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Abstract Dystroglycan (Dag1) is a transmembrane glycoprotein that links the extracellular matrix 
to the actin cytoskeleton. Mutations in Dag1 or the genes required for its glycosylation result in 
dystroglycanopathy, a type of congenital muscular dystrophy characterized by a wide range of 
phenotypes including muscle weakness, brain defects, and cognitive impairment. We investigated 
interneuron (IN) development, synaptic function, and associated seizure susceptibility in multiple 
mouse models that reflect the wide phenotypic range of dystroglycanopathy neuropathology. 
Mice that model severe dystroglycanopathy due to forebrain deletion of Dag1 or Pomt2, which is 
required for Dystroglycan glycosylation, show significant impairment of CCK+/CB1R+ IN develop-
ment. CCK+/CB1R+ IN axons failed to properly target the somatodendritic compartment of pyra-
midal neurons in the hippocampus, resulting in synaptic defects and increased seizure susceptibility. 
Mice lacking the intracellular domain of Dystroglycan have milder defects in CCK+/CB1R+ IN axon 
targeting, but exhibit dramatic changes in inhibitory synaptic function, indicating a critical postsyn-
aptic role of this domain. In contrast, CCK+/CB1R+ IN synaptic function and seizure susceptibility was 
normal in mice that model mild dystroglycanopathy due to partially reduced Dystroglycan glycosyla-
tion. Collectively, these data show that inhibitory synaptic defects and elevated seizure susceptibility 
are hallmarks of severe dystroglycanopathy, and show that Dystroglycan plays an important role in 
organizing functional inhibitory synapse assembly.

eLife assessment
These important findings will be of interest for the study of dystroglycanopathies and in the general 
area of axon migration and synapse formation. This work provides convincing conclusions about 
how a range of dystroglycan mutations alter CCK interneuron axonal targeting and synaptic connec-
tivity in the forebrain, and seizure susceptibility.

Introduction
The formation of neural circuits is a multistep process involving proliferation, migration, axon guid-
ance, maturation of neuronal subtypes, and establishment of functional synaptic connections between 
neurons. The cell adhesion molecule Dystroglycan is widely expressed in muscle and brain. Within the 
forebrain, Dystroglycan is expressed in neuroepithelial cells, pyramidal neurons, astrocytes, oligoden-
drocytes, and vascular endothelial cells where it plays important roles in the formation of basement 
membranes during early brain development (Colognato et al., 2007; Nguyen et al., 2013; Nickolls 
and Bönnemann, 2018; Tian et al., 1996; Zaccaria et al., 2001). At later developmental stages, 
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Dystroglycan is present at multiple synapses, including at photoreceptor ribbon synapses in the retina 
(Omori et al., 2012; Orlandi et al., 2018), inhibitory synapses in the cerebellum (Briatore et al., 
2010; Briatore et al., 2020; Patrizi et al., 2008), and inhibitory synapses onto pyramidal neurons 
(Brünig et al., 2002; Lévi et al., 2002).

Dystroglycan is a central component of the dystrophin-glycoprotein complex (DGC) known 
primarily for its role in the etiology of neuromuscular diseases including Duchenne muscular 
dystrophy (DMD), limb-girdle muscular dystrophy (LGMD), and congenital muscular dystrophy (CMD). 
The gene encoding Dystroglycan (Dag1) yields two subunits, the extracellular alpha Dystroglycan 
(α-Dag1) and the transmembrane beta Dystroglycan (β-Dag1). These two subunits are non-covalently 
bound, allowing Dystroglycan to function as a link between extracellular ligands and cytoskeletal 
and signaling proteins (Ervasti and Campbell, 1991; Holt et al., 2000; Ibraghimov-Beskrovnaya 
et al., 1992; Moore and Winder, 2010). Extracellular α-Dag1 interacts with multiple proteins in the 
nervous system through its extensive glycan chains (Jahncke and Wright, 2023). Mutations in any of 
the 19 genes involved in α-Dag1 glycosylation impair Dystroglycan function through reduced ligand 
binding and leads to a class of congenital muscular dystrophy termed dystroglycanopathy (Blaeser 
et  al., 2013). Patients with severe forms of dystroglycanopathy frequently present with structural 
brain abnormalities and experience seizures and cognitive impairments (Barresi and Campbell, 2006; 
Muntoni et  al., 2011; Taniguchi-Ikeda et  al., 2016). Dystroglycanopathy patients with moderate 
severity can exhibit cognitive impairments even in the absence of identifiable brain malformations, 
suggesting that Dystroglycan functions at later stages of neural circuit formation such as synapse 
formation and/or maintenance (Clement et al., 2008; Godfrey et al., 2007).

The dramatic structural and anatomical phenotypes of global Dag1 deletion in mice has often 
precluded analysis of Dystroglycan’s synaptic functions (Myshrall et al., 2012; Satz et al., 2008; Satz 
et al., 2010). Recent studies show that when Dag1 is selectively deleted from postmitotic pyramidal 
neurons, neuronal migration and lamination is normal, however CCK+/CB1R+ interneurons (INs) fail to 
populate the forebrain or form synapses in these mice (Früh et al., 2016; Miller and Wright, 2021). 
Furthermore, conditional deletion of Dag1 from cerebellar Purkinje neurons leads to impaired inhib-
itory synaptic transmission and a reduction in the number of inhibitory synapses in cerebellar cortex 
(Briatore et al., 2020). These studies establish a role for Dystroglycan function at a subset of inhibi-
tory synapses in the brain, but the critical features of Dystroglycan necessary for these functions, and 
the relationship between inhibitory synaptogenesis and neurological phenotypes in dystroglycanop-
athy, remains undefined.

Here, we use multiple mouse models that recapitulate the full range of dystroglycanopathy neuro-
pathology to address several outstanding questions related to the role of Dystroglycan at inhibi-
tory synapses. We find that CCK+/CB1R+ IN axon targeting, synapse formation, and synapse function 
requires both glycosylation of α-Dag1 and interactions through the intracellular domain of β-Dag1, 
and that defects in synaptic structure and function is associated with increased seizure susceptibility 
in mouse models of dystroglycanopathy.

Results
Characterizing dystroglycan localization and glycosylation in multiple 
models of dystroglycanopathy
While conditional deletion of Dag1 from pyramidal neurons causes a loss of CCK+/CB1R+ IN inner-
vation in the forebrain, this has not been examined in dystroglycanopathy relevant mouse models 
exhibiting more widespread loss of functional Dystroglycan. We therefore generated five distinct 
mouse models; three to provide mechanistic insight into Dystroglycan function and two of which 
model mild dystroglycanopathy (schematized in Figure 1A). Since complete loss of Dag1 results in 
early embryonic lethality in mice, we generated forebrain-specific conditional knockouts by crossing 
Emx1Cre with Dystroglycan floxed mice (Dag1Flox/Flox), to drive recombination in neuroepithelial cells in 
the dorsal forebrain beginning at embryonic day 10.5 (E10.5) (Gorski et al., 2002; Liang et al., 2012). 
We verified the recombination pattern of Emx1Cre with the mCherry reporter Rosa26Lox-STOP-Lox-H2B:mCherry. 
H2B:mCherry signal was present in all excitatory neurons and astrocytes throughout the forebrain 
(Figure 1—figure supplement 1A, B and D) but not microglia or interneurons (Figure 1—figure 
supplement 1C and E).

https://doi.org/10.7554/eLife.87965
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Figure 1. Dystroglycan synaptic localization and glycosylation in mouse models of dystroglycanopathy. (A) Schematic depiction of Dystroglycan in 
different mouse models. The IIH6 antibody recognizes the matriglycan repeats on extracellular αDag1. Hippocampal CA1 of P30 mice immunostained 
for Dystroglycan glycosylation (IIH6, green) and nuclear marker Hoechst (blue) show puncta of glycosylated Dystroglycan localized to the perisomatic 
region of pyramidal cells and to blood vessels (magenta arrowheads); scale bar = 50 μm. Lower panels show cell bodies in SP; scale bar = 25 μm. CA1 
layers: SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum. (B) WGA-enriched lysates from P0 forebrain were immunoblotted for IIH6, 
β-Dag1, and β-tubulin. (C–D) Quantification of immunoblot in (B). Error bars show mean + SEM. See Supplementary file 1 for Ns.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Raw data for quantification in Figure 1C, D.

Figure supplement 1. Emx1Cre drives recombination in forebrain excitatory neurons and astrocytes, but not interneurons or microglia.

Figure supplement 2. Dystroglycan glycosylation is required for synaptic localization.

Figure supplement 2—source data 1. Raw data for quantification in Figure 1—figure supplement 2C, D.

https://doi.org/10.7554/eLife.87965
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To model loss of Dystroglycan glycosylation, Emx1Cre was crossed with Pomt2Flox/Flox conditional 
mice to generate Emx1Cre:Pomt2 cKO mice. Pomt2 (protein O-mannosyltransferase 2) is a glycosyl-
transferase that functions in a heterocomplex with Pomt1 to add O-mannose at the beginning of the 
Dystroglycan glycan chain (Manya et al., 2004). Without the initial O-mannose, no additional sugar 
moieties can be added to the glycan chain, resulting in near complete loss of Dystroglycan glycosyla-
tion. This is lethal embryonically in a global Pomt2 knockout, however Emx1Cre:Pomt2 cKO mice are 
viable and survive into adulthood (Hu et al., 2016; van Reeuwijk, 2005; Yanagisawa et al., 2007).

In addition to binding extracellular ligands, Dystroglycan binds cytoskeletal proteins and signals 
through the intracellular tail of its β-subunit. To determine whether the intracellular domain of Dystro-
glycan is required for synaptic development and/or function, we examined mice in which one copy 
of Dag1 was deleted, and the other copy lacks the intracellular domain of β-Dag1 (Dag1cyto/-). These 
mice develop muscular dystrophy but show normal neuronal migration and axon guidance in regions 
throughout the central nervous system where Dystroglycan glycosylation is required (Lindenmaier 
et al., 2019; Satz et al., 2009; Satz et al., 2010).

