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Abstract Insufficient insulin secretion to meet metabolic demand results in diabetes. The intra-
cellular flux of Ca2+ into β-cells triggers insulin release. Since genetics strongly influences variation in 
islet secretory responses, we surveyed islet Ca2+ dynamics in eight genetically diverse mouse strains. 
We found high strain variation in response to four conditions: (1) 8 mM glucose; (2) 8 mM glucose 
plus amino acids; (3) 8 mM glucose, amino acids, plus 10 nM glucose- dependent insulinotropic poly-
peptide (GIP); and (4) 2 mM glucose. These stimuli interrogate β-cell function, α- to β-cell signaling, 
and incretin responses. We then correlated components of the Ca2+ waveforms to islet protein abun-
dances in the same strains used for the Ca2+ measurements. To focus on proteins relevant to human 
islet function, we identified human orthologues of correlated mouse proteins that are proximal to 
glycemic- associated single- nucleotide polymorphisms in human genome- wide association studies. 
Several orthologues have previously been shown to regulate insulin secretion (e.g. ABCC8, PCSK1, 
and GCK), supporting our mouse- to- human integration as a discovery platform. By integrating these 
data, we nominate novel regulators of islet Ca2+ oscillations and insulin secretion with potential rele-
vance for human islet function. We also provide a resource for identifying appropriate mouse strains 
in which to study these regulators.

eLife assessment
The authors provide a fundamental resource, detailing genetic variation of nutrient- responsive 
islet calcium regulation in mice through the lens of proteomics. The evidence for the mechanisms 
identified using this resource is compelling and strongly supported by integration with results from 
genome- wide association studies in humans. The construction of a streamlined and searchable web 
interface for the data will maximize their accessibility and utilization by the community.

Introduction
The majority of gene loci responsible for the genetic variation in type 2 diabetes (T2D) suscepti-
bility affect the function of endocrine cells of pancreatic islets, primarily β-cells (Dimas et al., 2014; 
Wood et  al., 2017). Variation in β-cell mass and function places boundaries on their capacity to 
respond to acute and chronic demands for insulin, such as those of overnutrition and insulin resistance 
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(Dimas et al., 2014; Wood et al., 2017). Therefore, metabolic challenges are useful in genetic screens 
because they expose phenotypes that would otherwise remain silent.

The large collection of inbred mouse strains provides us with a wide repertoire of genetic and 
phenotypic diversity, comparable to that of the entire human population (Clee and Attie, 2007). Yet, 
most mouse studies have been confined to a small number of highly inbred strains (Clee and Attie, 
2007; Kebede and Attie, 2014). It is becoming widely appreciated that gene deletions, nutritional 
interventions, and drug effects vary widely among mouse strains, as they do in humans (Clee and 
Attie, 2007; Sittig et al., 2016). Thus, characterization of the basis for this high level of phenotypic 
variation is a path to gain deeper insight into the pathophysiology and genetics of a wide range of 
physiological processes.

The pancreatic β-cell is a nutrient sensor. In response to particular nutrient stimuli (e.g. glucose, 
amino acids), the β-cells generate ATP and close ATP- dependent K+ channels (KATP), resulting in plasma 
membrane depolarization (Lewandowski et al., 2020; Foster et al., 2022; Merrins et al., 2022). This 
leads to an oscillatory influx of Ca2+ ions, triggering insulin secretion. The process of secreting insulin 
and re- compartmentalizing Ca2+ ions consumes ATP, and the drop in the ATP/ADP ratio reopens KATP 
channels, repolarizing the membrane, and closing membrane Ca2+ channels. Consequently, oscilla-
tions in metabolism, insulin secretion, and Ca2+ are intrinsically linked (Merrins et al., 2022; Dahlgren 
et al., 2005; Krippeit- Drews et al., 2000; Marinelli et al., 2022b; Henquin, 2009), and the capacity 
to maintain functional Ca2+ handling has been suggested to be critical for islet compensation (Chen 
et al., 2016).

In this study, we utilized the extraordinary genetic and phenotypic diversity represented in the 
eight founder mouse strains (which we subsequently refer to as ‘founders’) used to generate the 
Collaborative Cross (CC) recombinant inbred mouse panel and the Diversity Outbred (DO) stock 
(Threadgill et al., 2011; Svenson et al., 2012). These strains capture most of the genetic diversity 
of all inbred mouse strains (Threadgill et al., 2011; Svenson et al., 2012). While studies of these 
mice have provided significant insight into genetic regulators of islet function (Keller et al., 2019), 
determining the appropriate model system for evaluating genes of interest is often difficult, as most 
deletion models are made in only a small number of strains, primarily C57BL/6J or C57BL/6N.

We explored the diversity of nutrient- evoked islet Ca2+ responses across the eight founder mouse 
strains, uncovering a remarkable diversity of Ca2+ oscillations. Our prior proteomics studies showed 
that the protein abundance from islets of the founder mouse strains is also highly diverse, as is their 
insulin secretory response to different stimuli (Mitok et al., 2018). By correlating the strain and sex 
variation in protein abundance with the variation in Ca2+ oscillations, we identified a small number of 
islet proteins that are highly correlated with islet Ca2+ oscillations. The human orthologues of many of 
these proteins are encoded by genes with nearby single- nucleotide polymorphisms (SNPs) linked to 
glycemic traits (e.g. fasting blood glucose, see Table 2 for terms) in genome- wide association studies 
(GWAS). By integrating these data, we nominate novel regulators of islet Ca2+ oscillations and insulin 
secretion with potential relevance for human islet function. We provide a web- based resource that 
integrates proteomic and Ca2+ data for identifying appropriate mouse strains in which to study these 
regulators.

Results
Genetics exerts a strong influence on islet Ca2+ dynamics
Glucose metabolism, β-cell Ca2+ flux, and insulin secretion are pulsatile, and have been found to 
oscillate in both humans and mice (Merrins et al., 2022; Dahlgren et al., 2005; Nunemaker et al., 
2006b; Kennedy et al., 2002; Lang et al., 1979). Because they are interconnected, understanding 
the factors governing oscillation patterns can inform about the mechanisms that regulate insulin secre-
tion (Lewandowski et al., 2020; Marinelli et al., 2022b; Colsoul et al., 2010; Corbin et al., 2016). 
To explore the influence of genetic background on Ca2+ oscillations, we measured Ca2+ in islets of the 
eight CC founder strains, that together harbor as much genetic diversity as humans: A/J, C57BL/6J 
(B6), 129S1/SvlmJ (129), NOD/ShiLtJ (NOD), NZO/HILtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), 
and WSB/EiJ (WSB).

All mice were maintained on a Western- style diet (WD) high in fat and sucrose for 16 weeks prior 
to isolating their islets for Ca2+ imaging with Fura Red, a Ca2+- sensitive fluorescent dye (Figure 1A). 

https://doi.org/10.7554/eLife.88189


 Research article      Cell Biology | Genetics and Genomics

Emfinger, Clark et al. eLife 2023;12:RP88189. DOI: https://doi.org/10.7554/eLife.88189  3 of 28

A

B

0 50 100 150

1.0

1.5 B6

1.0

1.4

1.8

129

1.0

1.5 AJ

1.0

1.5 NOD

1.0

1.2
NZO

1.0

1.4

CAST

1.0

1.4
PWK

1.0

1.4
WSB

0 50 100 150

2+
 

C
a

(D
et

re
nd

ed
 F

ur
a 

R
at

io
)

Time (min)

8
QLA 10nM GIP

2 8
QLA 10nM GIP

2[Glc]

♂

Sol. in Sol . out 

8 mouse strains 
~40M SNPs 

16 weeks WD 
44.6% Fat 
34% Sucrose 

Islet isolation 2+Islet Ca  imaging

NOD 

B6 

129 

AJ 

WSB 

CAST 

PWK 

NZO 

Figure 1. High diversity in Ca2+ oscillations across eight genetically distinct mouse strains. (A) Male and female mice from eight strains (A/J; C57BL/6J 
(B6); 129S1/SvImJ (129); NOD/ShiLtJ (NOD); NZO/HILtJ (NZO); CAST/EiJ (CAST); PWK/PhJ (PWK); and WSB/EiJ (WSB)) were placed on a Western diet 
(WD) for 16 weeks before their islets were isolated. The islets were then imaged on a confocal microscope using Fura Red dye under conditions of 
8 mM glucose (8G); 8G + 2 mM L- glutamine, 0.5 mM L- leucine, and 1.25 mM L- alanine (8G/QLA); 8G/QLA + 10 nM glucose- dependent insulinotropic 
polypeptide (8G/QLA/GIP); and 2 mM glucose. (B) Representative Ca2+ traces for male mice (n = 3–8 mice per strain, and 15–83 islets per mouse), with 
the transitions between solution conditions indicated by dashed lines. Abbreviations: ‘[Glc]’ = ‘concentration of glucose in mM’; ‘Sol.’ = ‘solution’; 
‘SNPs’ = ‘single- nucleotide polymorphisms’.

