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Abstract Glucocorticoid (GC) variation has long been thought to reflect variation in organismal 
‘stress,’ but associations between GCs and Darwinian fitness components are diverse in magni-
tude, direction, and highly context-dependent. This paradox reveals our poor understanding of the 
causes of GC variation, contrasting with the detailed knowledge of the functional consequences of 
GC variation. Amongst an array of effects in many physiological systems, GCs orchestrate energy 
availability to anticipate and recover from predictable and unpredictable environmental fluctua-
tions and challenges. Although this is mechanistically well-known, the extent to which GC levels 
are quantitatively explained by energy metabolism is unresolved. We investigated this association 
through meta-analysis, selecting studies of endotherms in which (1) an experiment was performed 
that affected metabolic rate and (2) metabolic rate and GC levels were measured simultaneously. We 
found that an increase in metabolic rate was associated with an increase in GC levels in 20 out of 21 
studies (32 out of 35 effect sizes). More importantly, there was a strong positive correlation between 
the increases in metabolic rate and GCs (p=0.003). This pattern was similar in birds and mammals, 
and independent of the nature of the experimental treatment. We conclude that metabolic rate is 
a major driver of GC variation within individuals. Stressors often affect metabolic rate, leading us to 
question whether GC levels provide information on ‘stress’ beyond the stressor’s effect on metabolic 
rate.

eLife assessment
This work presents a fundamental meta-analysis on the causes of glucocorticoid variations in birds 
and mammals. It provides convincing evidence that an increase in metabolic rates increases gluco-
corticoid concentrations. The work will be of broad interest to animal physiologists.

Introduction
The accepted – but often overlooked – metabolic role of 
glucocorticoids
Glucocorticoid hormones (GCs; e.g. cortisol, corticosterone) were identified by Hans Selye (1907–
1982) as the key molecular mediators of the ‘stress reaction’ and named in reference to their capacity 
to increase glucose in blood. Selye highlighted the fundamental role of GCs in the ‘general adaptation 
syndrome,’ that is, ‘the physiological mechanisms that help to raise resistance to damage as such, 
irrespective of the specific nature of the damaging agents’ (Selye, 1950). In this view, GCs play a role 
in ‘adapting’ to the challenge by triggering mechanisms that help the organism return to, or maintain, 
homeostasis after an environmental challenge. Indeed, towards the later stages of his career, Selye’s 
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definition of stress was ‘the nonspecific response of the body on any demand on it’ (Selye, 1976), 
making the point that very different stimuli (i.e. ‘stressors’) triggered the same response. However, in 
the literature this perspective has changed over time, and ‘stress’ and, by extension, GCs have been 
widely linked to negative outcomes (but see Koolhaas et al., 2011; Herman, 2022; MacDougall-
Shackleton et al., 2019). Consequently, researchers in fields from biomedicine to conservation physi-
ology and animal husbandry have focused on GCs to find proxies of ‘physiological and/or psychological 
stress’ to evaluate physical and/or welfare status. Indeed, GCs have predominated over other traits 
throughout the stress physiology literature, to the point of being referred to as vertebrate ‘stress 
hormones’ (Madliger et al., 2015; Madliger and Love, 2014; McCormick and Romero, 2017). While 
several authors have argued against this simplified view of GC regulation during the past decades 
(e.g. Koolhaas et al., 2011; MacDougall-Shackleton et al., 2019; Herman, 2022; Romero, 2004; 
Landys et al., 2006; Bonier et al., 2009), such association prevails, in the sense that publications still 
abound in which GC levels are assumed to provide information on organismal stress.

