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Abstract Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape 
fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated 
into the emerging field of collective behaviour, which studies the movements, population- level 
behaviours, and emergent properties of animal groups. Here, we review the contributions of 
sensory ecology and collective behaviour to understanding how animals move and interact within 
the context of their social and physical environments. Our goal is to advance and bridge these two 
areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we 
organise our review around the following themes: (1) identifying the promise of integrating collec-
tive behaviour and sensory ecology; (2) defining and exploring the concept of a ‘sensory collective’; 
(3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) 
exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective 
behaviour; and (5) suggesting the need for creative conceptual and methodological advances to 
quantify ‘sensescapes’. In the final section, (6) applications to biological conservation, we argue 
that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via 
light, sound, and chemical pollution) which are anticipated to impact animal collectives and group- 
level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a 
forward- looking perspective on how sensory ecologists and collective behaviourists can both learn 
from and inspire one another to advance our understanding of animal behaviour, ecology, adapta-
tion, and evolution.

Introduction
Collective behaviour produces some of the most captivating phenomena on Earth, from the swarming 
of billions of locusts (Ariel and Ayali, 2015; Romanczuk et al., 2009) and coordinated movements 
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of fish schools (Georgopoulou et  al., 2022), to the construction of complex architecture (Laidre, 
2021; Reid et al., 2015) and coordination of cooperative breeding (Shen et al., 2017). Research on 
collective behaviour seeks a predictive and analytical understanding of the coordination of behaviours 
among individuals. To coordinate behaviour, animals use their sensory systems to acquire and process 
signals and cues from the environment, and from other individuals. How information is gathered 
and processed, and how it contributes to the collective behavioural decisions and outcomes are, 
however, seldom integrated into studies of collective behaviour. Such integration would help ensure 
that analytical models consider the perceptual and cognitive reality of the focal animal (Bastien and 
Romanczuk, 2020; Rosenthal et al., 2015). In turn, stimuli generated by collectives are likely to exert 
selective pressures back on sensory systems, but likewise, this has rarely been considered by sensory 
ecologists. By examining these dynamics, we can better understand the morphology, physiology, 
behaviour, and evolution of species and ecosystems, and how changing environments might impact 
their survival and conservation.

In this review, we advocate that integrating sensory ecology into collective behaviour will expand 
conceptual and methodological approaches and bring new depth and discovery to the field of collec-
tive behaviour. We start by describing the current status of the two fields and set forth our case 
for their further integration. We then introduce the idea of the sensory collective, where different 
sensory inputs are perceived and shared via signals or cues among members of a group and inte-
grated into an overall collective perception. In doing so, we discuss the potential benefits afforded by 
the increased sampling range of the collective and discuss the potential costs of group- induced noise. 
We then consider how the study of collective behaviour may provide new insights and models for 
understanding the evolution of sensory systems, assessing whether selective pressures are exerted by 
sensory collectives. Such an approach has yet to be thoroughly investigated in sensory ecology, but is 
likely to generate new insights into forces shaping the form and functions of visual, olfactory, haptic, 
thermal, auditory, magnetic, gustatory, and other sensory systems. With this goal in mind, we highlight 
a few examples of systems in which further study of how collective stimuli might shape the evolu-
tion of sensory systems seems likely to be fruitful. Building on this, we offer some examples of how 
collective stimuli might shape the evolution of sensory systems and discuss neural circuits involved 
in sensing and collective behaviour. We illustrate this by focusing on examples from diverse taxa and 
highlighting the promise of shared model systems in furthering this goal. Importantly, combining 
collective behaviour and sensory ecology requires new methods and theoretical approaches. To this 
end, we review emerging conceptual and methodological advances, and identify testable hypotheses 
and potential applications suitable for driving this research forward towards quantifying a ‘senses-
cape’. We explore what it will take to understand the combined and intersecting sensory perceptions 
of social individuals and, more critically, how sensory systems scale up to the level of group decision- 
making and the resulting collective behaviour. We conclude by discussing the applications and signif-
icance of sensory collectives for biological conservation, arguing that determining the umwelten of a 
sensory collective is essential for understanding how animals respond to sensory pollution and anthro-
pogenic change. Given the increasing impact of human populations on animal ecology and popu-
lation dynamics, we suggest understanding the sensory ecology of collectives will offer important 
insights into conservation initiatives.

Integrating collective behaviour and sensory ecology
Research in collective behaviour has begun to explore the sensory capabilities of organisms, and the 
relevant signals and cues that may be perceived and influence collective behavioural decisions. Such 
efforts have yielded important insights, including the complex nature of behavioural contagion and 
information transfer in fish schools (Strandburg- Peshkin et al., 2013), the trade- offs between efficient 
foraging and conspecific interference in echolocating bats (Cvikel et al., 2015), and the use of specific 
calls in maintaining cohesion in meerkat groups (Gall and Manser, 2017). Most research programs on 
collective behaviour, however, do not yet ground the research in the concept of umwelten (singular, 
umwelt; i.e. the world as it is experienced by a particular organism, reviewed in Caves et al., 2019; 
Partan and Marler, 2002), nor do they consider the sensory constraints of different species (Lemasson 
et al., 2009; Pita et al., 2016). This is where sensory ecology has much to offer to the study of collec-
tive behaviour.