Figure 1 continued on next page
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We measured Ca2+ dynamics in response to four conditions: (1) 8 mM glucose (8G); (2) 8G + 2 mM 
glutamine, 0.5 mM leucine, and 1.25 mM alanine (8G/QLA); (3) 8G/QLA + 10 nM glucose- dependent 
insulinotropic polypeptide (8G/QLA/GIP); and (4) 2 mM glucose (2G) (Figure 1B). There was a high 
degree of similarity between three of the five classical strains (A/J, B6, 129), which were dominated 
by slow oscillations (period 2–10 min) in 8G and 8G/QLA/GIP, and had relatively fewer islets reach 
plateau (continuous peak activity without oscillation) in 8G/QLA. Likewise, the wild- derived strains 
(CAST, WSB, and PWK) closely matched one another, while differing from the classical strains. The 
wild- derived mouse islets were dominated by fast oscillations (period <2  min) in 8G, resulting in 
plateaus for 8G/QLA and 8G/QLA/GIP.

Two strains stood out from the others. Islets from NOD mice showed characteristics from both 
the wild- derived and classical strains; slow oscillations in 8G and a sustained plateau in response to 
8G/QLA and 8G/QLA/GIP with fast oscillations superimposed. The NZO mice also differed from the 
other classical strains, likely because they were all diabetic (blood glucose >250 mg/dl). Their islets 
were minimally responsive to 8G but did respond with a strong pulse in 8G/QLA and Ca2+ remained 
elevated in 8G/QLA/GIP.

Many of the strain differences seen in the male mice were maintained in the females (Figure 1—
figure supplement 1A). The classic strains were once again highly similar to one another, as were the 
wild- derived strains. Furthermore, the NZO females, of which all but one were diabetic, mirrored the 
behavior of the male islets. One interesting observation that emerged from the female islets is that the 
NOD females displayed a greater variation in their Ca2+ oscillations than the NOD males (Figure 1—
figure supplement 2). Some of the islets maintained slow oscillations throughout the various condi-
tions, while some demonstrated fast oscillations and plateaued like the wild- derived strains. Yet others 
appeared strikingly similar to the islets from diabetic NZO mice, despite none of the NOD mice being 
diabetic. Finally, the one non- diabetic female NZO displayed oscillatory behavior comparable to that 
of the other classical strains, with clear, slow oscillations (Figure 1—figure supplement 1B).

Dissecting islet Ca2+ dynamics
An understanding of the mechanisms regulating insulin secretion, including the roles of specific meta-
bolic pathways, ion channels, and hormones, has been derived from the shape and frequency of islet 
Ca2+ oscillations (Lewandowski et al., 2020; Dahlgren et al., 2005; Marinelli et al., 2022b; Kennedy 
et al., 2002; Nunemaker et al., 2006a; Marinelli et al., 2022a; Nunemaker et al., 2005; Bertram 
et al., 2018). To elucidate strain differences in Ca2+ dynamics, we focused on six parameters of the 
Ca2+ waveform (Figure 2A): (1) peak Ca2+ (the maximum value of each oscillation); (2) period (the 
length of time between two peaks); (3) active duration (the length of time for each Ca2+ oscillation 
measured at half of the peak height, also known the oxidative ‘secretory’ phase, or ‘MitoOx’ [Merrins 
et al., 2022]); (4) pulse duration (active duration plus extra time for Ca2+ extrusion); (5) silent dura-
tion (the electrically silent ‘triggering’ phase, also known as ‘MitoCat’ (Merrins et al., 2022), which 
culminates in KATP closure and membrane depolarization); and (6) plateau fraction (the active duration 
divided by the period, or the fraction of time spent in the active ‘secretory’ phase).

We also assessed the spectral density for every islet to extract additional information from complex 
oscillations where multiple components were visible (Figure 2—figure supplement 1A). We analyzed 
each trace to determine the top two frequencies contributing to the trace (1st and 2nd compo-
nent frequencies, Figure 2—figure supplement 1B) and their respective contributions (1st and 2nd 
component amplitudes). Because certain features, such as metabolically driven (slow) and electrically 
driven (fast) oscillations have characteristic frequencies (Bertram et al., 2007), extracting the top two 
frequencies may highlight additional information beyond that previously collected.

A representative Ca2+ trace from a female B6 islet is illustrated in Figure 2A. The transition from 
8G to 8G/QLA resulted in an increased active duration, yielding a longer period and an increased 
plateau fraction. For an islet that plateaued at the peak, as seen in 8G/QLA (Figure 2B), we computed 

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The high diversity in Ca2+ oscillation in males is also observed in female mice.

Figure supplement 2. Diverse responses in non- diabetic NOD females’ islets.

Figure 1 continued

https://doi.org/10.7554/eLife.88189
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Figure 2. Ca2+ wave breakdown reveals mechanisms underlying Ca2+ responses. (A) An example B6 female Ca2+ wave, showing that the islet oscillations 
can change in their average peak (1) and average baseline in response to different nutrients. Additionally, shifts in wave shape (green box) can be 
broken down into changes in time between peaks (period, 2), the time in the active phase (active duration, AD, 3), and the length of the oscillation 
(pulse duration, PD, 4). From these, the time inactive between oscillations (silent duration, SD, 5), and the relative time in the active phase, or plateau 

Figure 2 continued on next page
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a plateau fraction of one, an active and pulse duration of 40  min (the measurement time), and a 
period of 0 min. An islet that returned to baseline and ceased to oscillate, as seen in 2 mM glucose 
(Figure 2B), was determined to have a plateau fraction, active duration, and pulse duration of zero, 
and a period of 40 min. Dissecting the strain dependence of these key parameters of the Ca2+ oscil-
lations is important for identifying underlying mechanisms, as illustrated in Figure 2C. While both 
traces have a similar active duration (blue bars), trace 1 has a longer period (red bars), resulting in an 
increased silent duration and a decreased plateau fraction.

Examples of pathways altering specific components of Ca2+ oscillations have previously been 
established (Figure 2D; Dahlgren et al., 2005; Marinelli et al., 2022b; Nunemaker et al., 2006b; 
Whitticar and Nunemaker, 2020; Koneshamoorthy et al., 2022). For example, when KATP channels 
are pharmacologically closed with tolbutamide, the silent duration is shortened, resulting in increased 
frequency without a change in pulse shape (upper panel). The addition of glucose leads to increased 
glucose metabolism and glucokinase (GK) activity (Marinelli et al., 2022b). The resulting rise in ATP 
inhibits KATP channels (Lewandowski et al., 2020) and is used as a substrate for additional processes 
that affect Ca2+, such as SERCA pumps (Tengholm and Gylfe, 2017; Shuai et al., 2021). Thus, glucose 
alters both the active and silent durations, resulting in a change in both frequency and shape of the 
Ca2+ oscillations (lower panel).

Parameters significantly correlated with insulin secretion show 
remarkable variance by strain and sex
Average Ca2+ is commonly used for analyzing Ca2+ dynamics and is frequently assumed to be highly 
correlated to insulin secretion. To determine whether average Ca2+ is predictive of insulin secretion, 
we performed ex vivo perifusion studies on islets from WSB and 129 male mice, two strains that 
showed similar average Ca2+ (Figure  3—figure supplement 1) but exhibited vastly different Ca2+ 
oscillations (Figure 1B). WSB mice had significantly higher insulin secretion in each of the secretory 
conditions (Figure 3A), suggesting another Ca2+ parameter better predicts insulin secretion.

To identify parameters of the Ca2+ dynamics most strongly correlated to insulin secretion, we 
computed the correlation between the Ca2+ oscillation parameters and our previously published insulin 
secretion in similar conditions (8.3G, 8.3G/QLA, basal) for the same sexes and strains (Figure 4A, 
Figure 4—figure supplement 1, and Figure 4—figure supplement 2; Mitok et al., 2018). Consis-
tent with our observations from the perifusion data in the WSB and 129 islets, we found that average 
Ca2+ was not strongly correlated to insulin secretion. Other metrics, such as active duration in 8G, 
and the silent durations in 8G/QLA, were more highly correlated to insulin secretion. Meanwhile, 
the 1st component frequency in 8G from the spectral density analysis was highly correlated with 
decreased insulin secretion. These metrics were also the most highly correlated with multiple clinical 
measures in the founder mice, particularly plasma insulin (Figure 4B, Figure 4—figure supplement 
1, and Figure 4—figure supplement 3), for which silent duration in 8G/QLA/GIP had the strongest 
correlations.

