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Abstract A recent experiment on zebrafish blastoderm morphogenesis showed that the viscosity 
(η) of a non-confluent embryonic tissue grows sharply until a critical cell packing fraction (ϕS). The 
increase in η up to ϕS is similar to the behavior observed in several glass-forming materials, which 
suggests that the cell dynamics is sluggish or glass-like. Surprisingly, η is a constant above ϕS. To 
determine the mechanism of this unusual dependence of η on ϕ, we performed extensive simula-
tions using an agent-based model of a dense non-confluent two-dimensional tissue. We show that 
polydispersity in the cell size, and the propensity of the cells to deform, results in the saturation of 
the available free area per cell beyond a critical packing fraction. Saturation in the free space not 
only explains the viscosity plateau above ϕS but also provides a relationship between equilibrium 
geometrical packing to the dramatic increase in the relaxation dynamics.

eLife assessment
This fundamental study substantially advances our physical understanding of the sharp increase and 
saturation of the viscosity of non-confluent tissues with increasing cell density. Through the analysis 
of a simplified model, this study provides compelling evidence that polydispersity in cell size and 
the softness of cells together can lead to this phenomenon. The work will be of general interest to 
biologists and biophysicists working on development.

Introduction
There is great interest in characterizing the mechanical and dynamical properties of embryonic tissues 
because they regulate embryo development (Kimmel et al., 1995; Keller et al., 2008; Petridou and 
Heisenberg, 2019; Hannezo and Heisenberg, 2019; Autorino and Petridou, 2022). Measurements 
of bulk properties, such as viscosity and elastic modulus, and the dynamics of individual cells through 
imaging techniques, have been interpreted by adapting concepts developed to describe phase tran-
sitions (PTs), glass transition, and active matter (Shaebani et al., 2020; Marchetti et al., 2013; Kirk-
patrick and Thirumalai, 2015; Bär et al., 2020).

Several experiments have shown that during embryo morphogenesis, material properties of the 
tissues change dramatically (Morita et al., 2017; Mongera et al., 2018; Barriga et al., 2018; Petridou 
et al., 2019; Petridou et al., 2021). Of relevance to our study is a remarkable finding that provided 
evidence that a PT occurs during zebrafish blastoderm morphogenesis, which was analyzed using 
rigidity percolation theory (Petridou et al., 2021; Jacobs and Thorpe, 1995; Jacobs and Thorpe, 
1996; Jacobs and Hendrickson, 1997). The authors also estimated the viscosity (‍η‍) of the blastoderm 
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tissue using the micropipette aspiration technique (Guevorkian et al., 2010; Petridou et al., 2019). 
It was found that change in ‍η‍ is correlated with cell connectivity (‍⟨C⟩‍), rising sharply over a narrow 
range of ‍⟨C⟩‍. Surprisingly, a single geometrical quantity, the cell–cell contact topology controls both 
the rigidity PT and changes in ‍η‍ in this non-confluent tissue, thus linking equilibrium and transport 
properties.

Here, we focus on two pertinent questions that arise from the experiments on zebrafish blasto-
derm. First, experiments (Sinha and Thirumalai, 2021) showed that ‍η‍ increases as a function of the 
cell packing fraction (‍ϕ‍) till ‍ϕ ≤ 0.87‍. The dependence of ‍η‍ on ‍ϕ‍ follows the well-known Vogel–Ful-
cher–Tammann (VFT) law (Sinha and Thirumalai, 2021), which predicts that ‍η‍ grows monotonically 
with ‍ϕ‍. The VFT law, which is commonly used to analyze the viscosity of a class of glass-forming 

materials (Angell, 1991), is given by 
‍
η ∼ exp

[
1

ϕ0/ϕ− 1

]

‍
, where ‍ϕ0‍ is a constant. Surprisingly, for 

packing fractions, ‍ϕ ≥ ϕS ≈ 0.90‍, ‍η‍ deviates from the VFT law and is independent of ‍ϕ‍, which cannot 
be explained using conventional theories for glasses (Berthier and Biroli, 2011; Kirkpatrick and 
Thirumalai, 2015). Second, the experimental data (Petridou et al., 2021) was interpreted using equi-
librium rigidity percolation theory (Jacobs and Thorpe, 1995; Jacobs and Thorpe, 1996; Jacobs and 
Hendrickson, 1997) for an embryonic tissue in which cells undergo random cell divisions. A priori it is 
unclear why equilibrium concepts should hold in zebrafish morphogenesis, which one would expect is 
controlled by non-equilibrium processes such as self-propulsion, growth, and cell division.

We show that the two conundrums (saturation of ‍η‍ at high packing fractions and the use of equi-
librium statistical mechanics in a growing system to explain PT) may be rationalized by (i) assuming 
that the interactions between the cells are soft, and (ii) the cell sizes are highly heterogeneous 
(polydisperse), which is the case in zebrafish blastoderm. Using an agent-based (particle) simulation 
model of a two-dimensional (2D) non-confluent tissue, we explore the consequences of varying ‍ϕ‍ (see 
‘Materials and methods’ for the definition) of interacting self-propelled polydisperse soft cells, on ‍η‍. 
The central results of our study are (i) the calculated effective viscosity ‍̄η‍ (for details see, Appendix 6, 
‘Dynamical changes in local packing fraction cause jammed cells to move’), for the polydisperse cell 
system, shows that for ‍ϕ ≤ ϕS ≈ 0.90‍ the increase in viscosity follows the VFT law. Just as in experi-
ments, ‍η‍ is essentially independent of ‍ϕ‍ at high (‍≥ ϕS‍) packing fractions. (ii) The unusual dependence 
of ‍η‍ at ‍ϕ ≥ ϕS‍ is quantitatively explained using the notion of available free area fraction (‍ϕfree‍), which 
is the net void space that can be explored by the cells when they are jammed. At high densities, a 
given cell requires free space in order to move. The free area is created by movement of the neigh-
boring cells into the available void space. One would intuitively expect that the ‍ϕfree‍ should decrease 
with increasing packing fractions due to cell jamming, which should slow down the overall dynamics. 
Indeed, we find that ‍ϕfree‍ decreases with increasing packing fraction (‍ϕ‍) until ‍ϕS‍. The simulations show 
that when ‍ϕ‍ exceeds ‍ϕS‍, the free area ‍ϕfree‍ saturates because the soft cells (characterized by ‘soft 
deformable disks’) can overlap with each other, resulting in the collective dynamics of cells becoming 
independent of ‍ϕ‍ for ‍ϕ ≥ ϕS‍. As a consequence, ‍η‍ saturates at high ‍ϕ‍. (iii) Cells whose sizes are 
comparable to the available free area move almost like a particle in a liquid. The motility of small-sized 
cells facilitates adjacent cells to move through multi-cell rearrangement even in a highly jammed envi-
ronment. The facilitation mechanism, invoked in glassy systems (Biroli and Garrahan, 2013), allows 
large cells to move with low mobility. A cascade of such facilitation processes enable all the cells to 
remain dynamic even above the onset packing fraction of the PT. (iv) We find that the relaxation time 
does not depend on the waiting time for measurements even in the regime where viscosity saturates. 
In other words, there is no evidence of aging even in the regime where viscosity saturates. Strikingly, 
the tissue exhibits ergodic (Thirumalai et al., 1989) behavior at all densities. The cell-based simula-
tions, which reproduce the salient experimental features, may be described using equilibrium statis-
tical mechanics, thus providing credence to the use of cell contact mechanics to describe both rigidity 
PT and dynamics in an evolving non-confluent tissue (Petridou et al., 2021).

Results
Experimental results
We first describe the experimental observations, which serve as the basis for carrying out the agent-
based simulations. Figure 1A shows the bright-field images of distinct stages during zebrafish morpho-
genesis. A 2D section of zebrafish blastoderm (Figure 1B) shows that there is considerable dispersion 
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Figure 1. Structure and viscosity of non-confluent tissues. (A) Bright-field single-plane images of an exemplary embryo of zebrafish before (‍t = −60‍ 
min), at the onset (‍t = 0‍ min), and after blastoderm spreading (‍t = 60‍ min). (B) Snapshot of 2D confocal sections at the 1st–2nd deep-cell layer of the 
blastoderm at ‍t = 60‍ min. (A) and (B) are taken from Petridou et al., 2021. (C) Viscosity ‍η‍ of zebrafish blastoderm as a function of ‍ϕ‍ in a log-linear 
scale using the data from Petridou et al., 2021. The dashed line is the fit to Vogel–Fulcher–Tammann (VFT) equation. Note that ‍η‍ does not change 

Figure 1 continued on next page
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in cell sizes. The statistical properties of the cell sizes are shown in Appendix 1—figure 1D. Figure 1C 
shows that ‍η‍ increases sharply over a narrow ‍ϕ‍ range and saturates when ‍ϕ‍ exceeds ‍ϕS ≈ 0.90‍.