https://doi.org/10.7554/eLife.88028
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The goal of sensory ecology is to understand how organisms perceive and interact with their 
social and physical environment, and in turn how the environment shapes the form and function of 
sensory systems (e.g. Cuthill et al., 2017). In recent decades many advances in the study of animal 
sensory ecology have emerged, including the application of sophisticated models of animal vision 
(Cassey et al., 2008; Olsson et al., 2018; Stöckl and Kelber, 2019; Troscianko and Stevens, 2015; 
Vorobyev and Osorio, 1998), methods to investigate chemotaxis and olfactory assessment (Jacobs, 
2012; Nevitt, 2008), and the use of comparative genetics to understand the proteins underlying 
mechanosensation (Aiello et al., 2018; Bagriantsev et al., 2014) and electro signal selection during 
electroreception (Crampton, 2019; Montgomery et  al., 2014). Sensory ecology has also been 
driving forward the conceptual framework for studying multimodal perception (Dominy et al., 2016; 
Higham and Hebets, 2013; Melin et al., 2022; Stynoski and Noble, 2012) highly relevant to collec-
tive behaviour; where the repeated interactions among many individuals not only produce patterns 
on a scale much larger than the individuals themselves, but involve integrating signals and cues at 
different scales involving combinations of sensory modalities, such as vision, sound, chemosensation, 
and electric and magnetic fields (Sumpter, 2010).

Figure 1. A framework for the study of sensory collectives. This schematic highlights the feedback between the sensory stimuli experienced by animals 
and their behavioural states. The arrows represent the different types of stimuli experienced by the prey animal—harmless and potentially harmful 
heterospecifics (purple and beige, respectively), social conspecifics (orange), and the physical environment (grey). The animal’s selective perception 
of the stimuli by filtering, amplification, or reduction creates an umwelt, the response to which determines the animal’s future behavioural state. In this 
specific example, the sensory system of the foraging blackbuck prevents the detection of echolocation calls of a bat, amplifies predator cues from a 
wolf, filters out cues from the physical environment, and attends fully to conspecific cues to form its personal umwelt. The integration of these cues 
leads to a probabilistic change in the behaviour of the individual, which in turn feeds back into the sensory systems of other conspecifics.

https://doi.org/10.7554/eLife.88028
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Because the emergent properties of these associations underlie diverse aspects of daily life for 
many species, they also have consequences for behavioural plasticity (Jordan and Ryan, 2015). 
Collective behaviour is vital not only for understanding the sociality, ecology, and evolution of animals, 
but also for estimating resilience of species to environmental variation; a pressing concern in light of 
pervasive climate change (Berdahl et al., 2016; Hung et al., 2014; Hurme et al., 2022). Accordingly, 
efforts to improve and enhance the toolkit for investigating collective behaviour are of high impor-
tance for biological conservation (Westley et al., 2018).

Integrating sensory ecology with collective behaviour has the potential to establish the umwelt of 
a species, which is essential for understanding which stimuli are perceived, filtered, prioritised, and 
integrated downstream in both individual and collective decision- making processes. In Figure 1, we 
consider the umwelt of a blackbuck (Antilope cervicapra) experiencing a predatory threat. Here, out 
of the multiple sources of high- dimensional sensory inputs, the sensory and attentional systems of 
the animal filter out irrelevant input, amplifying the salience of the predatory threat, both directly 
and indirectly via conspecifics, and reducing cumulative stimuli from the physical environment. As 
a result of this filtering, the animal lives in a personal umwelt, influenced by the group. Recognising 
such nonlinear transformations of the sensory input available to individuals is essential for quanti-
fying animal responses to their environment and, in doing so, predicting their future behaviours. The 
answers to pressing questions in the study of collective behaviour might be found through creative 
integration of sensory ecology research (Box 1).

The concept of ‘a sensory collective’
Sensory systems and downstream cognitive pathways integrate inputs across multiple receptor types, 
sensory modalities, and brain regions, with processes such as summation, inhibition, and opponency 
determining the resultant perception (Bogacz, 2007). We might envisage a sensory collective as a 
system where the members receive different sensory inputs, which are then shared via signals and 
cues, and integrated into an overall collective perception. This then may trigger a group- level response 
and inform collective decision- making (Arganda et al., 2012). With discrete and overlapping indi-
vidual umwelten, the emergent property of a sensory collective may be in the power of increased 
dimensionality for an appropriate behavioural response. While the total dimensionality of the system 
would be cognitively expensive for any individual to process within a group, the pooling of informa-
tion (Webster et al., 2017) from a group of individual umwelten would suggest that the per capita 
cognitive cost may be reduced. This pooling of information in groups could function analogously to 
the skill pool effect of social foraging, whereby individuals in a group benefit from diverse foraging 
specialisations (Giraldeau, 1984), but in this case the benefit would derive from sensory specialisa-
tion. Yet, the processing required to integrate umwelten within the collective and its influence on the 
group behaviour is little understood (but see applications of Bayesian approaches at the individual 
and collective level; Arganda et al., 2012; Cheng et al., 2007).

Box 1. Questions to advance the study of collective 
behaviour integrating a sensory perspective

• How can we incorporate the umwelten of group- living actors to predict behavioural 
outputs and emergent collective properties (Figure 1)?