Several parameters of the Ca2+ oscillatory waveform showed strong strain and sex effects (Figure 4C, 
D and Figure 4—figure supplement 1). For example, basal Ca2+ (average Ca2+ in 2G, Figure 4C) was 
relatively consistent among the strains, except NZO where it was highest in islets from male mice. For 
the overall pulse duration (Figure 4D), the NZO mice were once again the highest, followed by CAST 
and WSB. A noticeable sex effect was measured for the CAST mice, where male mice had a longer 

fraction (PF, 6), can be calculated. Each parameter can be changed by different underlying mechanisms. (B) For islets that plateaued, as in the example 
islet in 8G/QLA, they were assigned a plateau fraction of one and a period of zero. For islets that ceased to oscillate, such as the example islet in 2 mM 
glucose, they were assigned a plateau fraction of zero and a period of the time of measurement (40 min). (C) For trace 1 (left), which has a longer period 
(red bars) than trace 2 (right), but the same active duration (blue bars), the silent duration is greater and consequently the PF is shorter, in contrast to the 
trace in (A) where the PF increases between 8G and 8G/QLA are largely due to increases in AD. (D) Changes in specific Ca2+ wave parameters can reflect 
different mechanisms in β-cells. For example, changing KATP activity pharmacologically (upper panels) predominantly increases PF by altering SD, whereas 
increasing glucose concentrations by elevating glucose or activating GK cause significant alterations in both AD and SD to increase PF. Abbreviations: 
‘[Glc]’ = ‘concentration of glucose in mM’; ‘GK’ = ‘glucokinase’.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Example of spectral density breakdown for Ca2+ traces.

Figure 2 continued

https://doi.org/10.7554/eLife.88189
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pulse duration than the female mice. The 1st component frequency (Figure 4E) is driven by the differ-
ences observed in the wild- derived strains, for which CAST has the highest frequency, followed by 
PWK and WSB. Finally, the trend for a sex effect in the classic strains on the silent duration (at 8G, 8G/
QLA, and 8G/QLA/GIP) is absent in the NZO and wild- derived mice with the former having greater 
silent duration in males and the latter frequently having islets plateau in response to these stimuli.

Clustering the Ca2+ responses into distinct groups based on our observations of the waveforms 
(Figures 1B and 4C–E, Figure 1—figure supplement 1, and Figure 1—figure supplement 2) also 
occurs when correlating individual Ca2+ parameters to ex vivo secretion and clinical data (Figure 4—
figure supplement 1). For example, the anticorrelation between the 1st frequency component in 8G 
and percent insulin secreted in 8.3G/QLA (Figure 4—figure supplement 1A) separates the classical 
inbred, wild- derived, and diabetes- susceptible strains into distinct groups despite the variability in 
the trait. Correlation between the silent duration in 8G/QLA to insulin secretion in 8.3G/QLA, likewise 
groups by strain (Figure 4—figure supplement 1B). Finally, some correlations, such as that between 
8G/QLA/GIP silent duration and plasma insulin at sacrifice (Figure 4—figure supplement 1C), can 
be strongly influenced by outlier strains; for example NZO. Collectively, these data demonstrate that 
genetics has a profound influence on key parameters of islet Ca2+ oscillations.

Calcium oscillatory parameters correlate strongly to the abundance of 
specific islet proteins
To explore relationships between Ca2+ oscillations and islet proteins, we took advantage of our whole 
islet proteomic survey from the eight founder strains (Mitok et al., 2018). To identify proteins that may 
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Figure 3. WSB mice secrete significantly more insulin than 129 mice. (A) Insulin secretion was measured for 
perifused islets from WSB (n = 6, magenta circles) and 129 (n = 5, yellow squares) male mice in 2 mM glucose, 
8G, 8G/QLA, and 8G/QLA/GIP. Transitions between solutions are indicated by dotted lines and the conditions 
for each are indicated above the graph. ‘[Glc]’ denotes the concentration of glucose in mM. Data are shown as a 
percentage of total islet insulin (mean ± standard error of the mean [SEM]). (B) Average total insulin per islet for the 
WSB and 129 males used in (A) with one exception: islets from one of the 129 mice were excluded from perifusion 
analysis due to technical issues with perifusion system on the day those animals’ islets were perifused. Dots 
represent individual values, and the mean is denoted by the black line. For (A), asterisks denote strain effect for the 
area- under- the- curve of the section determined by two- way analysis of variance (ANOVA), mixed effects model; 
**p < 0.01, ***p < 0.001. For (B), asterisk denotes p < 0.05 from Student’s t- test with Welch’s correction.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Average Ca2+ for the stimulatory conditions.

https://doi.org/10.7554/eLife.88189
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Figure 4. Comparing sex and strain patterns for Ca2+ metrics, insulin secretion, and clinical traits nominates Ca2+ metrics of interest. (A) The Z- score 
correlation coefficient was calculated for Ca2+ parameters and raw insulin secreted and % total insulin secreted. Insulin measurements were previously 
collected for seven different secretagogues (16.7 mM glucose + 0.5 mM palmitic acid (16.7G/PA); 3.3 mM glucose + 50 mM KCl (3.3G/KCl); 16.7 mM 
glucose (16.7G); 8.3 mM glucose + 1.25 mM L- alanine, 2 mM L- glutamine, and 0.5 mM L- leucine (8.3G/QLA); 8.3 mM glucose + 100 nM GLP- 1 (8.3G/

Figure 4 continued on next page
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underly the strain differences in Ca2+ oscillations, we computed the correlation between islet protein 
abundance and Ca2+ dynamics across all mice used in our study (Figure  5 and Figure  5—figure 
supplement 1). Our previous survey of islet proteomics included both sexes for all strains, except 
NZO males, resulting in a quantitative measure of 4054 proteins (Mitok et al., 2018). Figure 5A illus-
trates a heatmap of the correlation between islet proteins and several parameters of Ca2+ oscillations. 
Unsupervised clustering was used to show that groups of proteins showed strong positive or negative 
correlation to a given Ca2+ parameter, yielding distinct correlation architecture. For example, proteins 
highly correlated to the 8G 1st component frequency tended to also be strongly anticorrelated to 
the silent duration conditions, which were very similar to one another. The active and pulse durations 
for 8G had nearly identical correlation structure. Additionally, the conditions with the fewest highly 
correlated proteins were the average Ca2+ measures for 8G, 8G/QLA, and 8G/QLA/GIP, and the struc-
ture for these was largely inverted from the active duration conditions. Finally, despite the differences 
in the overall correlations between the different metrics, there were proteins that did overlap (e.g. 
the block of proteins with high correlation to both 8G AD and 8G/QLA SD) suggesting that while there 
were clusters of distinct proteins/pathways for any given metric some proteins may modify more than 
one metric.

Among the 4054 islet proteins, 363 had high absolute correlation coefficients (r > |0.5|) to 3 or more 
of the parameters our data suggest most strongly correlate to insulin secretion and plasma insulin 
(Basal Ca2+, 8G AD, 8G PD, 8G/QLA SD, 8G SD, 8G/QLA/GIP SD). Interestingly, of the proteins correlated 
to these traits, many have been previously implicated in islet biology, including PCSK1, GCK, SUR1, 
GLUT2, PDX1, and GLP- 1 (Whitticar and Nunemaker, 2020; Koneshamoorthy et al., 2022; Teng-
holm and Gylfe, 2017; Shuai et al., 2021; Koster et al., 2000; Remedi and Nichols, 2016; Jennings 
et  al., 2020; Rutter et  al., 2020; Stijnen et  al., 2016). Notably, the highly correlated proteins 
enriched for tissues, pathways, and transcription factors that support their role in insulin secretion 
(Figure 5B–D, Enrichr links in Supplementary file 3; Chen et al., 2013). For instance, proteins highly 
anticorrelated to active duration in 8G were enriched for components of oxidative metabolism and 
had their gene promoters enrich for binding to the islet transcription factor MAFA. These enrichment 
data provide a framework for discovering new genes of interest for their role in islet function.