To account for the results in Figure 1C, we first simulated a mono-disperse system in which all the 
cells have identical radius (‍R = 8.5 µm‍). Because the system crystallizes (Appendix 1—figure 1A and 
B), we concluded that the dynamics observed in experiments cannot be explained using this model. 
A 1:1 binary mixture of cells with different radii gives glass-like behavior for all ‍ϕ‍, with the relaxation 
time ‍τα‍ as well as the effective viscosity ‍̄η‍ (defined in Equation 1) following the VFT behavior (see 
Appendix 2).

Polydispersity and cell–cell interactions
In typical cell tissues, and zebrafish in particular, there is a great dispersion in the cell sizes, which vary 
in a single tissue by a factor of ∼5–6 (Petridou et al., 2021; Figure 1B, Appendix 1—figure 1D). In 
addition, the elastic forces characterizing cell–cell interactions are soft, which implies that the cells 
can overlap, with ‍rij − (Ri + Rj) < 0‍ when they are jammed (Figure 1B, D). Thus, both polydispersity 
(PD) and soft interactions between the cells must control the relaxation dynamics. To test this prop-
osition, we simulated a highly polydisperse system (PDs) in which the cell sizes vary by a factor of ∼8 
(Figure 1D , Appendix 1—figure 1E).

A simulation snapshot (Figure 1D) for ‍ϕ = 0.93‍ shows that different sized cells are well mixed. In 
other words, the cells do not phase separate. The structure of the tissue can be described using the 

pair correlation function, 

‍
g(r) = 1

ρ

⟨
1
N

N∑
i

N∑
j̸=i

δ
(
r − |⃗ri − r⃗j|

)⟩

‍

, where ‍ρ = N
L2 ‍ is the number density, 

‍δ‍ is the Dirac delta function, ‍⃗ri‍ is the position of the ith cell, and the angular bracket ‍⟨⟩‍ denotes an 
average over different ensembles. The ‍g(r)‍ function (Figure 1E) has a peak around ‍r ∼ 17µm‍, which is 
approximately the average diameter of the cells. The absence of peaks in ‍g(r)‍ beyond the second one 
suggests there is no long-range order. Thus, the polydisperse cell system exhibits liquid-like structure 
even at the high ‍ϕ‍.

Effective shear viscosity(‍̄η‍) as a function of ‍ϕ‍
A fit of the experimental data for ‍η‍ using the VFT (Tammann and Hesse, 1926; Fulcher, 1925) rela-
tion in the range ‍ϕ ≤ 0.87‍ (Figure 1C) yields ‍ϕ0 ≈ 0.95‍ and ‍D ≈ 0.51‍ (Sinha and Thirumalai, 2021). 
The VFT equation for cells, which is related to the Doolittle equation (White and Lipson, 2016) for 

fluidity (
‍

1
η ‍

) that is based on free space available for motion in an amorphous system (Doolittle and 

Doolittle, 1957; Cohen and Turnbull, 1959), is 
‍
η = η0 exp

[
D

ϕ0/ϕ− 1

]

‍
, where ‍D‍ is the apparent acti-

vation energy. In order to compare with experiments, we calculated an effective shear viscosity (‍̄η‍) for 
the polydisperse system using a Green–Kubo-type relation (Hansen and McDonald, 2013)

	﻿‍
η̄ =
ˆ ∞

0
dt
∑
(µν)

⟨Pµν (t)Pµν (0)⟩ .
‍�

(1)

The stress tensor ‍Pµν (t)‍ in the above equation is

	﻿‍

Pµν (t) = 1
A




N∑
i=1

N∑
j>i

r⃗ij,µ⃗fij,ν


 ,

‍�
(2)

where ‍µ, ν ∈ (x, y)‍ are the Cartesian components of coordinates, ‍⃗rij = r⃗i − r⃗j‍, ‍f⃗ij‍ is the force between 
ith and jth cells, and ‍A‍ is the area of the simulation box. Note that ‍̄η‍ should be viewed as a proxy 
for shear viscosity because it does not contain the kinetic term and the factor ‍

A
kBT ‍ is not included in 

Equation (1) because temperature is not a relevant variable in the highly over-damped model for cells 
considered here.

significantly beyond ‍ϕ ≥ 0.87‍. (D) A typical snapshot taken from cell-based simulations for ‍ϕ = 0.93‍. Cells are colored according to their radii (in µm) 
(color bar shown on the right). (E) The pair correlation function, ‍g(r)‍, as a function of ‍r ‍ for ‍ϕ = 0.93‍. The vertical dashed line is the position of the first 
peak (‍rmax = 17.0 µm‍). The pair correlation function does not exhibit signs of long-range order. Scale bars in (A) is 100 µm and (B) is 50 µm.

Figure 1 continued
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Plot of ‍̄η‍ as a function of ‍ϕ‍ in Figure 2A shows qualitatively the same behavior as the estimate of 
viscosity (using dimensional arguments) made in experiments. Two features about Figures 1C and 
2A are worth noting. (i) Both simulations and experiments show that up to ‍ϕ ≈ 0.90‍, ‍̄η(ϕ)‍ follows the 
VFT relation with ‍ϕ0 ∼ 0.94‍ and ‍D ∼ 0.5‍. More importantly, ‍̄η‍ is independent of ‍ϕ‍ when ‍ϕ > 0.90‍. (ii) 
The values of ‍ϕ0‍ and ‍D‍ obtained by fitting the experimental estimate of ‍η‍ to the VFT equation and 
simulation results are almost identical. Moreover, the onset of the plateau packing fraction in simula-
tions and experiments occurs at the same value (‍ϕS ∼ 0.90‍). The overall agreement with experiments 
is remarkable given that the model was not created to mimic the zebrafish tissue.

To provide additional insights into the dynamics, we calculated the isotropic self-intermediate scat-
tering function, ‍Fs(q, t)‍,

	﻿‍
Fs(q, t) = 1

N

⟨ N∑
j=1

exp[−i⃗q · (⃗rj(t) − r⃗j(0))]

⟩
,
‍�

(3)

where ‍⃗q ‍ is the wave vector, and ‍⃗rj(t)‍ is the position of a cell at time ‍t‍. The degree of dynamic correla-
tion between two cells can be inferred from the decay of ‍Fs(q, t)‍. The angle bracket ‍⟨...⟩‍ is an average 
over different time origins and different trajectories. We chose ‍q = 2π

rmax ‍, where ‍rmax‍ is the position 
of the first peak in ‍g(r)‍ between all cells (see Figure 1E). The relaxation time ‍τα‍ is calculated using 

‍Fs(q, t = τα) = 1
e‍.
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Figure 2. Saturation in viscosity and relaxation time. (A) Effective viscosity ‍̄η‍ as a function of ‍ϕ‍, with the solid line being the fit to Vogel–Fulcher–
Tammann (VFT) equation. The inset shows ‍̄η‍ at high ‍ϕ‍. The dashed line in the inset is the expected behavior assuming that the VFT relation holds at 
all ‍ϕ‍. (B) The self-intermediate scattering function ‍Fs(q, t)‍ as a function of ‍t ‍ for ‍0.70 ≤ ϕ ≤ 0.905‍. The dashed line corresponds to ‍Fs(q, t) = 1

e ‍. (C) A 
similar plot for ‍ϕ > 0.905‍. (D) The logarithm of the relaxation time ‍τα(s)‍ as a function of ‍ϕ‍. The VFT fit is given by the dashed line. The inset shows a 
zoomed-in view for ‍ϕ ≥ ϕS‍. The error bars in (D) are calculated using the standard deviation of ‍τα‍ for 24 independent simulations.
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From Figure 2B and C, which show ‍Fs(q, t)‍ as a function of ‍t‍ for various ‍ϕ‍, it is clear that the 
dynamics become sluggish as ‍ϕ‍ increases. The relaxation profiles exhibit a two-step decay with a 
plateau in the intermediate time scales. The dynamics continues to slow down dramatically until 

‍ϕ ≤ 0.90‍. Surprisingly, the increase in the duration of the plateau in ‍Fs(q, t)‍ ceases when ‍ϕ‍ exceeds 
‍≈ 0.90‍ (Figure 2C), a puzzling finding that is also reflected in the dependence of ‍τα‍ on ‍ϕ‍ in Figure 2D. 
The relaxation time increases dramatically, following the VFT relation, till ‍ϕ ≈ 0.90‍, and subsequently 
reaches a plateau (see the inset in Figure 2D).

If the VFT relation continued to hold for all ‍ϕ‍, as in glasses or in binary mixture of 2D cells (see 
Appendix 2), then the fit yields ‍ϕ0 ≈ 0.95‍ and ‍D ≈ 0.50‍. However, the simulations show that ‍τα‍ is 
nearly a constant when ‍ϕ‍ exceeds ‍0.90‍. We should note that the behavior in Figure 2D differs from 
the dependence of ‍τα‍ on ‍ϕ‍ for 2D monodisperse polymer rings, used as a model for soft colloids. 
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Figure 3. Spectrum of relaxation times. (A) Scatter plot of relaxation times ‍τα(s)‍ as a function of cell radius. From top to bottom, the plot corresponds 
to decreasing ‍ϕ‍. The vertical dashed line is for ‍Ri = 4.25 µm‍, beyond which the ‍τα‍ changes sharply at high packing fractions. (B) Histogram ‍P(ln(τα))‍ 
as a function of ‍ln(τα)‍. Beyond ‍ϕ = 0.90‍ (‍ϕS‍), the histogram peaks do not shift substantially towards a high ‍τα‍ values. (C) For ‍ϕ ≤ ϕS‍ (scaled by 

‍P
max(ln(τα))‍) falls on a master curve, as described in the main text. (D) Same as (C) except the results are for ‍ϕ > 0.90‍. The data deviates from the 

Gaussian fit, shown by the dashed line.
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Simulations (Gnan and Zaccarelli, 2019) showed 
‍τα‍ increases till a critical ‍ϕS‍ but it decreases 
substantially beyond ‍ϕS‍ with no saturation.