• How is the sensory perception of a collective correlated among individuals?
• How do individuals within a collective differ in the perception of potentially informative 

signals and cues, and how does downstream feedback influence their behaviour?
• How can we quantify environmental stimuli and perception by individuals to better under-

stand individual and group responses to stimuli?
• What are the individual computational costs and benefits of an efficient sensory collective?
• How has the anthropocene impacted sensescapes, sensory abilities, and emergent prop-

erties of sensory collectives of species, especially those most vulnerable to change?

https://doi.org/10.7554/eLife.88028
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As the number of sensory receptors in the system increases, the possibility of noise arising from 
processing the inputs arriving from multiple receptors increases, as does the probability of corrupting 
the signal or an un- coordinated response. This may arise even if all individuals within a collective are 
aligned in their interests over the outcome of the signalling interaction, such as when navigating to 
a food patch when group foraging, or, for example, when individuals in a cohesive group align with 
others in a self- organised escape response to a predator (Papadopoulou et al., 2022). This becomes 
further complicated in scenarios where individuals of the collective have different interests (such as 
in decisions over mate choice and reproduction). The task of attempting to integrate many different 
umwelten, motivations and internal states (i.e., physiological) is a recipe for a noisy informational 
state and could lead to a scenario where the wisdom of the crowd is much less than the wisdom of 
its constituents (Laland and Williams, 1998). Such group- induced noise (noise that is created by the 
presence of multiple signallers who give different signals concurrently) is likely to be modulated by 
group size and composition. For example, the proportion of naive individuals impacts the number 
of ‘mistaken’ or mismatched reactions to stimuli and also the time to reach a behavioural consensus 
(Couzin et al., 2005; Couzin et al., 2011), but in small group sizes (or effective group sizes given group 
hierarchies and composition, see below) some noise in the system can enhance decision accuracy as 
it removes the constraints of highly correlated information, particularly in complex environments (Kao 
and Couzin, 2014; Box 2). Game theoretic models of multiple signallers show that information can be 
shared cheaply and reliably when there is alignment of interests between the communicating individ-
uals (e.g. Crawford and Sobel, 1982), for example, as in the case of a flocking group of birds avoiding 
a predator. However, under circumstances in which individuals either have conflicts of interests or have 
interests that are only in partial alignment, the situation is more complicated. Nonetheless, individuals 
may receive fully revealing information both cheaply and reliably when they have alignment of inter-
ests over the outcome with at least some of the signallers. The key to this is in the ability of individuals 
to pay attention to the signals of those with whom they share interest alignment on each particular 
issue, while discounting the signals of those who they do not (Wilson et al., 2013).

The diversity of sensory inputs perceived by multiple individuals, when combined with an ability for 
communication and multi- modal signalling among group members, can lead to increased sampling 
of the environment as an emergent property of a collective. In this scenario, individuals benefit from 
reduced uncertainty such that a more appropriate response to the environment can be achieved than 
if reliant on personal information alone. The propagation of sensory information through a collective 

Box 2. A mechanism for an adaptive benefit of sensory 
collectives

Decision- making is based on imperfect prior expectations, but an individual may decrease 
uncertainty in this expectation by incorporating social cues as a source of up- to- date 
information. If we consider efficiency as reduced energetic expenditure (Williams and Safi, 
2021), the adaptive value of the sensory collective can be quantified in terms of the energetic 
efficiency of the behaviour of its individuals, which should be greater than can be achieved if 
acting (sensing) independently. Numerous inputs or the introduction of noise in the system by 
the collective would decrease the overall probability of an incorrect decision in small groups 
and more so in unpredictable or highly dynamic environments (Kao and Couzin, 2014). The 
collective decision accuracy is therefore influenced by the group size and the reliability of a 
cue given environmental dynamism or predictability. Exploring the effect of group size and 
composition on energetic efficiency of behaviour outcomes under different environmental 
contexts will reveal the adaptive value of collective sensing. For example, there will likely be 
critical thresholds such as the number of individuals needed to reduce uncertainty in decision- 
making for a group to migrate through a highly dynamic environment. Such a threshold would 
likely differ to that required to find a food patch on which to forage if this resource is highly 
predictable in time and space. Understanding how the energetic value of the collective differs 
according to uncertainty in decision- making and environmental complexity could shed light on 
phenomena such as flexible and variable patterns of association and animal movement.

https://doi.org/10.7554/eLife.88028
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may effectively increase the perception range for all individuals in the group, allowing individuals to 
sense what they are not directly exposed to, that is, the Trafalgar effect (Treherne and Foster, 1981). 
For example, echolocating bats can adjust their movements with conspecifics while foraging, creating 
mobile sensory networks to better eavesdrop on neighbours encountering prey, thus extending their 
perceptual range far beyond that of their individual echolocation detection (Roeleke et al., 2022). 
Similarly, visual cues and signals are used by many animal groups across taxa to quickly respond to 
predator threats (Davidson et al., 2021; Kastberger et al., 2008; Pita et al., 2016). For example, as 
seen in golden shiner fish (Notemigonus crysoleucas), visual cues from conspecifics underlie informa-
tion transmission during collective responses to perceived predation threats (Rosenthal et al., 2015). 
The benefit is a global response to perturbations experienced by a few (or many) individuals that can 
subsequently propagate through the group (Cavagna et al., 2010; Kastberger et al., 2008). With an 
increased effective perceptual range, the collective is also able to detect large- scale environmental 
gradients, while filtering noise at relatively smaller spatial scales (Berdahl et al., 2013).