Integration of mouse genetics with human GWAS
The data presented in Figure 5A illustrate the correlation between islet proteins and Ca2+ dynamics. 
Importantly, a protein strongly correlated to Ca2+ does not necessarily reflect a causal relationship, 
that is a change in protein abundance may or may not cause a change in the Ca2+ signal. To take our 
analysis beyond correlation, we integrated our data with human GWAS of glycemia- related traits.

For each Ca2+ parameter, we focused on those proteins in the tails of the correlation histogram 
where r > |0.5| (e.g. Figure  5B). We identified human homologues for 3073 proteins that were 
correlated to Ca2+ in either direction for at least one of our parameters of interest. We then searched 
the Type 2 Diabetes Knowledge Portal (https://t2d.hugeamp.org/) for SNPs that are associated with 
one or more glycemia- related traits (see Table 2) with a p- value <10–8, and are located within ±100 kbp 
of the homologous gene (e.g. COBLL1, Figure 6A), or in regions that contact the gene’s promoter 

GLP- 1); 8.3 mM glucose (8.3G); and 3.3 mM glucose (3.3G)) (Mitok et al., 2018). (B) Correlation of the Ca2+ parameters to the clinical measurements 
in the founder mice which include (1) plasma insulin, triglycerides (TG), and glucose at 6, 10, and 14 weeks as well as at time of sacrifice; (2) number of 
islets; (3) whole- pancreas insulin content (WPIC); and (5) islet content for insulin and glucagon. For (A) and (B), the Ca2+ parameters shown here include 
average Ca2+ in 2 mM glucose (basal Ca2+); average Ca2+ in 8 mM glucose (8G avg.); average Ca2+ in 8 mM glucose + 1.25 mM L- alanine, 2 mM L- 
glutamine, and 0.5 mM L- leucine (8G/QLA avg); average Ca2+ in 8 mM glucose + QLA + 10 nM GIP (8G/QLA/GIP avg.); pulse duration in 8 mM glucose 
(8G PD); active duration in 8G (8G AD); silent duration in 8G (8G SD), 8G/QLA (8G/QLA/SD), and 8G/QLA/GIP (8G/QLA/GIP SD); and 1st component 
frequency in 8 mM glucose (8G 1st freq.). Other parameters analyzed are indicated in Figure 4—figure supplement 2 and Figure 4—figure 
supplement 3. (B–E) Sex and strain variability for (C) average Ca2+ determined by the Fura- ratio (FR) in 2 mM glucose, (D) pulse duration of oscillations 
in 8G, (E) 1st component frequency in 8G, and (F) silent duration of oscillations in 8G, 8G/QLA, and 8G/QLA/GIP.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Differential strain and sex effects in correlations between traits.

Figure supplement 2. Correlation reveals specific Ca2+ parameters highly associated with insulin secretion.

Figure supplement 3. Correlation reveals specific Ca2+ parameters highly associated with in vivo traits.

Figure 4 continued
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Figure 5. Islet proteins show correlation architecture to specific Ca2+ parameters. (A) Unsupervised clustering of correlation coefficients between protein 
abundance Z- scores and Z- scores for the Ca2+ parameters indicated. Islet proteins show differential correlation values to basal Ca2+, excitatory Ca2+ 
(detrended average values for 8G, 8/QLA, and 8/QLA/GIP), active duration and pulse duration in 8G (8G PD and AD), and silent durations (SD) in 8G, 8G/
QLA, and 8G/QLA/GIP. Correlation coefficients for other parameters are indicated in Figure 5—figure supplement 1. (B) Histograms representing 
the number of proteins that are correlated (red) and anticorrelated (blue) to 8G AD. ENCODE & CHEA Consensus transcription factor motif database 
and Tabula Muris tissue single- cell RNA- seq signature database (C) as well as pathway enrichments for the Elsevier Pathway database and KEGG 2021 
Human pathway database (D) (−log10(p- values)), for the highly correlated (red) and anticorrelated (blue) proteins to 8 AD metric. Databases were queried 
using Enrichr (Chen et al., 2013; Kuleshov et al., 2016).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Correlation reveals proteins highly associated with specific Ca2+ parameters.
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region (determined using human islet promoter- capture HiC data; Miguel- Escalada et al., 2019) as 
illustrated by ACP1 (Figure  6B). This yielded a list of 647 human genes strongly associated with 
diabetes- related SNPs. Among these genes, 478 were not previously associated with insulin secretion 
(see Methods), suggesting they may have understudied roles in islet function (Figure 7A, B; Supple-
mentary file 1 and Supplementary file 2). Our approach thereby leverages the genetic diversity of 
the eight CC founder strains and human GWAS for diabetes- related traits to highlight genes that may 
play a novel role in islet function and relate to diabetes risk.

To aid in the selection of mouse strains for validating potential candidate regulators, we provide 
a resource with proteomic and Ca2+ data (Figure  7C–E; https://data-viz.it.wisc.edu/FounderCalci-
umStudy/, https://connect.doit.wisc.edu/FounderCalciumStudy/, https://doi.org/10.5061/dryad. 
j0zpc86jc, https://rstudio.it.wisc.edu/FounderCalciumStudy). This will enable the user to identify 
proteins correlated to other proteins or traits of interest, and from there, identify which strain(s) may 

←GRB14

←AC019181.3

←SNORA70F

AC019181.2→

RNA5SP110→

←RNA5SP111

←SLC38A11

AC013463.2→

Hg19 Chr2: 165.40 165.50 165.70 165.80
0

20

40

165.60

H3K4me3
H3K27ac

ATAC-seq
Regulome

TAD
pc-HiC

1
0

20

40

0

20

40

0

20

40

0

10
0

50
0

50
0

40
-lo

g
(p

-v
al

ue
)

10

R
ecom

bination rate (cM
/M

bp)

 91298331sr  83729621sr 

40

80

R
ecom

bination rate (cM
/M

bp)

0

-lo
g

(p
-v

al
ue

)
10

4

8

SH3YL1

ALKAL2
LINC01865

LINC01874
LINC01875

LOC105373352
TMEM18

0.30 0.40 0.50 0.60Chr2:

H3K4me3
H3K27ac

ATAC-seq
Regulome

TAD
pc-HiC

rs7561556  3206067sr 

0

20

40

60

80

100

0

10

30

20

0

(Mbp)

0

(Mbp)

Figure 6. Identifying candidate protein targets by integrating human genome- wide association studies (GWAS). (A) An example gene, COBLL1, 
orthologous to a gene coding for a protein identified as highly correlated to Ca2+ wave parameters in the founder mice. The recombination rate is 
indicated by the solid blue line. Significant single- nucleotide polymorphisms (SNPs; 8 < −log10(p), red) decorate the gene body for multiple glycemia- 
related parameters (in bold). Human islet chromatin data (Miguel- Escalada et al., 2019) for histone methylation (H3K4me3), histone acetylation 
(H3K27ac), ATAC- sequencing (ATAC- seq), and regulome score suggest active transcription of the gene within a topologically associated domain (TAD). 
Human islet promoter- capture HiC data (pc- HiC) (Miguel- Escalada et al., 2019) show contacts between the SNP- containing regions decorating the 
gene and its promoter. The highest SNP for 2 hr glucose (▼) and the other parameters (♦) are indicated. (B) Some orthologues did not show SNPs 
decorating the gene itself but did show looping to regions with SNPs for glycemic traits. The promoter of ACP1, for example, loops to a region within its 
topologically associated domain (black bar) with strong SNPs for type 2 diabetes risk and near- threshold SNPs for fasting insulin adjusted for body mass 
index (BMI). Some SNPs (▼, ♦) lie directly on the contact regions identified by HiC, whereas others lie immediately proximal to these contacts. For both 
panels, the significance of association (−log10 of the p- value) for the individual SNPs is on the left y axis and the recombination rate per megabasepair 
(Mbp) is on the right y axis. Chromosomal position in Mbp is aligned to Hg19. SNP data were provided by the Common Metabolic Diseases Knowledge 
Portal (https://hugeamp.org/).
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Figure 7. Mining Ca2+ data using a novel online resource . (A) 3073 islet proteins significantly correlated to islet Ca2+ parameters of interest. Among the 
proteins, 647 had orthologues containing single- nucleotide polymorphisms (SNPs) for glycemic traits. Of these, 478 showed no results in our starting 
triage (see Methods) under any alias, suggesting they may be understudied in islet biology. (B) Of these 478 proteins, 198 were found to be secreted 
either as soluble proteins or in exosomes (Bateman et al., 2021; Thul et al., 2017; Uhlén et al., 2019; Navajas et al., 2022; Wang et al., 2013; Chen 

Figure 7 continued on next page
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be most appropriate for studies of their protein of interest. In the examples illustrated in Figure 7C, 
the user queries for the strain/sex distribution of the protein GALNS, which shows a high negative 
correlation to multiple traits, including the active duration time in 8G/QLA. Strains at the extremes of 
this trait are also extremes regarding GALNS protein abundance. Strains with high abundance (AJ, for 
example [yellow arrow]) would be ideal models for inhibition or knockout, whereas CAST mice (green 
arrow) could be a comparison strain for validating the role of the protein, as they express much less 
GALNS. Users can also query for the proteins or calcium parameters and see their correlation to the 
other proteins and/or calcium parameters (Figure 7D). Importantly, this includes the ability to look at 
the correlations between traits for individual strains or subsets of strains, enabling the user to see how 
the main clusters of strains (classical, wild- derived, and disease models) or individual outlier strains 
are drivers of specific traits. Finally, the user can see which traits or proteins show the strongest strain, 
sex, or sex- by- strain effects using the options in the volcano plot (Figure 7E). Together, these and 
other tools in the resource will allow researchers to explore their traits or proteins of interest as well 
as determine the appropriate model systems and conditions that may best interrogate their experi-
mental questions of interest.