Relaxation dynamics of individual 
cells
Plot of ‍τα‍ as a function of the radius of cells ‍Ri‍ 
(Figure 3A) shows nearly eight orders of magni-
tude change. The size dependence of ‍τα‍ on ‍ϕ‍ is 
striking. That ‍τα‍ should increase for large-sized 
cells (see the data beyond the vertical dashed line 
in Figure 3A) is not unexpected. However, even 
when cell sizes increase beyond ‍Ri = 4.25 µm‍, the 
dispersion in ‍τα‍ is substantial, especially when ‍ϕ‍ 
exceeds ‍ϕS‍. The relaxation times for cells with 

‍Ri < 4.25µm‍ are relatively short even though the 
system as a whole is jammed. For ‍ϕ ≥ 0.90‍, ‍τα‍ for 

Video 1. Shows multiple rearrangements of smaller 
sized cells (blue and green cells) causes the big cells 
(yellow cells) to move in a highly jammed environment 
(‍ϕ = 0.92 > ϕS‍). Bright colors show the cell-cell 
overlap. Note that the overlap values are higher 
than those in lower area fractions. Free spaces (black 
background) are changing dynamically around a cell.

https://elifesciences.org/articles/87966/figures#video1

Video 2. Shows how a big cell (yellow) moves in the crowded environment ‍(ϕ = 0.90(ϕS))‍. Note that the smaller-
sized cells (colored as deep blue) always move faster. Again, the multiple rearrangement causes the bigger cell to 
move substantially. The amount of overlap is smaller than that at ‍ϕ = 0.92‍.

https://elifesciences.org/articles/87966/figures#video2

https://doi.org/10.7554/eLife.87966
https://elifesciences.org/articles/87966/figures#video1
https://elifesciences.org/articles/87966/figures#video2


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Das et al. eLife 2023;12:RP87966. DOI: https://doi.org/10.7554/eLife.87966 � 8 of 30

small-sized cells have a weak dependence on ‍ϕ‍. 
Although ‍τα‍ for cells with radius <4 µm is short, 
it is clear that for a given ‍ϕ‍ (e.g., ‍ϕ = 0.93‍) the 
variations in ‍τα‍ are substantial. In contrast, ‍ταs‍ 
for larger cells (‍R ≥ 7µm‍) are substantially large, 
possibly exceeding the typical cell division time 
in experiments. In what follows, we interpret 
these results in terms of available free area ‍⟨Afree⟩‍ 
for cells. The smaller-sized cells have the largest 

‍⟨Afree⟩ ≈ 50 µm2 ≈ πR2
S(RS ≈ 4 µm)‍ (‍RS‍ is the 

radius of the small cell).
The effect of jamming on the dramatic increase 

in ‍τα‍ occurs near ‍Ri ≈ 4.5 µm‍, which is compa-
rable to the length scale of short-range interac-
tions. For ‍ϕ ≤ 0.90‍, ‍τα‍ increases as the cell size 
increases. However, at higher packing fractions, 
even cells of similar sizes show substantial varia-
tions in ‍τα‍, which change by almost 3–4 orders 
of magnitude (see the data around the vertical 
dashed line for ‍ϕ ≥ 0.915‍ in Figure 3A).

This is a consequence of large variations in the 
local density (Appendix  6—figure 1). Some of 
the similar-sized cells are trapped in the jammed 
environment, whereas others are in less crowded 

regions (see Appendix 6—figure 1). The spread in ‍τα‍ increases dramatically for ‍ϕ > ϕS‍ (‍≈ 0.90‍) and 
effectively overlap with each other. This is vividly illustrated in the histogram, ‍P(log(τα))‍, shown in 
Figure 3B. For ‍ϕ < ϕs‍, the peak in ‍P(log(τα))‍ monotonically shifts to higher ‍log(τα)‍ values. In contrast, 
when ‍ϕ‍ exceeds ‍ϕS‍ there is overlap in ‍P(log(τα))‍, which is reflected in the saturation of ‍̄η‍ and ‍τα‍.

There are cells (typically with small sizes) that move faster even in a highly jammed environ-
ment (see Appendix 5—figures 1C and 2). The motions of the fast-moving cells change the local 
environment, which effectively facilitates the bigger cells to move in a crowded environment (see 
Appendix 5—figures 1D and 2, Video 1 (‍ϕ = 0.92 > ϕS‍) and Video 2 (‍ϕ = 0.90 = ϕS‍)). In contrast, for 

‍ϕ = 0.85 < ϕS‍, small- and large-sized cells move without hindrance because of adequate availability of 
free area (Video 3). The videos vividly illustrate the large-scale facilitated rearrangements that enable 
the large-sized cells to move.

The dependence of ‍τα‍ on ‍ϕ‍ for ‍ϕ ≤ ϕS‍ (Figure 2D) implies that the polydisperse cell systems behave 
as a soft glass in this regime. On theoretical grounds, it was predicted that 

‍
P(ln(τα)) ∼ exp[−c(ln(τα

τ0
))2]

‍
 

in glass-forming systems (Kirkpatrick and Thirumalai, 2015). Remarkably, we found that this predic-
tion is valid in the polydisperse cell system (Figure 3C). However, above ‍ϕS‍ the predicted relation is 
not satisfied (see Figure 3D).

Available free area explains viscosity saturation at high ‍ϕ‍
We explain the saturation in the viscosity by calculating the available free area per cell, as ‍ϕ‍ increases. 
In a hard disk system, one would expect that the free area would decrease monotonically with ‍ϕ‍ until it 
is fully jammed at the close packing fraction (∼0.84; Drocco et al., 2005; Reichhardt and Reichhardt, 
2014). Because the cells are modeled as soft deformable disks, they could overlap with each other 
even when fully jammed. Therefore, the region where cells overlap creates free area in the immediate 
neighborhood.

The extent of overlap (‍hij‍) is reflected in distribution ‍P(hij)‍. The width in ‍P(hij)‍ increases with ‍ϕ‍, 
and the peak shifts to higher values of ‍hij‍ (Figure 4A). The mean, ‍

⟨
hij
⟩
‍, increases with ‍ϕ‍ (Figure 4B). 

Thus, even if the cells are highly jammed at ‍ϕ ≈ ϕS‍, free area is available because of an increase in the 
overlap between cells (see Figure 5).

When ‍ϕ‍ exceeds ‍ϕS‍, the mobility of small-sized cells facilitates the larger cells to move, as is 
assumed in the free volume theory of polymer glasses (Cohen and Turnbull, 1959; Turnbull and 
Cohen, 1961; Turnbull and Cohen, 1970; Falk et al., 2020). As a result of the motion of small cells, a 

Video 3. Shows the movements of cells at a low area 
fraction (‍ϕ = 0.85‍). Note that the smaller and bigger-
sized cells are almost equally faster at lower area 
fractions (‍phi = 0.85‍) because of the huge available 
free areas.

https://elifesciences.org/articles/87966/figures#video3

https://doi.org/10.7554/eLife.87966
https://elifesciences.org/articles/87966/figures#video3
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void is temporarily created, which allows other (possibly large) cells to move. In addition to the release 
of space, the cells can also interpenetrate (Figure 4A and B). If ‍hij‍ increases, as is the case when the 
extent of compression increases (Figure 4A), the available space for nearby cells would also increase. 
This effect is expected to occur with high probability at ‍ϕS‍ and beyond, resulting in high overlap 
between the cells. These arguments suggest that the combined effect of PD and cell–cell overlap 
creates, via the self-propulsion of cells, additional free area that drives larger cells to move even under 
jammed conditions.

In order to quantify the physical picture given above, we calculated an effective area for each cell 
by first calculating Voronoi cell area ‍A‍. A plot for Voronoi tessellation is presented in Figure 5A for 

‍ϕ = 0.93‍, and the histogram of ‍A‍ is shown in Figure 5B. As ‍ϕ‍ increases, the distribution shifts toward 
lower Voronoi cell size ‍⟨A⟩‍. The mean Voronoi cell size ‍⟨A⟩‍ as a function of ‍ϕ‍ in Figure 5C shows ‍⟨A⟩‍ 
decreases as ‍ϕ‍ is increased. As cells interpenetrate, the Voronoi cell size will be smaller than the 
actual cell size (‍πR2

i ‍) in many instances (Figure 5A). To demonstrate this quantitatively, we calculated 

‍Afree,i = Ai − πR2
i ‍. The value of ‍Afree‍ could be negative if the overlap between neighboring cells is 

substantial; ‍Afree‍ is positive only when the Voronoi cell size is greater than the actual cell size. Positive 

‍Afree‍ is an estimate of the available free area. The histograms of ‍Afree‍ for all the packing fractions in 
Figure 5D show that the distributions saturate beyond ‍ϕ = 0.90‍. All the distributions have a substan-
tial region in which ‍Afree‍ is negative. The negative value of ‍Afree‍ increases with increasing ‍ϕ‍, which 
implies that the amount of interpenetration between cells increases.