The social propagation and informative potential of stimuli may be constrained by the stimuli 
modalities, and by properties of the sensory collective, namely the physical properties of the collective 
and the environment. For example, acoustic, chemical (olfactory and gustatory), haptic, electric, and 
visual signals and cues have different active spaces within a given environment with respect to their 
persistence in time and spatial attenuation (Brenowitz, 1982; Davidson et al., 2021; Patricelli et al., 
2007; Stanley et al., 2016; Veilleux et al., 2022). Turning to the sensory collective, the properties 
of the spatial distribution of group members will affect detection relevance of the original stimuli. 
For example, in densely aggregated groups, the range of visual perception may be constrained if 
group members are blocking the view (e.g. Davidson et al., 2021). Furthermore, visually influenced 
contagion effects have been demonstrated in schooling fish (Harpaz et al., 2021; Rosenthal et al., 
2015; Sosna et al., 2019; Strandburg- Peshkin et al., 2013) and human crowds. Group contexts will 
also impact other senses. For example, use of olfaction, which is the primary sense of many insects 
(Szyszka and Galizia, 2015), will be impacted by upstream group members disrupting odour plumes. 
Most of the research on sensory perception has been measured in relatively few well- studied systems 
(schooling fish, with some works exploring sensory occlusion in non- animal robotic and UAV group 
systems; e.g. Poel et al., 2021; Schilling et al., 2022) and/or under controlled laboratory conditions, 
prohibiting an understanding of taxonomic variation and responses under natural contexts. Future 
research could usefully expand the species studied to enable cross- species comparisons to be made. 
We note that some examples with terrestrial groups predict an effect of sensory occlusion in group 
behaviour such as hunting (Hansen et  al., 2023; Lima, 1995), but that creative experiments are 
required to assess social- dynamic impacts on sensory cue and signal perception quantifiably in these 
systems. Importantly, such studies should recognise that while individuals might perceive some infor-
mation with one modality (e.g. visually) they may transmit this information through other modalities to 
their conspecifics (e.g. through acoustic or haptic signals and cues) (Arnold et al., 2008; León et al., 
2022). More generally, further integration of empirical and modelling work (Harpaz et al., 2021) is 
needed to understand how the sensory capacities of different species shape their groups’ spatial 
structure and collective responses to the environment, and vice versa.

The differentiation of ‘roles’ of individuals, for example, presence of designated ‘sentinels’ as seen 
in meerkats (Suricata suricatta), also impacts signalling properties and processes, and the correla-
tion of information between group members. There may also be an optimal density or structure of 
the collective shaped by the spatio- temporal properties of the environment. For instance, in moving 
groups within temporally dynamic environments, the sensory collective increases certainty of the 
future potential state for any individual (Williams and Safi, 2021). However, the value of information 
depends on the dynamism of the environment, for example, when soaring animals access locations 
of thermal updrafts by observing conspecifics, large spatial separation between individuals may make 
this information obsolete by the time they can make use of it. We can hypothesise that individuals 
maximise access to information at the most relevant spatio- temporal scales by adjusting cohesion 
within the group through (i) minimising information redundancy from overlapping sensory ranges or 
(ii) maximising information relevancy by optimising inter- individual separation. Fission–fusion soci-
eties—where group composition changes over time—may provide an interesting opportunity for 
studying the costs and benefits of membership in groups with different properties, while allowing 
some ability to control for variation driven by individuals and environments.

https://doi.org/10.7554/eLife.88028
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Emergent collective behaviours can create additional sensory cues (Figure 1), which in turn may 
further inform subsequent actions and exert new selective pressure on sensory collectives. For 
example, a flock of storks moving in tight cohesion to exploit a thermal updraft essentially ‘maps’ the 
structure of the thermal (Nagy et al., 2018) providing a visual cue of updraft availability to outside 
observers. In this example, collective movement shaped the sensescape of individuals within and 
beyond the collective. Similarly, due to the sheer number of starlings in a murmuration (Young et al., 
2013), waves of directional changes produce an emergent auditory cue that may propagate more 
effectively than visual stimuli (Papadopoulou et al., 2022), reinforcing the higher level emergent cue. 
In bees, the build- up of alarm pheromone from a few bees increases attractiveness, creating a better 
response; however, when even more bees release alarm pheromone, the effect is repellent—thus the 
collective chemical communication regulates the number of bees involved in defence (Petrov et al., 
2022). These ideas invite future testing; increasing our understanding of the propagation of physical 
and social stimuli and behaviours will allow more refined approaches and promote understanding of 
emergent collective properties and their evolutionary significance. In turn, properties of social collec-
tives are anticipated to shape the evolution of animal sensory systems.

The evolution of sensory systems: Are selective pressures 
exerted by sensory collectives?
Recent decades have witnessed huge advances in our understanding of the selective pressures 
shaping sensory system evolution in a large range of organs and organisms (Melin et al., 2022; Moore 
et al., 2017; Oteiza and Baldwin, 2021; Zhao et al., 2009). Many research programs have focused 
on ecologically relevant stimuli and environments such as the impacts of light levels during activity 
on visual system evolution, including eye shape, size, and photoreceptor composition (Mitra et al., 
2022; Moritz et al., 2014; Peichl et al., 2000; Veilleux and Kirk, 2014), the organic compounds in 
potential foods and the types, structure, and distributions of taste receptors (Baldwin et al., 2014; 
Chu et al., 2014; Cramer et al., 2022; Jiang et al., 2012; Toda et al., 2021; Zhao et al., 2015), and 
prey movements and the localisation and sensitivity of mechanical and electric receptors in predators 
(Gardiner and Atema, 2007; Niesterok et al., 2017; Pohlmann et al., 2004; Schulte- Pelkum et al., 
2007). Research into social factors and their impact on sensory evolution has also generated important 
insights. For example, olfactory receptors underlying the sense of smell are well tuned to volatile 
organic compounds excreted in body and urinary odours, facilitating complex behaviours ranging 
from mother–offspring bonding to mate attraction and territorial defence (Ache and Young, 2005; 
Lübke and Pause, 2015; Wyatt, 2014). Pheromones produced by social insects are also well studied 
and have contributed to our understanding of insect societies and ecological impacts (Sharma et al., 
2015; Yan et al., 2017). For example, a species- specific queen pheromone in several hymenopteran 
species suppresses workers from reproducing, thus maintaining reproductive division of labour (Van 
Oystaeyen et al., 2014). The study of olfactory pheromones is particularly interesting because both 
the biosynthesis of the pheromone in dedicated glands and the sensory detection of the pheromones 
via selective olfactory receptors have evolved together. Interestingly, this evolution happens within 
an umwelt that is different for each species: often, animals are anosmic to pheromones from distant 
species, which means that pheromone communication is often private within a species (Galizia, 2014; 
Galizia, 2008). The colour of sexual skin is also proposed to exert selective pressures on colour vision 
evolution of primates, birds, lizards, fish, and many other animals (Caro and Mallarino, 2020; Cooney 
et al., 2019; Dunn et al., 2015; Fernandez and Morris, 2007; Hiramatsu et al., 2017; Maruska and 
Butler, 2021; Moreira et al., 2019; Stoddard and Hauber, 2017).