To model mild forms of dystroglycanopathy, we examined mice expressing missense mutations 
in B4gat1 (β–1,4-glucuronyltransferase, B4gat1M155T) and Fkrp (fukutin related protein, FkrpP448L), two 
genes required for Dystroglycan glycosylation. B4gat1M155T mice were initially identified in a forward 
genetic screen and develop mild muscular dystrophy and have diminished ligand binding capacity 
due to reduced Dystroglycan glycosylation (Wright et al., 2012). The FkrpP448L missense mutation 
models a mutation found in a patient with dystroglycanopathy (Brockington et al., 2001). In mice, 
the FkrpP448L mutation leads to reduced glycosylation and mild muscular dystrophy, but no gross brain 
or eye malformations (Blaeser et al., 2013). While it is possible that Pomt2, B4gat1, and Fkrp could 
play a role in the glycosylation of proteins other than Dystroglycan, the identity of these proteins has 
not been described in neurons to date and we did not observe any emergent phenotypes that have 
not been observed in Dag1 mutants (Gerin et al., 2016; Larsen et al., 2017a; Larsen et al., 2017b; 
Willer et al., 2014).

We first examined the pattern of Dystroglycan localization in pyramidal neurons in CA1 of hippo-
campus in each of the five models by immunostaining adult (P30) mice with the IIH6 antibody, 
which detects the terminal matriglycan repeats on the glycan chain on α-Dag1 (Sheikh et al., 2022; 
Yoshida-Moriguchi and Campbell, 2015). In wild-type (WT) mice, punctate IIH6 immunoreactivity 
was evident in the somatic and perisomatic compartment of CA1 pyramidal neurons (Figure 1A). 
Immunoreactivity was also present in blood vessels, where Dag1 is also expressed (Durbeej et al., 
1998; Zaccaria et al., 2001). Neuronal immunoreactivity was undetectable in Emx1Cre:Dag1 cKOs 
and Emx1Cre:Pomt2 cKOs, whereas blood vessel expression was maintained, illustrating the specificity 
of the conditional deletion (Figure  1A). Punctate perisomatic IIH6 immunoreactivity was present 
in Dag1cyto/-, B4gat1M155T/M155T, and FkrpP448L/P448L mice (Figure 1A). To assess Dystroglycan localiza-
tion in Emx1Cre:Pomt2 cKOs we used an antibody that recognizes the intracellular C-terminus of 
β-Dag1. Although immunoreactivity for β-Dag1 was present and elevated above Emx1Cre:Dag1 cKO 
or Dag1cyto/- levels, Dag1 localization did not appear punctate in Emx1Cre:Pomt2 cKOs (Figure 1—
figure supplement 2A). This apparent difference implies that Dag1 glycosylation, and by exten-
sion the extracellular interactions that matriglycan mediates, is required for proper Dag1 synaptic 
localization.

We next prepared WGA-enriched lysate from neonatal (P0) forebrain and immunoblotted for 
(1) IIH6, to quantify the degree of α-Dag1 glycosylation and (2) β-Dag1, to measure total Dystro-
glycan protein levels (Figure 1B). Dag1 glycosylation was significantly reduced in Emx1Cre:Dag1 cKO, 
Emx1Cre:Pomt2 cKO, Dag1cyto/-, B4gat1M155T/M155T, and FkrpP448L/P448L mice; however, the reduction in 
FkrpP448L/P448L mice was less severe than the other models (Figure 1C). The reduction in glycosyla-
tion observed in the Dag1cyto/- mice is surprising given that the mutation is restricted to the intracel-
lular domain. Dystroglycan heterozygotes (Dag1+/-) show no reduction in IIH6 levels compared to 
wild-types (data not shown), so the reduction in Dag1cyto/- mice can be presumed to be due to the 
intracellular deletion. It is possible that the intracellular domain is required for the trafficking of Dystro-
glycan through the endoplasmic reticulum and/or Golgi apparatus, where Dystroglycan undergoes 
glycosylation, however additional work is needed to verify this. As expected, β-Dag1 immunoblot-
ting was significantly reduced in Emx1Cre:Dag1 cKOs and absent in Dag1cyto/- mice but normal in the 
glycosylation mutants (Figure 1D). The residual β-Dag1 in Emx1Cre:Dag1 cKO brain is likely due to 

https://doi.org/10.7554/eLife.87965
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Dag1 expression in unrecombined cells, such as blood vessels, as well as unrecombined tissue that 
remained after the forebrain dissection.

We next examined Dag1 protein levels during synaptogenesis using WGA-enriched lysate from 
P21-P30 hippocampus. As expected, Dag1 glycosylation assessed by IIH6 immunoblotting was 
severely reduced in Emx1Cre:Dag1 cKOs and Emx1Cre:Pomt2 cKOs but normal in Dag1cyto/- mice 
(Figure  1—figure supplement 2B–C). Immunoblotting for β-Dag1 showed a significant reduction 
in Emx1Cre:Dag1 cKOs and Dag1cyto/- mutants but normal levels in Emx1Cre:Pomt2 cKOs (Figure 1—
figure supplement 2B, D). Although localization of Dag1 was not punctate in Emx1Cre:Pomt2 cKOs 
(Figure  1—figure supplement 2A), the overall level of β-Dag1 was normal by WGA-enrichment, 
which enriches for proteins in the plasma membrane (Figure 1—figure supplement 2B, D). It there-
fore remains possible that Dag1 still trafficks to the cell surface in Emx1Cre:Pomt2 cKOs but fails to 
contact presynaptic axons and therefore does not permit synaptogenesis.

Dystroglycan is required for cortical neuron migration in a 
glycosylation-dependent manner
In neocortex, Dag1 expression in radial glia is required for proper migration of neurons, with Dag1 
conditional deletion from neuroepithelial cells or radial glia resulting in Type II lissencephaly (Moore 
et al., 2002; Pawlisz and Feng, 2011; Satz et al., 2008; Satz et al., 2010). This requires proper 
Dystroglycan glycosylation, but not its expression in neurons (Chan et al., 2010; Holzfeind et al., 
2002; Hu et al., 2011; Wright et al., 2012). To compare cortical migration across our five models of 
dystroglycanopathy, we performed immunostaining for the upper layer marker Cux1 (layers II/III-IV) and 
the deep layer marker Tbr1 (layers III, VI) in P30 somatosensory cortex (Figure 2A–B). Emx1Cre:Dag1 
cKOs and Emx1Cre:Pomt2 cKOs showed complete cortical dyslamination with 100% penetrance, 
whereas the cytoplasmic (Dag1cyto/-) deletion mutants appeared normal (Figure 2C–D). B4gat1M155T/

M155T missense mutants showed a migration phenotype only at the cortical midline, while FkrpP448L/P448L 
missense mutants did not show any cortical migration phenotype (Figure 2C–D, Figure 2—figure 
supplement 1A). These results indicate that cortical migration depends on Dystroglycan glycosylation 
but does not require its cytoplasmic domain. Furthermore, taken with the data in Figure 1B–D, they 
illustrate that the severity of the cortical migration phenotype scales with the degree of Dystroglycan 
hypoglycosylation; Emx1Cre:Dag1 cKOs and Emx1Cre:Pomt2 cKOs model a severe form of dystrogly-
canopathy (Walker-Warburg Syndrome, Muscle-Eye-Brain disease) and B4gat1M155T/M155T and FkrpP448L/

P448L mutants modeling a milder form of the disease.
To further assess the impact of our functional domain mutations, we assessed Laminin localization, 

the canonical interacting partner of Dystroglycan in the extracellular matrix (ECM), in adult neocortex 
(Ibraghimov-Beskrovnaya et al., 1992). Under WT conditions, Laminin immunoreactivity was evident 
at the pial surface where Laminin and Dystroglycan interact at the interface between radial glial 
endfeet and the cortical basement membrane (Satz et al., 2010). Laminin was also present in blood 
vessels, where Dystroglycan-expressing perivascular astrocytes contribute to the maintenance of water 
homeostasis (Menezes et al., 2014). In Emx1Cre:Dag1 cKO cortex, Laminin immunoreactivity at the 
pial surface was patchy and vascular Laminin showed evidence of the neuronal migration phenotype 
described in Figure 2, Figure 2—figure supplement 2A. Laminin immunoreactivity in Emx1Cre:Pomt2 
cKO cortex similarly showed a patchy appearance, albeit less severe than Emx1Cre:Dag1 cKOs, along 
with the evident cortical migration phenotype (Figure 2—figure supplement 2B). Dag1cyto/- mutants, 
on the other hand, exhibited normal Laminin immunoreactivity both at the pial surface and with 
regards to vascular organization (Figure 2—figure supplement 2C).

Perisomatic CCK+/CB1R+ interneuron targeting requires dystroglycan in 
a non-cell autonomous manner
CCK+/CB1R+ IN innervation is largely absent from the cortex and hippocampus when Dag1 is deleted 
selectively from pyramidal neurons using NeuroD6Cre (NEXCre) (Früh et al., 2016; Miller and Wright, 
2021). However, the development and function of CCK+/CB1R+ INs has not been examined in mouse 
models that more broadly lack Dag1 throughout the CNS and thus more accurately reflect the neuro-
pathology of dystroglycanopathy. We focused our analysis on region CA1 of the hippocampus, as 
its overall architecture is grossly unaffected in each of our mouse models. Both Emx1Cre:Dag1 cKO 

https://doi.org/10.7554/eLife.87965
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Figure 2. Dystroglycan is required for cortical neuron migration in a glycosylation-dependent manner and independent of intracellular interactions. 
Immunostaining for cortical layer markers (A) Cux1 (layers 2–4) and (B) Tbr1 (layers 3 and 6) in P30 somatosensory cortex (scale bar = 200 μm). Layer 
markers are shown in green. Nuclear marker Hoechst is shown in magenta. Quantification of fluorescence intensity of layer markers shown for (C) Cux1 

Figure 2 continued on next page
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and Emx1Cre:Pomt2 cKO mice exhibited a mild granule cell migration phenotype in dentate gyrus 
(Figure 3A, yellow arrows); however, CA1-CA3 showed normal pyramidal neuron organization.

