
2007; Altan et al., 2021). However, determining the dimensionality of neural manifolds associated 
with specific behaviors from raw signals is challenging since it is difficult to discern how many variances 
correspond to irrelevant signals, which often depend heavily on signal quality. A previous study (Altan 
et al., 2021) demonstrated, through simulation experiments involving different levels of noise, that 
such noise makes methods overestimate the neural dimensionality. Our results, consistent with theirs, 
indicate that using raw signals which include many irrelevant signals will cause an overestimation of 
the neural dimensionality (Figure  4—figure supplement 4). These findings highlight the need to 
filter out irrelevant signals when estimating the neural dimensionality. Furthermore, this perspective 
of signal separation has broader implications for other studies. For instance, researchers can isolate 
neural signals corresponding to different behaviors and explore their shared and exclusive patterns 
to uncover underlying common and unique mechanisms of different behaviors (Gallego et al., 2018).

Implications for exploring neural mechanisms by separation
At the single-neuron level, previous studies (Carmena et al., 2005; Narayanan et al., 2005) have 
shown that neuronal ensembles redundantly encode movement behaviors in the motor cortex. 
However, our results reveal a significantly higher level of redundancy than previously reported. Specif-
ically, prior studies found that the decoding performance steadily declines as neurons drop out, which 
is consistent with our results drawn from raw signals. In contrast, our results show that decoders main-
tain high performance on distilled signals even when many neurons drop out. Our findings reinforce 
the idea that movement behavior is redundantly encoded in the motor cortex and demonstrate that 
the brain is robust enough to tolerate large-scale neuronal destruction while maintaining brain func-
tion (Alstott et al., 2009).

At the population level, previous studies have proposed that motor control is achieved through 
low-dimensional neural manifolds, with analyses typically using between 6 and 15 PCs (Churchland 
et al., 2012; Kaufman et al., 2014; Elsayed et al., 2016; Sadtler et al., 2014; Golub et al., 2018; 
Gallego et al., 2017; Gallego et al., 2020). However, our results challenge this idea by showing that 
signals composed of smaller variance PCs nonlinearly encode a significant amount of behavioral infor-
mation, and the number of useful PCs ranges from 30 to 40, far exceeding the usual number analyzed. 
These results suggest that behavioral information is distributed in a higher-dimensional neural space 
than previously thought. Interestingly, although smaller variance PC signals nonlinearly encode behav-
ioral information, their behavioral information can be linearly decoded by superimposing them onto 
larger variance PC signals. This result is consistent with the finding that nonlinear mixed selectivity 
can yield high-dimensional neural responses and thus allow linear readout of behavioral information 
by downstream neurons (Rigotti et al., 2013; Fusi et al., 2016). Moreover, we found that smaller 
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variance PC signals can improve precise motor control, such as lower-speed control. Analogously, 
recent studies have found that smaller variance PCs of hand postures are task-dependent and relate 
to the precise and complex postures (Yan et al., 2020). These findings suggest that neural signals 
composed of lower variance PCs may be involved in the regulation of precise motor control.

In the motor cortex, in what form downstream neurons read out behavioral information is still an 
open question. Previous studies have shown that nonlinear readout is superior to linear readout on raw 
signals (Naufel et al., 2019; Glaser et al., 2020; Willsey et al., 2022). However, by filtering out the 
interference of behaviorally irrelevant signals, our study found that accurate decoding performance 
can be achieved through linear readout, suggesting that the motor cortex may perform linear readout 
to generate movement behaviors. Similar observations involving raw signals have been reported 
across various cortices, including the inferotemporal cortex (Majaj et  al., 2015), perirhinal cortex 
(Pagan et al., 2013), and somatosensory cortex (Nogueira et al., 2023). These observations support 
the hypothesis that linear readout might serve as a general principle in the brain. However, further 
experiments are needed to verify this hypothesis across a wider range of cortical regions. In motor 
cortex, different neurons encode behavioral information with varying degrees of nonlinearity, exhib-
iting complex and heterogeneous response patterns. Despite this complexity of neural encoding, 
these responses allow for a linear readout of behavioral information. This phenomenon suggests that 
the complexity of encoding mechanisms may underlie the simplicity of decoding mechanisms.