We know far less—and have seldom asked—how the nature of cues generated by collectives of 
conspecifics may shape sensory system evolution. Such as, how does the grouping behaviour of social 
primates facilitate or hinder the detection and selection of skin signals? How does aggregation of 
many individuals of carnivore species into the same den influence olfactory assessment of potential 
mates? Important exceptions to the rule further demonstrate the promise of such an approach. For 
example, ornithologists, mammalogists, and entomologists have asked how parents find and identify 
their own offspring in massive breeding colonies. Their results point to a keen ability for individual 
recognition via odour (Caspers et al., 2013; Leedale et al., 2021; Liang et al., 2021; Loughry and 
McCracken, 1991), vocalisations (Knörnschild et al., 2020; Lefevre et al., 1998; Lengagne et al., 

https://doi.org/10.7554/eLife.88028


 Review article      Ecology | Evolutionary Biology

Williams, Sridhar, Hurme et al. eLife 2023;12:e88028. DOI: https://doi.org/10.7554/eLife.88028  8 of 21

2001; Wilkinson, 2003), or colour/pattern (Quach et  al., 2021; Stoddard et  al., 2014; Tibbetts 
and Dale, 2007). The selective pressures of discriminating among hundreds to thousands of rela-
tively similar stimuli generate testable hypotheses about the mechanisms and limitations of sensory 
tuning. These pressures might impose constraints on the evolvability of other sensory dimensions. For 
example, a trade- off between olfactory sensitivity to a small number of similar odorants versus the 
ability to detect a breadth of odorant types might occur as the number of olfactory neurons, and the 
size of cognitive regions devoted to olfactory processing in the brain, are likely limiting factors (Healy 
and Guilford, 1990). Similarly, pheromones and their dedicated olfactory receptors coevolve within 
a species (see above). A better understanding of the types of sensory stimuli generated in collective 
contexts, and their relative importance, will add to comprehensive frameworks for studying sensory 
system evolution.

Neural circuits involved in sensing and collective behaviour: 
Examples from diverse taxa
Collective behaviour in groups of animals typically arises from the detection and response to signals 
or cues from conspecifics. While recent developments in neurobiology have suggested a shared verte-
brate forebrain circuitry involved in social decision- making (O’Connell and Hofmann, 2012) and, 
in particular, the existence of social place cells (neurons that encode the position of and observed 
conspecific) in the mammalian brain (Danjo et al., 2018; Omer et al., 2018), little is known about 
neural circuits that are involved in orchestrating collective behaviours in larger and more complex 
groups. With this goal in mind, we highlight a few (far from exhaustive) examples of systems in which 
further study of how collective stimuli might shape the evolution of sensory systems seems likely to 
be fruitful.

Birds reproduce and feed in a wide diversity of social and ecological contexts, and ornithology 
offers numerous opportunities to study the sensory ecology of relevant behaviours. Species across 
the avian family of swallows (Hirundinidae) breed either solitarily or in groups up to thousands of 
pairs, building their nests in cavities or on hard substrates with overhanging ledges. When foraging 
in groups, swallows often recruit others to dense food aggregations, serving as information centres. 
Such food recruitment signals include both specific vocalisations (specific calls) and visual signals 
(contrasting rump bands potentially visible from a distance and enhanced by the movement of the 
individual) (Brown et  al., 1991). Specifically, contrasting rump bands on the backs of birds have 
evolved predominantly in colonially nesting and group foraging swallows, whereas the lack of rump 
bands occurs mostly in solitary lineages (CR Brown, pers. comm.). Such phenotypic adaptations for 
signalling to conspecifics may also be widespread in other group living and foraging lineages. Turning 
to another promising context, many seabirds nest in large colonies (across multiple avian orders from 
pelicans through albatrosses), yet in many lineages indirect cues about the physical locality of the 
nest provide sufficient sensory identification where dependent offspring predictably occur. In other 
colonially breeding seabirds, including some penguins and murres, individuals do not build nests and 
have no permanently identifiable physical structure for where their offspring can be located. Evolu-
tionary theory predicts different acoustic recognition systems and sensitivities in these two ecological 
contexts: in the latter, for example, paired individual recognition of adult- chick vocalisations is essen-
tial for kin- directed behaviours, whereas indirect visual cues suffice for parent–offspring recognition in 
the former (Lefevre et al., 1998).