Because of the overlap between the cells, the available free area fraction ‍ϕfree‍ is higher than the 
expected free area fraction (‍1.0 − ϕ‍) for all ‍ϕ‍. We define an effective free area fraction ‍ϕfree‍ as

	﻿‍
ϕfree =

∑Nt
j=1

∑Np
i=1 Aj

free+,i

NtAbox
,
‍�

(4)

where ‍Np‍ is the number of positive free area in jth snapshots, ‍Nt‍ is the total number of snapshots, ‍Abox‍ 
is the simulation box area, and ‍A

j
free+,i‍ is the positive free area of ith cell in jth snapshot.

The calculated ‍ϕfree‍, plotted as a function of ‍ϕ‍ in Figure 5E, shows that ‍ϕfree‍ decreases with ‍ϕ‍ until 

‍ϕ = 0.90‍, and then it saturates near a value ‍ϕfree ≈ 0.22‍ (see the right panel in Figure 5E). Thus, the 
saturation in ‍̄η‍ as a function of ‍ϕ‍ is explained by the free area picture, which arises due to combined 
effect of the size variations and the ability of cells to overlap.

Figure 4. Density-dependent cell–cell overlap. (A) Probability of overlap (‍hij‍) between two cells, ‍P(hij)‍, for various ‍ϕ‍ values.The peak in the distribution 

function shifts to higher values as ‍ϕ‍ increases. (B) Mean 
‍

⟨
hij
⟩

=
ˆ

dhijP(hij)
‍
 as a function of ‍ϕ‍. Inset shows a pictorial illustration of ‍h12‍ between two 

cells with radii ‍R1‍ and ‍R2‍ at a distance ‍r12‍.

https://doi.org/10.7554/eLife.87966
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Aging does not explain viscosity saturation
Our main result, which we explain by adopting the free volume theory developed in the context of 
glasses (Cohen and Turnbull, 1959; Turnbull and Cohen, 1961; Turnbull and Cohen, 1970; Falk 
et al., 2020), is that above a critical packing fraction ‍ϕS ∼ 0.90‍ the viscosity saturates. Relaxation time, 
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Figure 5. Changes in free area fraction with ‍ϕ‍. (A) Voronoi tessellation of cells for ‍ϕ = 0.93‍ for a single realization. The orange circles represent actual 
cell sizes. The blue polygons show the Voronoi cell size. (B) Distribution of Voronoi cell size ‍A‍ as a function of ‍ϕ‍. (C) Mean Voronoi cell size ‍⟨A⟩‍ as a 
function of ‍ϕ‍. A zoomed-in view for ‍ϕ > 0.860‍ is shown in the inset. (D) Distribution of free area ‍P(Afree)‍ for all ‍ϕ‍. The vertical blue dashed line shows 

that the maximum in the distribution is at ‍Afree ∼ 50µm2
‍. (E) Free area fraction ‍ϕfree‍ as a function of ‍ϕ‍. Note that ‍ϕfree‍ saturates beyond ‍ϕ = 0.90‍. 

An expanded view of the saturated region is shown in the right panel of (E). The error bars in (C) and (D) are the standard deviation in ‍⟨A⟩‍ and ‍ϕfree‍, 
respectively, for 24 independent simulations.

https://doi.org/10.7554/eLife.87966
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‍τα‍, measured using dynamic light scattering, in nearly monodisperse microgel poly(N- isopropylacryl-
amide) (PNiPAM) (Philippe et al., 2018) was found to depend only weakly on the volume fraction 
(3D), if ‍ϕV ‍ exceeds a critical value. It was suggested that the near saturation of ‍τα‍ at high ‍ϕV ‍ is due to 
aging, which is a non-equilibrium effect. If saturation in viscosity and relaxation time in the embryonic 
tissue at high ‍ϕ‍ is due to aging, then ‍τα‍ should increase sharply as the waiting time, ‍τω‍, is lengthened. 
We wondered if aging could explain the observed saturation of ‍η‍ in the embryonic tissue above ‍ϕS‍. If 
aging causes the plateau in the tissue dynamics, then ‍η‍ or ‍τα‍ should be an increasing function of the 
waiting time, ‍τω‍. To test the effect of ‍τω‍ on ‍τα‍, we calculated the self-intermediate scattering function 

‍Fs(q, t + τω)‍ as a function of ‍t‍ by varying ‍τω‍ over three orders of magnitude at ‍ϕ = 0.92‍ (Figure 6A). 
There is literally no change in ‍Fs(q, t + τω)‍ over the entire range of ‍τω‍. We conclude that, ‍τα‍, extracted 
from ‍Fs(q, t + τω)‍ is independent of ‍τω‍. The variations in ‍τα‍ (Figure 6B), with respect to ‍τω‍, are signifi-
cantly smaller than the errors in the simulation. Thus, the saturation in ‍η‍ or ‍τα‍ when ‍ϕ > ϕS‍ is not a 
consequence of aging.

There are two implications related to the absence of aging in the dynamics of the non-confluent 
embryonic tissues. (i) Although active forces drive the dynamics of the cells, as they presumably do in 
reality, the cell collectives can be treated as being near equilibrium, justifying the use of Green–Kubo 
relation to calculate ‍η‍. (ii) Parenthetically, we note that the absence of significant non-equilibrium 
effects, even though zebrafish is a living system, further justifies the use of equilibrium rigidity perco-
lation theory to analyze the experimental data (Petridou et al., 2021).

Discussion
Extensive computer simulations of a 2D dense tissue using a particle-based model of soft deformable 
cells with active self-propulsion have successfully reproduced the dynamical behavior observed in the 
blastoderm tissue of zebrafish.

The dependence of viscosity (‍η‍) and relaxation time (‍τα‍) (before the saturation) is well fit by the 
VFT equation. The value of ‍ϕ0‍ obtained from simulations, ‍ϕ0 ∼ 0.95‍, is close to ‍ϕ0 ∼ 0.94‍ extracted 
by fitting the experimental data to the VFT equation. Thus, the dynamics for ‍ϕ ≤ ϕS‍ resembles the 
behavior expected for glass-forming systems. Remarkably, the dependence of ‍η‍ on ‍ϕ‍ over the entire 
range (VFT regime followed by a plateau) may be understood using available free area picture with 

Figure 6. Relaxation in the polydisperse cell system is independent of the waiting time. (A) ‍Fs(q, t)‍ for ‍ϕ = 0.92‍ at different waiting times (‍τω = 106(s))‍. 
Regardless of the value of ‍τω‍, all the ‍Fs(q, t)‍ curves collapse onto a master curve. (B) Relaxation time, ‍ln(τα)‍, as a function of ‍τω‍. Over a three orders of 
magnitude change in ‍tω‍, the variation in relaxation times is less than the sample-to-sample fluctuations, as shown by the error bar. The error bars in (B) 
are the standard deviation in ‍τα‍ for 24 independent simulations.

https://doi.org/10.7554/eLife.87966
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essentially a single parameter, an idea that was proposed nearly 70 y ago. We discovered that PD as 
well as the ease of deformation of the cells that creates free area under high jamming conditions is the 
mechanism that explains viscosity saturation at high cell densities. The mechanism suggested here is 
an important step that links equilibrium PT to dynamics during zebrafish development (Hannezo and 
Heisenberg, 2022).

One could legitimately wonder if the extent of PD used in the soft discs simulations, which seems 
substantial, is needed to recapitulate the observed dependence of ‍η‍ on ‍ϕ‍. Furthermore, such large 
values of PD may not represent biological tissues. Although the choice of PD was made in part by the 
2D projection of area reported in experiments (Petridou et al., 2021), it is expected that PD values 
have to be less in three dimensions. We performed preliminary simulations in three dimensions with 
considerably reduced PD and calculated the dependence of relaxation time (‍τα‍) as a function of ‍ϕ‍. 
The results show that ‍τα‍ does indeed saturate at high-volume fractions.

The proposed model neglects adhesive interactions between cells, which of course is not unim-
portant. It is crucial to wonder if the proposed mechanism would change if cell–cell adhesion is taken 
into account. We wanted to create the simplest model to explain the experimental data. We do 
think that realistic values of adhesion strength would not significantly alter the forces between cells 
(Malmi-Kakkada et al., 2018). Thus, we expect a similar mechanism. Furthermore, the physics of the 
dynamics in glass-forming materials does not change in systems with and without attractive forces 
(Kirkpatrick and Thirumalai, 2015). Universal behavior, such as VFT relation, is valid for a broad class 
of unrelated materials (see Figure 1 in Angell, 1991). Needless to say, non-universal quantities such as 
glass transition temperature ‍Tg‍ or effective free energy barriers for relaxation will change. In our case, 
we expect that changing the adhesion strength, within a reasonable range, would change ‍ϕS‍ without 
qualitatively altering the dependence of ‍η‍ on ‍ϕ‍. For these reasons, in the first pass we neglected 
adhesion, whose effects have to be investigated in the future.