About studying decoding mechanisms, recent studies (Pitkow et al., 2015; Ganmor et al., 2015; 
Yang et al., 2021) have focused on investigating how the brain decodes task information in the pres-
ence of noise. Unlike previous works, our research specifically explores the decoding mechanisms of 
behaviorally relevant signals rather than raw signals. We assume that the brain filters out irrelevant 
signals before decoding the relevant ones. This leads to the question of whether the brain actually 
adopts this strategy to access relevant signals. Given the existence of behaviorally relevant signals, 
it is reasonable to assume that the brain has intrinsic mechanisms to differentiate between relevant 
and irrelevant signals. There is growing evidence suggesting that the brain utilizes various mecha-
nisms, such as attention and specialized filtering, to suppress irrelevant signals and enhance relevant 
signals (Sreenivasan and Fiete, 2011; Schneider et al., 2018; Nakajima et al., 2019). Therefore, it 
is plausible that the brain filters before decoding, thereby effectively accessing behaviorally relevant 
signals. Furthermore, our study reveals that irrelevant signals are the most critical factor affecting 
accurate and robust decoding, and achieving accurate and robust linear decoding requires weak 
neural responses. These findings have two important implications for developing accurate and robust 
BMIs: designing preprocessing filtering algorithms or developing decoding algorithms that include 
filtering out behaviorally irrelevant signals, and paying attention to the role of weak neural responses 
in motor control. More generally, our study provides a powerful framework for separating behaviorally 
relevant and irrelevant signals, which can be applied to other cortical data to uncover more hidden 
neural mechanisms.

Methods
Dataset and preprocessing
Three datasets with different paradigms are employed, including obstacle avoidance task dataset 
(Wang et al., 2017), center-out reaching task dataset (Dyer et al., 2017), and self-paced reaching 
task dataset (O’Doherty, 2017).

The first dataset (dataset A) is the obstacle avoidance dataset. An adult male Rhesus monkey was 
trained to use the joystick to move the computer cursor to bypass the obstacle and reach the target. 
Neural data were recorded from the monkey’s upper limb area of the dorsal premotor (PMd) using a 
96-electrode Utah array (Blackrock Microsystems Inc, USA). Multi-unit activity (MUA) signals are used 
in the present study. The corresponding behavioral data (velocity) were simultaneously collected. 
There are 2 days of data (20140106 and 20140107), and each day contains 171 trials on average. All 
animal handling procedures were authorized by the Animal Care Committee at Zhejiang University, 
China, and conducted following the Guide for Care and Use of Laboratory Animals (China Ministry of 
Health).

The second dataset (dataset B) is publicly available and provided by Kording Lab (Dyer et al., 
2017). The monkey was trained to complete two-dimensional eight-direction center-out reaching 
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tasks. We used 2 days of data from subject C (20161007 and 20161011). Each day contains 190 
trials on average. Neural data are spike-sorted PMd signals. The behavioral data were simultaneously 
collected in instantaneous velocity.

The third dataset (dataset C) is publicly available and provided by Sabes Lab (Zenodo dataset) 
(O’Doherty, 2017). An adult male Rhesus monkey was trained to finish self-paced reaching tasks 
within an 8-by-8 square grid. There are no inter-trial intervals during the experiment. Neural data were 
recorded from the monkey’s primary motor cortex (M1) area with a 96-channel silicon microelectrode 
array. The neural data are the MUA signals. Hand velocity was obtained from the position through a 
discrete derivative. The recording period for the data (20170124 01) is about 10 min.

For all datasets, the neural signals were binned by a 100 ms sliding window without overlap. As 
a preprocess, we smoothed the neural signals using a moving average filter with three bins. We 
excluded some electrode activities with low mean firing rates (<0.5 Hz mean firing rates across all 
bins) and did not perform any other pre-selection to select neurons. For the computation of the FF, we 
chose 12 and 14 points as the thresholds of trial length for datasets A and B, respectively; trials with 
a length less than the threshold were discarded (discard about 7% and 2% trials for datasets A and 
B), trials longer than the threshold were truncated to threshold length from the starting point. Since 
dataset C has no trial information, FF is not calculated for this dataset. For the analysis of datasets A 
and B, we selected 1 day of these two datasets for analysis (20140107 for dataset A and 20161011 
for dataset B).