Discussion
Genetic variability drives islet function
While the development and progression of T2D is potentiated by environmental factors, an estimated 
50% of disease risk is driven by genetic factors (Dimas et al., 2014; Clee and Attie, 2007; Bergman 
et al., 2003). Therefore, to study the genetic variation contributing to T2D, we took advantage of the 
genetic diversity contained within the eight CC founder strains. These mice collectively contain a level 
of genetic diversity mirroring that seen in humans, making them an excellent experimental platform 
to link genetics with altered islet function (Threadgill et al., 2011; Svenson et al., 2012). We demon-
strate that they also vary in their Ca2+ response to various insulin secretagogues, supporting the use 
of these mice to identify novel genes involved in regulating islet biology.

Dissecting the calcium waveform highlights islet regulatory pathways
Variations in Ca2+ dynamics are highly complex, reflecting changes in metabolism, extra- islet signaling, 
and Ca2+ itself (Merrins et al., 2022). We therefore selected stimulatory conditions to assess each 
of these components in islets of the eight mouse strains. 8  mM glucose was first used to survey 
glycolytic responses, because we have observed that several strains reliably oscillate at this glucose 
concentration. Furthermore, this glucose concentration remains close to the stimulatory threshold, 
thus reducing the possibility of oscillations plateauing if islet Ca2+ responses were left shifted in any 
strains (Nunemaker et al., 2006a; Carter et al., 2009; Emfinger et al., 2022). We then added QLA 
as fuel to engage mitochondrial metabolism and paracrine signaling from α-cells, providing a survey 
of α- to β-cell communication in the islet (Lewandowski et al., 2020; Foster et al., 2022; El et al., 
2021; Capozzi et al., 2019). Finally, we used GIP to interrogate the islet incretin responses and the 
cAMP amplification pathway (El et al., 2021), before returning to a low glucose concentration, which 
enabled us to establish baseline Ca2+ levels.

The variation in Ca2+ response to these conditions can be better understood by examining the multi-
tude of pathways regulating Ca2+ dynamics. As mentioned previously, altering ionic pathways involved 
in regulating Ca2+, such as KATP channels, has a very different effect on Ca2+ oscillations compared to 
altering glycolysis. It is important to further dissect these pathways, as changing specific components 

et al., 2019; Gonzales et al., 2009), 52 have existing knockout mice with annotated glycemia or pancreatic phenotypes (Groza et al., 2023; Blake 
et al., 2021), and 45 have existing compounds that target them (Stanford et al., 2021; Coker et al., 2019; Davies et al., 2015; Gaulton et al., 2017; 
Santos et al., 2017; Zhou et al., 2022). To make these data more accessible, we have developed an online resource that enables individuals to query 
the Ca2+ and proteomic data simultaneously. The user can select proteins and calcium traits (C) and display strain and sex distribution of these traits to 
determine the ideal backgrounds on which to test their traits or proteins of interest. In this example, GALNS is highly correlated to 8G/QLA/GIP AD, with 
the highest and lowest abundance strains for GALNS being AJ (yellow arrow) and CAST (green arrow), respectively. (D) The user can also query for the 
correlations between Ca2+ traits and proteins against one another or other traits of the same category. (E) The user can also see which of the traits or 
proteins has the largest change and most significant effects by sex, strain, or sex and strain.

Figure 7 continued
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of glucose metabolism can elicit different effects. For example, activating glucokinase (GK, which 
is rate limiting for glycolysis) and activating pyruvate kinase (PK, an ATP- generating enzyme which 
directly controls KATP channel closure in the final step of glycolysis) both reduce the silent duration 
by accelerating KATP channel closure. GK and PK activation also alter the active duration and the 
plateau fraction, however they do so in opposite directions (Lewandowski et al., 2020). Activating 
GK increases the active duration and oscillation period, while activating PK decreases those same 
parameters via Ca2+ extrusion (Foster et al., 2022). The incretin hormones GLP- 1 and GIP reduce 
silent duration and oscillation period, most likely due to their ability to activate Epac2 and sensitize 
KATP channels to ATP- dependent closure (Kang et al., 2008; Holz et al., 1993). Thus, PK and GLP1 
have a common target (i.e. KATP), and therefore a similar effect on silent duration. These examples 
illustrate the benefit of analyzing multiple Ca2+ parameters for understanding pathways of interest.

The importance of analyzing a variety of Ca2+ parameters is further supported by the insulin secre-
tion measurements in the male WSB and 129 mice. While average Ca2+ is a common metric used 
to predict insulin secretion, relying on only this metric would suggest that the two strains secrete 
insulin similarly (Figure 3—figure supplement 1). However, the WSB mice secreted significantly more 
insulin in 8G, 8G/QLA, and 8G/QLA/GIP (Figure 3). Based on our correlation analysis between Ca2+ 
parameters and insulin secretion across each sex and strain, active duration, and pulse duration in 8G 
more accurately predicted insulin secretion and may be highly informative when used with other data 
(Figure 4). This is similar to results published by other groups, suggesting that average Ca2+ does not 
correlate well with insulin secretion (Heart et al., 2006).

Strains segregate by their phylogenetic origins
Notably, several of the strains appeared to cluster together with similar responses. One such group 
is composed of three classical strains (A/J, B6, and 129), which had relatively similar waveforms that 
were dominated by slow oscillations. These differed from a second group containing the wild- derived 
strains (CAST, WSB, and PWK) which closely matched one another and were dominated by faster 
oscillations. Additionally, even with the clear separation between the clusters, inter- strain variation 
was still observed within the clusters (e.g. more 129 islets had plateau responses to 8G/QLA than the 
B6 or AJ).

The classical strains have been highly inbred (>150 + generations) and descend from related 
common ancestors, the ‘fancy mice’. They also have extremely low genetic diversity, with 97% of their 
genomes explained by fewer than 10 haplotypes (Clee and Attie, 2007; Beck et al., 2000; Yang 
et al., 2011). In contrast, wild- derived strains are each independent in their parental origin, inbred for 
far fewer generations than the classical strains (20 vs. >150), and include significant contributions from 
other subspecies of Mus musculus than the predominant subspecies (M. m. domesticus) in the clas-
sical strains, particularly CAST (M. m. castaneous) and PWK (M. m. musculus) (Clee and Attie, 2007; 
Beck et al., 2000; Yang et al., 2011). It is thus unsurprising that the two primary Ca2+ response clus-
ters were composed of the classical and wild- derived strains. Multiple loci have already been linked to 
islet dysfunction and differential metabolic homeostasis in the classic strains (Clee and Attie, 2007). 
Our work here highlights the promise in using wild- derived strains to unmask previously underappre-
ciated islet phenomena, something we and others have previously shown (Mitok et al., 2018; Lee 
et al., 2011; Kreznar et al., 2017).

While considered one of the classical strains, the NOD mice differed from the two primary clusters 
noted above. They displayed a combination of features from both groups and had a high degree 
of inter- islet variability, especially the female mice. NOD share common ancestors with the Swiss- 
Webster mice, which do not share parental origin with the other classical strains (Beck et al., 2000) 
and also display a ‘mixed’ phenotype consisting of islet Ca2+ oscillations in response to glucose, with 
both slow and fast components (Nunemaker et al., 2006a).

