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Abstract Phosphorylation of proteins is a ubiquitous mechanism of regulating their function, 
localization, or activity. Protein kinases, enzymes that use ATP to phosphorylate protein substrates 
are, therefore, powerful signal transducers in eukaryotic cells. The mechanism of phosphoryl- transfer 
is universally conserved among protein kinases, which necessitates the tight regulation of kinase 
activity for the orchestration of cellular processes with high spatial and temporal fidelity. In response 
to a stimulus, many kinases enhance their own activity by autophosphorylating a conserved amino 
acid in their activation loop, but precisely how this reaction is performed is controversial. Classically, 
kinases that autophosphorylate their activation loop are thought to perform the reaction in trans, 
mediated by transient dimerization of their kinase domains. However, motivated by the recently 
discovered regulation mechanism of activation loop cis- autophosphorylation by a kinase that is 
autoinhibited in trans, we here review the various mechanisms of autoregulation that have been 
proposed. We provide a framework for critically evaluating biochemical, kinetic, and structural 
evidence for protein kinase dimerization and autophosphorylation, and share some thoughts on the 
implications of these mechanisms within physiological signaling networks.

Anatomy of a protein kinase
A prerequisite for understanding protein kinase regulation in the context of complex signaling 
networks is knowledge of the structure of the kinase domain and the catalytic mechanism of phos-
phoryl transfer. In this section, we provide a structural and mechanistic framework for understanding 
kinase function. The kinase domain is typified by a bi- lobal fold comprising two sub- domains, the 
so- called N- and C- lobes (Figure 1A; Knighton et al., 1991). ATP (black), together with two magne-
sium ions, binds in the cleft between the N- and C- lobes, positioning its γ-phosphate for transfer 
onto the serine, threonine, or tyrosine side chain of a protein substrate (red). The glycine- rich loop 
(green) helps to organize the γ-phosphate for phosphoryl- transfer. Substrate binding and recognition 
are governed by the αD helix (purple) and activation loop (teal). Finally, the αG helix (pink) mediates 
a wide array of protein- protein interactions that control kinase domain dimerization (Haling et al., 
2014; Levina et al., 2022; Park et al., 2019; Patel et al., 2011), trans- autoinhibition (Patel et al., 
2011; Reinhardt et  al., 2023), trans- autophosphorylation (Levina et  al., 2022; Pirruccello et  al., 
2006), binding of regulatory subunits (Kim et al., 2007; Lei et al., 2000), substrate recognition (Dar 
et al., 2005; Komander et al., 2008), and the recruitment of protein phosphatases (Song et al., 
2001).

The active conformation of the kinase domain (Figure  1B) is characterized by the assembly of 
hydrophobic ‘spines’ that have been defined as the catalytic C- spine (yellow) and the regulatory 
R- spine (red) (Kornev et al., 2008; Kornev et al., 2006), and a conserved salt bridge between a 
lysine in strand β3 and a glutamate in the αC helix (Figure 1C; Huse and Kuriyan, 2002). The catalytic 
spine is completed by the adenine moiety of ATP and links nucleotide binding to the orientation of the 
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αC helix (orange) and, thereby, to the correct positioning of the γ-phosphate for phosphoryl- transfer 
(Endicott et al., 2012). In addition, it ensures the stable formation of the αD helix (purple), required 
for substrate recognition.

Some kinases, such as Akt/PKB, are regulated by a disorder- to- order transition of their activation 
loop upon its phosphorylation (Huse and Kuriyan, 2002; Yang et al., 2002b). The phosphorylated 
activation loop is stabilized by a network of hydrogen bonds such that it docks against the surface of 
the C- lobe (Figure 1D), thereby creating a surface to which the substrate binds. Mutation of residues 
that coordinate the phosphate group results in loss of kinase activation and has been implicated in 
human disease (George et al., 2004). Examples of kinases which are not regulated by phosphoryla-
tion of their activation loop include the dystrophia myotonica protein kinases (DMPKs), which exhibit 
the active conformation constitutively in the absence of phosphorylation (Elkins et al., 2009; Heikkila 
et al., 2011; Komander et al., 2008; Truebestein et al., 2015; Yamaguchi et al., 2006).
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Figure 1. Anatomy of a protein kinase. (A) Basic anatomy of a protein kinase. Important elements in catalysis and regulation are highlighted in color: 
glycine- rich loop (green), αC helix (orange), αD helix (purple), αG helix (pink), activation loop (teal), catalytic loop (blue), substrate peptide (red) (B) 
Regulatory (red) and catalytic (yellow) spines of a protein kinase that define the active conformation. Residue numbering according to Akt1 (PDB ID: 
4ekk). (C) Conserved salt bridge between lysine in strand β3 and glutamate in αC helix that defines the active kinase conformation. (D) Network of 
hydrogen bonds that stabilizes the ordered conformation of the activation loop in Akt1 and anchors it to the surface of the kinase domain. (E) 
Substrate recognition by Akt1. Substrate peptide derived from GSK3β (gray mesh, red cartoon) makes specific interactions with conserved glutamates 
in the kinase domain of Akt1 via arginine side chains in the P- 3 and P- 5 positions. Residues C- terminal to the phospho- acceptor residue participate in 
an antiparallel beta- sheet interaction with the activation loop. (F) Ways to make an inactive kinase. Mutation of the β3 lysine (K179M), which abrogates 
ATP binding; mutation of the DFG aspartate (D292A), which abrogates magnesium and ATP binding; mutation of the catalytic aspartate (D274N), which 
prevents polarization of the substrate hydroxyl and blocks catalysis.
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Substrate recognition is achieved by the recognition of a short linear motif containing the phospho- 
acceptor serine, threonine, or tyrosine residue. In the AGC kinase family, here exemplified by Akt, 
recognition involves a pair of salt bridges between the kinase domain and the substrate (Figure 1E). 
A conserved glutamate or aspartate residue at the beginning of helix αD (purple) coordinates the 
guanidinium group of an arginine side chain at position P- 3 in the substrate (red), while a glutamate 
in the catalytic loop (blue) similarly hydrogen bonds to an arginine in the P- 5 position (Yang et al., 
2002a). A recent systematic screening of the substrate specificities of all human serine/threonine 
kinases provides a useful resource for kinase biologists (Johnson et al., 2023). Additional elements 
outside of the consensus recognition motif that drives the specific interaction of kinase- substrate pairs 
are particularly well characterized for the mitogen- activated protein kinases (MAPKs) (Miller and Turk, 
2018; Sheridan et al., 2008).