The focus on GCs to measure organismal stress can be understood from their role as key mediators 
of organismal responses to challenges, triggering a cascade of effects on many physiological systems 
(Koolhaas et al., 2011; Sapolsky et al., 2000; Deviche et al., 2017; Zimmer et al., 2019; Zimmer 
et al., 2020). Furthermore, acute increases in circulating GCs are a defining aspect of the so-called 
‘stress response’ (Koolhaas et al., 2011; Sapolsky et al., 2000). Consequently, higher GC levels circu-
lating in plasma or deposited in keratinized tissues (i.e. hair or feathers) have traditionally been inter-
preted as an indication of homeostatic unbalance, poor condition, implicating low fitness prospects 
(reviewed in Schoenle et al., 2021; Romero and Fairhurst, 2016). However, the latter assumption is 
at best poorly supported by the literature, with associations between GCs and fitness (survival/repro-
duction) being diverse in direction and often nonexistent (Schoenle et al., 2021; Zimmer et al., 2022; 
Busch and Hayward, 2009; Bonier et al., 2009; Petrullo et al., 2022). This inconsistency raises the 
question what alternative inference can be made from GC variation. The urgency of this question is 
further underlined by the observation that GCs also increase in response to experiences we would not 
normally qualify as stress; for example, sexual activity induces a GC increase in humans, horses, and 
rodents (Siciliani, 2000; Colborn et al., 1991; Buwalda et al., 2012). We suggest that this question 
can potentially be resolved through a better understanding of physiological mechanisms and environ-
mental factors driving GC variation.

Selye, 1976 emphasized that homeostatic challenges of any kind lead to increases in body 
demands, loosely defined as ‘the rate at which we live at any one moment.’ Activation of the hypothal-
amus–pituitary–adrenal (HPA) axis represents a primary hormonal response to homeostatic challenges 
that, through the release of GCs, mobilizes the resources needed to fuel the current or anticipated rise 
in energy expenditure (current and anticipatory responses) or recover from an immediate threat that 
induced an unanticipated increase in energy expenditure (reactive response) (Herman et al., 2016; 
McEwen and Wingfield, 2003). In this context, GCs are involved in the metabolism of most types of 
energy reserves, modulating glucose, fat, and protein metabolism in liver, skeletal muscle, and other 
target tissues (Box 1). Allusions to the energetic role of GCs and their tight link to energy expenditure 
are common in physiological and ecological studies, especially those using approaches which under-
line the adaptive function of GC responses (McEwen and Wingfield, 2003; Landys et al., 2006; 
Romero et al., 2009; Deviche et al., 2017), but the extent to which GC variation can be quantitatively 
explained as facilitator of variation in energy expenditure has rarely been addressed (but see Jimeno 
et al., 2018; Malkoc et al., 2021 supplementary information). We here schematically review the role 
of GCs in energy metabolism (Box 1) and investigate this link quantitatively through meta-analysis.

Revisiting the associations between GCs and metabolic rate: A meta-
analytic approach
Although previous evidence supports the link between energy expenditure and GC secretion (e.g. 
Koolhaas et al., 2011; Sapolsky et al., 2000; Beerling et al., 2011; Buwalda et al., 2012; Jimeno 
et al., 2018; Malkoc et al., 2021 supplementary information), the qualitative importance of both 
this association and the underlying processes to explain GC variation remains unexplored; this is, 
however, fundamental towards accurately interpreting GC variation. We here test whether changes in 
energetic demands are associated with variation in GC levels. Specifically, we (i) use a meta-analytic 
approach to test whether experimental manipulations leading to increases in metabolic rate (MR) in 
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Box 1. Glucocorticoids (GCs) and energy metabolism

