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Joint-view trustworthiness (JVT) pseudocode and computational complexity analysis 
Pseudo-code of JVT
, – set of names of the datasets to load. Each  is composed of 4 variables: the corresponding , , , . 
 – the actual dataset within each , where features/genes are on rows and samples are on columns. Each  is organized having the same genes and in the same order on the rows
 – an array of gene names common to each dataset 
 – a 2D array where each row corresponds to  in each  reporting for each sample the name of one of the two groups to which it belongs in   
 – an array containing the name of one of the two groups of samples that should be used as positive class for AUC-ROC evaluation; each  corresponds to each 
 – an array containing the names of genes used for computing the combinatorial marker 
 – a numerical array of the same length as  containing one of the values in { for each gene, indicating whether alignment is needed  or not  
 – type of gene normalization involved. Offered options: ‘log10’ and ‘z-score’
 – an integer indicating the number of times the samples are drawn to build null model distributions
 – length of 
 – length of 
 – size of 
 – number of samples of a 
 –  matrix, where rows 1 and 2 store minimum AUC score and p-value of minimum AUC score, respectively, as computed by JVT. Each column corresponds to each marker (single+combinatory).
	Alg1. Joint Multiview Trustworthiness               


1. 	 datasets , a Combinatorial Marker array , an array , normalization type , sampling times 
2.	find gene indices, , in  via any  using its  and  //    
	// initialisation of variables begins
3.	generate a series  			// used as indices to datasets ; 
4.		 	          //  contains  with  removed ;  
5. 	 
6.	append  back to  							     // 
7.	if  OR  then   // for randomisation; if , no need to randomise 
8.			 uniformly generate  random integers                                          // 
9.		 //  is updated and now contains random indices from  and has length 
10.			append  back to  					     // 
11.	end if
12.	 								          //          
13.	initialise  zero matrix, , and  zero matrix,        
	//  and  are used to store single and combinatory gene AUC performance, // respectively, and have the same number of columns as the no. of datasets   
                                  //  for  matrix and  for  matrix
	// initialisation of variables ends
14.	for  do 	                                 // for each dataset ; 
15.			load dataset              // this loads all the variables, , , 
             //  and  corresponding to dataset,  
16. 		perform log or z-score normalisation to  corresponding to based on         
          		     // if  does not contain offered options, use log normalisation as default;   
17.		for  do 			     // for all sampling times  and  
           		        //  ≈ )
18.	 		pick the  index in  and select the corresponding gene,  in  
19.				
// compute  of  in  using the corresponding    
// and     				     ;                                        
20.			   // for single gene ; row, column
21. 			if  then 			   // for combinatory gene
22.				if  then
23.					 uniformly generate  random integers     // 
24.					
//  contains random indices from  and has length 
25.				elseif  then 
26.					      // no randomisation; only marker indices used
27.				end if
28.				 genes identified by  indices in                                        // 
29.				for to  do 	  // for gene alignment ;  ≈ 
30.					if  then
31.						                                              // 
  // take the mean of the gene identified by its  index
32.					 // align and update gene  // 
33.					end if
34.				end for
35.			 //take the column-wise mean of  genes ; 
36.				
					// compute  of  using the corresponding and 
                                   //                                                                                        ; 
37.				
38.			end if
39.		end for
40.	end for
41.	 compute the minimum of  along each row              // 
	        //  is a vector containing the minimum AUC performance of single gene
                    // across the datasets
42.	 compute minimum of  along each row // 
	       //  is a vector containing the minimum AUC performance of combinatorial 
                    // gene across the datasets
43.	initialise  zero matrix,                                   // for result compilation ; 
44.	for  to  do 				       // for single marker ; 
45.		  value corresponding to the index         // 
46.		(number of times   // p-value ; 
47.	end for
48.	  	            // for combinatory marker
49.	number of times  
 										     // p-value ; 
50.	append ‘Comb Marker’ to 
51.	set row names of  {‘min AUC-ROC’, ‘JVT p-value’}
52.	set column names of 
53.	

Computational complexity of JVT
We begin with the breakdown of computational complexity of JVT as presented in Alg1 and then provide the overall associated complexity of JVT. From line 2 in Alg1, we can see the complexity of finding  number of marker genes in a set of  number of common genes is . Similarly, lines 3, 4 and 6 have the complexity of   and , respectively. Line 8, where we generate  random numbers and has the complexity of , where  represents the sampling times, and line 9 runs at . In line no. 13, we create two zero matrices for storing the results,  and , having the computational complexity of  and , respectively, where  is the number of datasets involved. The loop in line 14 has a total complexity of . This complexity can be arrived using lines 15 through 40, which compose the statements of the loop, as follows. Line no. 16, which normalizes each value in a given dataset has a complexity of . Line 17, which is also a loop, has a total complexity of . This can be arrived at by inspecting lines 19, 23, 28, 31, 32, 35 and 36. While, the complexities of these lines are easy to deduce and are given in the algorithm itself, lines 19, 29 and 36 are of particular interest here. Since line 19 computes the  score of the gene with respect to the number of samples the gene carries, , it has the computational complexity of . The same can be said of line 36. Line 19 is a loop and performs the gene alignment with a complexity of . Putting all this together, we get the computational complexity of line 14 stated above. Furthermore, line 41, which computes the minimum  of all the sampled genes, , across all the datasets, , has the complexity of . Similarly, for line 42, we have . Line 43 creates a  zero matrix and intuitively runs at , and loop in line 44 at . Finally, line 49 has the computational complexity of . Summing up the algorithm’s complexity and simplifying, we get, 
.  
Clearly, if the values ,  and  are highly dominated by the  and , which is the case in our study, the effect of ,  and  in the overall complexity of the JVT becomes negligible. Hence, the complexity boils down to , i.e., the JVT’s complexity is non-linear in  and .
5

Urbanska, Ge, et al. | eLife-VOR-RA-2023-87930R1| Supplementary File 4 |Page 1