Phosphoryl- transfer is intrinsically a dissociative elimination- addition reaction in which nucleophilic 
attack by the hydroxyl group of the substrate on the phosphorous atom of the terminal γ-phosphate 
of ATP generates a transition state (Endicott et al., 2012; Lassila et al., 2011). Kinases achieve their 
remarkable catalytic rate enhancements (up to 3 × 105 fold) in three main ways: positioning of the 
substrate (described above, Figure  1E), increasing the nucleophilicity of the substrate, and over-
coming electrostatic repulsion (Lassila et al., 2011). Crystallographic evidence for a transition state 
has been obtained in the case of PKA co- crystallized with ADP and aluminum fluoride (Madhusudan 
et al., 2002). Most recently, the structure of a PKA- product complex obtained by neutron diffraction 
has revealed the protonation of one of the phosphoryl oxygens on the product peptide and its conse-
quent rotation away from the catalytic site towards the bulk solvent (Gerlits et al., 2019). This finding 
is consistent with an earlier study suggesting that protonation of the product may trigger its release 
(Gerlits et al., 2015).

From a mechanistic understanding of the kinase reaction, there are a number of ways to inactivate 
a protein kinase. The first, and most commonly employed, involves mutation of the lysine in strand 
β3 that coordinates ATP (Figure 1F). Lysine is more often than not replaced with alanine, though 
some studies have employed arginine (for the preservation of positive charge) or methionine (close to 
isosteric with lysine). Some studies have shown, however, that lysine substitutions may display residual 
activity, significant activation loop autophosphorylation, and altered specificity (Eyers et al., 2005; 
Haydon et al., 2003). Less commonly employed is the mutation of the aspartate of the DFG (Asp- 
Phe- Gly) motif in the activation loop to alanine (Figure 1F). Both mutations result in the loss of ATP 
binding, which invariably leads to loss of kinase activity. These mutations, however, sometimes have 
unintended consequences that arise from the loss of protein stability (Iyer et al., 2005), for which 
the experimentalist should be aware. This can lead to protein degradation, exposure of regulatory 
domains, or changes in subcellular localization (Liljedahl et al., 2001; Lučić et al., 2016; Verbeek 
et al., 2008). The best way to inactivate a protein kinase is to mutate the catalytic aspartate to aspar-
agine (Figure 1F), since it is isosteric with aspartate and permits native side chain interactions while 
still inactivating the kinase.

Conversely, many studies make use of phosphomimetic substitutions to constitutively activate a 
protein kinase. However, it is important to distinguish between the chemical properties of the carbox-
ylic acid side chain of aspartate and glutamate, (which carries a single negative charge at physiological 
pH), and the native phospho- amino acid (in which the phosphate carries two full negative charges). 
Additionally, their hydrogen bonding capacities are considerably different and, whilst the aspartate 
side chain is approximately the same length as phosphoserine, glutamate is one carbon longer and 
may not be capable of making the same interactions. This is particularly relevant in the case of tyro-
sine kinases, where it is not possible to faithfully mimic phosphotyrosine, although many studies have 
employed glutamate substitutions. In the same vein, alanine or phenylalanine substitutions used to 
prevent kinase activation may have unintended effects that are unrelated to the loss of phosphory-
lation, due to a deficit in hydrogen bonding intrinsic to the substituted amino acid. When designing 
site- specific mutations to derive mechanistic insight, consideration of protein structure and function is 
indispensable, irrespective of the target enzyme.

A conceptual framework for kinase regulation
As intracellular transducers of cellular information, kinases need to be exquisitely responsive to 
upstream inputs that tune their activity accordingly. This regulatory potential is strongly related to 

https://doi.org/10.7554/eLife.88210
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the conformational flexibility previously described that enables kinases to interconvert between an 
inactive state and an active state, upon which substrate can be phosphorylated with high efficiency. 
A multitude of signaling inputs can trigger reversible switching between these states. This process of 
conformational switching requires activating and inhibitory forces, which may come from within the 
protein kinase itself (cis) or from a second protein (trans). In the trans situation, this may be another 
protomer of the same molecule (trans- auto) or a different protein altogether. Within this framework, 
the following regulatory mechanisms and features can be combined to describe the regulation of all 
protein kinases.

Activation loop conformation
The activation loop has the highest sequence divergence (Modi and Dunbrack, 2019) and the 
greatest structural flexibility (Nolen et al., 2004) in comparison to the rest of the kinase domain fold. 
The simplest way to suppress kinase activity is the stabilization of an inhibitory conformation of the 
activation loop. Subsequent acquisition of the active conformation allows the formation of a high- 
affinity substrate binding site and organizes the catalytic machinery.