We here consider GC regulation from the perspective of their role in fuelling metabolic rate. 
When metabolic rate is low, for example, during periods of inactivity, circulating GCs are 
maintained at low levels and glucose from fuel stores is released in the blood stream at a 
low rate matching the modest metabolic needs (permissive actions; Sapolsky et al., 2000; 
Box 1—figure 1). An increase in metabolic rate can be anticipated or unanticipated (GCs will 
exert preparative or stimulating actions, respectively; Sapolsky et al., 2000; Box 1—figure 
1), and acute or gradual. Unanticipated but gradual increases in metabolic rate will occur, for 
example, when thermoregulatory costs unexpectedly increase.
In both gradual and acute increases in metabolic rate, a main role of GCs is to increase 
circulating glucose at a rate matching the metabolic requirements through diverse 
mechanisms. Decreasing plasma glucose levels trigger a series of hormonal changes that 
promote a switch in energy usage. Together with a decrease of insulin (in mammals, less so 
in birds), GCs are released into the circulation (Andrews and Walker, 1999; Rosmond and 
Björntorp, 2000) reducing anabolic insulin actions (Vegiopoulos and Herzig, 2007). Blood 
glucose level then increases, both by mobilization from existing stores and by inhibition 
of further storage. GCs also inhibit glucose uptake and glycogen synthesis in the liver, 
redirecting resources to gluconeogenesis and glycogenolysis, along with glucagon and 
catecholamines as part of the most immediate acute response. Catecholamines act quickly 
and increase within seconds to induce the release of energy needed to fuel the response 
(Herman et al., 2016; Romero and Beattie, 2022; Sapolsky et al., 2000). The GC response 
lags in time – as GCs are produced de novo at the adrenal and take minutes to be secreted 
– and lasts substantially longer, depending on active (feedback signaling) and passive (GC 
degradation) processes (Herman et al., 2016; Box 1—figure 1), enhancing and prolonging 
the increase in blood glucose (Nonogaki, 2000; Romero and Beattie, 2022), or recovering 
energy stores after a brief burst of activity. In addition, inhibition of peripheral glucose 
transport and utilization in response to GCs increases the availability for other tissues, such 
as the brain (reviewed in Sapolsky et al., 2000; Herman et al., 2016). GCs also act in other 
substrates, further increasing lipolysis by inducing hormone-sensitive lipase (Slavin et al., 
1994), and reducing lipoprotein lipase activity in peripheral fat depots. They also promote 
pre-adipocyte differentiation, pro-lipogenic pathway activity, and cellular hypertrophy in 
central fat (Vegiopoulos and Herzig, 2007), as well as decreased thermogenesis in brown 
adipose tissue (Soumano et al., 2000). In various muscle types, GCs suppress protein 
synthesis while promoting protein degradation and amino acid export. When the energetic 
and substrate requirements of the organism are further increased (e.g. during fasting or 
illness), muscle tissue (40% of total body mass) becomes a rich source of amino acids, which 
can be mobilized as substrates for energy generation, gluconeogenesis, and protein synthesis 
(Kuo et al., 2013).
Given the existing evidence on the metabolic role of GCs, and the different time scales 
associated with the kind of response (anticipatory vs. perceived) as well as the hormones 
and substrates’ physiological actions (see above), GC concentrations cannot be expected 
to always reflect the ‘immediate’ energy expenditure. However, we would expect changes 
in energetic demands to always require a GC response/input to meet the derived metabolic 
needs (Box 1—figure 1). This prediction of a strong association between GCs and metabolic 
rate, however, is not well researched and does not necessarily imply that one trait affects the 
other per se, as their interplay is likely to be shaped by the environmental or physiological 
context. Note further that we make no distinction between baseline and stress-induced GC 
levels, and thereby in effect assume these to be points in a continuum from a metabolic 
perspective; a perspective supported by the monotonic effects of GCs on glucose uptake and 
fat depletion (Kattwinkel and Munck, 1966; Dallman et al., 1993). Additionally, although 
we consider GCs to be regulated to meet energetic demands, we are aware that GCs have 

continued on next page
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many complex downstream effects at both baseline and stress-induced levels, besides energy 
mobilization (Box 1—figure 1).

Box 1—figure 1. Schematic representation of the association between metabolic rate and plasma levels of 
glucocorticoids and glucose.

Green arrows represent increasing effects, whereas red arrows represent reducing effects.

endotherms also lead to an increase in GCs (qualitative approach). We included only experimentally 
induced increases of energy expenditure to avoid potential masking effects of anticipatory responses 
or delayed effects of GCs. Because MR and GCs can fluctuate rapidly, we targeted MR and GC 
measurements taken simultaneously or when animals could be assumed to be in the same physiolog-
ical state (e.g. within the same day and experimental treatment). We further investigated (ii) whether 
the magnitude of the experimentally induced changes in MR and GCs was correlated (quantitative 
approach) through meta-regression. Our predictions are that (i) increases in MRs are associated with 
increases in plasma GC concentrations, (ii) changes in GCs are proportional to induced changes in 
MR, and (iii) the association between increases in MR and GCs is independent of the treatment used 
to increase the MR.