Additionally, while all NOD mice were normoglycemic, a heterogeneous response was observed in 
islets from female, but not male, NOD mice. Female NOD mice are known to develop islet immune 
cell infiltration and subsequent autoimmune diabetes, whereas males are largely protected from 
this (Pearson et al., 2016). Male NOD islets were largely consistent in their Ca2+ waveforms. In the 
females, however, a high degree of heterogeneity in responses was observed across the female’s 
islets (Figure 1—figure supplement 2). For any NOD female, some islets resembled those from NOD 
males in their clear oscillations, others largely lacked oscillatory behavior other than a strong pulse in 
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response to 8G/QLA, and still others had an intermediate response. These observations may reflect 
varying degrees of dysfunction in the NOD female islets as the mice progress to diabetes, though we 
cannot say whether this results from variation in β-cell intrinsic defects or islet immune cell infiltration.

The NZO mice also varied from the two clusters previously discussed. Male, and all but one of 
the female NZO mice were diabetic. Islets from diabetic mice had reduced amplitude and oscillatory 
behavior, other than a single pulse in 8G/QLA. This pattern is similar to the patterns observed in 
many of the NOD female islets. On the other hand, islets of the one non- diabetic female NZO mouse 
demonstrated clear, slow oscillations (Figure 1—figure supplement 1B), which was surprising given 
reports of low KATP abundance due to Abcc8 mutations in the NZO (Andrikopoulos et al., 2016) and 
the strong role of KATP channels in regulating islet Ca2+(Marinelli et al., 2022b; Koster et al., 2000; 
Remedi and Nichols, 2016; Ashcroft et al., 2017). While not of the same lineage as the NOD, the 
NZO do exhibit some autoimmune infiltration in the pancreas (Junger et al., 2002), and the marked 
difference between the non- diabetic and diabetic NZOs, along with the variation in female NOD islet 
responses, further suggests that intra- islet variability for the NOD mice may be the result of disease 
progression.

Understanding the genetic variation driving islet responses in the founders may be informative 
beyond these specific strains. Screens in the DO mice and similar outbred populations can track SNPs 
associated with trait variation to their parental inbred strain of origin. Our previous genetic screen for 
drivers of islet function observed that many of the quantitative trait loci (QTL) appearing for ex vivo 
islet traits had effects driven by the SNPs from the wild- derived strains as opposed to the classical 
inbred strains (Keller et al., 2019). For example, the QTL mediated by Zfp148, which drives Ca2+ 
oscillation and insulin secretion phenotypes in β-cells (Emfinger et al., 2022), also had strong strain 
effects from wild- derived strains (Keller et al., 2019).

Previous studies of islet Ca2+ have largely been confined to a handful of strains, and many studies 
by individual labs tend to use the strains linked with their projects. While this does include a few 
outbred stocks (e.g. NMRI [Pohorec et al., 2022; Sterk et al., 2021; Stožer et al., 2021], CD- 1 [Dahl-
gren et al., 2005; Hauke et al., 2022; Scarl et al., 2019]), direct comparisons of these to traditional 
inbred lines are rare (Pohorec et al., 2022), and studies of specific genes often use traditional inbred 
lines, as wild- derived lines do not respond as well to the conventional assistive reproductive technolo-
gies required for genome editing and transgenesis (Hirose et al., 2017; Mochida et al., 2014).

One study, comparing the outbred NMRI stock to the C57BL/6J and C57BL/6N strains (Pohorec 
et al., 2022), found that the NMRI displayed significantly lower Ca2+ frequencies than the C57 lines, 
particularly in physiological glucose ranges and had similar active periods. While highly informative, 
there were important differences between these studies and our studies here. Of note, the studies 
were done in acute slice culture, in only one sex, and the Ca2+ frequencies detected did not resemble 
the (at least for the C57 lines) the slow oscillations observed in isolated islets from these inbred strains 
(e.g. Figure 1, Lewandowski et al., 2020; Emfinger et al., 2022).

Mouse-to-human integration nominates novel islet drivers
One limitation of our current study is that the association between islet proteins and Ca2+ waveforms 
is correlative and therefore cannot distinguish proteins that are causal for the differences in islet Ca2+ 
between strains from proteins that change because of these differences. One approach to discrimi-
nate cause from effect, and establish the relevance to humans, is to identify whether genes encoding 
human orthologues of these proteins are associated with glycemic traits in human GWAS. SNPs for 
glycemic traits (Table 2), particularly those involving insulin, suggest that alterations in these proteins 
may impart disease risk, which is less likely for proteins that do not play critical regulatory roles. Thus, 
filtering our candidates for glycemic trait associations in human GWAS, while not definitive, suggests 
a likely causal role for these proteins in mediating differences in islet Ca2+ and insulin secretion among 
the different mice. Integrating human GWAS data with the proteins most correlated to Ca2+ dynamics 
nominated ~650 protein candidates, of which approximately one- third have been previously shown 
to have roles in islet biology. These include well- established drivers of insulin secretion; for example 
SUR1, GLUT2, and GNAS. Other previously unknown candidates show promise for validation, as they 
are already targets of small molecule compounds (e.g. ACP1 and others, Stanford et al., 2021; Coker 
et al., 2019; Davies et al., 2015; Gaulton et al., 2017; Santos et al., 2017; Zhou et al., 2022), are 
secreted (e.g. COBLL1 and others, Bateman et al., 2021; Thul et al., 2017; Uhlén et al., 2015; Uhlén 
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et al., 2019; Navajas et al., 2022; Wang et al., 2013; Chen et al., 2019; Gonzales et al., 2009), or 
have been knocked out in mice, resulting in metabolic phenotypes (Figure 7B, Supplementary file 1, 
and Groza et al., 2023; Supplementary file 2).

Our approach to merge human GWAS with our findings in mouse assumes that the glycemic- 
related SNPs we nominated alter the abundance or function of the human orthologues. Most SNPs 
that are strongly associated with phenotypes in human GWAS are noncoding, residing within introns, 
promoters, 3′UTRs, or intergenic regions (e.g. Figure 6). Therefore, a limitation of our approach is the 
assumption that SNPs regulate the gene they are proximal to, which is not always accurate (Nyaga 
et al., 2018; Chen et al., 2020; Smemo et al., 2014). To infer a more direct link between SNPs and 
potential target genes, we incorporated human islet chromatin data (Miguel- Escalada et al., 2019). 
Physical contact between a region containing SNPs and a distal gene supports a regulatory role, as 
for ACP1 (Figure 6B). Additionally, SNPs within regions of open chromatin (ATAC- seq) and actively 
transcribed regions (histone markers) suggest a higher likelihood of regulating transcription factor 
access. While this approach does not conclusively show a link between the SNPs and expression of 
the orthologue for our candidate proteins, these chromatin data more strongly suggest that the ortho-
logue expression may be regulated by the candidates’ SNPs.

Exploiting strain and sex-dependent differences in Ca2+ dynamics for 
model system selection
In addition to the candidate regulators with potential relevance to human islet biology, we provide a 
user- friendly web interface to our data where users can determine whether their gene of interest has 
a potential regulatory role in islets. Multiple inferences regarding the roles of specific pathways are 
possible via analysis of Ca2+ oscillations in islets (Lewandowski et al., 2020; Merrins et al., 2022; 
Dahlgren et al., 2005; Kennedy et al., 2002), and our protein correlation data provide a resource 
to identify which parameter most closely correlates to a number of Ca2+ traits. Additionally, it high-
lights strain/sex outliers for a given trait or gene product, which can be used to select which strain/
sex is best to explore that gene’s role (e.g. Figure 7C). Newer technologies in reproductive assis-
tance, transgenesis, and gene editing, together with more accurate genome sequencing and single 
mutations conferring docility, are quickly making utilization of the wild- derived mice more practical 
(Hirose et al., 2017; Mochida et al., 2014; Karunakaran and Clee, 2018; Chao et al., 2019; Chang 
et  al., 2017). As many of the QTL identified in DO- based studies often have strong driver SNPs 
from the wild- derived strains, a further understanding of which experimental questions might be best 
addressed by use of these strains will be important.

We have previously provided user- friendly web interfaces that allow searches of gene expression 
as a function of diet (WD vs. chow, Keller et al., 2008; Yau et al., 2021) and background (e.g. BTBR 
and B6, Keller et al., 2008; Yau et al., 2021), correlation and QTL scans in F2 intercrosses of these 
mice (Lan et al., 2006), and where these may align with QTL in our DO studies (Keller et al., 2019). 
Many of our candidates are strongly altered by diet and have strong correlations in the F2 data for 
certain clinical traits including insulin and glycemic parameters (Lan et al., 2006). Here, we provide 
the correlation data for islet proteins against multiple parameters describing islet Ca2+ responses 
between strains (https://doi.org/10.5061/dryad.j0zpc86jc, https://data-viz.it.wisc.edu/FounderCalci-
umStudy/, https://github.com/byandell/FounderCalciumStudy, https://connect.doit.wisc.edu/Found-
erCalciumStudy/, https://rstudio.it.wisc.edu/FounderCalciumStudy). These will enable researchers to 
better identify proteins or parameters of interest as well as appropriate background strains with which 
to determine the functions of these proteins.