Activation loop phosphorylation
The conformation of the activation loop can be regulated by phosphorylation, as previously described 
(Figure 1F). This phosphorylation event can be catalyzed in cis, if a kinase molecule is capable of 
modifying its own activation loop, or in trans, either by a second protomer of the same kinase (trans- 
autophosphorylation) or by an upstream kinase (trans- phosphorylation). The requirements for auto-
phosphorylation in cis and trans, as well as their functional implications, are different and will be 
discussed in more detail later.

Steric occlusion
Another regulatory mechanism is to block access of the substrate binding cleft. Sometimes referred 
to as steric occlusion, this can be achieved in cis with an inhibitory domain or motif that is encoded 
on the same polypeptide chain, or in trans, either by a second protomer of the same kinase or by a 
different protein.

Allostery
Finally, all kinases depend on the precise organization of the catalytic machinery for their activity 
(Endicott et al., 2012). Allosteric regulation is induced by interactions distal to the catalytic site that 
can be either inhibitory or activating, and can be mediated both in cis and in trans. Since almost all 
kinases are controlled by one or more regulatory domains, it is worth emphasizing that the study of 
full- length kinases is necessary for a complete understanding of all aspects of kinase structure, func-
tion, and conformational dynamics.

In the next two sections, we will discuss well- characterized examples of each of the mechanisms 
described above, with the goal of illustrating conceptually different solutions to the control of kinase 
activity.

Kinase inhibition in cis and trans
Keeping kinases inactive in the absence of an activating stimulus is critical for high- fidelity, low- noise 
signal transduction. Nature has evolved a plethora of mechanisms by which to maintain protein kinases 
in their inactive conformations when their activity is not required. Relief of these inhibitory interactions 
is coupled to the acquisition of kinase activity at the right time and place in the cell. At the simplest 
level, a kinase may be autoinhibited by its own activation loop adopting an inactive conformation. This 
mechanism has been proposed to regulate a number of receptor tyrosine kinases (RTKs), including the 
insulin receptor kinase (IRK), in which the inactive conformation of the activation loop is incompatible 
with ATP binding (Hubbard et al., 1994; Figure 2A). We will revisit this structure later in the context 
of activation loop autophosphorylation. The Src family of tyrosine kinases also adopts an autoinhibited 
conformation in which the activation loop both plugs the catalytic cleft and sequesters the tyrosine 
which undergoes autophosphorylation (Figure 2B). This conformation, which is promoted by intra-
molecular assembly of the kinase domain with regulatory Src homology 2 (SH2) and Src homology 3 

https://doi.org/10.7554/eLife.88210
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(SH3) domains (Sicheri et al., 1997; Xu et al., 1997) and stabilized by ADP (von Raußendorf et al., 
2017), also maintains the αC helix in an inactive conformation in which the conserved lysine- glutamate 
salt bridge is broken. A homologous inactive conformation is also adopted by the Tec kinases (von 
Raußendorf et al., 2017; Wang et al., 2015). Individual members of the Src kinases have evolved 
additional regulatory mechanisms, including phosphorylation of the C- terminal tail in the case of Src 
and Hck (Sicheri et al., 1997; Xu et al., 1997) (red mesh, Figure 2B), and binding of the N- terminal 
myristoyl group to a hydrophobic pocket on the C- lobe of the kinase domain in the case of Abl 
(Hantschel et al., 2003; Nagar et al., 2003). This latter mechanism has recently been exploited with 
an allosteric inhibitor of Abl (Schoepfer et al., 2018) to treat chronic myelogenous leukemia caused 
by the breakpoint cluster region (BCR)- Abl fusion protein (Hughes et al., 2019; Wylie et al., 2017).

Other kinases maintain their inactive conformation by steric occlusion of the substrate binding cleft, 
a mechanism that is employed in both cis and trans. The Ca2+/calmodulin activated kinases (CAMK), 
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Figure 2. Kinase inhibition in cis and trans. (A) Inhibition of insulin receptor kinase (IRK) in cis. The activation loop (teal) of IRK adopts a conformation 
in which it prevents the binding of ATP and displaces the αC helix into an inactive conformation. PDB ID: 1irk. (B) Inhibition of Src tyrosine kinase in 
cis. The regulatory SH3 and SH2 domains (red) help maintain the kinase domain (gray) in an inactive conformation. The activation loop (teal) adopts 
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PDB ID: 6f3f. (C) Inhibition of CAMKIIδ in cis. A C- terminal autoinhibitory helix (red) in CAMKIIδ occupies the substrate binding surface. PDB ID: 2vn9. 
(D) Inhibition of PKA in trans. In the absence of cAMP, the regulatory subunit of PKA (red) binds to the catalytic subunit and inserts its N- terminal 
pseudosubstrate segment (red mesh) into the substrate binding cleft. PDB ID: 2qcs. (E) Inhibition of DAPK in trans. Face- to- face dimerization of DAPK 
(one protomer of DAPK in red) blocks substrate binding. PDB ID: 2yaa. (F) Inhibition of B- Raf in trans. Binding of 14- 3- 3 proteins (red) to phosphorylated 
B- Raf traps its C1 and kinase domains in an autoinhibited conformation in which the kinase domain of Raf is incapable of forming the back- to- back 
dimer required for its activation. PDB ID: 6nyb.
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for example, are maintained in an inactive conformation by a C- terminal cis- autoinhibitory helix that 
occupies the catalytic cleft (Figure 2C), thereby blocking substrate access (Goldberg et al., 1996; 
Rellos et al., 2010; Rosenberg et al., 2005). The nematode Twitchin kinase (Titin kinase in humans), 
also a CAMK, is similarly autoinhibited by a C- terminal helix (Hu et al., 1994; Mayans et al., 1998). 
In an analogous fashion, PKA is inhibited in trans by interactions with its regulatory chain (Figure 2D), 
which presents a pseudosubstrate peptide to the catalytic cleft (Kim et al., 2007). Recently, a homol-
ogous pseudosubstrate motif in the cytoplasmic tail of the G protein- coupled receptor Smoothened 
has been shown to regulate PKA activity in the Hedgehog signaling pathway (Happ et al., 2022). In 
the CAMKs, binding of Ca2+/CaM to the autoinhibitory helix is required to displace it from the catalytic 
cleft (Goldberg et al., 1996), while binding of cAMP to the PKA regulatory subunit elicits conforma-
tional changes that displace it from the catalytic subunit (Kim et al., 2007).