Results
Among the studies selected for inclusion in the analysis, the treatment effect size on MR was on 
average 1.85 ± 0.87 (Figure 1—figure supplement 1). In accordance with prediction, effects on GCs 
were positive in the majority of cases (32/35; Figure 1), and consequently the overall average effect 
size deviated significantly from zero, with the average GC effect size estimated at 0.73 ± 0.11 (Table 1). 
There was a strong association between MR effect sizes and GC effect sizes (Table 1, Figure 2), thus 
confirming prediction (ii). It is further worth noting that the residual heterogeneity did not exceed the 
level expected by chance (Table 1). MR Cohen’s D was ln-transformed (see ‘Materials and methods’) 
to normalize the distribution (Figure 2), and AICc of models including ln MR were significantly lower 
compared to models including untransformed MR Cohen’s D (AICc = 70.58 vs. 74.97, respectively).

The association between MR and GC effect sizes remained statistically significant when adding 
taxa, before/after, experiment/control effect, metabolic variable, or treatment type one by one to the 
model. Furthermore, none of these variables had a significant effect on GC effect size, nor did the 
association between MR and GC effect sizes depend on those factors (i.e. interactions between these 
variables and MR effect sizes were always nonsignificant; Table 2, Supplementary file 4, Figure 2—
figure supplements 1 and 2). The latter result confirms prediction (iii). Given that none of these effects 
significantly improved the model, the final model when removing all factors was the one including MR 
effect size as only predictor of GC effect size (Table 1). Despite these modulators being nonsignificant, 
the associations were in the expected directions, with studies including within-individual variation (i.e. 
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Figure 1. Forest plot showing the glucocorticoid (GC) effect sizes (Cohen’s D ± 95% CI) associated with 
experimental manipulations of metabolic rate, grouped by treatment group and study. Area of squares is 
proportional to the experiment sample size (1/s.e.).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Forest plot showing the metabolic rate (MR) effect sizes (Cohen’s D ± 95% CI) associated 
with experimental manipulations of MR, grouped by treatment group and study.

Table 1. Meta regression model testing the association between metabolic rate (MR) effect sizes and 
glucocorticoid effect sizes.

Estimate s.e. Z p 95% CI

Intercept 0.72 0.11 6.40 <0.0001 0.50–0.95

MR effect size (ln) 0.31 0.10 2.94 0.003 0.10–0.51

Variance components: Study.ID (Sigma^2)– Estimate = 0.00, sqrt = 0.00, n = 21.
Residual heterogeneity: QE(df = 33) = 28.40, p=0.70.
Test of moderators: QM(df = 1) = 8.64, p=0.003.

experiment/control effect), and not including a before/after effect reporting higher GC effect sizes 
(table in Supplementary file 4, Figure 2—figure supplement 2).

Discussion
Finding a consistent functional interpretation of GC variation has proven challenging, and to this end 
we presented a simplified framework focusing on the interplay between energy metabolism and GCs 
(Box 1). Based on this framework, we made three predictions that we tested through a meta-analysis 
of studies in endotherms in which MR was manipulated and GCs were measured at the same time. 
The analysis confirmed our predictions, showing that experimental manipulations that increased MR 
induced a proportional increase in GCs (Figure 2), and our interpretation of this effect is that GC 
secretion facilitated increases in MR. This association indicates that fluctuations in energy turnover are 
a key factor driving variation in GC levels. From this perspective, the many downstream effects of GCs 
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Figure 2. Glucocorticoid (GC) effect size (Cohen´s D) increases with increasing metabolic rate effect size similarly in studies of mammals (open circles) 
and birds (closed circles). Area of dots is proportional to the experiment sample size (i.e. square root of the number of individuals in which GCs were 
measured).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Relationship between metabolic rate and glucocorticoid effect sizes (Cohen’s D) across studies.

Figure supplement 2. Relationship between metabolic rate and glucocorticoid effect sizes (Cohen’s D) across studies as a function of before/after 
effect (left panel; open circles and dashed line for studies including a time effect; closed circles and continuous line for studies not including a time 
effect; see ‘Materials and methods’) and experiment/control effect (right panel; open circles and dashed line for studies including within-individual 
variation; closed circles and continuous line for studies not including within-individual variation).