In WT control mice, CCK+/CB1R+ IN axon terminals were abundant throughout the hippocampus, 
with their highest innervation density in the CA1 pyramidal cell body layer (stratum pyramidale, SP) 
where they form characteristic basket synapses onto pyramidal neurons (Figure 3A–C, Figure 3—
figure supplement 1A). In Emx1Cre:Dag1 cKO mice, CCK+/CB1R+ axons were present but failed to 
target the pyramidal cell layer (Figure 3A–C, Figure 3—figure supplement 1A), a surprising differ-
ence from the phenotype observed in NeuroD6Cre:Dag1 cKO mice which lack CCK+/CB1R+ IN inner-
vation entirely (Früh et al., 2016; Miller and Wright, 2021; Figure 3—figure supplement 1C). To 
confirm the CCK+/CB1R+ IN innervation pattern in the context of widespread Dag1 deletion, we 
generated NestinCre:Dag1 cKO mice. NestinCre, similar to Emx1Cre, drives Cre recombination in fore-
brain progenitors, however Emx1Cre recombination begins around E10.5 and NestinCre recombination 
begins around E11.5 (Liang et al., 2012; Tronche et al., 1999). NestinCre:Dag1 cKOs showed the 
same CCK+/CB1R+ axon targeting phenotype as Emx1Cre:Dag1 cKOs (Figure 3—figure supplement 
1B), further suggesting that the observed Emx1Cre:Dag1 cKO phenotype faithfully models dystrogly-
canopathy neuropathology.

It was previously reported that the lack of CCK+/CB1R+ IN innervation of CA1 pyramidal neurons 
observed in NeuroD6Cre:Dag1 cKOs was accompanied by reduced numbers of CCK+/CB1R+ INs (Miller 
and Wright, 2021). We therefore sought to quantify CCK+/CB1R+ IN cell density in Emx1Cre:Dag1 cKOs 
using both NECAB1 and NECAB2 antibodies (Miczán et al., 2021). As NECAB1 is expressed by both 
CCK+/CB1R+ INs and PV+ INs, we performed immunolabeling for both NECAB1 and PV and quantified 
the density of NECAB1+;PV- cell bodies in CA1, finding no difference between Emx1Cre:Dag1 controls 
and Emx1Cre:Dag1 cKOs (Figure 3—figure supplement 2A–B). To confirm this, we also quantified the 
density of NECAB2+ cell bodies in CA1, again finding no difference between genotypes (Figure 3—
figure supplement 2C, E). Thus, the observed change in CCK+/CB1R+ IN axon targeting of CA1 pyra-
midal cells is not due to a reduction in cell numbers, but rather a failure to innervate the appropriate 
compartment.

Emx1Cre:Pomt2 cKO mice fully phenocopied the aberrant Emx1Cre:Dag1 cKO CB1R+ immunoreac-
tivity pattern (Figure 3A–C), demonstrating that proper CCK+/CB1R+ IN basket axon targeting requires 
Dystroglycan glycosylation. Both the B4gat1 and Fkrp mutants showed a normal distribution of CB1R+ 
axon targeting to the somatodendritic compartment of CA1 neurons, but with reduced CB1R intensity 
in SP (Figure 3A–C). The cytoplasmic domain of Dystroglycan also plays a role in the appropriate 
targeting of CB1R immunoreactive axons, as the distribution of axons was perturbed in the Dag1cyto/- 
mutants, although with an intermediate phenotype in which the upper portion of SP appeared normal 
while the lower portion of SP showed loss of selective CB1R+ axon targeting (Figure 3A–C).

Due to the axonal targeting defect in the CCK+/CB1R+ IN population, we next examined the parv-
albumin (PV) population of interneurons in the hippocampus, as these cells also form perisomatic 
basket cell synapses on to CA1 pyramidal cells. There was no significant difference in the number of 
PV+ INs in CA1 of Emx1Cre:Dag1 cKO mice and littermate controls (Figure 3—figure supplement 2D 
and F). Furthermore, the distribution of PV+ IN axons showed normal targeting to SP in all mouse 
models (Figure 3—figure supplement 3A–B), indicating that the axon targeting phenotype is specific 
to the CCK+/CB1R+ IN population. Interestingly, Emx1Cre:Dag1 cKO mice exhibited a slight increase 
in PV intensity in SP, perhaps indicating that there is a degree of compensation (Figure 3—figure 
supplement 3A–B).

and (D) Tbr1. Shaded regions of intensity profile illustrate ± SEM. See Supplementary file 1 for Ns. Significance: *=p < 0.05, **=p < 0.01, ***=p < 
0.001, NS = p ≥ 0.05. CC, corpus callosum; A.U., arbitrary units.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw data for quantification in Figure 2C.

Source data 2. Raw data for quantification in Figure 2D.

Figure supplement 1. Cortical migration is disrupted at midline of B4gat1M155T/M155T but not FkrpP448L/P448L mutants.

Figure supplement 2. Laminin immunoreactivity in adult neocortex appears discontinuous in Dag1 mutants.

Figure 2 continued

https://doi.org/10.7554/eLife.87965
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Figure 3. Dag1 is required for CCK+/CB1R+ basket IN perisomatic axon targeting in stratum pyramidale of hippocampal CA1-3. (A) Nuclear marker 
Hoechst (upper panels) shows hippocampal morphology. Granule cell migration is disrupted in dentate gyrus of Emx1Cre:Dag1 cKOs and Emx1Cre:Pomt2 
cKOs (yellow arrows). CA1-3 gross morphology is normal in all models. CB1R immunostaining (lower panels) shows abnormal CCK+/CB1R+ basket 
interneuron targeting in CA1-3 to varying degrees across models (scale bar = 400 μm). (B) Higher magnification view of CB1R immunostaining in CA1 
(scale bar = 50 μm). (C) Quantification of CA1 CB1R fluorescence intensity profile. Shaded regions of intensity profile illustrate ± SEM. Gray region 
highlights SP. See Supplementary file 1 for Ns. Significance: *=p < 0.05, **=p < 0.01, ***=p < 0.001, NS = p ≥ 0.05. A.U., arbitrary units; SO, stratum 
oriens; SP, stratum pyramidale; SR, stratum radiatum.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Raw data for quantification in Figure 3C.

Figure supplement 1. CCK+/CB1R+ IN axon targeting phenotypes in hippocampal CA1 of various Dag1 cKOs.

Figure supplement 2. CCK+/CB1R+ IN cell numbers are unchanged in Emx1Cre:Dag1 cKOs.

Figure 3 continued on next page

https://doi.org/10.7554/eLife.87965
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Notably, CB1R expression was also abnormal in brain regions outside of the hippocampus. In 
somatosensory cortex, CB1R immunostaining reflected the dyslamination phenotype in both the 
Emx1Cre:Dag1 cKO and Emx1Cre:Pomt2 cKO mice throughout neocortex and the B4gat1M155T/M155T mice 
at midline, while it appeared normal in cortex of Dag1cyto/- and FkrpP448L/P448L mice (Figure 3—figure 
supplement 4A). CB1R staining was also reduced and disorganized in the basolateral amygdala (BLA) 
in Emx1Cre:Dag1 cKO and Emx1Cre:Pomt2 cKO mice (Figure 3—figure supplement 4B). Interestingly, 
CB1R immunostaining in the inner molecular layer (IML) of dentate gyrus appears normal in all mutants 
(Figure  3A). In the IML, CB1R is present in excitatory mossy cell axons targeting dentate granule 
cells whereas in both cortex and amygdala CB1R expression is restricted to GABAergic interneurons 
(Földy et al., 2006; Katona et al., 2001; Monory et al., 2015). Therefore, glycosylated Dystroglycan 
instructs the development of inhibitory CB1R+ interneuron populations in multiple brain regions.

Dystroglycan is required for CCK+/CB1R+ interneuron axon targeting 
during early postnatal development
During early postnatal development, CCK+/CB1R+ IN axons undergo a dramatic laminar rearrange-
ment, progressing from more distal localization amongst pyramidal cell dendrites, to eventually target 
pyramidal neuron cell bodies in the hippocampus (Miller and Wright, 2021; Morozov et al., 2009; 
Morozov and Freund, 2003a; Morozov and Freund, 2003b). We examined the developmental time 
course of CCK+/CB1R+ IN axon targeting in our Emx1Cre:Dag1 cKO mice beginning at P5, when the 
axons are first readily identifiable (Berghuis et al., 2007; Eggan et al., 2010; Mulder et al., 2008; 
Vitalis et al., 2008). At P5 in Emx1Cre:Dag1 control mice, CCK+/CB1R+ axons were initially concen-
trated in the stratum radiatum (SR) of the hippocampus (Figure 4A–C). Between P10 and P30, the 
CCK+/CB1R+ axons underwent developmental reorganization, with reduced innervation of SR coin-
ciding with a progressive increase in innervation of SP. In contrast, overall CCK+/CB1R+ innervation 
was initially reduced in the hippocampus of mutant Emx1Cre:Dag1 cKO mice at P5, and these axons 
failed to undergo laminar reorganization as they developed (Figure 4A–C). By P30, after IN synapse 
formation and targeting are largely complete in control mice, the density of CCK+/CB1R+ axons in 
Emx1Cre:Dag1 cKO mice was uniform across all hippocampal lamina (Figure 4A–C). Therefore, Dystro-
glycan plays a critical developmental role during the first two postnatal weeks, for the proper laminar 
distribution and perisomatic targeting of CCK+/CB1R+ IN axons in the hippocampus.

CCK+/CB1R+ IN synapse formation requires postsynaptic glycosylated 
dystroglycan
Given the perturbed distribution of CCK+/CB1R+ IN axons in the hippocampus, we next wanted to 
determine whether the remaining CCK+/CB1R+ IN axons were capable of forming synapses in dystro-
glycanopathy models. Using VGAT as a marker of inhibitory presynaptic terminals, we saw no differ-
ence in total VGAT puncta density in SP in any of the mouse models, indicating that the total number of 
inhibitory synapses is normal (Figure 5B–D). Immunostaining for CB1R showed a significant decrease 
in CB1R in SP of Emx1Cre:Dag1 cKO, Emx1Cre:Pomt2 cKO, B4gat1M155T/M155T, and FkrpP448L/P448L mutants, 
but not Dag1cyto/- mutants (Figure 5E). This suggests that the difference in CB1R+ axon distribution 
described in SP of Dag1cyto/- mutants in Figure 3A–C likely reflects a change in CCK+/CB1R+ IN axon 
targeting but not synapse formation, whereas Emx1Cre:Dag1 cKO and all three glycosylation mutants 
exhibit a reduction in CCK+/CB1R+ IN axon targeting and synapse number in SP. It should be noted 
that the data in Figure 3A–C reflects axonal CB1R intensity across all hippocampal layers, whereas 
the quantification in Figure 5E reflects the density of axonal swellings within SP. These data therefore 
suggest that there is an overall reduction in CB1R intensity in SP of Dag1cyto/- mutants that does not 
influence the number of CB1R+ axonal swellings. In contrast to CCK+/CB1R+ INs, the PV+ population of 
basket interneurons showed no change in puncta density in SP in any of the models (Figure 5—figure 

Figure supplement 2—source data 1. Raw data for quantification in Figure 3—figure supplement 2B, E, and F.