Animals living and foraging in crowded group contexts must differentiate prey- sourced stimuli 
from those of nearby conspecifics. For example, African social spiders (Stegodyphus dumicola) live 
in groups of up to a few hundred individuals, constructing and sharing the same web. Here, prey 
detection cues need to be distinguished from the large amount of background noise of nest conspe-
cifics (Wright et al., 2020). Experimental work has shown that this species responds more to pulsed 
vibrational cues that might reflect a prey capture than to continuous vibrational cues that are more 
likely to reflect conspecific activity (Wright et al., 2020). This scenario seems likely to create consid-
erable selective pressures on sensory systems and sensory input interpretation. Turning to a different 
sensory system, echolocating bats must deal with acoustic masking—that is, interference caused by 
conspecific bats emitting calls with similar frequencies that prevents nearby bats from detecting and 
processing the echoes from their own calls—when hunting in aggregations. Mathematical modelling 
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and simulation approaches have proven to be highly useful in understanding the masking problem, 
and in developing predictions as to whether bats should intentionally shift their signal frequencies to 
improve prey capture in crowded situations (Mazar and Yovel, 2020). Such studies employ careful 
parameterisation of naturalistic stimuli (prey noises, stimuli from self, and conspecifics), in- depth 
understanding of receiver inputs based on animal sensory filters and amplifiers, and records of natural 
behaviours and responses under different scenarios to generate novel insights and refined hypotheses.

Even ‘solitary’ species, such as Drosophila melanogaster (Gullan and Cranston, 2010), will 
aggregate in some contexts, which provides useful insights into sensation and collective behaviour 
(Schneider et al., 2012). In response to an aversive odour, Drosophila show a collective avoidance 
response (Ramdya et al., 2015). This collective odour avoidance arises from cascades of appendage 
touch interactions between pairs of flies (Ramdya et al., 2015). Larval Drosophila also exhibit collec-
tive foraging behaviour—engaging in coordinated dives into the food, in order to access deeper and 
higher quality food (Dombrovski et al., 2017). Both mechanosensation and vision play a role in this 

Box 3. The promise of shared model systems in the study 
of sensory collectives

In most fields of biological study, organically or in a directed manner, a handful of taxa 
rise to the level of such intense and productive examination, that they become flagship or 
model species for their respective discipline (Ankeny and Leonelli, 2020). Species spanning 
disparate branches of the tree of life, including Caenorhabditis elegans, Macaca mulatta, 
and Drosophila melanogaster, have provided countless insights into anatomy, physiology, 
behaviour, neurology, and evolution (Katz, 2016). This is no different for collective behaviour. 
For example, the zebrafish, Danio rerio (Box 3—figure 1), has become a useful model for 
understanding collective phenomena (Shelton et al., 2020) ranging from visually guided 
shoaling behaviours (Miller and Gerlai, 2012) and chemically guided alarm (substance) 
collective responses (Speedie and Gerlai, 2008). The species is also a biomedically relevant 
neurogenomic, ontogenetic, and ethological model species in the laboratory, with advanced 
molecular and imaging tools available for studying sensory processes in a developmental 
context (Veldman and Lin, 2008). More recently (Parichy, 2015), the study of wild zebrafish 
behaviours, including their shoaling, mating system, and oviposition choices, all aspects of 
their sensory ecology, has come into focus by several research teams already using the species 
as a laboratory model system. With increasingly advanced molecular, robotic, and holographic 
techniques employed in the study of group living in captive zebrafish (De Lellis et al., 2020), 
the time has come to integrate adaptive sensory systems into experimental investigations of 
collective behaviours both in the lab and in the wild (Shelton et al., 2020).

Box 3—figure 1. Adult zebrafish always travel in groups, whether in nature or in captive settings.

Photo credit: Delia S. Shelton.
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process (Dombrovski et al., 2019). Drosophila represent an amenable system to study group- level 
influences on various behaviours because they permit the combined use of neurogenetic tools to 
dissect the sensory mechanisms underlying the reported group effects. This combined systems- level 
and neurogenetic approach on the sensory responses of a solitary species could also be used in other 
systems to study the comparative structural and functional connectivity between these neurons and 
sensory modalities. Identifying such model species with well- understood sensory systems and existing 
molecular and experimental toolkits has considerable promise for developing the study of sensory 
collectives (Box 3).

Conceptual and methodological advances to quantify a 
‘sensescape’
A long- standing problem concerns how we may infer stimuli perception from our understanding of 
the sensory capabilities of individuals and particularly be informed by collective- borne signals and 
cues, in situ. One approach is to record aspects of the environment that an animal is likely to consider 
important in their umwelt and infer a sensescape by measuring behavioural response. Although envi-
ronmental recordings are often limited to extremes in spatio- temporal resolution—the focus being 
either many measurements across space at low temporal frequency or high- frequency data recorded 
at a single location or over a narrow temporal window—there are a number of developments that 
could be made to record the environment at scales reflective of a group’s sensory capacity and 
perceptual range. These include camera traps or UAVs that can capture the precise environment that 
an animal or group is exposed to; for example, flying a UAV along the recorded flight path of an aerial 
species to collect in situ environmental data, equipped with hydrometers, pressure sensors, audio 
recorders, or miniaturised lidar technology. Advancement in our understanding of the umwelt would 
require investment in technologies recording the sensescape as part of environmental remote sensing 
initiatives. Indeed there is already momentum in the remote recording of sound and magnetic data 
(and in the corresponding development of data standards) for the mapping of sensescapes at global 
scales but high spatio- temporal resolution (e.g. MagGeo; Benitez- Paez et al., 2021).