In the physical considerations leading to Equation (6), the random activity term (µ) plays an 
important role. Is it possible to create a passive model by maintaining the system at a finite tempera-
ture using stochastic noise with µ = 0, which would show the observed viscosity behavior? First, in such 
a system of stochastic equations, the coefficient of noise (a diffusion constant) would be related to ‍γi‍ 
in Equation (6) through fluctuation dissipation theorem (FDT). Thus, only ‍γi‍ can be varied. In contrast, 
in Equation (6) the two parameters (‍γi‍ and µ) maybe independently changed, which implies that the 
two sets of stochastic equations of motion are not equivalent. Second, the passive system describes 
particles that interact by soft Hertz potential. In analogy with systems in which the particles interact 
with harmonic potential (Ikeda et al., 2012), we expect that the passive model would form a glass in 
which the viscosity would follow the VFT law.

We find it surprising that the calculation of viscosity using linear response theory (valid for systems 
close to equilibrium) and the link to free area quantitatively explain the simulation results and by 
implication the experimental data for a living and growing tissue. The calculation of free area of the 
cells is based on the geometrical effects of packing, which in turn is determined by cell-to-cell contact 
topology. These considerations, which are firmly established here, explain why equilibrium PTs are 
related to a steep increase in viscosity (Kirkpatrick and Thirumalai, 2015) as the packing fraction 
changes over a narrow range. The absence of aging suggests that, although a large number of cell 
divisions occur, they must be essentially independent, thus allowing the cells to reach local equilibrium.

Materials and methods
Two-dimensional cell model
Following our earlier studies (Malmi-Kakkada et al., 2018; Sinha et al., 2020), we simulated a 2D 
version of a particle-based cell model. We did not explicitly include cell division in the simulations. This 
is physically reasonable because in the experiments (Petridou et al., 2021) the time scales over which 
cell division induced local stresses relax are short compared to cell division time. Thus, local equilib-
rium is established in between random cell division events. We performed simulations in 2D because 
experiments reported the dependence of viscosity as a function of area fraction.

In our model, cells are modeled as soft deformable disks (Matoz-Fernandez et al., 2017; Drasdo 
and Höhme, 2005; Schaller and Meyer-Hermann, 2005; Malmi-Kakkada et al., 2018) interacting 

https://doi.org/10.7554/eLife.87966
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via short-ranged forces. The elastic (repulsive) force between two cells with radii ‍Ri‍ and ‍Rj‍ is Hertzian, 
which is given by

	﻿‍

Fel
ij =

h3/2
ij

3
2

(
1 − ν2

E

)√
1
Ri

+ 1
Rj

,

‍�

(5)

where ‍hij = max[0, Ri + Rj − |⃗ri − r⃗j|]‍. The repulsive force acts along the unit vector ‍⃗nij‍, which points 
from the center of the jth cell to the center of the ith cell. The total force on the ith cell is

	﻿‍
F⃗i =

∑
j∈NN(i)

(
F el

ij

)
n⃗ij,

‍�

where ‍NN(i)‍ is the number of near-neighbor cells that are in contact with the ith cell. The jth cell 
is the nearest neighbor of the ith cell, if ‍hij > 0‍. The near-neighbor condition ensures that the cells 
interpenetrate each other to some extent, thus mimicking the cell softness. For simplicity, we assume 
that the elastic moduli (‍E‍) and the Poisson ratios (‍ν‍) for all the cells are identical. PD in the cell sizes is 
important in recovering the plateau in the viscosity as a function of packing fraction. Thus, the distri-
bution of cell areas (‍Ai = πR2

i ‍) is assumed to have a distribution that mimics the broad area distribution 
discovered in experiments.

Self-propulsion and equations of motion
In addition to the repulsive Hertz force, we include an active force arising from self-propulsion mobility 
(µ), which is a proxy for the intrinsically generated forces within a cell. For illustration purposes, we 
take µ to independent of the cells, although this can be relaxed readily. We assume that the dynamics 
of each cell obeys the phenomenological equation

	﻿‍
˙⃗ri = F⃗i

γi
+ µW⃗i(t),

‍�
(6)

where ‍γi‍ is the friction coefficient of ith cell, and ‍Wi(t)‍ is a noise term. The friction coefficient ‍γi‍ is taken 

to be ‍γ0Ri‍ (Sinha et al., 2022). By scaling ‍t‍ by the characteristic time scale, 
‍
τ = ⟨R⟩2

µ2 ‍
 in Equation (6), 

one can show that the results should be insensitive to the exact value of µ. The noise term ‍Wi(t)‍ is 
chosen such that ‍⟨Wi(t)⟩ = 0‍ and ‍⟨W

α
i (t)Wβ

j (t′)⟩ = δ(t − t′)δi,jδ
α,β

‍. In our model, there is no dynamics 
with only systematic forces because the temperature is zero. The observed dynamics arises solely due 
to the self-propulsion (Equation 6).

We place ‍N ‍ cells in a square box that is periodically replicated. The size of the box is ‍L‍ so that 

the packing fraction (in our 2D system it is the area fraction) is ‍ϕ =
∑N

i=1 πR2
i

L2 ‍. We performed extensive 

simulations by varying ‍ϕ‍ in the range ‍0.700 ≤ ϕ ≤ 0.950‍. The results reported in main text are obtained 
with ‍N = 500‍. Finite size effects are discussed in Appendix 7.

To mimic the variations in the area of cells in a tissue (Petridou et al., 2021), we use a broad distri-
bution of cell radii (see Appendix 1 for details). The parameters for the model are given in Table 1. 
In this study, we do not consider the growth and division of cells. Thus, our simulations describe 

Table 1. Parameters used in the simulation.

Parameters Values References

Timestep (‍∆t‍) ‍10s‍ This paper

Self-propulsion (µ) ‍0.045µm/
√

s‍ This paper

Friction coefficient (‍γo‍) ‍0.1kg/(µm s)‍ This paper

Mean cell elastic modulus (‍Ei)‍ ‍10−3MPa‍ Galle et al., 2005; Malmi-Kakkada et al., 2018

Mean cell Poisson ratio (‍νi‍) 0.5
Schaller and Meyer-Hermann, 2005; Malmi-Kakkada 
et al., 2018

https://doi.org/10.7554/eLife.87966
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steady-state dynamics of the tissue. For each ‍ϕ‍, we performed simulations for at least (5–10)‍τα‍ before 
storing the data. For each ‍ϕ‍, we performed 24 independent simulations. The calculation of viscosity 
was performed by averaging over 40 independent simulations at each ‍ϕ‍.

Calculation of viscosity
We calculated the effective viscosity (‍̄η‍) for various values of ‍ϕ‍ by integrating the off-diagonal part 
of the stress–stress correlation function ‍⟨Pµν (t)Pµν (0)⟩‍ using the Green–Kubo relation (Hansen and 
McDonald, 2013) (without the pre-factor ‍

A
kBT ‍)

	﻿‍
η̄ =
ˆ ∞

0
dt
∑
(µν)

⟨Pµν (t)Pµν (0)⟩ ,
‍�

(7)

where µ and ‍ν‍ denote Cartesian components (‍x‍ and ‍y‍) of the stress tensor ‍Pµν (t)‍ (see main text for the 
definition of ‍Pµν (t)‍). The definition of ‍̄η‍, which relates the decay of stresses as a function of times in the 
non-confluent tissue, is akin to the methods used to calculate viscosity in simple fluids (Equation 7). 

The time dependence of ‍⟨Pµν (t)Pµν (0)⟩‍, normalized by 
‍

⟨
Pµν (0)2

⟩
‍
, for different values of ‍ϕ‍ (Figure 7A 

and B) shows that the stress relaxation is clearly non-exponential, decaying to zero in two steps. 
After an initial rapid decay followed by a plateau at intermediate times (clearly visible for ‍ϕ ≥ 0.91‍), 
the normalized ‍⟨Pµν (t)Pµν (0)⟩‍ decays to zero as a stretched exponential. The black dashed lines in 

Figure 7C show that a stretched exponential function, 
‍
Cs exp

[
−
(

t
τη

)β
]

‍
, where ‍τη‍ is the characteristic 

time in which stress relax and ‍β‍ is the stretching exponent, provides an excellent fit to the long time 
decay of ‍⟨Pµν (t)Pµν (0)⟩‍ (from the plateau region to zero) as a function of ‍t‍. Therefore, we utilized the 

fit function, 
‍
Cs exp

[
−
(

t
τη

)β
]

‍
, to replace the noisy long time part of ‍⟨Pµν (t)Pµν (0)⟩‍ by a smooth fit 
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Figure 7. Fit of the stress–stress correlation functions to stretched exponential functions. (A) The stress–stress 
correlation function ‍⟨Pµν (t)Pµν (0)⟩‍ divided by the value at ‍t = 0‍ as a function of ‍t ‍ for ‍ϕ ∈ (0.75 − 0.87)‍. 
(B) Similar plot for ‍ϕ ∈ (0.89 − 0.93)‍. (C) The long time decay of ‍⟨Pµν (t)Pµν (0)⟩‍ is fit to 

‍
Cs exp

[
−( t

τη
)β
]
‍
, as 

shown by the dashed lines. The inset shows the dependence of ‍β‍ on ‍ϕ‍. (D) The data that is fit using the stretched 
exponential function (black dashed line) is combined with the short time data (blue solid line), which is fit using the 
cubic spline function. The resulting fits produces a smooth curve ‍⟨Pµν (t)Pµν (0)⟩combined‍, as shown in the inset.
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data before evaluating the integral in Equation (7). The details of the procedure to compute ‍̄η‍ are 
described below.