Figure supplement 3. Parvalbumin+ basket INs do not require Dag1 for proper axon targeting in hippocampal CA1.

Figure supplement 3—source data 1. Raw data for quantification in Figure 3—figure supplement 3B.

Figure supplement 4. Altered CB1R expression in cortex and basolateral amygdala of Dag1 and POMT2 mutants.

Figure 3 continued

https://doi.org/10.7554/eLife.87965
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supplement 2A–E; analysis of VGAT, CB1R, and PV densities in SO and SR included in Figure 5—
figure supplement 1A–B and Figure 5—figure supplement 3A.)

To better approximate the extent of basket synapse formation, we quantified the co-localization 
between VGAT and CB1R or PV. In SP, the percent of CB1R puncta co-localized with VGAT was reduced 
in the same models that showed a reduction in CB1R density (Emx1Cre:Dag1 cKO, Emx1Cre:Pomt2 cKO, 
B4gat1M155T/M155T, and FkrpP448L/P448L mutants) but not Dag1cyto/- mutants (Figure 5C and F), suggesting 
that CCK+/CB1R+ INs require postsynaptic glycosylated Dystroglycan in order to form synapses 
whereas the cytoplasmic domain is required for axon targeting but not synapse formation.

Interestingly, the percent of PV co-localized with VGAT increased in the SP of Emx1Cre:Dag1 cKO 
and Emx1Cre:Pomt2 cKO mice, with no change in any of the other models (Figure 5—figure supple-
ment 2C, E; analysis of co-localization in SO and SR included in Figure 5—figure supplement 1C, 
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Figure 4. Dag1 is required for CCK+/CB1R+ IN axon targeting during early postnatal development. (A) Immunostaining for CB1R+ axon terminals (green) 
in the hippocampus of Emx1Cre:Dag1 controls (left) and cKOs (right) at ages P5-P30. Nuclear marker Hoechst is shown in magenta. White arrowheads 
indicate migration errors in dentate granule cells Emx1Cre:Dag1 cKO mice. Scale bar = 500 μm. (B) Higher magnification images of CB1R+ axon terminals 
in CA1 of Emx1Cre:Dag1 controls (left) and cKOs (right) at ages P5-P30. Scale bar = 100 μm. (C) Quantification of CB1R fluorescence intensity profile in 
CA1. Shaded regions of intensity profile illustrate ± SEM. Gray region highlights SP. See Supplementary file 1 for Ns. Significance: *=p < 0.05, **=p < 
0.01, ***=p < 0.001, NS = p ≥ 0.05. A.U., arbitrary units; SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum.

The online version of this article includes the following source data for figure 4:

Source data 1. Raw data for quantification in Figure 4C.

https://doi.org/10.7554/eLife.87965


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Jahncke et al. eLife 2023;12:RP87965. DOI: https://doi.org/10.7554/eLife.87965 � 11 of 29

VG
AT

 C
B

�R

SO

SP

SR

VG
AT

 C
B

�R
VG

AT

SO

SP

SR

C
B

�R

SO

SP

SR

WT Emx1Cre:
Dag1 cKO Dag1cytoDEmx1Cre:

Pomt2 cKO B4gat1M155T FkrpP448LA

B

C

D

C'

E F
NS NS NS NS NS

Emx1
Dag1

Emx1
Pomt2

Cyto B4gat1 Fkrp
0

25

50

75

100

125

150

VG
AT

 D
en

si
ty

 (%
 o

f C
on

tro
l) *** *** NS *** *

Emx1
Dag1

Emx1
Pomt2

Cyto B4gat1 Fkrp
0

25

50

75

100

125

150

C
B1

R
 D

en
si

ty
 (%

 o
f C

on
tro

l)

* *** NS ** ***

Ctrl cKO Ctrl cKO WT Mut WT Mut WT Mut
0

25

50

75

%
 C

B1
R

 C
o−

lo
ca

liz
ed

 w
/ V

G
AT

100

Ctrl Emx1:Dag1 Emx1:Pomt2 Cyto B4gat1 Fkrp

SP

Figure 5. Dag1 and Pomt2 cKOs exhibit impaired CB1R+ basket synapse formation in stratum pyramidale of hippocampal CA1. P30 coronal sections 
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Figure 5 continued on next page
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Figure 5—figure supplement 3B). It is possible that the reduction in inhibitory CCK+/CB1R+ synapses 
prompts homeostatic compensation through an increase in PV+ synapses. Alternatively, this may 
reflect competition between CCK+/CB1R+ and PV+ INs for physical space on the perisomatic region of 
pyramidal cells, with the decrease in CCK+/CB1R+ synapses in Emx1Cre:Dag1 cKOs and Emx1Cre:Pomt2 
cKOs allowing additional PV+ IN synapses to form.

CCK+/CB1R+ interneuron basket synapse function is dependent on 
dystroglycan function
Perisomatic inhibitory basket cell synapses powerfully control activity in the hippocampal circuit 
(Freund and Katona, 2007). Previous studies in NeuroD6Cre:Dag1 cKO mice, in which CCK+/CB1R+ 
INs are absent, demonstrated reduced inhibitory synaptic function (Früh et al., 2016). In the current 
study, however, CCK+/CB1R+ INs are present but mistargeted. Thus, we wanted to determine whether 
with the changes in CCK+/CB1R+ basket synapse localization in our mouse models were associated 
with altered inhibitory synaptic function. CCK+/CB1R+ IN basket cells can be selectively activated 
by muscarinic receptor activation, which increases the rate of spontaneous inhibitory post-synaptic 
currents (sIPSCs) in nearby pyramidal cells (Früh et al., 2016; Nagode et al., 2014). Thus, to assay 
function at CCK+/CB1R+ IN synapses, we performed whole cell patch clamp electrophysiology from 
CA1 pyramidal neurons in slices from control and mutant mice. After recording 5 minutes of baseline 
sIPSCs, the cholinergic receptor agonist Carbachol (CCh) was added to the bath and an additional 
5 minutes of sIPSCs were recorded. While both Emx1Cre:Dag1 control and Emx1Cre:Dag1 cKO cells 
displayed a CCh-mediated change in sIPSC frequency, this response was dramatically attenuated in 
Emx1Cre:Dag1 cKOs mice compared to Emx1Cre:Dag1 control mice (Figure 6A–C). Furthermore, in 
Emx1Cre:Dag1 controls, 19/21 cells (90.5%) responded to CCh application (defined as a>20% increase 
in sIPSC frequency), whereas only 13/22 cells (59.1%) responded in Emx1Cre:Dag1 cKOs (Figure 6—
figure supplement 1B). Proper Dystroglycan glycosylation was also required for CCK+/CB1R+ IN 
synapse function, as Emx1Cre:Pomt2 cKO mice exhibited the same phenotype as Emx1Cre:Dag1 cKOs: 
a reduced response to CCh overall, and a reduced proportion of responsive cells (Figure  6A–C, 
Figure  6—figure supplement 1B). CCh also increased the mean sIPSC amplitude in each of the 
controls (Figure 6—figure supplement 1A), which may reflect an increased contribution of larger-
amplitude action potential-mediated perisomatic events elicited by CCh (Früh et al., 2016; Nagode 
et al., 2014). Consistent with the decreased function of CCK+/CB1R+ IN synapses, a CCh-mediated 
change in sIPSC amplitude was also absent in each of these models (Figure 6—figure supplement 
1A). Together, these data indicate that the altered perisomatic CCK+/CB1R+ IN synaptic localization in 
CA1 is associated with a functional deficit in synaptic signaling.

Dag1cyto/- mutants also had a dramatically attenuated sIPSC response to CCh compared to WT 
controls (Figure  6C). Notably, even baseline sIPSC frequency was reduced in Dag1cyto/- mutants 
(2.27±1.70 Hz) compared to WT controls (4.46±2.04 Hz, p=0.002), whereas baseline sIPSC frequen-
cies appeared normal in all other mutants when compared to their respective controls. Together with 
the finding that these mutants contain a normal number of CCK+/CB1R+ basket synapses (as measured 
using immunohistochemistry; Figure 5A–D), these results indicate that the cytoplasmic domain of 

estimate putative CB1R+ basket cell synapse formation. Error bars show mean + SEM. (For quantification of puncta densities and co-localization in SO 
and SR see Figure 5—figure supplement 1.) See Supplementary file 1 for Ns. Significance: *=p < 0.05, **=p < 0.01, ***=p < 0.001, NS = p ≥ 0.05. SO, 
stratum oriens; SP, stratum pyramidale; SR, stratum radiatum.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Raw data for quantification in Figure 5D, E.

Source data 2. Raw data for quantification in Figure 5F.

Figure supplement 1. Extended quantification of images in Figure 5A–C.

Figure supplement 2. Dag1 and Pomt2 cKOs exhibit increased PV+ basket synapse formation in stratum pyramidale of hippocampal CA1.

Figure supplement 2—source data 1. Raw data for quantification in Figure 5—figure supplement 2D.

Figure supplement 2—source data 2. Raw data for quantification in Figure 5—figure supplement 2E.

Figure supplement 3. Extended quantification of images in Figure 5—figure supplement 2A–C.

Figure 5 continued

https://doi.org/10.7554/eLife.87965
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Dystroglycan may play a critical role in mediating the assembly of functional postsynaptic signaling/
receptor complexes at these synapses.