Materials and methods
Chemicals
All general chemicals, amino acids, bovine serum albumin, 4- (2- Hydroxyethyl)piperazine- 1- 
ethanesulfonic acid, N- (2- Hydroxyethyl)piperazine- N′-(2- ethanesulfonic acid) (HEPES), dimethylsulf-
oxide (DMSO), glucose, glucose- dependent insulinotropic polypeptide (GIP, G2269), cOmplete Mini 
EDTA- free Protease Inhibitor Cocktail Tablets (11836170001), and heat- inactivated fetal bovine serum 
(FBS; 12306C) were purchased from Sigma- Aldrich. RPMI 1640 base medium (11- 875- 093), antibiotic–
antimycotic solutions (15240112), NP- 40 Alternative (492016), Fura Red Ca2+ imaging dye (F3020), 
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DiR (D12731), and agarose (BP1356- 500) were 
purchased from Thermo Fisher. Glass- bottomed 
culture dishes were ordered from Mattek (P35G- 
0- 14C). Fura Red stocks were prepared at 5 mM 
concentrations in DMSO, aliquoted into light- 
shielded tubes, and stored at −20°C until day of 
use (5 μM final concentration). DiR was prepared 
in DMSO at 2 mg/ml, aliquoted to light- shielded 
tubes, and stored at 4°C until use. All imaging 
solutions were prepared in a bicarbonate/HEPES- 
buffered imaging medium (formula in Table  1). 
Amino acids were prepared as 100×stock in the 
biocarbonate/HEPES- buffered imaging medium, 
aliquoted into 1.5 ml tubes, and frozen at −20°C 
until day of use. Aliquots of GIP stock were 
prepared at 100 μM in water and kept at −20°C 
until day of use.

Animals
Animal care and experimental protocols were approved by the University of Wisconsin- Madison Animal 
Care and Use Committee. These studies used the following strains: A/J (RRID:IMSR_JAX:000646), 
C57BL/6J (B6) (RRID:IMSR_JAX:000664), 129S1/SvlmJ (129) (RRID: IMSR_JAX:002448), NOD/ShiLtJ 
(NOD) (RRID:IMSR_JAX:001976), NZO/HILtJ (NZO) (RRID:IMSR_JAX:002105), CAST/EiJ (CAST) 
(RRID:IMSR_JAX:000928), PWK/PhJ (PWK) (RRID:IMSR_JAX:003715), and WSB/EiJ (WSB)(RRID:IMSR_
JAX:001145). Most strains (B6, AJ, 129, NOD, PWK, and WSB) were bred in- house, although two 
strains (CAST and NZO) were purchased from Jackson Laboratory (Bar Harbor, ME). All mice were 
fed a high- fat, high- sucrose Western- style diet (WD, consisting of 44.6% kcal fat, 34% carbohydrate, 
and 17.3% protein) from Envigo Teklad (TD.08811) beginning at 4 weeks and continuing until sacri-
fice (aged ~19–20 weeks for all strains except the NZO males). The NZO males were sacrificed at 12 
weeks of age owing to complications from severe diabetes. For each strain, three to seven males and 
females from at least two litters were analyzed. Animals were sacrificed by cervical dislocation prior 
to islet isolation.

In vivo measurements
Fasting blood glucose and insulin levels were measured in mice at 19 weeks of age, except for 
the NZO males which were measured at 12 weeks of age. Glucose was analyzed by the glucose 
oxidase method using a commercially available kit (TR15221, Thermo Fisher Scientific), and insulin 
was measured by radioimmunoassay (RIA; SRI- 13K, Millipore). This is the same assay that was used 
to measure plasma insulin for the previously published cohort used for the correlation analysis in 
Figure 4; Mitok et al., 2018.

Islet imaging
Islets were isolated as previously described (Rabaglia et al., 2005) and incubated in recovery medium 
(RPMI 1640, 11.1 mM glucose, 1% antibiotic/antimycotic, 10% FBS) overnight at 37°C and 5% CO2. 
Islets were then incubated with Fura Red (5 μM in recovery medium) at 37°C for 45 min. Imaging 
dishes were created from glass- bottomed 10 cm2 dishes that had been filled with agarose. A channel 
with a central well was cut into the agarose with expanded ports on either side of the well for inflow 
and outflow lines. Prior to loading the chambers were perfused with the initial imaging solution (8 mM 
glucose in imaging medium). Islets were then loaded into these dishes. The imaging chamber was 
placed on a 37°C- heated microscope stage (Tokai Hit TIZ) of a Nikon A1R- Si+ confocal microscope. 
The solutions included 8 mM glucose (8G), 8 mM glucose + 2 mM glutamine, 0.5 mM leucine, and 
1.25 mM alanine (8G/QLA), 8G/QLA + 10 nM glucose- dependent insulinotropic polypeptide (8G/
QLA/GIP), and 2 mM glucose (2G), each of which were kept in a 37°C water bath. Solutions were 
perfused through the chamber at 0.25 ml/min for 40 min each, with constant flow controlled by a 
Fluigent MCFS- EZ and M- switch valve assembly (Fluigent). The scope was integrated with a Nikon 

Table 1. Imaging medium formula.
Components are indicated by chemical 
abbreviation on the left and final concentration 
in mM is indicated in the right column.

Component Concentration (mM)

NaCl 137

KCl 5.6

MgCl2 1.2

NaH2PO4·H2O 0.5

NaHCO3 4.2

HEPES 10

CaCl2 2.6
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Eclipse- Ti Inverted scope and equipped with a Nikon CFI Apochromat Lambda D ×10/0.45 objective 
(Nikon Instruments), fluorescence spectral detector, and multiple laser lines (Nikon LU- NV laser unit; 
405, 440, 488, 514, 561, and 640 nm). Bound dye was excited with the 405 nm laser and the spectral 
detector’s variable filter was set to 620–690 nm. The free dye was excited with the 488 nm laser and 
the variable filter collected from 640 to 690 nm. Images were collected at 1 frame/s at 6- s intervals. 
Each islet was considered a region of interest for further analysis. ROI intensity was collected by 
NIS Elements and exported for further analysis. All microscopy was performed at the University of 
Wisconsin- Madison Biochemistry Optical Core, which was established with support from the Univer-
sity of Wisconsin- Madison Department of Biochemistry Endowment.

Islet perifusion
Isolated islets were kept in RPMI- based medium (see above) overnight prior to perifusion, which 
was performed as previously described, with minor modifications (Emfinger et al., 2022; Bhatnagar 
et al., 2011). Islets were equilibrated in 2 mM glucose for 55 min, after which 100 μl fractions were 
collected every minute with the perifusion solutions set at a flow rate of 100 μl/min. All solutions and 
islet chambers were kept at 37°C. After the final fraction was collected, islet chambers were discon-
nected, inverted, and flushed with 2 ml of NP- 40 Alternative lysis buffer containing protease inhibitors 
for islet insulin extraction.

Secreted insulin assay
Insulin in each perifusion fraction and islet insulin content were determined using a custom assay, as 
previously described (Mitok et al., 2018). The primary (10R- I136a, also called D6C4) and secondary 
(61R- I136b- BT, also called D3E7) antibodies were from Biosynth.

Imaging data analysis
Trace segments for each solution condition were analyzed using Matlab and R. Traces were detrended 
using custom R scripts and GraphPad PRISM. Custom Matlab scripts (Foster et al., 2022) (https:// 
github.com/hrfoster/Merrins-Lab-Matlab-Scripts (Foster, 2022), also stored on Zenodo https://doi. 
org/10.5281/zenodo.6540721) determined oscillation peak amplitude, pulse duration, active duration 
(the time when Ca2+ is above 50% peak amplitude), silent duration (the difference between period and 
active duration), plateau fraction (the fraction of overall time per pulse spent in the active duration), 
pulse period, and other parameters. Spectral density deconvolution for the trace segments to deter-
mine principal frequencies was done using R. Animal averages for the different parameters defined 
by Matlab and R were computed and graphed using custom R scripts. Figures were created using 
CorelDraw and Biorender. All R scripts and the citations for the relevant packages used to generate 
them are available via Dryad (https://doi.org/10.5061/dryad.j0zpc86jc).