The synthetic dataset
The synthetic dataset is used to demonstrate that d-VAE can extract effective behaviorally relevant 
signals that are similar to the ground truth signals. The specific process of generating synthetic data is 
as follows. First, we randomly selected nine larger ‍R2‍ neurons from neurons that ‍R2‍ is greater than 0.1, 
and three smaller ‍R2‍ neurons from neurons that ‍R2‍ is lower than 0.01 of dataset B (20161011). Second, 
we used deep neural networks to learn the encoding model between movement kinematics (move-
ment velocity of dataset B) and neural signals using onefold train data. The details of the networks 
are demonstrated as follows. The networks use two hidden layer multilayer perceptron (MLP) with 
500 and 500 hidden units. The activation function is ReLU. A SoftPlus activation function follows the 
last layer of the networks. The reconstruction loss is the Poisson likelihood function. After learning the 
encoding model, we used the learned encoding model to generate the ground truth of behaviorally 
relevant signals from all kinematics data of dataset B. Then, we added white Gaussian noise to the 
behaviorally relevant signals such that the noisy signals have a signal-to-noise ratio of 7 dB. After 
adding noise, the ‍R2‍ of the three smaller ‍R2‍ neurons is lower than 0.03. We regarded the noisy signals 
as raw signals and the added Gaussian noise as behaviorally irrelevant signals. Finally, we separated 
the synthetic data into five folds for cross-validation model evaluation.

Distill-VAE
Notation: ‍x ∈ Rn‍ denotes raw neural signals. ‍xr ∈ Rn‍ represents behaviorally relevant signals. 

‍xi = x − xr ∈ Rn
‍ represents behaviorally irrelevant signals. ‍z ∈ Rd‍ denotes the latent neural repre-

sentations. ‍zprior ∈ Rd
‍ denotes the prior latent neural representations. ‍y ∈ Rk

‍ represents kinematics. 

‍f : Rn → Rd
‍ represents the inference model (encoder) of VAE. ‍g : Rd → Rn

‍ represents the generative 
model (decoder) of VAE. ‍m : Rk → Rd‍ represents the mapping from kinematics to prior latent repre-
sentations. ‍h : Rd → Rk‍ represents an affine mapping from latent representations to kinematics.

d-VAE is a generative model based on VAEs (Kingma, 2013), specially designed to extract behav-
iorally relevant signals from raw signals. The generative model of d-VAE is

	﻿‍
pθ(x|y) =

ˆ

z
pθ(x, z|y)dz =

ˆ

z
pm(z|y)pg(x|z)dz,

‍�
(2)

where ‍pm(z|y)‍ denotes the conditional prior distribution of latent variables given the kinematics 
parameterized by feedforward neural networks ‍m‍, ‍pg(x|z)‍ denotes the conditional prior distribution 
of raw signals given the latent variables parameterized by feedforward neural networks ‍g‍, ‍pθ(x, z|y)‍ 
represents the joint distribution of raw signals and latent variables given the kinematics parameter-
ized by parameters ‍θ = (m, g)‍, and ‍pθ(x|y)‍ is the marginal distribution of raw signals parameterized by 
parameters ‍θ‍.
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To learn the model, we need to maximize the evidence lower bound (ELBO) of ‍pθ(x|y)‍:

	﻿‍ LELBO(x) = Ez∼qϕ(z|x,y)
[
pθ(x|z)

]
− DKL(qϕ(z|x, y)|p(z|y)) ≤ log pθ(x|y),‍� (3)

where the first term on the right-hand side of Equation 3 is called reconstruction term, the second 
term is called regularization term, ‍qϕ(z|x, y)‍ denotes inference model parameterized by parameters ‍ϕ‍, 
and ‍DKL(·|·)‍ denotes the Kullback-Leibler (KL) divergence. In d-VAE, we set ‍qϕ(z|x, y) = qf(z|x)‍, where ‍f ‍ 
is the inference model parameterized by feedforward neural networks. Because during the test stage, 
we cannot obtain the ground truth of kinematics, and we need to use only raw signals to extract 
relevant signals. Note that d-VAE aims to extract behaviorally relevant signals from raw signals, not 
generate signals that are too similar to raw signals. Therefore, we modified the objective loss function 
based on ‍LELBO(x)‍ (see Equation 10).

To distill behaviorally relevant neural signals, d-VAE utilizes the trade-off between the decoding and 
reconstruction abilities of generated behaviorally relevant signals ‍xr‍. The basic assumption is gener-
ated behaviorally relevant signals that contain behaviorally irrelevant signals harms their decoding 
ability. Our approach for distilling behaviorally relevant signals consists of three steps, including iden-
tifying latent representations ‍z‍, generating behaviorally relevant signals ‍xr‍, and decoding behaviorally 
relevant signals ‍xr‍.