The diversity of inhibitory mechanisms is further exemplified by members of the death- associated 
protein kinases (DAPKs), which form face- to- face dimers (Figure 2E) that occlude the catalytic clefts 
of each protomer (Patel et  al., 2011; Simon et al., 2016). Binding of Ca2+/CaM to the DAPKs is 
required for kinase activation (Simon et al., 2016). Recently, an analogous, trans- autoinhibited dimer 
has been reported for the related protein kinase D (PKD) (Reinhardt et al., 2023). Finally, the binding 
of accessory proteins can regulate kinase activity without occluding the active site (Figure 2F). B- Raf 
is maintained in an autoinhibited conformation by a dimer of 14- 3- 3 proteins that binds to two phos-
phorylated residues in its C- terminus. This creates a cradle that buries the regulatory cysteine- rich 
domain (CRD) between the 14- 3- 3 proteins and the B- Raf kinase domain (Park et al., 2019). This 
protective cradle prevents the back- to- back dimerization of B- Raf that is required to organize its cata-
lytic machinery and drive the phosphorylation of MEK (Park et al., 2019; Rajakulendran et al., 2009; 
Wan et al., 2004). In summary, a wide array of mechanisms, often employed in combination, serves to 
acutely regulate the activity of the catalytic domain of protein kinases.

Kinase activation in cis and trans
The autoinhibition of protein kinases by their regulatory domains or other protein factors is mirrored 
by mechanisms that promote their activation. Like inhibition, activation can be accomplished both in 
cis and trans.

The AGC kinases are characterized by an approximately 50 amino acid C- terminal extension to 
their kinase domain that contains a number of cis- regulatory elements (Kannan et al., 2007). The 
tail inserts a series of short linear motifs into regulatory pockets on the kinase domain to stabilize the 
active conformation (Figure 3A). One such motif is a hydrophobic motif, which, when inserted into a 
hydrophobic pocket on the N- lobe of the kinase domain, promotes the acquisition of the active confor-
mation of the αC helix and concomitant ordering of the activation loop on the surface of the kinase 
domain (Pearce et al., 2010; Yang et al., 2002b). Structural and biochemical studies have revealed 
that the conformation of the tail can be regulated by phosphorylation (Hauge et al., 2007), phos-
phomimetic amino acids (Takimura et al., 2010; Yang et al., 2002b), additional regulatory domains 
that co- assemble with the kinase domain (Elkins et al., 2009; Heikkila et al., 2011; Komander et al., 
2008; Lodowski et al., 2003; Yamaguchi et al., 2006), or separate protein co- factors that stabilize 
the interaction of the tail with the kinase domain (Devroe et al., 2004; Parker et al., 2020; Pearce 
et al., 2010). Recently, a hydrophobic motif was identified in phosphoinositide- dependent kinase 1 
(PDK1), the only AGC kinase thought not to contain this regulatory element (Levina et al., 2022). 
Here, however, the tail has been implicated in the allosteric trans- autoactivation of a second protomer 
of PDK1 in the context of a phosphatidylinositol- 3,4,5- trisphosphate (PIP3)- bound dimer.

A similar mode of regulation controls the activity of the Aurora kinases, AurA and AurB, also in 
trans. In AurA, targeting protein for Xklp2 (TPX2) inserts a hydrophobic motif into the same pocket on 
the kinase domain that the AGC kinases use (Figure 3B; Bayliss et al., 2003). The allosteric activation 
of AurA by TPX2 leads to its subsequent activation by activation loop autophosphorylation (Eyers 
et al., 2003). In AurB, the IN- box segment of the inner centromere protein (INCENP) fulfills a similar 
function (Sessa et al., 2005). Conceptually, the activation of the Aurora kinases in trans by TPX2 and 
INCENP is the same as the classical allosteric activation of cyclin- dependent kinases by their cognate 
cyclins (Wood and Endicott, 2018).

Many protein kinases are activated by the phosphorylation of a conserved amino acid in their activa-
tion loop. How they acquire this modification, however, varies and is still, in many cases, controversial. 

https://doi.org/10.7554/eLife.88210
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Conventionally, activation loop auto- phosphorylation occurs in trans. Such a reaction depends on the 
transient association of two kinase domains in a dimer and the presentation of the activation loops, 
as substrates, to the catalytic site of each opposing protomer. Structural evidence for such a mecha-
nism has been obtained for a number of kinases and will be discussed in more detail later. For now, 
this reaction is illustrated by the kinase PDK1, which forms a transient, face- to- face dimer (Figure 3C) 
upon binding to membranes containing the lipid second messenger PIP3 (Levina et al., 2022).