(e.g. downregulation of immune function and reproduction; McEwen and Wingfield, 2003; Sapolsky 
et al., 2000) may be interpreted as allocation adjustments to the metabolic level at which organisms 
operate. Specifically, within-individual blood GC variation signals the MR at which the organism is 
functioning to all systems in the body. In this light, downstream effects of GCs can be interpreted as 
evolved responses to MR fluctuations, reallocating resources in the face of shifting demands on the 
whole organism level.

https://doi.org/10.7554/eLife.88205
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Table 2. Table showing the main effects of all 
variables considered (metabolic rate [MR], taxa, 
time effect, within-individual variation, metabolic 
variable, and treatment type) to modulate 
glucocorticoid effect sizes across studies.
Full models are shown in Supplementary file 4.

Variable p

MR effect size (ln) 0.003

Taxa 0.63

Before/after 0.49

Experiment/control 0.68

Metabolic variable 0.94

Treatment type

Treat. 2 0.93

Treat. 3 0.60

The effect of MR on GC levels was independent 
of the type of manipulation used to increase MR, 
confirming our third prediction. Note, however, 
that confirmation of this prediction relied on the 
absence of a significant effect, and absence of 
evidence is not evidence of absence. However, 
the residual heterogeneity of our final model 
did not deviate from a level expected due to 
sampling variance, providing additional support 
for our third prediction.

Note that in the context of our analysis we 
made no distinction between ‘baseline’ and 
‘stress-induced GC levels (Box 1). Firstly, because 
these concepts are not operationally well defined 
– baseline GC levels are usually no better defined 
than ‘not stress-induced.’ Secondly, when consid-
ering the facilitation of MR as a primary driver of 
GC regulation, there does not appear a need to 
invoke different classes of GC levels instead of the 
more parsimonious treatment as continuum. This 
is not to say that this also applies to the functional 

consequences of GC-level variation: it is well known that receptor types differ in sensitivity to GCs 
(Landys et al., 2006; Sapolsky et al., 2000; Romero, 2004), thereby potentially generating step 
functions in the response to an increase in GC levels.

We restricted the meta-analysis to experimental studies and expect the association between MR 
and GCs to be less evident in a more natural context. Associations between GCs and MR will be 
most evident when animals are maintained at different but stable levels of MR because then the rate 
at which tissues are fuelled is likely to be in equilibrium with the metabolic needs. While equilibrium 
conditions can be created in laboratory studies, conditions will usually be more variable in the wild. 
When MR fluctuates, for example, due to short-term variation in activity, GC variation will track MR 
fluctuations, but with a time lag (Box 1), thus adding complexity to the MR/GC association and its 
detectability. Furthermore, experiments yield estimates of associations within the average individual 
in the study, while data collected in a natural context usually rely on variation between individuals (but 
see Malkoc et al., 2022). Associations between individuals will be less strong than the associations 
within individuals due to individual variation in GC levels and GC reactivity (e.g. Liu et al., 1997; 
Weaver et  al., 2004; Yehuda et  al., 2014; Taff et  al., 2018; Taff et  al., 2022). Between-subject 
variation is likely to be even larger on an interspecific level, and in line with this expectation the 
comparative evidence on the MR/GC association is mixed. While a strong positive MR/GC correlation 
was reported for mammals (Haase et al., 2016), Francis et al., 2018 found no consistent GC/MR 
association in birds and other tetrapod taxa. However, recent comparative analyses showed avian GC 
variation to be positively correlated with estimated thermoregulatory costs (Rubalcaba and Jimeno, 
2022a), and GC variation in lizards to be positively correlated with body temperature, which directly 
influences MR in ectotherms (Rubalcaba and Jimeno, 2022b). The contrast between the findings may 
be due to the MR and GC data not always being collected on individuals in a comparable state. We 
emphasize therefore the importance of measuring MR and GCs when animals are in the same state, 
preferably by measuring both variables at the same time.