Alternatively, we may approach the intersection from the animal’s perspective, that is, how an 
animal perceives the world around it given its sensory capacity. Some established methods from 
behavioural ecology that could be combined with methods in sensory ecology include bio- logging 
(Rutz and Hays, 2009; Williams et al., 2020), virtual reality (Sridhar et al., 2021; Stowers et al., 
2017), and robotics (Halloy et al., 2007; Krause et al., 2011). Previous work in collective behaviour 
has attempted to capture the sensescape by modelling visual perception from position and orientation 
data of animals and in some cases, combining this with acoustics (Smith and Pinter- Wollman, 2021; 
Strandburg- Peshkin et al., 2013). While this approach may record sensory inputs directly, we must 
still consider the perceptual range, including the consideration that the range of the technology may 
differ from the active space of the animal (Aben et al., 2021) or that noise cannot be partitioned from 
perceived stimuli. However, some advancements in the sensory capacity of our technologies show 
huge potential. This includes neurological sensors that may record the processed information of the 
animal; as seen in examples of 3D- space representation recording in bats (Sarel et al., 2017; Yartsev 
and Ulanovsky, 2013) and olfactory sensory response recorded with electroencephalogram (EEG) 
on free roaming animals (Whitford and Klimley, 2019). Further, animal- attached sensors can record 
aspects of the sensescape that a freely behaving animal is exposed to directly in naturalistic environ-
ments, including infrasound recorders onboard seabirds (den Ouden et al., 2021), chemical sensors 
recording humidity and oxygen saturation (e.g. Wild et al., 2023) which may open the door to further 
chemical sensors relevant to olfaction (e.g. for mapping odour plume exposure), and use of extreme 
high- frequency accelerometers to record haptic or vibration by collectives where touch sensation is 
key (Mariette and Buchanan, 2019; Sumpter et al., 2012). It may also be possible to work with the 
collective perspective using ‘collective bio- logging’ approaches where animal- attached sensors work 
together to assimilate information before transmitting their data, essentially operating as a collective 
to increase the efficiency of data recording and transmission (Wild et al., 2023). Using bio- logging/
identification technologies at social sites to record sensory and collective data simultaneously also 
holds promise (e.g. Ferreira et al., 2020); these new perspectives may allow us to better understand 
the role of inter- individual differences, group structure, or cohesion in collective behaviour.
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Within the realm of collective behaviour, at least two distinct approaches have been used to model 
the mapping between sensory inputs and behavioural outputs. Classical models in collective behaviour 
posit a set of simplified behavioural rules (e.g. attraction, alignment, and repulsion) and seek to use 
those rules to explain behavioural patterns (Couzin et al., 2002). Bringing sensory ecology into this 
approach could inform how these hypothesised rule- sets should be constructed by highlighting which 
pieces of sensory information that are likely to be perceived and relevant to any given organism 
(Kranstauber et  al., 2020; Strandburg- Peshkin et  al., 2013; Witkowski and Ikegami, 2016). A 
complementary approach, increasingly used in recent years, is that of machine learning to estab-
lish the input–output relationship between high- dimensional sensory inputs and lower- dimensional 
behavioural outputs, that is, dimensionality reduction (Graving et al., 2019; Graving and Couzin, 
2020; Valletta et al., 2017). Within this approach, an understanding of the organism’s sensory capac-
ities would provide a more realistic set of features reflecting the actual perception of the organism, 
from which the input–output relationship can then be more effectively learned (see Tuia et al., 2022). 
An additional possible use of this information would be to exclude it from the machine learning algo-
rithm and ask whether the learned relationship uses realistic features, thus shedding light on whether 
these methods make biological sense.

Once a hypothesised mapping between sensory inputs and behavioural responses has been estab-
lished, experimental tests are needed to investigate real- life receiver responses and collective action. 
Manipulations might involve the introduction of artificial cues or signals into a collective system, for 
example, via audio playback experiments, and presentation of visual or chemical stimuli. The use of 
robotics in multimodal communication studies has been extensive (Gardner et al., 2021; Patricelli 
et al., 2007) as it enables individual unimodal components of signals to be presented to receivers 
in isolation, and then combined with components in other modalities, to investigate the influence of 
signals both separately and in combination (e.g. Swain et al., 2012). These studies have primarily 
focused on bimodal signals, and there is a need to increase the number of modalities investigated 
to more fully describe communication (Higham and Hebets, 2013). However, the power of animal–
robot interactions is likely as yet unrealised, in sensory- interactions and information transfer. Only by 
developing our understanding of the interaction between umwelt and collective behaviour may we 
advance the use of robotics in collective behaviour studies (Butail et al., 2014; Datteri, 2021; Swain 
et al., 2012). A further issue in sensory manipulation experiments is that some multimodal signals are 
‘fixed’, in that one component of the signal cannot be expressed without the other (e.g. a frog croak 
that cannot be made without simultaneous inflation of the throat sac), whereas others are ‘free’, with 
different components of a multimodal display being expressed independently (e.g. visual and vocal 
components of a bird of paradise display). Depending on the system, it may be easier to present 
individual unimodal components of a multimodal signal where it is a free signal, than where it is fixed 
or interconnected.