Whether kinases can perform activation loop phosphorylation in cis has long been debated and 
remains controversial. Contradicting evidence for both cis and trans- phosphorylation mechanisms 
has, for example, been reported for AurA (Dodson et  al., 2013; Zorba et  al., 2014), the check-
point kinase, Chk2 (Cai et al., 2009; Dodson et al., 2013; Oliver et al., 2006), IRAK4 (Cheng et al., 
2007; Ferrao et al., 2014), the insulin receptor (IR) kinase (Frattali et al., 1992; Shoelson et al., 
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phosphorylation of its activation loop in trans. B- Raf and MEK1 form a heterodimer via their αG helices, homologous to the dimerization of PDK1. The 
mechanism of the reaction and conformation of the activation loop(s) (teal) remain to be determined. PDB ID: 4mne, 6q0j.
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1991; Wu et al., 2008; Yamada et al., 1992), and PKR (Dey et al., 2014; Dey et al., 2005; Mayo 
et al., 2019), among others. We will revisit some of these cases in more detail later. Models of cis- 
autophosphorylation have been proposed for GSK3ß (Cole et al., 2004), DYRKs (Lochhead et al., 
2005), and more recently, PKD (Cobbaut et al., 2018; Reinhardt et al., 2023).

PKD is autoinhibited in trans and activated by cis- autophosphorylation (Figure  3D; Reinhardt 
et al., 2023). It has previously been argued that kinases lacking an HRD motif in their catalytic loop 
(so- called non- HRD kinases) are not activated by activation loop phosphorylation (Johnson et  al., 
1996; Nolen et al., 2004). Nevertheless, the biochemical characterization of PKD, a non- HRD kinase 
instead containing an HCD motif, shows its activation by phosphorylation. Molecular modeling and 
mutagenesis in PKD further demonstrated that the missing arginine in the HCD motif is replaced by a 
different arginine residue in the activation loop, whereby the side chain reaches into exactly the same 
position as the canonical arginine in HRD kinases (Reinhardt et al., 2023). Although the mechanism of 
autophosphorylation remains to be determined for PKD, mass spectrometry unambiguously demon-
strates that the reaction occurs exclusively in cis (Reinhardt et al., 2023).

Finally, kinase domain dimerization may also lead to allosteric autoactivation. Protein kinase R 
(PKR), inositol requiring enzyme 1 (IRE1), PKR- like ER kinase (PERK), and NimA- related protein kinase 
7 (NEK7), require back- to- back dimerization to induce their activation by autophosphorylation (Cui 
et al., 2011; Dar et al., 2005; Dey et al., 2005; Lee et al., 2008; Richards et al., 2009). Whether these 
kinases can accomplish the autophosphorylation of their activation loops in cis or require higher- order 
oligomerization is, however, still the subject of debate (Belyy et al., 2022; Korennykh et al., 2009; 
Mayo et al., 2019). As discussed earlier in the context of autoinhibition, B- Raf activation depends 
on the formation of a back- to- back dimer (Figure 3E; Park et al., 2019; Rajakulendran et al., 2009; 
Wan et al., 2004). The Raf dimer is critical for the activity of B- Raf against its substrate kinase MEK, 
which forms a heterodimer with the kinase domain of B- Raf that is homologous to the PDK1 homod-
imer (Levina et  al., 2022). Although the precise mechanisms of PDK1 trans- autophosphorylation 
(Figure 3C) and trans- phosphorylation of MEK by Raf (Figure 3F) are still not clear, mutagenesis of the 
αG helix- mediated dimerization interface impairs both PDK1 and MEK activation (Haling et al., 2014; 
Levina et al., 2022). Finally, kinases of the Inhibitor of kappa B kinase (IKK) family, including IKKε and 
TANK- binding kinase 1 (TBK1) form constitutive dimers in which the kinase domains are arranged 
in a back- to- back configuration by a helical stalk domain and a ubiquitin- like domain (Larabi et al., 
2013; Tu et al., 2013; Xu et al., 2011). Activation loop autophosphorylation has been proposed to 
be achieved in an analogous manner to the unfolded protein response (UPR) kinases IRE1 and PERK 
by higher- order oligomerization (Zhang et al., 2019; Zhao et al., 2019).

Interpreting biochemical evidence for cis and trans 
autophosphorylation
In order to obtain a detailed mechanistic understanding of the autophosphorylation reaction, it is 
important to perform rigorously controlled biochemical experiments and to interpret the results 
according to the limitations of the chosen method. Here, we provide an overview of the strengths and 
weaknesses of the most commonly used readouts of protein phosphorylation (Figure 4A).

Intact mass spectrometry
Intact mass spectrometry is a powerful tool for the precise and quantitative measurement of protein 
mass. Modern, well- calibrated instruments are precise to less than 1 Da in mass ranges up to 100 kDa 
and sometimes even up to 200 kDa (Donnelly et al., 2019). Site- directed mutations and covalent 
modifications, including common post- translational modifications such as phosphorylation, can be 
deduced from the mass shifts of the unmodified protein, as well as the stoichiometry of modification. 
In a more general sense, intact mass spectrometry is an essential quality control step that provides 
confidence in the interpretation of biochemical results (Elsner et  al., 2019; Levina et  al., 2022; 
Pokorny et al., 2021; Reinhardt et al., 2023; Truebestein et al., 2023; Truebestein et al., 2021; 
Truebestein et al., 2015; von Raußendorf et al., 2017). Intact mass spectrometry does not, however, 
provide site- specific information and is limited by the quality and complexity of the sample. When 
performed under non- denaturing conditions, native mass spectrometry can capture non- covalent 
protein adducts such as ligand- bound species (Bennett et  al., 2022; Byrne et  al., 2016; Smith 
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et al., 2017), protein- lipid interactions (Agasid and Robinson, 2021), and even protein complexes 
(Mehmood et al., 2015).