GCs increased in the studies included in our meta-analysis in response to an induced increase in 
MR, but GCs can also increase in response to an anticipated increase in MR (Box 1). For example, the 
early morning GC increase in humans, known as the ‘cortisol awakening response’ (Fries et al., 2009), 
can be interpreted as preparation for an increase in MR – indeed, human ‘early birds’ show higher 
GC levels than ‘night owls’ in the hour after awakening (Kudielka et al., 2006). Likewise, GC levels 
increase in athletes preceding competition (van Paridon et al., 2017), although separating effects of 
psychological stress from anticipated metabolic needs is difficult in this context. Experiments in which 
animals are trained to anticipate an increase in MR to investigate whether this generates an anticipa-
tory increase in GCs would be an interesting additional test of the framework laid out in Box 1.

https://doi.org/10.7554/eLife.88205
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Given that GC levels are often assumed to provide information on organismal ‘stress’ and welfare, the 
question arises whether the observed pattern can be the consequence of effects on psychological stress 
instead of MR. This question arises because manipulations of energy expenditure are always ‘indirect,’ in 
that an external treatment is used to induce an increase in MR, as opposed to a direct manipulation of MR, 
and this leaves room for other factors to cause the observed effects. While we acknowledge that it is not 
possible to demonstrate conclusively that a process is not happening, we consider it unlikely that ‘stress 
effects’ explain our findings. Firstly, because the way MR was manipulated varied widely between studies 
but manipulation type had no discernible effect on the MR/GC association. This was also the conclusion 
of one of the studies included in our meta-analysis, designed specifically to compare MR/GC associa-
tions between two MR increasing treatments, ambient temperature and noise as psychological stressor 
(Jimeno et al., 2018). Secondly, the finding that the GC increase was proportional to the increase in MR 
can only be explained by psychological stress when the induced psychological stress was proportional to 
the induced MR. Thirdly, the pattern is consistent with what is known of the functional consequences of 
GC variation in relation to metabolic needs (Box 1). Lastly, diverse noninjurious psychological stressors 
increase MR in humans (Sawai et al., 2007; Balanos et al., 2010; Carroll et al., 2009), mammals (Harris 
et al., 2006; mild and unpredictable chronic stress; García-Díaz et al., 2007), and birds (Jimeno et al., 
2018), explaining why GCs generally increase in response to a stressor. We conclude, therefore, that 
while a causal link between MR and GCs is not the only possible explanation of our findings, we argue it 
to be the most parsimonious explanation. Direct manipulations of MR could confirm or reject this expla-
nation and may, for example, be achieved using thyroid hormones, which have been shown to affect MR 
(Moreno et al., 2002; Kim, 2008).

We selected studies in which experimental treatments affected MR, leading us to conclude that the 
most parsimonious explanation of our finding is that GC levels were causally related to MR. Suppose, 
however, that instead we reported a correlation between MR and GCs using, for example, unmanipulated 
individuals. The question would then be justified whether changes in GCs affected MR or vice versa. Direct 
effects of GCs could be studied using pharmacological manipulations. However, while many studies show 
that GC administration induces a cascade of effects, when the function of GCs is to facilitate a level of MR, 
as opposed to regulate variation in MR, we do not anticipate such manipulations to induce an increase in 
MR (Box 1). On the other hand, when MR is experimentally increased in conjunction with pharmacological 
manipulations that suppress the expected GC-increase (an experiment that to our best knowledge has not 
yet been done), we would predict that the increase in MR can be maintained less well compared to the 
same MR treatment in the absence of the pharmaceutical manipulation. This result we would interpret to 
demonstrate that maintaining a particular level of MR may be dependent on GCs as facilitator, but it would 
be misleading to interpret this pattern to indicate that GCs regulate MR, as is sometimes proposed. Addi-
tionally, it would be informative to investigate whether energy turnover immediately before blood sampling 
is a predictor of GC levels as we would predict on the basis of the interpretation of our findings. Increasing 
the use of devices and techniques that monitor energy expenditure or its proxies (e.g. accelerometers) may 
be a way to increase our understanding of the generality of the GC–MR association.