Neither of the more mildly hypoglycosylated mutants (B4gat1M155T/M155T, FkrpP448L/P448L) were different 
from their respective littermate controls in terms of the magnitude of the CCh effect on sIPSC frequency 
(Figure 6C), although the B4gat1WT mice appeared to possess a reduced effect of CCh compared to 
other control conditions (Figure 6A–C). The B4gat1 line is of a mixed genetic background, which 
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Figure 6. Dag1 is required for CCK+/CB1R+ IN synapse function in hippocampal CA1 in a manner dependent on both glycosylation and intracellular 
interactions. (A) Representative traces showing + seconds of sIPSC recordings at baseline (top) and after the addition of carbachol (bottom). (B) 
Quantification of average sIPSC frequency at baseline and after the addition of carbachol. (C) Quantification of the change in sIPSC frequency with the 
addition of carbachol. Error bars show mean + SEM. See Supplementary file 1 for Ns. Significance: *=p < 0.05, **=p < 0.01, ***=p < 0.001, NS = p ≥ 
0.05. Abbreviations: sIPSC, spontaneous inhibitory postsynaptic current; CCh, carbachol.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Raw data for quantification in Figure 6B-C and Figure 6—figure supplement 1A, B.

Figure supplement 1. Additional quantification of sIPSC recordings.

https://doi.org/10.7554/eLife.87965
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could possibly explain the difference in CCh response. This finding is of unclear significance and may 
have obscured potential differences. Importantly, however, the marked functional synaptic differences 
observed between the Emx1Cre:Pomt2 cKO, Emx1Cre:Dag1 cKO and Dag1cyto/- mice when compared 
with each of their respective controls described above was not seen in either of these phenotypically 
milder mutants.

Together, these results suggest that Dystroglycan is required for the function of CCK+/CB1R+ IN 
perisomatic basket synapses in a glycosylation-dependent manner, as evidenced by the Emx1Cre:Dag1 
cKO and Emx1Cre:Pomt2 cKO synaptic phenotypes, and that the intracellular domain of Dystroglycan 
is also required for normal CCK+/CB1R+ IN basket synapse function. However, we cannot rule out 
the possibility that CCK+/CB1R+ INs are simply less responsive to CCh in the mutants, as we lack the 
tools to identify CCK+/CB1R+ INs in live tissue for targeted recordings. In contrast, B4gat1M155T/M155T 
and FkrpP448L/P448L hypomorphic mutants both appear to retain sufficient Dystroglycan glycosylation to 
maintain normal synapse function.

Increased seizure susceptibility in models of dystroglycanopathy
Human patients with dystroglycanopathy have an increased risk of seizures and epilepsy (Al Dhaibani 
et al., 2018; Di Rosa et al., 2011; Raphael et al., 2014; Yang et al., 2022), however the underlying 
cause has yet to be determined. The observed defects in inhibitory basket synapse function suggest 
that alterations in neuronal circuit inhibition could potentially predispose mutant mice to seizures. To 
test whether mouse models of dystroglycanopathy exhibit a reduced seizure threshold, we exposed 
mice to the volatile chemoconvulsant flurothyl and measured the latency to generalized tonic-clonic 
seizure (TCS) (Egawa et al., 2021).

The latency to TCS was significantly faster in Emx1Cre:Dag1 cKO mice than their littermate controls 
(a 40.9% reduction on average, Figure 7A), with no difference in seizure latency between sexes in 
either group (Figure  7—figure supplement 1C). Emx1Cre:Pomt2 cKOs and Dag1cyto/- mutants also 
had a significantly shorter latency to TCS than littermate controls (42.9% and 33.6% reductions, 
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Figure 7. Reduced seizure induction threshold in models of dystroglycanopathy. (A) Quantification of latency (in seconds) to generalized tonic 
clonic seizure upon exposure to 10% flurothyl delivered at a constant rate. Open points denote statistical outliers. See Supplementary file 1 for Ns. 
Significance: *=p < 0.05, **=p < 0.01, ***=p < 0.001, NS = p ≥ 0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Raw data for quantification in Figure 7A and Figure 7—figure supplement 1A–C.

Figure supplement 1. Extended seizure induction threshold data.
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respectively; Figure  7A), indicating that the mechanism underlying Dystroglycan’s role in seizure 
susceptibility requires both extracellular glycosylation and intracellular interactions. B4gat1M155T/

M155T mutants showed a small but significant reduction (16%) in seizure latency, despite exhibiting 
no detectable functional deficit by electrophysiology (Figure 6A–C, Figure 7A). Finally, FkrpP448L/P448L 
mutants showed no significant change in seizure susceptibility (Figure 7A). Thus, the reduction in 
seizure latency reflects the severity of the synaptic phenotypes across the various models of dystro-
glycanopathy. These results demonstrate that disruptions in Dystroglycan function, including both its 
extracellular glycosylation and intracellular interactions, increase sensitivity to seizures.

Discussion
Recent work identified a key role for neuronal Dystroglycan in the establishment and function of CCK+/
CB1R+ inhibitory synapses in the forebrain (Früh et al., 2016; Miller and Wright, 2021). Deletion of 
Dag1 selectively from pyramidal neurons (NeuroD6Cre:Dag1 cKO) led to a near complete loss of CCK+/
CB1R+ INs during the first few postnatal weeks. In this study, we sought to better understand how 
CCK+/CB1R+ IN synapse formation is affected in mouse models that more accurately reflect dystrogly-
canopathy, in which Dystroglycan function is more broadly affected throughout the CNS (Figures 1 
and 2). Using a model that deletes Dag1 throughout the developing forebrain (Emx1Cre:Dag1 cKO) 
we found that CCK+/CB1R+ INs were present, but the laminar organization of their axon terminals and 
their ability to form functional basket synapses onto pyramidal neuron cell bodies in the hippocampus 
was impaired (Figures 3–6). The inability of CCK+/CB1R+axon terminals to concentrate in the CA1-3 
cell body layer began to manifest during the first postnatal week, when dynamic changes in laminar 
innervation by CCK+/CB1R+ axons normally occur (Figure 4). Furthermore, these mice were found 
to exhibit a reduced seizure threshold compared to controls, showing for the first time that mouse 
models of dystroglycanopathy are vulnerable to seizures (Figure 7). Because Emx1Cre (and NestinCre) 
conditional deletion of Dag1 or Pomt2 leads to widespread loss of functional Dystroglycan in the fore-
brain in contrast with the previously studied NeuroD6Cre conditional deletion, which targets pyramidal 
neurons, these models more accurately model dystroglycanopathy.

We found that CCK+/CB1R+ IN synapse formation and function are dependent on proper Dystro-
glycan glycosylation and appear to correlate with the degree of hypoglycosylation in different mutants. 
Complete reduction of glycosylation in Emx1Cre:Pomt2 cKO mutants caused the same phenotypes 
seen in Dystroglycan conditional knockouts (Emx1Cre:Dag1 cKO; Figures 1–3 and 5–6), possibly due 
to the mislocalization of Dystroglycan. The finding that glycosylation is required for Dystroglycan 
synaptic localization in hippocampal pyramidal cells is similar to a previous finding in retinal photo-
receptors in the context of Pomt1 conditional deletion (Rubio-Fernández et al., 2018). In contrast, 
when Fktn deletion is induced in myotubes β-Dystroglycan localization is unchanged, suggesting that 
this phenomenon is unique to synaptic Dystroglycan (Beedle et  al., 2012). One interpretation is 
that without matriglycan present to mediate interaction with presynaptic cells, Dystroglycan is no 
longer concentrated at synaptic sites, implicating it as a synaptic organizer. However, the miswiring 
of the CCK+/CB1R+ axons could also reduce the likelihood of postsynaptic Dystroglycan encountering 
a presynaptic axon, discouraging synaptic localization. Conversely, it is possible that glycosylation is 
required for trafficking to the surface in the first place, however this is less likely given that the levels 
of β-Dystroglycan were normal in membrane-enriched lysate (Figure 1, Figure 1—figure supplement 
2).

A milder reduction in glycosylation (B4gat1M155T/M155T) resulted in a cortical migration phenotype 
that was restricted to midline (Figure 3—figure supplement 4) and a small reduction in CCK+/CB1R+ 
axon terminals and synaptic puncta density in CA1 which did not appear to affect synapse func-
tion (Figures 3 and 5–6). The mildest reduction in glycosylation amongst our models was observed 
in FkrpP448L/P448L mutants, which exhibited normal cortical migration but the same mild defect in 
CCK+/CB1R+ IN axon targeting and synaptic puncta density observed in B4gat1M155T/M155T mutants 
(Figures 3 and 5–6). Together, these three glycosylation mutants illustrate the degree of hypoglyco-
sylation required for neurodevelopmental processes and show that defects in synaptic function only 
arise in the context of severely reduced glycosylation; the residual Dystroglycan function present in 
B4gat1M155T/M155T and FkrpP448L/P448L mutants is sufficient for most aspects of brain development. Finally, 
using Dag1cyto/- mutants that lack the intracellular domain of Dystroglycan, we found that the intracel-
lular domain plays a role in some, but not all, neurodevelopmental processes. The intracellular domain 
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is not required for neuronal migration in neocortex or synapse formation in CA1 (Figures 2 and 5) but 
is required for the proper targeting of CCK+/CB1R+ IN axons in CA1-3 (Figure 3) and for subsequent 
CCK+/CB1R+ IN basket synapse function (Figure 6).

Dystroglycan is an essential transsynaptic organizing molecule for 
CCK+/CB1R+ basket synapses
Synaptogenesis requires multiple distinct steps: (1) synaptic partner recognition, (2) recruitment and 
assembly of core pre- and post-synaptic machinery, (3) differentiation and maturation of synaptic 
identity, and (4) synaptic maintenance (Südhof, 2018). Based on data from this study (Figure 4) and 
previous work from our group and others, mice lacking Dystroglycan exhibit defects in CCK+/CB1R+ IN 
development at the earliest time point they can be reliably identified (P0-P5), before the peak phase 
of inhibitory synapse formation (P9), suggesting that Dystroglycan functions at the earliest stages of 
synaptogenesis such as synaptic partner recognition (Favuzzi et al., 2019). Determining the precise 
onset of synapse targeting and formation for most IN subtypes, including CCK+/CB1R+INs, is limited 
by a lack of genetic tools for visualizing and manipulating IN subtypes during developmental stages.