Tandem mass spectrometry
Phospho- peptide mapping of digested protein samples by tandem mass spectrometry (MS2) can 
be used to quantify the stoichiometry and specificity of protein phosphorylation. Combined with 
intact mass spectrometry, this permits an unbiased, site- specific, and quantitative description of the 
material that is used in biochemical experiments. Tandem mass spectrometry is limited by the ioniza-
tion efficiency of the peptides resulting from proteolytic cleavage and care must be taken to ensure 
coverage of the relevant sites. While trypsin cleavage is most commonly employed in such studies, 
the sequence surrounding a phosphorylation site may not be amenable to trypsin cleavage. In these 
cases, proteases with different cleavage specificities can be effectively employed to provide coverage 
of those sites. The ionization properties of phosphorylated peptides can differ from the respective 
unphosphorylated peptide, so caution should be exercised in interpreting the absolute ratio of the 
two species. In addition, phosphorylation can hinder proteolytic cleavage, leading to erroneous 
conclusions regarding the degree of modification. In these situations, a protease with a more suitable 
cleavage pattern should be chosen.
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https://doi.org/10.7554/eLife.88210


 Review article Biochemistry and Chemical Biology | Structural Biology and Molecular Biophysics

Reinhardt and Leonard. eLife 2023;12:e88210. DOI: https://doi.org/10.7554/eLife.88210  10 of 27

Radionucleotide assays
A conventional tool to monitor autophosphorylation reactions is a radionucleotide transfer assay that 
employs isotope labeled [ɣ- 32P] ATP to measure the incorporation of the radioactive ɣ-phosphate into 
the kinase. By SDS- PAGE, the kinase can be separated from other reaction components or substrates 
and the kinase- specific autophosphorylation signal can be read out by autoradiography. Careful cali-
bration and background subtraction allows the precise quantification of phosphate transferred during 
the reaction, but not however, the absolute phosphorylation state. If the absolute phosphorylation 
state of the starting material is determined, for example by intact mass spectrometry, the average 
phosphorylation state per kinase molecule can be calculated. Since the assay does not provide infor-
mation about the phosphorylation site(s), validation of the specificity of the reaction with an unbiased 
approach like tandem mass spectrometry is required in order to draw robust conclusions.

Western blotting
Autophosphorylation can also be read out with western blotting using phospho- specific antibodies. 
These antibodies are typically raised against a phospho- peptide of interest. In the case of multiple 
phosphorylation sites that overlap the binding epitope of the antibody, these antibodies may only 
recognize a specific subpopulation of the phosphorylated protein. Conversely, antibodies that 
have been raised against multiply- phosphorylated peptides may fail to recognize proteins singly 
phosphorylated on the canonical phospho- site (Waldron et al., 2001). The primary antibody is, in 
turn, recognized by a secondary antibody, conjugated to a fluorescent label or, more commonly, 
an enzyme, which amplifies the signal. Western blotting is, at best, semi- quantitative, and at worst, 
non- specific. While fluorescent secondary antibodies offer a linear dynamic range and, therefore, 
can be used in a semi- quantitative manner, they are considerably less sensitive than enzyme- 
coupled secondary antibodies. Conversely, enzyme- coupled secondary antibodies are extremely 
sensitive and the dynamic range is far from linear. Since the signal readout is usually optimized 
automatically by chemiluminescent imagers that integrate the signal over time to obtain the best 
dynamic range for the image, results obtained by western blotting are almost never comparable. 
Finally, care must be taken in the validation of antibodies, many of which are not specific and are 
contributing to a reproducibility crisis in molecular biology (Frohner et al., 2020; Pillai- Kastoori 
et  al., 2020; Schüchner et  al., 2020). Unlike radionucleotide transfer assays, western- blotting 
detects phosphorylation irrespective of its origin and is, therefore, suitable for evaluating changes 
in the phosphorylation state of a sample, when properly calibrated with loading controls. Ideally, 
the recognition of phosphorylation by phospho- specific antibodies should be cross- validated by 
tandem mass spectrometry.

The palette of phosphorylation read- outs is further complemented by a variety of semi- quantitative, 
site- agnostic SDS- PAGE- based approaches including phospho- tyrosine specific western blotting, 
electrophoretic mobility shift assays, and Phos- tag gels (Nagy et al., 2018). Each of these techniques 
provides qualitative evidence of phosphorylation, but with limited or no specificity. Irrespective of the 
employed assay it is advisable to include a kinase- inactive negative control in order to be certain that 
the signal detected originates from the intended source.

An example of the successful combination of complementary techniques is the characterization of 
FGFR1 autophosphorylation (Lew et al., 2009). The authors monitored the autophosphorylation of 
five sites using radionucleotide assays and then discriminated the dynamics of each phosphorylation 
state in the population by time- resolved intact mass spectrometry. To obtain a more detailed picture 
of the site- specific dynamics of autophosphorylation, careful mutagenesis was combined with electro-
phoretic mobility shift assays.

Models of kinase autoregulation are commonly based on the dimerization dependence of the reac-
tion (Figure 4B). Depending on the intrinsic propensity of a kinase to dimerize, the monomer- dimer 
equilibrium can be manipulated in different ways, the simplest of which is to change the concentration 
(Cobbs et al., 1989; Cole et al., 2004; Lee et al., 2008; Yamada et al., 1992; Zorba et al., 2014). 
If the affinity of dimerization is weak, which is desirable for transient interactions, dimerization can be 
induced by locally concentrating reaction partners on a surface (Chung et al., 2019; Levina et al., 
2022; Wang et al., 2015; Zhang et al., 2006) or using either a natively encoded or artificial dimeriza-
tion domain (Cai et al., 2009; Elsner et al., 2019; Parrini et al., 2002; Reinhardt et al., 2023). If 
the structural details of the respective dimer are known, mutagenesis of the interface can disrupt 
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dimerization (Haling et al., 2014; Levina et al., 2022; Pike et al., 2008; Rajakulendran et al., 2009; 
Reinhardt et al., 2023; Wybenga- Groot et al., 2014).