Identifying latent representations
Identifying latent representations containing behaviorally relevant information is the crucial part 
because latent representations influence the subsequent generation. Effective representations are 
more likely to generate proper behaviorally relevant neural signals ‍xr‍. d-VAE identifies latent repre-
sentations with inference model ‍f ‍, i.e., μ, where μ and ‍σ2‍ denote the mean and variance of latent 
representations; thus the posterior distribution is ‍qf(z|x) = N (z|µ,σ2)‍. Then, we guide latent repre-
sentations containing behavioral information through an affine map ‍h : Rd → Rk‍ under the loss ‍Ldec1‍,

	﻿‍ Ldec1 = MSE(h(µ), y),‍� (4)

where ‍MSE(·, ·)‍ denotes mean squared loss. In other words, we encourage latent representations to 
decode kinematics to distill behaviorally relevant information. Here, we sample from the approxima-
tion posterior ‍xr = g(z)‍ using ‍z ∼ µ + σ ⊙ ϵ‍, where ‍ϵ ∼ N (0, I)‍ and ‍⊙‍ denotes element-wise product. 
This sampling strategy is known as the reparameterization trick.

Generating behaviorally relevant signals
After sampling latent representations ‍z‍, we send latent representations to the generative model ‍g‍ to 
generate behaviorally relevant neural signals ‍xr‍, i.e., ‍xr = g(z)‍. We use following loss to make behav-
iorally relevant signals reconstruct raw signals as much as possible:

	﻿‍ Lrec = Poisson(xr, x),‍� (5)

where ‍Poisson(·, ·)‍ denotes Poisson negative log likelihood loss. It is important to note that optimizing 
the generation of behaviorally relevant signals to accurately reconstruct noisy raw signals may result in 
the inclusion of many behaviorally irrelevant signals in the generated signals, which deviates from our 
initial goal of extracting behaviorally relevant signals. In the following subsection, we will introduce 
how to avoid generating behaviorally irrelevant signals.

Decoding behaviorally relevant signals
As mentioned above, if the generation of behaviorally relevant signals ‍xr‍ is only guided by ‍Lrec‍, gener-
ated signals may contain more behaviorally irrelevant signals. To avoid generated signals containing 
behaviorally irrelevant signals, we introduce decoding loss ‍Ldec2‍ to constrain ‍xr‍ to decode behavioral 
information. The basic assumption is that behaviorally irrelevant signals act like noise for decoding 
behavioral information and are detrimental to decoding. Thus, there is a trade-off between neural 
reconstruction and decoding ability of ‍xr‍: the more behaviorally irrelevant signals ‍xr‍ contains, the 
more decoding performance ‍xr‍ loses. Then, we send the ‍xr‍ to the encoder ‍f ‍ and obtain the mean 
and variance of latent representations, i.e., ‍[µr;σ

2
r ] = f(xr)‍. The decoding loss ‍Ldec2‍ is as follows:

https://doi.org/10.7554/eLife.87881
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	﻿‍ Ldec2 = MSE(h(µr), y).‍� (6)

We use the same networks ‍f ‍ and ‍h‍ for ‍xr‍ and ‍x‍ in our experiment, because ‍xr‍ can act as data 
augmentation and make ‍f ‍ distill robust representations without increasing model parameters. In 
addition, we combine the two decoding loss as one loss:

	﻿‍
Ldec = 1

2
(Ldec1 + Ldec2).

‍�
(7)

Learning the prior distribution with behavioral information
The prior distribution of latent representation is crucial because inappropriate prior assumptions 
can degrade latent representations and generated neural signals. Vanilla VAE uses a Gaussian prior 

‍N (0, I)‍ to regularize the space of latent representation ‍z‍. However, in neuroscience, the distribution 
of latent representations is unknown and may exceed the scope of Gaussian. Therefore, we adopt 
neural networks ‍m‍ to learn the prior distribution with kinematics ‍y‍, i.e., ‍[µprior;σ

2
prior] = m(y)‍ and thus 

‍pm(z|y) = N (zprior|µprior,σ
2
prior)‍. The prior distribution ‍pm(z|y)‍ and approximation posterior distribution 