The impairment in CCK+/CB1R+ IN development throughout the forebrain suggests a trans-synaptic 
role for Dystroglycan (Figure 3, Figure 3—figure supplement 4). The identity of the trans-synaptic 
binding partner between Dystroglycan-expressing cells and CCK+/CB1R+ INs remains unknown. Our 
data in Emx1Cre:Pomt2 cKO mice point to a critical role for the glycan chains on Dystroglycan medi-
ating this binding. All proteins that bind to the glycan chains on Dystroglycan do so through at least 
one Laminin G (LG) domain. There are over 25 LG-domain containing extracellular or transmembrane 
proteins expressed in the hippocampus. Neurexins, a family of highly alternatively spliced synaptic 
cell-adhesion molecules (NRXN1-3) which each contain multiple LG domains, bind Dystroglycan in a 
glycosylation-dependent manner (Boucard et al., 2005; Fuccillo et al., 2015; Reissner et al., 2014; 
Sugita et al., 2001). The specific splice isoforms of Nrxns that bind Dystroglycan are expressed by 
CCK+/CB1R+ INs (Fuccillo et al., 2015; Ullrich et al., 1995). Neurexin-3 conditional knockout (targeting 
all Nrxn3 isoforms) and CRISPR-mediated Dag1 knockout both result in similar synaptic deficits in 
olfactory bulb and prefrontal cortex (Trotter et al., 2023). While a Dystroglycan knock-in mouse with 
reduced glycosylation that impairs Neurexin binding (Dag1T190M) shows normal CCK+/CB1R+ synapse 
formation by immunohistochemistry, the functionality of these synapses was not assessed by electro-
physiology (Früh et al., 2016). Similar to B4gat1M155T/M155T and FkrpP448L/P448L mutants, the Dag1T190M 
mutation does not fully eliminate Dystroglycan glycosylation, and therefore does not rule out the 
possibility that Neurexins play a role at CCK+/CB1R+ synapses. It is also possible that a yet undescribed 
Dystroglycan interacting protein is required for initial synapse recognition, and Nrxn-Dag1 interac-
tions are required for subsequent synapse maturation and maintenance only. Indeed, the majority of 
studies indicate that Neurexins are not required for the initial formation of synapses, but rather regu-
late the maturation and structural maintenance of synapses after they have formed (Chen et al., 2017; 
Dudanova et al., 2007; Lin et al., 2023; Missler et al., 2003; Trotter et al., 2023). Interestingly, while 
Dystroglycan localizes to both PV+ and CCK+/CB1R+ inhibitory basket synapses in CA1, only the CCK+/
CB1R+ IN population was affected in the dystroglycanopathy models (Früh et al., 2016). Presumably, 
PV+ INs have a distinct developmental program independent of Dystroglycan and likely require a 
different postsynaptic recognition partner.

A role for the dystrophin-glycoprotein complex in CCK+/CB1R+ 
interneuron development
In brain and muscle tissue, Dystroglycan forms a complex with Dystrophin and several other proteins, 
collectively known as the Dystrophin Glycoprotein Complex (DGC). Like Dystroglycan, Dystrophin is 
also expressed throughout the forebrain and is associated with inhibitory synapses in multiple brain 
regions (Knuesel et al., 1999). Patients with mutations in Dystrophin develop Duchenne Muscular 
Dystrophy (DMD), and frequently exhibit cognitive impairments in the absence of brain malformations, 
suggesting a general role for the DGC in synapse development and function (Jagadha and Becker, 
1988; Moizard et al., 2000; Naidoo and Anthony, 2020). A mouse model of DMD lacking all neuronal 
Dystrophin isoforms (mdx) exhibits defects in CCK+/CB1R+ IN synapse development and abnormal 
innervation in the hippocampus, resembling the innervation pattern we observed in Emx1Cre:Dag1 
cKO and Emx1Cre:Pomt2 cKO mice in this study (Krasowska et al., 2014). Since Dystroglycan interacts 
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with Dystrophin through its intracellular domain, we expected to observe similar phenotypes in mice 
lacking the intracellular domain of Dystroglycan (Dag1cyto/-). However, Dag1cyto/- showed a milder axon 
targeting defect than Emx1Cre:Dag1 cKO or mdx mice. In addition, IIH6 puncta were normally localized 
to the somatodendritic compartment in Dag1cyto/- mutants, suggesting that Dystroglycan does not 
require interactions with Dystrophin for is localization to somatodendritic synapses. However, Dystro-
glycan’s synaptic localization has not been examined in the mdx mutants. Clearly, additional work is 
required to better understand the relationship between Dystroglycan and Dystrophin at synapses in 
the brain.

While the density of CCK+/CB1R+ IN synaptic puncta was normal in Dag1cyto/- mice, synaptic func-
tion was impaired to the same level as Emx1Cre:Dag1 cKO and Emx1Cre:Pomt2 cKO mice, and seizure 
latency was reduced. Given that Dag1cyto/- and B4gat1M155T/M155T mutants show a similar reduction in 
Dystroglycan glycosylation (Figure 1B–C), our observation that the functional synaptic phenotype is 
restricted to the Dag1cyto/- mutant reinforces the notion that the intracellular domain of Dystroglycan 
plays an active role in organizing essential postsynaptic signaling elements. One possibility is that the 
intracellular domain of Dystroglycan is required to recruit additional postsynaptic scaffolding elements 
and receptors necessary for CCK+/CB1R+ basket synapse function (Uezu et al., 2019). Importantly, 
Dag1cyto/- mice did not show a cortical migration phenotype (Figure 2A–D), indicating that the func-
tional synaptic deficits and reduced seizure latency occurred independent of cortical malformation.

Altered inhibitory synapse development and function may contribute 
to neurological symptoms in dystroglycanopathy
In addition to muscular atrophy and hypotonia, dystroglycanopathy patients often present with 
central nervous system symptoms. Patients with the most severe forms of dystroglycanopathy (FCMD, 
Muscle-Eye-Brain disease, and Walker-Warburg Syndrome) exhibit structural changes including hypo-
plasia of the retina, brainstem and spinal cord, cerebellar cysts, hydrocephalus, Type II lissencephaly, 
and microcephaly, associated with seizures and cognitive disability (Meilleur et al., 2014; Mercuri 
et al., 2009). Patients with milder forms of dystroglycanopathy may show cognitive disability and/or 
seizures without gross brain malformations, suggesting that there may be synaptic deficits indepen-
dent of early neurodevelopmental processes (e.g. neuronal migration, axon guidance; Mercuri et al., 
2009; Yang et al., 2022). The mouse models used in this study recapitulate the full spectrum of brain 
malformations seen in human patients. Emx1Cre:Dag1 cKO and Emx1Cre:Pomt2 cKO mice show Type 
II lissencephaly consistent with severe dystroglycanopathy, whereas B4gat1M155T/M155T and FkrpP448L/P448L 
mutants have relatively normal cortical development consistent with mild dystroglycanopathy. Muta-
tions in any of the genes involved in the glycosylation of Dystroglycan can result in dystroglycanopathy 
with seizures, but the incidence and severity of seizures is higher in patients with brain malformations 
(Mercuri et al., 2009; Wang et al., 2017; Yang et al., 2022).

Mice have been used to model dystroglycanopathy for decades; however, to our knowledge the 
present study is the first to investigate seizure susceptibility in mouse models of dystroglycanopathy. 
It is probable that the CCK+/CB1R+ interneuron axon targeting and synapse phenotypes in the mouse 
models described in the present study contribute to their seizure susceptibility and open the possibility 
that defective inhibitory synaptic signaling mechanisms may underlie seizures in dystroglycanopathy 
patients. Although severe neuronal migration phenotypes In Emx1Cre:Dag1 cKO and Emx1Cre:Pomt2 
cKO mice may contribute to seizure activity, our observation that Dag1cyto/- mutants showed both 
abnormal CCK+/CB1R+synaptic function and reduced seizure latency, with intact cortical migration, 
indicates that the seizure phenotype is likely associated with synaptic defects. Supporting these 
results, CCK+/CB1R+ interneurons in the hippocampus are selectively lost in models of temporal lobe 
epilepsy with recurrent seizures induced by pilocarpine. CCK+/CB1R+ axons in CA1-3 begin to degen-
erate within hours of status epilepticus, whereas PV+ INs are unaffected in this model (Whitebirch 
et al., 2023; Wyeth et al., 2010).

While our B4gat1M155T/M155T mutants showed only a slightly reduced seizure latency, the mutants 
experienced more severe seizures than the other mouse models, resulting in death in 50% of cases 
(4/8 mutants compared to 0/6 fatalities among littermate controls) (Figure 7—figure supplement 
1A). Flurothyl-induced seizures are typically generalized forebrain seizures; however in seizure-prone 
mouse models or in mice exposed to higher concentrations of flurothyl, mice can experience a suppres-
sion of brainstem oscillations followed by sudden death (Gu et al., 2022; Kadiyala et al., 2016). The 
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B4gat1M155T/M155T mutation was originally identified based on a hindbrain axon guidance phenotype, 
suggesting they may have currently unknown defects in brainstem development or circuitry that could 
render them more susceptible to fatal brainstem seizures (Wright et al., 2012). Because the Dag1 and 
Pomt2 mutants are forebrain-specific conditional knockouts, (Figure 1—figure supplement 1A), we 
would not anticipate abnormal axon guidance in the brainstem or hindbrain of these mutants. Further 
research on the nature and progression of seizures observed in mouse models may have a profound 
impact on our understanding of dystroglycanopathy and potential therapeutic interventions.