Authors who assumed GC levels to be a proxy of physiological stress have struggled with the 
interpretation of findings such as the mixed results with respect to fitness consequences of GC varia-
tion. Our findings offer a way to interpret such variation: GCs are regulated with respect to their role 
in facilitating energy metabolism, and we encourage researchers to approach and interpret findings 
from this perspective. For example, a positive association between GCs and reproductive success 
may indicate that individuals who are able to sustain high MRs attain higher fitness (e.g. Bauch et al., 
2016), while a negative association indicates the opposite effect (e.g. Ouyang et al., 2013; see Atema 
et al., 2022, for a more general discussion of this specific contrast). Given that GCs have many other 
downstream effects (Sapolsky et al., 2000), for example, suppressing immune function (Cain and 
Cidlowski, 2017), and growth (Allen, 1996), this may seem an overly simplistic approach. However, 
in this framework, downstream effects of GCs may be understood as responses to a system-level 
readout of the current level of energy metabolism, with high levels affecting the allocation of energy 
to different energy demanding processes. In this view, the link between GCs and energy-demanding 
processes is asymmetric, in the sense that GCs affect energy allocation to, for example, growth, but 
there is no direct feedback from growth to GC levels. In conclusion, whereas GCs are widely seen as 
‘stress hormones,’ we offer a different interpretation and question whether GC variation reveals any 
physiological stress beyond fluctuations in energy expenditure.

https://doi.org/10.7554/eLife.88205
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Materials and methods
Literature search
We reviewed the literature to identify empirical studies reporting measurements of both MR and 
plasma GCs. We compiled studies that met all following criteria: (1) including an experimental manip-
ulation of any kind leading to increases in MR which was quantified (i.e. both significant and nonsig-
nificant increases). Among these, we also included those studies reporting heart rate as a metabolic 
measure as heart rate and MR are strongly correlated (Bevan et al., 1994; Bevan et al., 1995; Butler 
et al., 2004; Word et al., 2022). (2) Including measurements of natural GC concentrations in plasma 
(i.e. not exogenous or chemically induced; e.g. with ACTH or CRH). (3) measurements of GCs and 
metabolism had to be on the same individuals and measured in the same physiological state. The 
latter condition excludes, for example, studies with daily energy expenditure measurements combined 
with GCs measured at one time point. Finally, we only included studies on endotherms (birds and 
mammals) because metabolic regulation differs strongly between endotherms and ectotherms.

We conducted a database search (Web of Science, July 20, 2021) to identify candidate studies 
using the following two combinations of search terms: “energy expenditure” AND (glucocorticoid OR 
cortisol OR corticosterone) and “metabolic rate” AND (glucocorticoid OR cortisol OR corticosterone). 
After the search, we consecutively selected articles after (1) abstract review, (2) full-text review, and 
(c) data availability for effect size calculations. Using this approach, we identified a total of 14 studies 
that met all our criteria (see Supplementary file 1 for additional information on the number of studies 
obtained on each of the search steps). We also systematically checked the reference list of these 14 
papers, which yielded an additional 7 papers. Thus, we included a total of 21 papers (Supplementary 
file 2) in our analyses, of which 12 were on birds and 9 on mammals. Also, 9 of the 22 papers included 
more than one experimental treatment, yielding a total of 35 effect sizes. For each of these studies, 
we extracted information on study species or metabolic and GC variables reported, among others 
(Supplementary file 2). Additionally, we recorded variation related to the experimental design, the 
variables that were quantified, and the type of treatment used: (1) before/after design: whether the 
experimental manipulation included a time effect (i.e. individuals served as their own control, being 
measured before and after the experimental manipulation); (2) experiment/control design: whether 
the experiment accounted for within-individual variation (i.e. all individuals went through all experi-
mental treatments); (3) whether MR or heart rate was the metabolic variable; and (4) the type of treat-
ment that induced an increase in MR (see below) (Supplementary file 2).

Effect size calculations
To estimate effect sizes of metabolism and GCs, we used the web-based effect size calculator Practical 
Meta-Analysis Effect Size Calculator, following Lipsey and Wilson, 2001 and Nakagawa and Cuthill, 
2007. We calculated standardized mean-difference effect sizes (Cohen’s D), which we computed from 
means and standard deviations (19 studies) or t-test (2 studies). When metrics were presented graphically 
only, we extracted data from the figure(s) using the GetData Graph Digitizer software (http://getdata-​
graph-digitizer.com/). See Supplementary file 3 for details on data extraction and effect size calculations.