‍qf(z|x)‍ are aligned by the KL divergence:

	﻿‍ LKL = DKL(pm(z|y)|qf(z|x)) = DKL(N (z|µ,σ2)|N (zprior|µprior,σ
2
prior)).‍� (8)

In this case, the distribution of ‍p(z)‍ is

	﻿‍
p(z) =

ˆ
p̂(y)pm(z|y)dy =

N∑
j=1

( 1
N

N∑
i=1

δ(y(j) − y(i)))pm(z|y(j)),
‍�

(9)

where ‍̂p(y) = 1
N
∑N

i=1 δ(y − y(i))‍ represents the empirical distribution of behavioral variables ‍y‍, 
‍N ‍ denotes the number of samples, ‍δ(·)‍ denotes Dirac delta function. Thus, ‍p(z)‍ corresponds to a 
Gaussian mixture model with ‍N ‍ components, which is theoretically a universal approximator of contin-
uous probability densities. Since ‍zprior‍ and ‍z‍ are aligned and the generative network ‍g‍ models the rela-
tionship between ‍z‍ and ‍xr‍, this is equivalent to indirectly establishing a neural encoding model from ‍y‍ 
to ‍xr‍. Thus, we can observe the change of ‍zprior‍ and ‍xr‍ by changing ‍y‍ and can better understand the 
encoding mechanism of neural signals.

End-to-end optimization
d-VAE is optimized in an end-to-end manner under the following loss:

	﻿‍ L = Lrec + βLKL + αLdec,‍� (10)

where ‍β‍ and ‍α‍ are hyperparameters, ‍β‍ is used to adjust the weight of KL divergence, and ‍α‍ deter-
mines the trade-off between reconstruction loss ‍Lrec‍ and decoding loss ‍Ldec‍. Given that the ground 
truth of latent variable distribution is unknown, even a learned prior distribution might not accurately 
reflect the true distribution. We found the pronounced impact of the KL divergence would prove 
detrimental to the decoding and reconstruction performance. As a result, we opt to reduce the weight 
of the KL divergence term. Even so, KL divergence can still effectively align the distribution of latent 
variables with the distribution of prior latent variables (see Figure 1—figure supplement 2).

In the training stage, we feed raw neural signals into the inference network ‍f ‍ to get latent repre-
sentation ‍z‍, which is regularized by ‍zprior‍ coming from kinematics ‍y‍ and network ‍m‍. Then, we use the 
mean of ‍z‍, i.e., μ, to decode kinematics ‍y‍ by affine layer ‍h‍ and send ‍z‍ to the generative networks ‍g‍ 
to generate neural signals ‍xr‍. To ensure that ‍xr‍ preserves decoding ability, we send ‍xr‍ to ‍f ‍ and ‍h‍ to 
decode ‍y‍. The whole model is trained in an end-to-end manner under the guidance of total loss. Once 
the model has been trained, we can feed raw neural signals to it to obtain behaviorally relevant neural 
signals ‍xr‍, and we can also generate behaviorally relevant neural signals using the prior distribution 
of ‍zprior‍.

https://doi.org/10.7554/eLife.87881
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Differences from pi-VAE
pi-VAE lacks the decoding constraint on latent variables (Equation 4) and the decoding constraint on 
generated signals (Equation 6).

Cross-validation evaluation of models
For each model, we use the fivefold cross-validation manner to assess performance. Specifically, we 
divide the data into five equal folds. In each experiment, we take one fold for testing and use the 
rest for training (taking three folds as the training set and one as the validation set). The reported 
performance is averaged over test sets of five experiments. The validation sets are used to choose 
hyperparameters based on the averaged performance of fivefold validation data. To avoid overfitting, 
we apply the early stopping strategy. Specifically, we assess the criteria (loss for training distillation 
methods, ‍R2‍ for training ANN and KF) on the validation set every epoch in the training process. The 
model is saved when the model achieves better validation performance than the earlier epochs. If the 
model cannot increase by 1% of the best performance previously obtained within 10 epochs, we stop 
the training process.