Correlation and Z-score calculations
Correlation analysis was performed using the imaging data measurements and our published islet 
protein abundance data, ex vivo static insulin secretion measurements, and in vivo measurements 
made in a separate cohort of mice on the WD from the same strains and sexes used in these studies 
(Mitok et al., 2018). For each imaging parameter or previously published measurement, the Z- score 
was calculated using the formula z = (x − μ)/σ where z is the Z- score, x is the animal average for that 
trait given the strain and sex, μ is the average of all animals’ values for that trait, and σ is the standard 
deviation for all animals’ values for that trait. Z- scores were computed in R and excel for the imaging 
parameters and the previously published (Mitok et al., 2018) islet proteomic, ex vivo secretion, and 
in vivo measurements.

Correlation coefficients between the Z- score values of the imaging parameters and Z- scores of the 
previously published protein abundance, islet secretion, and in vivo traits were computed in Excel 
using the CORREL function. The equation used for this function is:
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) (
y − ẏ
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where X and Y are the Z- scores for the correlated traits/parameters, ẋ is the population average for 
trait X and ẏ is the population average for trait Y. Traits were considered highly correlated if absolute 
value for their Z- score correlation coefficients was ≥0.5.

Gene enrichment and human GWAS analysis
Proteins highly correlated or anticorrelated to imaging parameters were further analyzed using 
pathway enrichment and presence of human GWAS SNPs. Briefly, for a given parameter, pathway 
analysis for the highly correlated or anticorrelated proteins to that parameter was done using Enrichr 
(Chen et al., 2013; Kuleshov et al., 2016). Enrichr links for the subsets of proteins highly correlated to 
specific calcium parameters are provided in Supplementary file 3, which is stored on Dryad (https:// 
doi.org/10.5061/dryad.j0zpc86jc).

For GWAS analysis, human orthologues for genes encoding the previously measured islet proteins 
were identified using BioMart (Smedley et  al., 2009). For highly correlated proteins, the protein 
was deemed of human interest if its orthologue had SNPs for glycemia- related traits (see Table 2) 
either along the gene body, within ±100 kbp of the gene start or end, or if any region in the gene 
body was connected to regions with SNPs by chromatin looping. SNPs were queried using Lunaris 
tool of the Common Metabolic Diseases Knowledge Portal (https://hugeamp.org/). Chromatin loop 
anchor points for the relevant gene orthologues were identified using previously published human 
islet promoter- capture HiC data (Miguel- Escalada et al., 2019) and the alignment between these 
anchor loops and orthologues of interest was done using R scripts.

For those proteins having orthologues with SNPs via this analysis, we conducted further literature 
searches using Pubmed, Google Scholar, ChEMBL (Davies et al., 2015; Gaulton et al., 2017; Jupp 
et al., 2014), canSAR (Coker et al., 2019), Uniprot (Bateman et al., 2021), Tabula Muris (Tabula 
Muris Consortium et al., 2018), the Human Protein Atlas (Thul et al., 2017; Uhlén et al., 2015), and 
other resources (Uhlén et al., 2019; Varshney et al., 2017; Lawlor et al., 2017) to determine tissue 

Table 2. Categories included in single- nucleotide polymorphism (SNP) queries.
These terms were considered as glycemia related and are categorized as such on the Common 
Metabolic Diseases Knowledge portal, which was queried for the relevant SNPs. Also included but 
not listed here were variations of these terms that were adjusted for body mass index (BMI).

Fasting hormones Glucose related Tolerance test
Diabetes 
risk

Insulin Fasting glucose 2 hr glucose T1D

Proinsulin Random glucose 2 hr insulin T2D

C- peptide Hba1c 2 hr C- peptide

Fasting glc–BMI interaction Acute insulin response

Fasting ins–BMI interaction SI- adjusted acute ins. Resp.

Gestational diabetes/altered fast glucose in 
pregnancy AUC insulin

AUC insulin/AUC glucose

Corrected insulin response

HOMA- B

HOMA- IR

Ins. Secretion rate

Ins. Sensitivity

Incremental ins. @ 30 min OGTT

Insulin @ 30 min OGTT

Peak ins. response

Peak ins. Response adj SI
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expression and identify any prior roles in islet biology. Figures for the relevant protein examples were 
created using GraphPad Prism, CorelDraw, and the WashU Epigenome Browser (Li et al., 2019).

We further narrowed this list by searching each of the genes and their aliases in the PubMed, 
Google Scholar, and Google Search Engines along with ‘insulin secretion’. This allowed us to identify 
which genes have a known role in altering the insulin secretory pathway, and which genes may be 
understudied (Figure 7A).

Web resource
A web resource was created to explore the islet calcium and proteomic data and their relationships 
(https://data-viz.it.wisc.edu/FounderCalciumStudy, https://connect.doit.wisc.edu/FounderCalcium-
Study/, https://rstudio.it.wisc.edu/FounderCalciumStudy). This resource sits on an RStudio/Connect 
server (see https://posit.co/). It enables the user to select traits from the calcium and protein datasets 
to plot by strain, sex, and calcium parameters. Distinct mice were assayed for calcium and protein. 
Individual strains can be selected on the main menu using the checkboxes, or all strains (default) can 
be viewed.

The different datasets available in the main menu are:

1. calcium: calcium parameters and spectral density data, with stimulatory secretion conditions
2. protein: islet proteomic measurements
3. basal: average calcium in 2 mM glucose

The calcium data have three stimulatory conditions (8G, 8G/QLA, and 8G/QLA/GIP), which are 
displayed together for each calcium parameter. The proteomic data (protein) are displayed for each 
identified peptide. In rare cases of multiple peptides per gene, both gene symbol and peptide iden-
tifier (PP number) are included (e.g. Pkm_PP_1521 for the M1 isoform of the protein PKM). Desired 
proteins can be selected simultaneously with desired calcium parameters for correlation analysis 
and paired display by both datasets. The basal elements retained from the calcium data include the 
Average Calcium measurement for 2 mM glucose. Proteomic data were log10- transformed. All traits 
were transformed into normal scores, keeping the sample mean and variance the same.

Scatter plots display data across sex and calcium conditions. When plotting calcium against protein 
or basal traits, means by strain and sex are used, as the two experiments used different mice. Correla-
tion of selected traits with all other traits in the resource use Pearson correlation on pairwise- complete 
data. The user can order traits by their significance or by their correlation to other selected traits.

Statistical modeling terms include strain, sex, and the strain:sex interaction, plus additional terms 
for comparing calcium condition with respect to strain and sex. Users can view volcano plots displaying 
deviation of term effects, measured as the standard deviation (SD = square root of mean square error) 
divided by the raw SD for that trait, against their significance (p- value after adjusting for all other 
model terms, presented on −log10 scale). In addition to the terms, a composite ‘signal’ captures the 
combined effect of terms strain:condition + strain:condition:sex using a general F test computation.

All data handling and web app construction for the resource were performed using R scripts in 
publicly available GitHub repositories, with specifics for the calcium study at https://github.com/byan-
dell/FounderCalciumStudy (copy archived at Yandell, 2023b) and the general purpose analysis and 
web deployment package at https://github.com/byandell/foundr (copy archived at Yandell, 2023a).

Statistics
For the islet perifusion insulin measurements, statistics were determined in GraphPad Prism. Frac-
tional secretion area- under- the- curve (AUC) was determined using Prism and differences in AUCs 
analyzed using post- tests following two- way analysis of variance for the indicated trace segments. 
Islet total insulins between strains were compared using a two- tailed Student’s t- test with Welch’s 
correction. For Figure 4—figure supplement 1, the graphs, Pearson’s R, and regression lines were 
created in Prism. All data analysis used individual animal averages of the islet measurements (biolog-
ical replicates). Experimental numbers were determined using prior data analyses (Keller et al., 2019; 
Mitok et al., 2018; Emfinger et al., 2022). Owing to poor islet yield as a complication of their severe 
diabetes, in the imaging experiments the islets from some NZO mice had to be pooled with each pool 
considered a biological replicate.
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LE, Yandell B, 
Schueler KL, Simonett 
SP, Stapleton DS, 
Mitok KA, Merrins 
MJ, Keller MP, Attie 
AD

2023 Genetic variation in mouse 
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reveals novel regulators of 
islet function

https:// zenodo. org/ 
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Zenodo, 10.5281/
zenodo.7776210

Emfinger CH, Clark 
LE, Yandell B, 
Schueler KL, Simonett 
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MJ, Keller MP, Attie 
AD
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