For each study, we compared the mean MR and level of plasma GCs of individuals in the treatment 
group(s) to that of individuals in the control group. For studies in which treatment was confounded with 
time, because pretreatment measurements were used as control and compared with measurements during 
treatment, the pretreatment measure was used as control when calculating effect sizes in studies where 
there was a single treatment. When studies with a before-after design included more than one experi-
mental treatment, the treatment yielding the lowest metabolism was taken as control for the effect size 
calculations. Thus, confounding time with treatment was avoided whenever possible.

Statistical analyses
We conducted all meta-analyses using the ​rma.​mv function from the metafor package (Viechtbauer, 
2010), implemented in R (version 4.0.1, R Development Core Team, 2020). Standard errors were 
used for the weigh factor. All models contained a random intercept for study identity to account for 
inclusion of multiple experimental treatments or groups from the same study. Most species were used 
in a single study, and we therefore did not include species as a random effect in addition to study 
identity. The number of species was, however, insufficient to reliably estimate phylogenetic effects; 
we, therefore, limited the analysis in this respect with a comparison between birds and mammals (see 

https://doi.org/10.7554/eLife.88205
https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php/
https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php/
http://getdata-graph-digitizer.com/
http://getdata-graph-digitizer.com/


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Jimeno and Verhulst. eLife 2023;12:RP88205. DOI: https://​doi.​org/​10.​7554/​eLife.​88205 � 10 of 15

below). The dependent variable was either the MR or the GC effect size. One model was fitted with 
the MR effect size as a dependent variable to estimate the average effect on MR across all studies 
in the analyses. All other models had the GC effect size as dependent variable and MR effect size 
as a moderator. Distribution of MR effect sizes was skewed, which was resolved by ln-transforma-
tion, which yielded a better fit compared to a model using the linear term (evaluated using AIC, see 
‘Results’ for details). Our first GC model contained only the MR effect size as a fixed independent 
variable. This model provides a qualitative test of whether GC levels increase when MR is increased 
and tests prediction (i) by providing an estimate of the intercept, which represents the average GC 
effect size because we mean centered the ln-transformed MR effect size (Schielzeth, 2010). The same 
model tests prediction (ii) whether the GC effect increases with an increasing MR effect size, which will 
be expressed in a significant regression coefficient of the MR effect size.

Following the model with which we tested our main predictions, we ran additional models to 
test for the effects on GC effect sizes of (1) taxa (birds vs. mammals), two design effects, namely (2) 
before/after effect, and (3) experiment/control effect, (4) metabolic variable measured (MR or heart 
rate), and (5) type of treatment (categorized in climate, psychological, or other). This last factor tests 
our prediction (iii). We included these variables as modulators in the analysis, as well as the two-way 
interactions of these factors with the MR effect size. All factors were coded as 1 (bird/no before-after 
effect/no experiment-control effect/MR) or 2 (mammal/before-after effect/experiment-control effect/
heart rate), and then mean-centered. Treatment type was categorized as 1 (climate), 2 (psychological), 
or 3 (others). We compared models with vs. without these additional variables using Akaike’s infor-
mation criterion, with correction for small sample sizes (AICc, Akaike, 1974) for which a change in 
AICc of 2 is considered significant (Burnham et al., 2011). Models within ΔAICc < 2 were considered 
best-fitting models, and we further explored the effects of the main predictors when present in these 
top models. To rule out publication bias effects (i.e. regression test for funnel plot asymmetry), we 
included a weighing variable (square root of the sample size) as moderator in the models as Egger’s 
test is not a reliable test of funnel plot asymmetry in multilevel models. Variable effects and results 
remained quantitatively very similar and qualitatively unchanged. Furthermore, because many labs 
contributed multiple studies, we tested the effect of including Lab (N = 16) as random factor in the 
models. However, this variable had a negligible effect on the models, and we therefore excluded it 
from the final models.
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