The strategy for selecting effective behaviorally relevant signals
As previously mentioned, the hyperparameter ‍α‍ of d-VAE plays a crucial role in balancing the trade-off 
between reconstruction and decoding loss. Once the appropriate value of ‍α‍ is determined, we can 
use this value to obtain accurate behaviorally relevant signals for subsequent analysis. To determine 
the optimal value of ‍α‍, we first enumerated different values of ‍α‍ to guide d-VAE in distilling the behav-
iorally relevant signals. Next, we used ANN to evaluate the decoding ‍R2‍ of behaviorally relevant (‍Dre‍) 
and irrelevant (‍Dir‍) signals generated by each ‍α‍ value. Finally, we selected the ‍α‍ value with the criteria 
formula ‍0.75 × Dre + 0.25 × (1 − Dir)‍. The ‍α‍ value that obtained the highest criteria score on the vali-
dation set was selected as the optimal value.

Note that we did not use neural similarity between behaviorally relevant and raw signals as a 
criterion for selecting behaviorally relevant signals. This is because determining the threshold for 
neural similarity is challenging. However, not using similarity as a criterion does not affect the selec-
tion of suitable signals because the decoding performance of behaviorally irrelevant signals can indi-
rectly reflect the degree of similarity between the generated behaviorally relevant signals and the raw 
signals. Specifically, if the generated behaviorally relevant signals are dissimilar to the raw signals, the 
behaviorally irrelevant signals will contain many useful signals. In other words, when the neural simi-
larity between behaviorally relevant and raw signals is low, the decoding performance of behaviorally 
irrelevant signals is high. Therefore, the decoding performance of irrelevant signals is a reasonable 
alternative to the neural similarity.

Regarding the ratio between ‍Dre‍ and ‍Dir‍, any ratio greater than or equal to 3:1 is suitable, and we 
recommend opting for a higher ratio. This recommendation is based on the observation that when 
the model is biased toward reconstruction (associated with lower ‍α‍ values), the decoding perfor-
mance of relevant signals improves as ‍α‍ increases, yet it has not reached saturation. At the same time, 
the decoding performance of irrelevant signals remains low, but their fluctuations are larger than 
the improvements in the decoding performance of relevant signals. Consequently, setting the ratio 
too low poses a risk of selecting an ‍α‍ value where both irrelevant and relevant signals demonstrate 
low decoding performance. This situation fails to satisfy our requirement that relevant signals should 
exhibit high decoding performance.

For other generative models, we iterate through a range of hyperparameters, generating the 
corresponding behaviorally relevant neural signals, and subsequently evaluate these signals using 
ANN. The hyperparameter associated with the signals that exhibit the highest ANN decoding perfor-
mance is then selected. In other words, the signals corresponding to this particular hyperparameter 
are chosen as the selected behaviorally relevant neural signals.

Implementation details for methods
All the VAE-based models use the Poisson observation function. The details of different methods are 
demonstrated as follows:

•	 d-VAE. The encoder ‍f ‍ of d-VAE uses two hidden layer MLP with 300 and 100 hidden units. The 
activation function of the hidden layers is ReLU. The dimensionality of the latent variable is set 
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to 50. The decoder ‍g‍ of d-VAE is symmetric with the encoder. The last layer of the decoder is 
followed by a SoftPlus activation function. The prior networks ‍m‍ use one hidden layer MLP with 
300 units. The ‍β‍ is set to 0.001. The ‍α‍ is set to 0.3, 0.4, 0.7, and 0.9 for datasets A, B, and C. We 
perform a grid search for ‍α‍ in ‍

{
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

}
‍, and ‍β‍ in ‍

{
0.001, 0.01, 0.1, 1

}
‍, 

and latent variable dimension in ‍
{

10, 20, 50
}
‍. For the synthetic dataset A and B experiments, 

the ‍β‍ and the latent variable dimension are directly set to 0.001 and 50. For synthetic dataset 
the ‍α‍ is set to 0.9, which is grid searched in ‍

{
0.01–0.09, 0.1–0.9, 1–9

}
‍, with intervals of 0.01, 0.1, 

and 1, respectively.
•	 pi-VAE. The original paper utilizes label information (as shown in Equation 6) to approximate 

the posterior of the latent variable and performs Monte Carlo sampling for decoding during the 
test stage. However, in our signal generation setting, it is inappropriate to use label information 
(kinematics) for extracting behaviorally relevant signals during the test stage. As a result, we 
modified the model to exclude the use of label information in approximating the posterior. The 
encoder, decoder, and prior networks of our pi-VAE are kept the same as those in d-VAE.