Potential therapeutics for the restoration of synapse function in 
patients with dystroglycanopathy
Most patients with dystroglycanopathy present with mutations in one of the 19 genes required for 
the glycosylation of Dystroglycan, resulting in hypoglycosylated Dystroglycan. We have demon-
strated that a mild reduction in the glycosylation of Dystroglycan, as seen in FkrpP448L/P448L and 
B4gat1M155T/M155T mutants, does not significantly disrupt synapse function. This suggests that glyco-
sylation may not need to be restored to wild-type levels in order to achieve normal synapse func-
tion. Gene replacement therapy may be well suited to treat certain forms of dystroglycanopathy 
by rescuing glycosylation. AAV-mediated delivery of fully functional glycosyltransferases has been 
shown to significantly improve muscle pathology and function in dystrophic mice, however synaptic 
phenotypes have not been examined (Kanagawa, 2021). Supplementation with (CDP)-ribitol, which 
is synthesized by Crppa (previously known as ISPD), can restore functional Dystroglycan glycosyla-
tion and improve muscle function in mouse models with hypomorphic mutations in Crppa or Fkrp 
(Cataldi et al., 2018). In mice lacking functional Crppa or Fkrp in skeletal muscle, (CDP)-ribitol can 
further enhance the therapeutic impact of gene restoration (Cataldi et al., 2020). However, whether 
(CDP)-ribitol treatment can improve Dystroglycan function in other models of dystroglycanopathy, 
or is capable of restoring Dystroglycan glycosylation and synaptic function in the nervous system, 
remains untested.

Conclusions
We demonstrate that Dystroglycan is critical for the postnatal development of CCK+/CB1R+ inter-
neuron axon targeting and synapse formation/function in the hippocampus of severe mouse models 
of dystroglycanopathy. Extracellular glycosylation of Dystroglycan and intracellular interactions 
involving the cytoplasmic domain are both essential for Dystroglycan’s synaptic organizing role. Mice 
with a partial reduction in glycosylation have relatively normal CCK+/CB1R+ interneuron axon targeting 
and synapse function, suggesting that even a partial restoration of glycosylation may have some 
therapeutic benefit. These findings suggest that CCK+/CB1R+ interneuron axon targeting defects may 
contribute to cognitive impairments and seizure susceptibility in dystroglycanopathy.

Table 1. Mouse strains.

Common name Strain name Reference Stock #

Dag1Flox B6.129(Cg)-Dag1tm2.1Kcam/J Cohn et al., 2002 009652

Dag1cyto N/A Satz et al., 2009 N/A

Pomt2Flox POMT2tm1.1Hhu/J Hu et al., 2011 017880

B4gat1M155T B6(C3)-B4GAT1m1Ddg/J Wright et al., 2012 022018

FkrpP448L C57BL/6NJ-Fkrpem1Lgmd/J Chan et al., 2010 034659

R26LSL-H2B-mCherry B6.Gt(ROSA)26Sortm1.1Ksvo Peron et al., 2015 023139

Emx1Cre B6.129S2-Emx1tm1(cre)Krj/J Gorski et al., 2002 005628

NestinCre B6.Cg-Tg(Nes-cre)1Kln/J Tronche et al., 1999 003771

NEXCre NeuroD6tm1(cre)Kan Goebbels et al., 2006 MGI:4429523

Sox2Cre B6N.Cg-Edil3Tg(Sox2-cre)1Amc/J Hayashi et al., 2002 014094
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Materials and methods
Animal husbandry
All animals were housed and cared for by the Department of Comparative Medicine (DCM) at Oregon 
Health and Science University (OHSU), an AAALAC-accredited institution. Animal procedures were 
approved by OHSU Institutional Animal Care and Use Committee (Protocol # IS00000539), adhered 
to the NIH Guide for the care and use of laboratory animals, and provided with 24 hr veterinary care. 
Animal facilities are regulated for temperature and humidity and maintained on a 12 hr light-dark 
cycle and were provided food and water ad libitum. Animals older than postnatal day 6 (P6) were 
euthanized by administration of CO2, animals <P6 were euthanized by rapid decapitation.

Mouse strains and genotyping
The day of birth was designated postnatal day 0 (P0). Ages of mice used for each analysis are indicated 
in the figure and figure legends. Mouse strains used in this study have been previously described and 
were obtained from Jackson Labs, unless otherwise indicated (Table  1; Chan et  al., 2010; Cohn 
et al., 2002; Goebbels et al., 2006; Gorski et al., 2002; Hu et al., 2011; Peron et al., 2015; Satz 
et al., 2009; Tronche et al., 1999; Wright et al., 2012). Dag1+/- mice were generated by crossing the 
Dag1flox/flox line to a Sox2Cre line to generate germline Dag1Δ/+ mice hereafter referred to as Dag1+/- as 
the resultant transcript is nonfunctional. These mice were thereafter maintained as heterozygotes. 
Breeding schemas are as described in Table 2. Where possible, mice were maintained on a C57BL/6J 
background. Dag1cyto/- mice occurred at a frequency lower than Mendelian, suggesting that a propor-
tion of progeny die embryonically. To increase viability of pups, the Dag1cyto line was outcrossed to 
a CD-1 background for one generation. The B4gat1 line has a mixed genetic background: it was 
founded on a C3H/He background and then crossed on to C57BL/6J for future generations. Genomic 
DNA extracted from toe or tail samples (Quanta BioSciences) was used to genotype animals. Primers 
for genotyping can be found on the JAX webpage or originating article. Dag1+/- mice were genotyped 
with the following primers: CGAA​CACT​GAGT​TCAT​CC (forward) and CAAC​TGCT​GCAT​CTCT​AC 
(reverse). For each mouse strain, littermate controls were used for comparison with mutant mice. For 
all experiments, unless otherwise noted, mice of both sexes were used indiscriminately. See Supple-
mentary file 1 for a summary of sexes used in each experiment.

Perfusions and tissue preparation
Brains from mice younger than P15 were dissected and drop fixed in 5 mLs of 4% paraformaldehyde 
(PFA) in phosphate buffered saline (PBS) overnight for 18–24 hr at 4 °C. Mice P15 and older were 
deeply anesthetized using CO2 and transcardially perfused with ice cold 0.1 M PBS for two minutes 
to clear blood from the brain, followed by 15 mL of ice cold 4% PFA in PBS. After perfusion, brains 
were dissected and post-fixed in 4% PFA for 30 min at room temperature. Brains were rinsed with 
PBS, embedded in 4% low-melt agarose (Fisher cat. no. 16520100), and sectioned at 50 μm using a 
vibratome (VT1200S, Leica Microsystems Inc, Buffalo Grove, IL) into 24-well plates containing 1 mL of 
0.1 M PBS with Sodium Azide.

Table 2. Breeding schemes.

Breeding Scheme Control Genotype Mutant Genotype

Emx1Cre/+;Dag1+/- x Dag1Flox/Flox Emx1Cre/+;Dag1Flox/+ Emx1Cre/+;Dag1Flox/-

NestinCre/+;Dag1+/- x Dag1Flox/Flox NestinCre/+;Dag1Flox/+ NestinCre/+;Dag1Flox/-

NEXCre/+;Dag1+/- x Dag1Flox/Flox NEXCre/+;Dag1Flox/+ NEXCre/+;Dag1Flox/-

Emx1Cre/+;Pomt2Flox/+ x Pomt2Flox/Flox Emx1Cre/+;Pomt2Flox/+ Emx1Cre/+;Pomt2Flox/Flox

Dag1cyto/+ x Dag1+/- WT Dag1cyto/-

B4gat1M155T/+ x B4gat1M155T/+ WT B4gat1M155T/M155T

FkrpP448L/+ x FkrpP448L/+ WT FkrpP448L/P448L
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Immunohistochemistry
Single and multiple immunofluorescence detection of antigens was performed as follows: free-floating 
vibratome sections (50 μm) were briefly rinsed with PBS, then blocked for 1 hr in PBS containing 
0.2% Triton-X (PBST) plus 2% normal goat or donkey serum. Sections were incubated with primary 
antibodies (Table 3) diluted in blocking solution at 4 °C for 48–72 hr. For staining of Dystroglycan 
synaptic puncta, an antigen retrieval step was performed prior to incubation in primary antibody. 
Briefly, sections were incubated in sodium citrate solution for 15 min at 95°C in a water bath followed 
by 15 minutes at room temperature. Following incubation in primary antibody, sections were rinsed 
with PBS then washed with PBST three times for 20 min each. Sections were then incubated with a 
cocktail of secondary antibodies (1:500, Alexa Fluor 488, 546, 647) in blocking solution overnight at 
room temperature. Sections were washed with PBS three times for 20 min each and counterstained 
with Hoechst 33342 (1:10,000, Life Technologies, Cat# H3570) for 20 min to visualize nuclei. Finally, 
sections were mounted on slides using Fluoromount-G (SouthernBiotech) and sealed using nail polish.

Microscopy
Imaging was performed on either a Zeiss Axio Imager M2 fluorescence upright microscope equipped 
with an Apotome.2 module or a Zeiss LSM 980 laser scanning confocal build around a motorized Zeiss 
Axio Observer Z1 inverted microscope with a Piezo stage. The Axio Imager M2 uses a metal halide 
light source (HXP 200 C), Axiocam 506 mono camera, and 10X/0.3 NA EC Plan-Neofluar, 20X/0.8 
NA Plan-Apochromat objectives. The LSM 980 confocal light path has two multi-alkali PMTs and 
two GaAsP PMTs for four track imaging. Confocal images were acquired using a 63X/1.4 NA Plan-
Apochromat Oil DIC M27 objective. Z-stack images were acquired and analyzed offline in ImageJ/FIJI 
(Schindelin et al., 2012) or Imaris 9.8 (Oxford Instruments). Images used for quantification between 
genotypes were acquired using the same exposure times. Brightness and contrast were adjusted in 
FIJI to improve visibility of images for publication. Figures were composed in Adobe Illustrator 2023 
(Adobe Systems).

Image quantification
For imaging experiments, 4–8 images were acquired from 2 to 4 coronal sections per animal, and at 
least three animals per genotype were used for analysis.

Table 3. Primary antibodies used for immunohistochemistry.