The observation of a concentration- dependent increase in kinase activity is usually interpreted 
as a bi- molecular reaction in trans (Figure  4C). However, this cannot distinguish between auto-
phosphorylation in trans (face- to- face), autophosphorylation in cis (back- to- back), or even trans- 
autophosphorylation via the face- to- face interaction of back- to- back dimers, as has been proposed 
for the UPR kinase IRE1 (Korennykh and Walter, 2012; Korennykh et al., 2009). A dimerization- 
dependent decrease in activity is indicative of autoinhibition in trans (Reinhardt et al., 2023). Auto-
phosphorylation reactions that are not influenced by dimerization are not subject to any regulation in 
trans and, as such, likely proceed in cis (GSK).

The gold standard way to discriminate between cis- and trans- autophosphorylation is to test whether 
an active kinase can phosphorylate an inactive copy of the same kinase (Figure 4D). This type of experi-
ment can also be performed in the context of an obligate, artificial heterodimer. An important consider-
ation in the design of such experiments is that the autophosphorylation motif of some kinases is highly 
similar to the consensus substrate recognition motif and likely prone to trans- autophosphorylation at 
high concentrations, irrespective of whether this is the physiological mechanism.
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Interpreting kinetic evidence for cis- and trans-
autophosphorylation
Cis- and trans- autophosphorylation are commonly discriminated between on the basis of their respec-
tive kinetics. In this section, we evaluate the power of enzyme kinetics to discriminate between these 
reactions, taking into account the limitations of the reductionist experimental setups commonly 
employed. For simplicity, the scenarios presented do not consider the influence of regulatory elements 
outside of the kinase domain and assume that ATP and magnesium are present in excess, such that 
their concentrations can be considered constant during the reaction.

The simplest case is a unimolecular reaction, in which the activation loop is autophosphorylated in 
cis. If an enzyme converts itself into a product the enzyme is also the substrate and the reaction can 
happen only once per molecule. It is, therefore, independent of concentration, diffusion, or substrate 
depletion, and proceeds with a constant catalytic rate until all enzyme has been converted into a 
product. This results in a linear increase of product over time until the reaction stops and the product 
remains constant (Figure 5A). For this reaction to be useful in the cell, it must be strictly coupled to 
an inhibitory mechanism that prevents unregulated signaling.

The second case is autophosphorylation in trans, which is necessarily a bimolecular reaction in 
which the enzyme converts the substrate into a product. This reaction is dependent on (a) the associa-
tion of the enzyme and the substrate, which is dictated by their interaction affinities and their respec-
tive concentrations, (b) on the intrinsic catalytic rate of the enzyme, and (c) on the dissociation of the 
product. In a closed system such as an in vitro kinase assay, the reaction conditions change over time 
as the substrate is turned into a product. Regardless, trans- autophosphorylation reactions can occur 
in mechanistically distinct ways that influence the kinetics of the reaction.

A cis- autophosphorylation reaction that is dependent on allosteric activation by back- to- back 
dimerization is a bi- molecular reaction, therefore, concentration- dependent, even if the enzyme and 
the substrate are the same molecules. We designate the reaction symmetric if the collision of two 
unphosphorylated molecules results in the phosphorylation of both. If the effect of the allosteric acti-
vator is independent of its phosphorylation, the concentration of the activator remains constant, while 
the substrate is depleted over time. In this case, the reaction is limited by both the intrinsic cata-
lytic rate constant and the substrate concentration. The reaction rate, therefore, decays over time 
(Figure 5B).

The autophosphorylation of an activation loop in trans requires the formation of a face- to- face 
dimer in which the phosphorylation site sits within the dimerization interface. Upon phosphorylation, 
the activation loop is stabilized in the active conformation and is no longer able to engage in such an 
interaction. This implies that only homo- dimeric collisions are productive and that the reaction rate 
decays with substrate depletion over time (Figure 5C).

In an asymmetric trans- autophosphorylation reaction, one kinase acts as an enzyme and one as a 
substrate. In the absence of phosphorylation to begin with, a productive interaction is only possible 
if one molecule adopts the active conformation while the second presents its activation loop as a 
substrate. This would presumably occur by stochastic conformational sampling, the efficiency of which 
limits the reaction by reducing the frequency of productive collisions. Once phosphorylated, the 
kinase will be stabilized in the active conformation with a consequent gain in catalytic efficiency, which 
increases the reaction rate until the substrate becomes limiting. This behavior results in sigmoidal 
kinetics (Figure 5D).

In the context of physiological signal transduction, transient kinase domain dimerization must be 
associated with a means of locally concentrating reaction partners to overcome the dependence on 
diffusion which would otherwise be incompatible with rapid signal transduction. Many autoregulated 
kinases, therefore, encode dedicated dimerization domains. A conceptually interesting scenario is 
the constitutive dimerization of a kinase domain via a dimerization domain. The dimer can then be 
regarded as a single molecule, since the two kinases are at near- infinite local concentration, such that 
their autophosphorylation becomes independent of both concentration and diffusion. Bi- molecular 
cis- and trans- autophosphorylation are thereby reduced to uni- molecular reactions with linear kinetics 
that are only limited by the intrinsic catalytic rate (Figure 5E–F).