We divided ‍⟨Pµν (t)Pµν (0)⟩‍ in two parts. (i) The short time part (‍⟨Pµν (t)Pµν (0)⟩short‍) – the smooth 
initial rapid decay until the plateau is reached (e.g., see the blue circles in Figure 7D for ‍ϕ = 0.93‍). For 
the ‍n‍ data points at short times, ‍

(
t1, ⟨Pµν (t1)Pµν (0)⟩ short

)
‍,…, ‍

(
tn, ⟨Pµν (tn)Pµν (0)⟩ short

)
‍, we constructed a 

spline ‍S(t)‍ using a set of cubic polynomials:

	﻿‍

S1(t) = ⟨Pµν (t1)Pµν (0)⟩short + b1(t − t1) + c1(t − t1)2 + d1(t − t1)3

S2(t) = ⟨Pµν (t2)Pµν (0)⟩short + b2(t − t2) + c2(t − t2)2 + d2(t − t2)3

Sn−1(t) = ⟨Pµν (tn−1)Pµν (0)⟩short + bn−1(t − tn−1) + cn−1(t − tn−1)2 + dn−1(t − tn−1)3.‍�

The polynomials satisfy the following properties. (a) ‍Si(ti) = ⟨Pµν (ti)Pµν (0)⟩ short‍ and 

‍Si(ti+1) = ⟨Pµν (ti+1)Pµν (0)⟩short‍ for ‍i = 1, ..., n − 1‍ which guarantees that the spline function ‍S(t)‍ interpo-
lates between the data points. (b) ‍S

′
i−1(t) = S′i(t)‍ for ‍i = 2, ..., n − 1‍ so that ‍S

′(t)‍ is continuous in the interval 

‍
[
t1, tn

]
‍. (c) ‍S

′′
i−1(t) = S′′i (t)‍ for ‍i = 2, ..., n − 1‍ so that ‍S

′′(t)‍ is continuous in the interval ‍
[
t1, tn

]
‍. By solving 

for the unknown parameters, ‍bi, ci‍, and ‍di‍, using the above-mentioned properties, we constructed the 
function S(t). We used ‍S(t)‍ to fit ‍⟨Pµν (t)Pµν (0)⟩short‍ to get an evenly spaced (‍δt = 10s‍) smooth data (solid 
blue line in Figure 7D). The fitting was done using the software ‘Xmgrace’.

(ii) The long time part (‍⟨Pµν (t)Pµν (0)⟩long‍) – from the plateau until it decays to zero – is shown by 

the red circles in Figure 7D. The long time part was fit using the analytical function 
‍
Cs exp

[
−
(

t
τη

)β
]

‍
 

(black dashed line in Figure 7D). We refer to the fit data (‍δt = 10s‍) as ‍⟨Pµν (t)Pµν (0)⟩fit
long‍.

We then combined ‍⟨Pµν (t)Pµν (0)⟩short‍ and ‍⟨Pµν (t)Pµν (0)⟩ fitted
long ‍ to obtain ‍⟨Pµν (t)Pµν (0)⟩combined‍ (see 

inset of Figure 7D). Finally, we calculated ‍̄η‍ using the equation,

	﻿‍

η̄ = limδt→0
∑T

i=0 δt
∑

(µν) ⟨Pµν (iδt)Pµν (0)⟩combined

= limδt→0
∑t1

i=0 δt
∑

(µν) ⟨Pµν (iδt)Pµν (0)⟩ short

+ limδt→0
∑T

i=t1 δt
∑

(µν) ⟨Pµν (iδt)Pµν (0)⟩fit
long , ‍�

(8)

where ‍t1δt‍ is the end point of ‍⟨Pµν (t)Pµν (0)⟩short‍ and ‍Tδt‍ is the end point of ‍⟨Pµν (iδt)Pµν (0)⟩combined‍.
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Appendix 1
Cell polydispersity is needed to account for viscosity saturation
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Appendix 1—figure 1. Area distribution of the cells. (A) Simulation snapshot for monodisperse cell system. The 
number of cells in the two-dimensional periodic box is ‍N = 500‍. (B) Pair correlation function, ‍g(r)‍, as a function of 
‍r ‍. There is clear evidence of order, as reflected in the sharp peaks at regular intervals, which reflects the packing 
in (A). (C) A schematic picture of polydisperse cell system from the simulations. Color bar on the right shows the 
scale of radii in µm. There is no discernible order. (D) Distribution of cell area extracted from experiment during 
morphogenesis of zebrafish blastoderm (extracted from Fig. S2(A)) (Petridou et al., 2021). (E) Same as (D) except, 

‍P(Ai)‍, used in a typical simulation. Cell radii vary from 2 µm to 15 µm.

To explain the observed saturation in viscosity (Figure 1C) when cell area fraction, ‍ϕ‍, exceeds ‍ϕS‍ 
(‍≈ 0.90‍), we first simulated a monodisperse cell system using the model described in the ‘Materials 
and methods’ section. The monodisperse cell system (‍R = 8.5µm‍) crystallizes (see Appendix 1—
figure 1A and B), which excludes it from being a viable model for explaining the experimental 
findings. We also find that a system consisting of 50:50 binary mixture of cells cannot account for 
the experimental data even though crystallization is avoided (see the next section). These findings 
forced us to take PD into account.

In order to develop an agent-based model that accounts for PD effects, we first extracted the 
distribution, ‍P(Ai)‍, of the area (‍Ai‍) in the zebrafish cells from the experimental data (Petridou 
et  al., 2021). Appendix  1—figure 1D shows that ‍P(Ai)‍ is broad, implying that cell sizes are 
highly heterogeneous. Based on this finding, we sought a model of the non-confluent tissue that 
approximately mimics PD found in experiments. In other words, ‍

∆A
⟨A⟩‍ (‍∆A‍ is the dispersion in ‍P(Ai)‍ 

and ‍⟨A⟩‍ is the mean value) should be similar to the data in Appendix 1—figure 1D. The radii (‍Ri‍) of 

the cells in the simulations are sampled from a Gaussian distribution 
‍
∼ exp

(
−(Ri − ⟨R⟩)2/2∆R2

)
‍
, with 

‍⟨R⟩ = 8.5µm‍ and ‍∆R = 4.5µm‍. The resulting ‍P(Ai)‍ for one of the realizations (see Appendix 1—figure 
1C) is shown in Appendix 1—figure 1E. The value of ‍

∆A
⟨A⟩‍ is ‍∼ 0.5‍, which compares favorably with the 

experimental estimate (∼0.4). The unusual dependence of the viscosity (‍η‍) as a function of packing 
fraction (‍ϕ‍) cannot be reproduced in the absence of PD.

https://doi.org/10.7554/eLife.87966
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Appendix 2
Relaxation time in the binary mixture of cells does not saturate at high 
‍ϕ‍
We showed that the saturation in the relaxation time above a critical area fraction, ‍ϕS‍, is related to 
two factors. One is that there ought to be dispersion in the cell sizes (Appendix 1—figure 1). The 
extent of dispersion is likely to less in three rather in two dimensions. The second criterion is that the 
cells should be soft, allowing them to overlap at high area fraction. In other words, the cell diameters 
are explicitly non-additive. The Hertz potential captures the squishy nature of the cells.

In order to reveal the importance of PD, we first investigated if a binary mixture of cells (see 
Appendix 2—figure 1A) would reproduce the observed dependence of ‍τα‍ on ‍ϕ‍. We created a 
50:50 mixture with a cell size ratio ‍∼ 1.4‍ (‍RB = 8.5µm‍ and ‍RS = 6.1µm‍). All other parameters are the 
same as in the polydisperse system (see Table 1). The radial distribution function, ‍g(r)‍, calculated 
by considering both the cell types, exhibits intermediate- but not long-range translational order 
(Appendix 2—figure 1B). A peak in ‍g(r)‍ appears at ‍rmax = 14.0µm‍.

In order to determine the dependence of the relaxation time, ‍τα‍, on ‍ϕ‍, we first calculated ‍Fs(q, t)‍ 
at ‍q = 2π/rmax‍ (Appendix 2—figure 1C). The decay of ‍Fs(q, t)‍ is similar to what one finds in typical 
glass-forming systems.