Target Host species Dilution Source Catalog # RRID

α-Dystroglycan (IIH6C4) Mouse 1:250 Millipore 05–593 AB_309828

β-Dystroglycan Mouse 1:50 Leica Biosystems NCL-b-DG AB_442043

CB1R Guinea pig 1:1000 Synaptic Systems 258–104 AB_2661870

Cux1 Rabbit 1:500 Santa Cruz Biotech sc-13024 AB_2261231

Laminin Rabbit 1:1000 Sigma-Aldrich L9393 AB_477163

NECAB1 Rabbit 1:500 Sigma-Aldrich HPA023629 AB1848014

NECAB2 Rabbit 1:500 Proteintech 12257–1-AP AB_2877841

NeuN Mouse 1:250 Millipore MAB377 AB_2298772

Parvalbumin Rabbit 1:1000 Swant PV27 AB_2631173

Parvalbumin Mouse 1:50 Swant 235 AB_10000343

Somatostatin Rabbit 1:2000 Peninsula Labs T-4103 AB_518614

Tbr1 Rabbit 1:500 Millipore AB10554 AB_10806888

VGAT Rabbit 1:500 Synaptic Systems 131–003 AB_887869

VGAT Guinea Pig 1:500 Synaptic Systems 131–005 AB_1106810

VGlut3 Rabbit 1:1000 Synaptic Systems 135–203 AB_887886

VIP Rabbit 1:1000 ImmunoStar 20077 AB_572270
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Cortical lamination
Images of somatosensory cortex were acquired using a 10X objective on a Zeiss Axio Imager M2. 
4 μm z-stacks covering 16 μm were acquired and multiple tiles were stitched together. Maximum 
projections were used for analysis. In FIJI, the straight line tool with a 300 μm line width was used to 
measure the fluorescence profile from corpus callosum to pial surface. Background fluorescence was 
determined as the average fluorescence of the 20 darkest pixels; background was then subtracted 
from all points. The cortical distance was broken into 10 bins and average fluorescence within each bin 
was compared between genotypes.

Hippocampal CA1 CB1R and PV distribution
Images of dorsal hippocampal CA1 were acquired using a 20X objective on a Zeiss Axio Imager M2. 
Maximum projection images of 0.6 μm z-stacks covering 9 μm were analyzed in FIJI. The straight line 
tool with a 300 μm line width was used to measure the fluorescence profile within SO, SP, and SR of 
CA1, avoiding Parvalbumin+ cell bodies. Background fluorescence was determined as the average 
fluorescence of the 50 darkest pixels; background was then subtracted from all points. The thick-
ness of SP was determined using Hoechst fluorescence. Average fluorescence within SO/SP/SR was 
compared between genotypes.

Interneuron cell counts in CA1
Images of dorsal hippocampal CA1 were acquired using a 10X objective on a Zeiss Axio Imager M2. 
Maximum projection images of 4 μm z-stacks covering 40 μm were analyzed in FIJI. Immunolabeled 
NECAB1/NECAB2/PV cell bodies were counted if they were within 100 μm of stratum pyramidale. The 
freehand line tool was used to measure the length of stratum pyramidale. Cell number was normalized 
to the length of stratum pyramidale present in the analyzed region.

Hippocampal CB1R/PV/VGAT density and co-localization
Images of dorsal hippocampal CA1 were acquired using a 63X objective on a Zeiss LSM 980. 0.2 μm 
z-stacks covering 3 μm were analyzed in Imaris. Hoechst fluorescence was used to determine the 
bounds of SP. The Imaris Spots function was used to determine the location of synaptic puncta in 
3-dimensional space. Synaptic puncta were deemed to be co-localized if they were within 1 μm of 
each other.

Western blot
Cortex or hippocampus was dissected and solubilized in 1 mL of lysis buffer containing 100 mM NaCl, 
50 nM Tris, 2.5 mM CaCl2, 1% Triton X-100, 1% n-Octyl-β-D-glucopyranoside, and protease inhibitors. 
Lysate was incubated at 4 °C for 1 hr and then spun at 12,500 g for 25 min. Supernatant containing 
3000 μg (cortex) or 2000 μg (hippocampus) of protein (as determined by Pierce BCA Protein Assay) 
was applied to agarose-bound Wheat Germ Agglutinin (WGA) (Vector Labs) overnight at 4 °C. Beads 
were washed 3 times in TBS and boiled in 1X LDS sample buffer with 2-Mercaptoethanol (1:100) for 
5 min. Samples were run on a 4–15% gradient polyacrylamide gel at 100 V for 75 min and then trans-
ferred to a PVDF membrane (100 V for 100 min). For immunoblotting, membranes were blocked in 5% 
milk TBST and then incubated overnight at 4 °C in 5% milk TBST containing primary antibody. Anti-
bodies used: α-Dystroglycan (IIH6C4) (Millipore cat. no. 05–593, RRID: AB_309828, mouse IgM, 1:500), 
MANDAG2 (DSHB cat. no. 7D11, RRID: AB_2211772, mouse IgG1, 1:500), β3-tubulin (Cell Signaling 
Technology cat. no. 5568, RRID: AB_10694505, rabbit, 1:2000). Membranes were washed 3 times in 
TBST for 15 minutes each and incubated on fluorescent IRDye secondary antibody (1:10,000, LI-COR) 
in 5% milk TBST for 1 hr at room temperature. Membranes were imaged using a LI-COR Odyssey CLx 
0918 imager and signal analyzed using LI-COR Image Studio Lite version 5.2.

Electrophysiology
For acute slice preparation, mice were deeply anesthetized in 4% isoflurane and subsequently injected 
with a lethal dose of 2% 2, 2, 2-Tribromoethanol in sterile water followed by transcardial perfusion with 
10 mL ice cold cutting solution containing the following (in mM): 93 NMDG, 2.5 KCl, 1.2 NaH2PO4, 30 
NaHCO3, 20 HEPES, 24 glucose, 5 Na Ascorbate, 2 Thiourea, 3 Na Pyruvate, 13 N-Acetyl Cysteine, 1 
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Kynurenic acid, 10 MgSO4, 0.5 CaCl2; pH 7.3, 300–340 mmol/kg. After rapid decapitation, the brain 
was briefly submerged in ice cold cut solution bubbled with carbogen (95% oxygen, 5% CO2) and then 
sectioned into 300 μm sagittal sections (Leica VT1200S vibratome) in bubbled ice-cold cut solution. 
Slices were recovered in 37 °C cut solution, bubbled, for 15 min followed by 1 hr in room temperature 
recording ACSF (containing, in mM: 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 3 KCl, 25 D-Glucose, 2 
CaCl2, 1 MgCl2) with an osmolarity of 310–320 mmol/kg and supplemented with 1.5 mM Na Ascor-
bate, bubbled.

CA1 pyramidal cells were patched in whole cell configuration using 3–5  MΩ borosilicate glass 
pipettes filled with high chloride internal solution containing the following (in mM): 125 CsCl, 2.5 
MgCl2, 0.5 EGTA, 10 HEPES, 2 Mg-ATP, 0.3 Na-GTP, 5 QX-314; pH 7.2, 300 mmol/kg. Pipettes were 
wrapped in parafilm to reduce capacitive currents. Cells were voltage clamped at –70 mV and contin-
uously superfused with 2–3 mL/min bubbled recording ACSF (310–320 mmol/kg) containing 10 μM 
NBQX to block excitatory transmission. Recordings were performed at 34 °C. After 5 min of spon-
taneous IPSC (sIPSC) recording, 10 μM Carbachol was added to the perfusate and another 5 min 
of sIPSC were recorded. Slices were discarded after exposure to Carbachol. Signals were amplified 
with an AxoPatch 200B amplifier (Molecular Devices), low-pass filtered at 5 kHz, and digitized and 
sampled at 10 kHz with a NIDAQ analog-to-digital board (National Instruments). Data were acquired 
and analyzed using a custom script in Igor Pro 8 (Wavemetrics; https://github.com/jnjahncke/mini_​
analysis copy archived at Jahncke, 2023). A hyperpolarizing step of –10 mV was applied before each 
sweep to monitor input resistance, series resistance, and measure cell capacitance. Series resistance 
was not compensated and was maintained below 20 MΩ. Cells were excluded if series resistance 
changed by more than 25%.

To calculate the proportion of cells that responded to Carbachol, cells were sorted into ‘responsive’ 
and ‘non-responsive’ categories. Cells were categorized as responsive if sIPSC frequency increased by 
20% or more with the addition of Carbachol. If sIPSC frequency in a cell changed by less than 20% or 
less than 0.5 Hz it was deemed non-responsive.

Flurothyl seizure induction
Mice aged P40-P55 were used for the flurothyl-induced seizure susceptibility assay to determine 
seizure threshold. Briefly, mice were placed in an enclosed glass chamber equipped with a vaporiza-
tion chamber out of reach of the mouse. Volatile liquid 10% Bis (2,2,2-Trifluorotheyl) Ether (Millipore 
Sigma cat. no 287571) in 95% EtOH was delivered to the vaporization chamber at a rate of 6 mL/hr. 
Seizure latency was determined as the amount of time until generalized tonic-clonic seizure (TCS). 
Upon exhibiting TCS, animals were immediately removed from the chamber and returned to their 
home cage, whereupon seizures ceased rapidly. Sample size was determined using power analysis 
as described below. The Emx1Cre:Dag1 experimental groups were powered sufficiently to determine 
sex differences. Because no sex difference was found (Figure 7—figure supplement 1C), sexes were 
pooled for the remaining experiments. For statistical tests, outliers were excluded. Outliers were 
calculated as follows: first, the interquartile range (IQR) was calculated and multiplied by 1.5. This 
1.5*IQR value was subtracted from the 25% quartile (Q1) and added to the 75% quartile (Q3). Points 
outside of the range Q1 - 1.5*IQR <x < Q3+1.5*IQR were categorized as outliers and indicated as 
such on all graphs. This was done to remove bias from extreme outliers observed in this experiment.

Statistical analysis
Phenotypic analyses were conducted using tissue collected from at least three mice per genotype 
from at least two independent litters. The number of mice and replicates used for each analysis (‘N’) 
are indicated in Supplementary file 1. Samples from each mouse were only used for one technical 
replicate. Power analysis using pilot data was used to determine samples sizes with α=0.05  and 
β=0.80. Phenotypes were indistinguishable between male and female mice and were analyzed 
together. Although experimenters were blind to genotype during analysis, in many cases highly pene-
trant phenotypes revealed the genotypes of the mice and no blinding could be faithfully performed. 
Unless otherwise stated, no data was excluded from analysis. For comparisons between two groups, 
significance was determined using a two-tailed Students t-test. For comparisons between more than 
two groups, significance was determined using a two-way ANOVA with Tukey HSD post-hoc analysis. 
Statistical significance was set at α=0.05 (p<0.05) and data presented as means ± SEM. Individual 
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statistical tests and specific p-values are reported in Supplementary file 2. Statistical analyses and 
data visualization were performed in R (version 4.0.2).
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