•	 LFADS. The hidden units of the encoder for the generator’s initial conditions, the controller, the 
generator are set to 200, 200, 200, and 100 for datasets A, B, and C and the synthetic dataset. 
The dimensionality of latent factor is set to 50 for all datasets. We perform a grid search for 
hidden units in ‍

{
100, 200

}
‍, and latent factor dimensions in ‍

{
10, 20, 50

}
‍. The dimensionality of 

inferred inputs is set to 1. The Poisson likelihood function is used. The training strategy follows 
the practice of the original paper. For datasets A and B, a trial length of 18 is set. Trials with 
lengths below the threshold are zero-padded, while trials exceeding the threshold are trun-
cated to the threshold length from their starting point. In dataset A, there are several trials 
with lengths considerably longer than that of most trials. We found that padding all trials with 
zeros to reach the maximum length (32) led to poor performance. Consequently, we chose 
a trial length of 18, effectively encompassing the durations of most trials and leading to the 
removal of approximately 9% of samples. For dataset B (center-out), the trial lengths are rela-
tively consistent with small variation, and the maximum length across all trials is 18. For dataset 
C, we set the trial length as 10 because we observed the video of this paradigm and found that 
the time for completing a single trial was approximately 1 s. The segments are not overlapped.

•	 TNDM. The hidden units of the encoder for the generator’s initial conditions, the controller, and 
the generator are set to 64, 64, 100, and 64 for datasets A, B, and C and the synthetic dataset. 
The dimensionality of relevant latent factors is set to 50, 25, 50, and 50 for datasets A, B, and C 
and the synthetic dataset. We set the dimensionality of irrelevant latent factors as the same as 
that of relevant latent factors. The behavior weight is set to 5, 5, 0.2, 0.5 for datasets A, B, and C 
and the synthetic dataset. We perform a grid search for relevant latent factor dimensionality in 

‍
{

10, 25, 50
}
‍, the hidden units in ‍

{
64, 100, 200

}
‍, and the behavior weight in ‍

{
0.2, 0.5, 1, 5, 10

}
‍. The 

Poisson likelihood function is used. The other hyperparameter setting and the training strategy 
follow the practice of the original paper. TNDM uses the same trial length and data as LFADS.

•	 PSID. PSID uses several (horizon size) past neural data to predict behavior at the current time 
without using neural observations at the current time. For a fair comparison, we let PSID see 
current neural observations by shifting the neural data one sample into the past relative to the 
behavior data. We perform a grid search for the horizon hyperparameter in ‍

{
2, 3, 4, 5, 6, 7

}
‍. Due 

to the relevant latent dimension should be lower than the horizon times the dimensionality 
of behavior variables (two-dimensional velocity in this paper), we just set the relevant latent 
dimension as the maximum. The horizon number of datasets A, B, C, and synthetic datasets is 
7, 6, 6, and 5, respectively. And thus the latent variable dimension of datasets A, B, and C and 
the synthetic dataset is 14, 12, 12, and 10, respectively.

•	 ANN. ANN has two hidden layers with 300 and 100 hidden units. The activation function of the 
hidden layers is ReLU.

•	 KF. The matrix parameters of observation and state transition process are optimized with the 
least square algorithm. KF is a linear-Gaussian state-space model designed to provide an 
optimal estimate of the current state (kinematics in this paper). It does so by considering both 
the current measurement observations (neural signals in this paper) and the previous state 
estimate. The KF operates in a recursive and iterative manner, continually updating its state 
estimate as new observations become available.

Percentage of explained variance captured in a subspace
We applied PCA to behaviorally relevant and irrelevant signals to get relevant PCs and irrelevant PCs. 
Then, we used the percentage variance captured (also called alignment index) to quantify how many 
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variances of irrelevant signals can be captured by relevant PCs by projecting irrelevant signals onto 
the subspace composed of some relevant PCs and vice versa. The percentage of variance captured is

	﻿‍
A =

Tr
(

DTCD
)

Tr
(
C
) × 100%,

‍�
(11)

where ‍D ∈ RN×d‍ is the top ‍d‍ PCs of relevant signals (irrelevant signals). ‍C ∈ RN×N ‍ is the covariance 
matrix of irrelevant signals (relevant signals), and ‍Tr

(
C
)

=
∑N

i=1 λi‍, where ‍λi‍ is the ith largest eigen-
value for ‍C‍. The percentage variance is a quantity between 0% and 100%.