As ‍ϕ‍ increases, the decay of ‍Fs(q, t)‍ slows down dramatically. When ‍ϕ‍ exceeds ‍0.93‍, there is a 
visible plateau at intermediate times followed by a slow decay. By fitting the long time decay of 

‍Fs(q, t)‍ to ‍exp(−(t/τα)β)‍ (‍β‍ is the stretching exponent), we find that ‍τα(ϕ)‍ as a function of ‍ϕ‍ is well 
characterized by the VFT relation (Appendix 2—figure 1D). There is no evidence of saturation in 

‍τα(ϕ)‍ at high ‍ϕ‍. The ‍ϕ‍ dependence of the effective shear viscosity ‍̄η‍ (Appendix  2—figure 1E), 
calculated using Equation (8), also shows no sign of saturation. The VFT behavior, with ‍ϕ0 ≈ 1‍ and 
‍D ≈ 1.2‍, shows that the two-component cell system behaves as a ‘fragile’ glass (Angell, 1991).

A comment regarding the binary system of cells is in order. The variables that characterize this system 
are ‍λ = RB/RS‍ (‍RB‍ (‍RS‍) is the radius of the big (small) cells), ‍ΦB = NB/(NA + NB)‍ (‍NB‍ (‍NA‍) is the number 
of big (small) cells) with ‍ΦA = 1 − ΦB‍, and the packing fraction, ‍ϕ = π(NBR2

B + NAR2
A)/AS‍, where ‍AS‍ is 

the area of the sample. The results in Appendix 2—figure 1 were obtained using ‍λ = 1.4‍, ‍ΦB = 0.5‍. 
With this choice, the value of PD is ‍(λ− 1)/(λ + 1) ≈ 0.17‍, which is smaller than the experimental 
value. It is possible that by thoroughly exploring the parameter space, ‍λ‍ and ‍ϕ‍, one could find 
regions in which the ‍τα‍ in the two-component cell system would saturate beyond ‍ϕS‍. However, in 
light of the results in Appendix 1—figure 1D, we choose to simulate systems that also have high 
degree of PD (Appendix 1—figure 1E).

https://doi.org/10.7554/eLife.87966
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Appendix 2—figure 1. Structure and relaxation behavior for a binary mixture of cells. (A) A typical simulation 
snapshot for binary mixture of cells at ‍ϕ = 0.93‍. (B) The corresponding pair correlation function, ‍g(r)‍, between all 
the cells. The vertical dashed line is at the first peak position (‍rmax‍). (C) ‍Fs(q, t)‍, with ‍q = 2π

rmax ‍, where ‍rmax‍ is the 
location of the first peak in the ‍g(r)‍, as a function of time at various ‍ϕ‍ values. (D) The logarithm of the relaxation 
time, ‍τα‍, as a function of ‍ϕ‍. Over the entire range of ‍ϕ‍, the increase in ‍τα‍ is well fit by the Vogel–Fulcher–
Tammann (VFT) (VFT) relation. Most importantly, the relaxation time does not saturate, which means the evolving 
tissue cannot be modeled using a 50:50 binary mixture. (E) Effective shear viscosity ‍̄η‍ as a function of ‍ϕ‍ reflects the 
behavior of ‍τ ‍ as a function of ‍ϕ‍ in (D).
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Appendix 3
Absence of saturation in the free area in binary mixture of cells
In the main text, we established that the effective viscosity, ‍̄η‍, which should be a proxy for the true 
‍η‍ and the relaxation time (‍τα‍) in the polydisperse cell system, saturates beyond ‍ϕS‍. The dynamics 
saturates beyond ‍ϕS‍ because the available area per cells (quantified as ‍ϕfree‍) is roughly a constant in 
this region (see Figure 5E). In the binary system, however, we do not find any saturation in the ‍τα‍. 
Therefore, if ‍ϕfree‍ controls the dynamics, one would expect that ‍ϕfree‍ should decrease monotonically 
with ‍ϕ‍ for the binary cells system. We calculated the average Vornoi cell size ‍⟨A⟩‍ (Appendix 3—
figure 1A) and ‍ϕfree‍ (Appendix 3—figure 1B) for the binary system. Both ‍⟨A⟩‍ and ‍ϕfree‍ decrease with 
‍ϕ‍, which is consistent with the free volume picture proposed in the context of glasses.
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Appendix 3—figure 1. Free area decreases monotonically for the binary mixture of cells. (A) Mean Voronoi cell 
size, ‍⟨A⟩‍, as a function of ‍ϕ‍ for the 50:50 binary system. (B) The free area fraction, ‍ϕfree‍, as a function of ‍ϕ‍ shows 
that ‍ϕfree‍ decreases monotonically as ‍ϕ‍ increases. The error bars in (B) are the standard deviation in $\phi_{free}$ 
for 24 independent simulations.
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Appendix 4
Absence of broken ergodicity
We have shown in the earlier section that the saturation of ‍τα‍ above ‍ϕS‍ is not a consequence of 
aging. In the context of glasses and supercooled liquids (Thirumalai et al., 1989), it has been shown 
that if ergodicity is broken, then a variety of observables would depend on initial conditions. In order 
to test if ergodicity is broken in our model of non-confluent tissues, we define a measure ‍Ω(t)‍ given 
by

	﻿‍
Ω(t) =

[
ωk(t) − ωl(t)

]2
,
‍�

(8)

where ‍k‍ and ‍l‍ represent systems with different initial conditions, and 
‍
ωk(t) = 1

t

ˆ t

0
Pk
µν (s)ds

‍
 with 

‍Pµν (s)‍ being the value of stress (see Equation 2 in the main text) at time ‍s‍. If the system is ergodic, 
implying the system has explored the whole phase space on the simulation time scale, the values of 

‍ω
k(t)‍ and ‍ω

l(t)‍ would be independent of ‍k‍ and ‍l‍. Therefore, ‍Ω(t)‍ should vanish at very long time for 
ergodic systems. On the other hand, if ergodicity is broken, then ‍Ω(t)‍ would be a constant whose 
value would depend on ‍k‍ and ‍l‍.

The long time values of ‍Ω(t)‍, normalized by ‍Ω(0)‍ (at ‍t = 0‍), are 0.01, 0.016, and 0.026 for 

‍ϕ = 0.85, 0.90‍, and 0.92, respectively (Appendix  4—figure 1A–C). Because these values are 
sufficiently small, we surmise that effectively ergodicity is established. Therefore, our conclusion in 
the earlier section that the polydisperse cell system is in near equilibrium is justified and also explains 
the absence of aging. Furthermore, it was also predicted previously (Thirumalai et al., 1989) that 
in long time the ergodic measure (‍Ω(t)‍ in our case) should decay as ‍≈ 1/t‍. Appendix 4—figure 1D 
shows that this is indeed the case – at long time ‍Ω(t)/Ω(0)‍ decays approximately as ‍1/t‍.
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Appendix 4—figure 1. Measure of ergodicity. (A) Ergodic measure ‍Ω(t)‍ scaled by the value at ‍t = 0‍ (‍Ω(0)‍) as a 
function of ‍t ‍ for ‍ϕ = 0.85‍. (B, C) Similar plots for ‍ϕ = 0.90‍ and ‍ϕ = 0.92‍, respectively. At long time, ‍Ω(t)/Ω(0)‍ 
reach ‍0.01‍, ‍0.016‍, and ‍0.026‍ for ‍ϕ = 0.85‍, ‍ϕ = 0.90‍, and ‍ϕ = 0.92‍, respectively. (D) ‍Ω(0)/Ω(t)‍ as a function of ‍t ‍ 
for ‍ϕ = 0.90‍. The dashed line shows a linear fit. The time t is in second.
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Appendix 5
Dynamics of small and large cells are dramatically different
The structural and the dynamical behavior of the small (‍RS ≤ 4.5µm‍) and large (‍RB ≥ 12.0µm‍) cells is 
dramatically different in the non-confluent tissue. The pair correlation functions between small cells 
(‍gSS(r)‍) and between large cells (‍gBB(r)‍) (Appendix 5—figure 1A and B) for ‍ϕ = 0.905‍ and ‍ϕ = 0.92‍ 
show that both small and large cells exhibit liquid-like disordered structures. However, it is important 
to note that ‍gSS(r)‍ has only one prominent peak and a modest second peak. In contrast, ‍gBB(r)‍ has 
three prominent peaks. Thus, the smaller-sized cells exhibit liquid-like behavior, whereas the large 
cells are jammed. This structural feature is reflected in the decay of ‍Fs(q, t)‍ with ‍q = 2π

rmax ‍, where ‍rmax‍ 
is the position of the first peak in the ‍g(r)‍ (Appendix 5—figure 1C and D).