Another line of potential experimental research involves knocking out or restricting the sensory 
abilities of individuals within groups, for example, via genetic manipulations affecting the sensory 
system, physical blocking of an organism’s sensory organs, or the artificial introduction of noise to 
impede perception of certain sensory channels (Leonard and Horn, 2008; Leonard and Horn, 2005). 
Such knockouts could either be done globally in a way that affects all group members or locally in 
a way that targets specific group members (e.g. Ramdya et  al., 2015). Manipulations that target 
only a subset or introduce conflicting information could enable testing of hypotheses regarding the 
roles that specific individuals play within collective dynamics (Townsend et al., 2012), or how such 
conflicts are resolved. Finally, studying populations of animals with naturally occurring variation offers 
opportunities to ask how sensory variation in one system impacts use of other sensory modalities. For 
example, the widespread colour vision polymorphism found in monkeys in the Americas (Parvorder 
Platyrrhini) has allowed researchers to ask how dichromatic versus trichromatic colour vision impacts 
the use of olfaction, taste, and haptic sensation during food investigation within and across species. 
They have found that dichromatic (red- green colourblind) individuals sniff and bite fruits more often 
than trichromats investigating the same food items (Melin et al., 2022; Melin et al., 2019).

Applications to biological conservation
We live in the Anthropocene, an epoch characterised by the dominance of our species. In just over 
half a century, we have introduced stark changes in the daily and seasonal rhythms of light (Kyba 
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et al., 2023; Kyba et al., 2017), in soundscapes across diverse habitats (Buxton et al., 2017), and in 
the chemical composition of the air and water bodies that surround us (Lürling and Scheffer, 2007). 
This sensory pollution has changed the sensescapes experienced by animals, which may exceed their 
thresholds for plasticity—an inescapable ‘ecological trap’ (Schlaepfer et al., 2002). In many cases, 
sensory noise pollution has damaged their sensory systems, reduced their active range, and pushed 
out sensitive species, driving them closer to extinction (Sordello et al., 2020).

Recent work has outlined three main mechanisms by which sensory pollutants impact behavioural 
and physiological responses in organisms—masking, distracting, and misleading (Dominoni et al., 
2020). While this framework provides critical insight into the impact of sensory pollution on organisms, 
it lacks emphasis on the importance of the social environment in which most species are embedded 
and the sensory feedback processes that accompany them. We consider each of these mechanisms 
and highlight testable predictions that emerge from adopting a sensory collective perspective. We 
also emphasise that these predictions differ from ones that would arise from the original framework 
where individuals are considered in isolation from their social environment.

Masking occurs when the capacity of an organism to discriminate target stimuli is decreased by 
the presence of a sensory pollutant with overlapping physical properties. For example, high levels of 
artificial light at night can mask important cues from moonlight and starlight (Chan et al., 2010; Kyba 
et al., 2023; Morris- Drake et al., 2016; Storms et al., 2022). Distracting refers to conditions where 
the sensory pollutant interferes with information processing by occupying the individual’s attention 
capacity. Distracting stimuli are often associated with diminished learning, spatial orientation, and 
memory retrieval. For example, high noise levels can distract animals during foraging and vigilance 
behaviours. In scenarios with masking or distracting pollutants, the integration of noisy signals detected 
by a fraction of individuals in a sensory collective may, nevertheless, be sufficient to facilitate detection 
of the target stimulus compared to solitary individuals. Specifically in the context of spatial orienta-
tion, models of collective behaviour have shown that a few highly informed individuals or many indi-
viduals with noisy information can lead groups to target locations (Couzin et al., 2011; Couzin et al., 
2005; Ioannou et al., 2015). Thus, collective dynamics may have some hope of counteracting the 
negative effects of anthropogenically driven masking and distracting stimuli. Misleading occurs when 
the sensory pollutant is detected as a natural cue or signal and invokes inappropriate behaviours from 
organisms. Unlike pollutants that affect organisms via masking or distracting, inappropriate behaviour 
triggered by sensory pollutants that mislead may be amplified, contributing to the phenomenon of 
‘collective stupidity’ and hence resulting in worse outcomes relative to those predicted for isolated 
individuals. Naturally, the effects of sensory pollutants will strongly depend on the species, modalities, 
and behaviours involved. A sensory collective perspective on animal responses to sensory pollution 
will facilitate establishing which species are most impacted by sensory pollution and the social mech-
anisms in place that may mitigate or exacerbate this impact.

Determining the umwelten of a sensory collective is essential for understanding how animals 
respond to sensory pollution and anthropogenic change. For example, mass migrations of sea turtles 
towards artificial lights (Thums et al., 2016) or the collective beaching of pilot whales (Fehring and 
Wells, 1976) may stem from the social amplification of misinformation at the individual level. Thus, an 
understanding of sensory biology and sensory pollutants, and the ways sensory information is inte-
grated by the collective, is important for developing effective wildlife management and conservation 
policies.

Closing remarks
More than 100  years ago, the biologist Jakob von Uexküll argued that animals inhabit different 
sensory worlds (umwelten) even while occupying the same environment. This insight informs the fields 
of neuroethology and sensory ecology, but it is rarely addressed in the emerging field of collective 
behaviour, which draws on the collective and emergent properties of animal groups. The goal here 
was to bridge these topics and advance their respective areas of enquiry. Both areas have burgeoned 
in recent years, although to date they have often done so quite separately. An improved under-
standing of what collective umwelten might look like has the potential to provide new insight into 
the emergent properties of collectives, while improving our understanding of the suite of selective 
pressures influencing the evolution of sensory systems. Our synthesis has also highlighted numerous 
areas that are likely to prove fruitful for further investigation. There are major outstanding questions 
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surrounding the extent to which the generation of information in many individuals via sensory stim-
ulation, followed by the collective sharing of that information via communication, is likely to create 
increased noise versus informational enhancement across the collective, which could either cloud or 
improve the effectiveness of individual decision- making. Given the increasing encroachment of human 
impacts on animal populations, improving our understanding of how anthropogenic impacts, such as 
light and noise pollution, interfere with sensescapes and hence might interfere with collective animal 
movements and actions seems imperative.
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