The composition of raw signals’ variance
Suppose ‍x ∈ R1×T ‍, ‍y ∈ R1×T

‍, and ‍z ∈ R1×T ‍ are the random variables for a single neuron of behavior-
ally relevant signals, behaviorally irrelevant, and raw signals, where ‍z = x + y‍, ‍T ‍ denotes the number of 
samples. The composition of raw signals’ variance is as follows:

	﻿‍

Var(z) = Var(x + y) = E
{

[x − E(x)] + [y − E(y)]
}2

= E[x − E(x)]2 + E[y − E(y)]2 + 2E[x − E(x)][y − E(y)]

= Var(x) + Var(y) + 2Cov(x, y), ‍�

(12)

where ‍E‍, ‍Var‍, and ‍Cov‍ denote expectation, variance, and covariance, respectively. Thus, the variance 
of raw signals is composed of the variance of relevant signals ‍Var(x)‍, the variance of irrelevant signals 

‍Var(y)‍, and the correlation between relevant and irrelevant signals ‍2Cov(x, y)‍. If there are ‍N ‍ neurons, 
calculate the composition of each neuron separately and then add it up to get the total composition 
of raw signals.

Reordered correlation matrix of neurons
The correlation matrix is reordered with a simple group method. The order of reordered neurons is 
determined from raw neural signals, which is then used for behaviorally relevant signals.

The steps of the group method are as follows:

Step 1: We get the correlation matrix in original neuron order and set a list A that contains all 
neuron numbers and an empty list B.
Step 2: We select the neuron with the row number of the largest value of the correlation matrix 
except for the diagonal line and choose nine neurons in list A that are most similar to the 
selected neuron. We selected the value nine because it offers a good visualization of neuron 
clusters.
Step 3: Remove these selected neurons from list A, and add these selected neurons in 
descending order of correlation value in list B.
Step 4: Repeat steps 2 and 3 until list A is empty.

The improvement ratio of lower- and higher-speed regions
Split lower- and higher-speed regions
Since the speed ranges of different datasets are different, it is hard to determine a common speed 
threshold to split lower- and higher-speed regions. Here, we used the squared error as a criterion to 
split the two speed regions. And for the convenience of calculating the absolute improvement ratio, 
we need a unified benchmark for comparison. Therefore, we use half of the total squared error as the 
threshold. Specifically, first, we calculated all samples’ total squared error (‍Ep‍) between actual velocity 
and predicted velocity obtained by primary signals only. Then, we enumerated the speed from 1 to 50 
with a step of 0.1 and calculated the total squared error of selected samples whose speed is less than 
the enumerated speed. Once the total squared error of selected samples is greater than or equal to 
the half total squared error of all samples (‍0.5Ep‍), the enumerated speed is set as the speed threshold. 
The samples whose speed is less than or equal to the speed threshold belong to lower-speed regions, 
and those whose speed is greater than the speed threshold belong to higher-speed regions. The 
squared error of the lower-speed part (‍E

low
p ‍) is approximately equal to that of the higher one ‍E

high
p ‍, i.e., 

‍E
low
p ≈ Ehigh

p ≈ 0.5Ep‍ (the difference is negligible).
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The absolute improvement ratio
After splitting the speed regions, we calculated the improvement of the two regions by superim-
posing secondary signals to primary signals, and got the squared error of lower ‍E

low
p+s‍ and higher ‍E

high
p+s ‍ 

regions. Then, we calculated the absolute improvement ratio (AIR):

	﻿‍
AIRlow = −

Elow
p+s − Elow

p

Elow
p

≈ −
Elow

p+s − 0.5Ep

0.5Ep ‍�
(13)

	﻿‍
AIRhigh = −

Ehigh
p+s − Ehigh

p

Ehigh
p

≈ −
Ehigh

p+s − 0.5Ep

0.5Ep ‍�
(14)

Since the two regions refer to a common standard (‍0.5Ep‍), the improvement ratio of the two regions 
can be directly compared, and that’s why we call it the absolute improvement ratio.

The relative improvement ratio
The relative improvement ratio (RIR) measures the improvement ratio of each sample relative to itself 
before and after superimposing secondary signals. The relative improvement ratio is computed as 
follows:

	﻿‍
RIRi = −

Ei
p+s − Ei

p

Ei
p

,
‍�

(15)

where i denotes the ith sample of test data.

Code availability
The code is available at https://github.com/eric0li/d-VAE, copy archived at eric0li, 2024.
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