There is a clear difference in the decay of ‍Fs(q, t)‍, spanning nearly eight orders of magnitude, 
between small and large cells (compare Appendix  5—figure 1C and D). At the highly jammed 
packing fraction (‍ϕ = 0.92‍), small-sized cells have the characteristics of fluid-like behavior.
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Appendix 5—figure 1. Cell size-dependent structures and dynamics. (A) Radial distribution function ‍gSS(r)‍ 
between small-sized cells (‍RS ≤ 4.5µm‍) at ‍ϕ = 0.905‍ (blue) and ‍0.92‍ (red). These values are greater than 

‍ϕs ≈ 0.90‍. (B) Same as (A) except the results are for ‍gBB(r)‍ between large cells (‍RB ≥ 12.0µm‍). (C) ‍Fs(q, t)‍ for 
cells with ‍RS ≤ 4.5µm‍ at ‍ϕ = 0.905‍ and ‍ϕ = 0.92‍. Note that even at these dense packings, the mobility of the 
smaller-sized cells is substantial, which is reflected in the time dependence of ‍Fs(q, t)‍. (D) ‍Fs(q, t)‍ for cells with 

‍RB ≥ 12.0µm‍ at ‍ϕ = 0.905‍ and ‍ϕ = 0.92‍. The black dashed lines are fits to stretched exponential functions, 

‍Fs(q, t) ∼ exp(−( t
τα

)β)‍, where ‍τα‍ is the relaxation time and ‍β‍ is the stretching exponent. The dotted lines 

correspond to the value ‍Fs(q, t) = 1
e ‍.

A typical snapshot from one of the simulations (‍ϕ = 0.91‍) and the trajectories for a few small- and 
big-sized cells are displayed in Appendix 5—figure 2A–D. The figures reflect the decay in ‍Fs(q, t)‍. 
Not only are the mobilities heterogeneous, it is also clear that the displacements of the small cells 
are greater than the large cells.

https://doi.org/10.7554/eLife.87966
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Appendix 5—figure 2. Simulation snapshot and trajectories for a few smaller- and bigger-sized cells. (A) Cells 
(‍ϕ = 0.91‍) are colored according to their sizes (gray colors). A few small-sized cells are shown in different colors 
(pink, blue, orange, purple, cyan, light purple, and yellow). (B) The corresponding trajectories are shown over the 
entire simulation time. (C) Similar plot as (A) but for a few bigger-sized cells shown in purple, yellow, light green, 
red, cyan, and green colors. (D) Same as (B) except the trajectories of the large-sized cells are highlighted. Clearly, 
the large cells are jammed.
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Appendix 6
Dynamical changes in local packing fraction cause jammed cells to 
move
The mobilities of all the cells, even under highly jammed conditions (‍ϕ ≥ ϕS‍), are only possible if 
the local area fraction changes dynamically. This is a collective effect, which is difficult to quantify 
because it would involve multi-cell correlation function. As explained in the main text, the movement 
of a jammed cell can only occur if several neighboring cells move to create space. This picture is 
not that dissimilar to kinetic facilitation in glass-forming materials (Hedges et al., 2009; Biroli and 
Garrahan, 2013). However, in glass-like systems, facilitation is due to thermal excitation, but in the 
active system, it is self-propulsion that causes the cells to move.

The creation of free space may be visualized by tracking the positions of the nearest-neighbor 
cells. In Appendix 6—figure 1, we display the local free area of a black-colored cell at different 
times. The top panels show the configurations where the black cell is completely jammed by other 
cells. The cell, colored in black, can move if the neighboring cells rearrange (caging effect in glass-
forming systems) in order to increase the available free space. The bottom panels show that upon 
rearrangement of the cells surrounding the black cell its mobility increases. Such rearrangement 
occurs continuously, which qualitatively explains the saturation in viscosity in the multicomponent 
cell system.

Appendix 6—figure 1. Dynamical rearrangement of jammed cells. The changing local environment of a randomly 
selected cell (black) over time. Top panels: from left to right, ‍t = 9.41τα, 10.01τα‍, and ‍25.39τα‍. The black-colored 
cell is completely jammed by other cells. Bottom panels: from left to right, ‍t = 10.97τα, 25.44τα‍, and ‍27.49τα‍. 
Dynamical facilitation, resulting in collective rearrangement of the cells surrounding the black cell, enables it to 
move in the dynamically created free volume.

https://doi.org/10.7554/eLife.87966
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Appendix 7
Finite system size effects
In the main text, we report results for ‍N = 500‍. To asses if the unusual dynamics is not an effect 
of finite system size, we performed additional simulations with ‍N = 200‍ and ‍N = 750‍. As shown in 
Appendix 7—figure 1A and B, ‍Fs(q, t)‍ saturates at ‍ϕ ≥ ϕS‍, which is reflected in the logarithm of ‍τα‍ 
as a function of ‍ϕ‍ (Appendix 7—figure 1C and D). The saturation value ‍ϕS ∼ 0.90‍ is independent 
of the system size. The value of ‍ϕ0‍ (‍≈ 0.95‍) is also nearly independent of system size. Therefore, the 
observed dynamics, reflected in the plateau in the viscosity at high ‍ϕ‍, is likely not an effect of finite 
system size.
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Appendix 7—figure 1. Finite size effects. ‍Fs(q, t)‍ for ‍N = 200‍ (A) and ‍N = 750‍ (B). Logarithm of ‍τα‍ as a function 
of ‍ϕ‍ for ‍N = 200‍ (C) and for ‍N = 750‍ (D). The dashed lines are the Vogel–Fulcher–Tammann (VFT) fits.
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Appendix 8
Dependence of viscosity on average coordination number and average 
connectivity
In the zebrafish blastoderm experiment (Petridou et al., 2021), the change in viscosity (‍η‍) was shown 
as a function of mean connectivity ‍⟨C⟩‍. To test whether our 2D tissue simulations also exhibit similar 
behavior, we calculated viscosity as a function of mean coordination number ‍⟨Nc⟩‍ (defined below), 
which is equivalent to ‍⟨C⟩‍. We define the coordination number, ‍Nc‍, as the number of cells that are 
in contact with a given cell. Two cells with indices ‍i‍ and ‍j‍ are in contact if ‍hij = Ri + Rj − rij > 0‍. We 
calculate ‍Nc‍ for all the cells for each ‍ϕ‍ and calculate the histogram ‍P(Nc)‍. The distributions of ‍P(Nc)‍ 
are well fit by a Gaussian distribution function 

‍
A exp

[
−( x − µ

σ
)2
]
‍
 (Appendix 8—figure 1A–C). The 

calculated mean, ‍⟨Nc⟩‍, from the fit is linearly related to the cell area fraction ‍ϕ‍ (Appendix 8—figure 
1D). We also calculate the average connectivity ‍⟨C⟩‍ defined in the following way. Each cell is defined 
as a node, and an edge is defined as the line connecting two nodes. If a snapshot has ‍n‍ nodes and 

‍m‍ edges, then the connectivity is defined as 
‍
C = 2m

n ‍
 (Petridou et al., 2021). We calculate ‍C‍ for all 

the snapshots for each ‍ϕ‍ and estimated its mean value ‍⟨C⟩‍. We find that ‍⟨C⟩‍ and ‍⟨Nc⟩‍ are of similar 
values (Appendix 8—figure 2A), and the dependence of viscosity ‍̄η‍ on ‍⟨Nc⟩‍ and ‍⟨C⟩‍ is similar to 
experimental results (Appendix 8—figure 2B and C; Petridou et al., 2021).
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Appendix 8—figure 1. Mean coordination number and cell area fraction. (A––C) shows the distribution of 
coordination number ‍P(Nc)‍ for  ‍ϕ‍ = 0.85, ‍0.90‍ and ‍0.93‍, respectively. The orange lines are Gaussian fits to the 
histograms. (D) shows mean ‍⟨Nc⟩‍ as a function of ‍ϕ‍. The dashed line shows the linear relationship between them. 
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Appendix 8—figure 2. Viscosity and coordination number. (A) shows ‍⟨C⟩‍ as a function of ‍⟨Nc⟩‍. Clearly they are 
linearly related as shown by the dashed line. Viscosity ‍̄η‍ as a function of ‍⟨Nc⟩‍ (B) and ‍⟨C⟩‍ (C).
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Appendix 9
Connectivity map
To pictorially observe the percolation transition in the simulations, we plot the connectivity map for 
various values ‍ϕ‍ in Appendix 9—figure 1. Note that for smaller ‍ϕ ≤ 0.89‍ the map shows that cells are 
loosely connected, suggesting a fluid-like behavior. For ‍ϕ ≥ 0.89‍, the connectivity between the cells 
spans the entire system, which was noted and analyzed elsewhere thoroughly (Petridou et al., 2021). 
Cells at one side of simulation box are connected to cells at the side. The cell connectivity extends 
throughout the sample. The transition from a non-percolated state to a percolated state occurs over 
a very narrow range of ‍ϕ‍, which corresponds to the onset of rigidity percolation transition (Petridou 
et al., 2021). It is gratifying that the simple simulations reproduce the experimental observations.
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Appendix 9—figure 1. Connectivity profile. Connectivity maps for ‍ϕ = 0.80, 0.85, 0.89, 0.90, 0.92‍, and ‍0.93‍ are 
shown in (A), (B), (C), (D), (E), and (F), respectively. For ‍ϕ ≥ 0.89‍, there is a path that connects the cells in the entire 
sample. The percolation transition occurs over a very narrow range of ‍ϕ‍ (roughly at ‍ϕ ≈ 0.89‍ ; orange map), which 
also coincides with the sharp increase in ‍η‍, thus linking equilibrium transition to geometric connectivity.
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