In summary, kinetic data alone cannot necessarily discriminate between cis- and trans- 
autophosphorylation. Furthermore, we must take care that our readout is site- specific and keep in 
mind that what is possible to observe with an isolated kinase domain in solution does not necessarily 
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reflect reality in the cell. In the next section, we will consider what can be learned from the high- 
resolution structures of kinase dimers determined in the context of a 3- dimensional crystal lattice.

Interpreting crystallographic evidence for dimerization and 
autophosphorylation
Dimerization of protein kinases, whether for the purposes of autoinhibition or autoactivation, must 
necessarily be transient and, therefore, the free energy of binding must be low. If the dimer interface 
is too strong, the kinase will be constitutively trapped in an inhibited or active state, respectively. 
Therefore, the study of kinase domain dimerization and autophosphorylation is inherently challenging. 
Structural insights into the nature of dimerization and autophosphorylation have, historically, relied on 
X- ray crystallography. New advances in cryo- electron microscopy are continually lowering the mass 
limit of particles accessible for high- resolution structure determination, but individual kinase domains 
are still at the limits of current technology (Herzik et al., 2019). In silico protein structure prediction 
tools such as AlphaFold (Jumper et al., 2021; Senior et al., 2020) and Rosetta (Leman et al., 2020) 
are revolutionizing the field, and are gradually becoming accessible to researchers who are not expe-
rienced computational biologists. Crystallography, however, has been extremely successful in deci-
phering protein structure and has captured many kinases in various dimeric configurations.

Determining a protein structure by crystallography requires the growth of 3- dimensional crystals 
in which molecules are packed together in a regular, repeating arrangement such that they diffract 
X- rays in- phase, leading to measurable reflections. When combined with the missing phase informa-
tion, the intensities of these reflections provide a near- atomic picture of the underlying protein struc-
ture. A crystal lattice can be broken down into two parts: (i) the asymmetric unit, which is the minimum 
non- symmetric unit of the lattice that, with the application of appropriate symmetry operations, can 
be copied to make (ii) the unit cell, a rhomboid- shaped unit that can be stacked in a repeating array in 
3- dimensions. The formation of a crystal lattice requires contacts between (a) the molecules that make 
up the unit cell and (b) neighboring unit cells. These contacts do not form accidentally, but rely on an 
empirical combination of solvent molecules that promote the regular packing of molecules together. 
Since a crystal lattice is entropically unfavorable, the loss of entropy is offset by a combination of 
enthalpic free energy gain and the gain in entropy caused by the de- solvation of protein surfaces 
involved in lattice contacts (Rupp, 2009). As such, the underlying structure represents a snapshot of 
an energetically favorable state under the conditions of crystallization, which has a large potential to 
misrepresent protein- protein contacts (Krissinel, 2010). This necessitates that interfaces observed in 
crystal lattices are carefully validated biochemically.

The trans- autophosphorylation reaction requires the exchange of activation loop segments 
between opposing protomers in a dimer. By definition, the requirement for phosphorylation dictates 
that these segments are flexible in their unphosphorylated state and, by extension, that the surface 
to which they dock in their phosphorylated conformation is not occupied. As such, the activation 
loop is an exchangeable element that can be used to promote interactions with conserved surfaces 
on neighboring molecules compatible with crystal lattice growth. There are essentially two flavors of 
such interactions: one is the docking of the activation loop in trans (instead of in cis) with the kinase 
domain of another protomer, and the second is the binding of the activation loop to the substrate 
binding surface of a neighbor (trans). In the absence of conformational restraints imposed by regu-
latory domains that are often missing, the physiological relevance of these interactions can be hard 
to deduce from the arrangement of molecules in the crystal lattice. This is further complicated by 
the fact that activation loop exchange, in which the free energy of binding of the activation loop 
to its own kinase domain (cis) is close to equivalent to that with a neighboring molecule (trans), can 
be used to drive lattice formation by creating a dyad axis of symmetry. Such packing interactions 
are illustrated by the structure of the kinase domain of Chk2 (Oliver et al., 2006; Figure 6A). The 
asymmetric unit contains a single molecule of Chk2, which is related to a second molecule in a neigh-
boring asymmetric unit by a twofold axis of symmetry (surface representation of dimers). The unit cell 
contains six molecules of Chk2, arranged in three equivalent dimers (Figure 6A, light teal, pink, light 
blue). The two protomers of the dimer interact via the exchange of their activation loops (teal, red, 
purple- blue) that generates equivalent interactions of residues 368–394 in trans as are normally found 
in cis. The exchanged activation loops are stabilized on either side by the N- lobe of a neighboring 
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Figure 6. Interpreting crystallographic evidence for kinase dimerization. (A) Crystal lattice formation in crystals 
of the checkpoint kinase (Chk2) domain in complex with ADP. The unit cell contains six molecules (cyan, purple, 
pink), which form dimers on three twofold crystallographic axes. These are mediated by the extended activation 
loops (dark color) of Chk2 that undergo activation loop exchange, in which residues 377–397 make either identical 
interactions with their crystallographically- related partner, or they make interactions with a neighboring molecule 
in the crystal lattice. Packing of the unit cells and, therefore, propagation of the lattice is mediated in part by 
the interactions of the activation loops of neighboring molecules. PDB ID: 2cn5. (B) Zoom in to the activation 
loop exchange of Chk2 in the 2cn5 lattice shown in A. The conformation of the Chk2 kinase domain is stabilized 
by reagents from the crystallization reservoir solution including nitrate (red spheres). One magnesium ion also 
occupies a non- physiological position in the kinase domain of each Chk2 molecule (green spheres). PDB ID: 2cn5. 
(C) Structure of a domain- swapped Chk2 construct containing both its regulatory FHA (magenta, pink) and catalytic 
kinase domains (gray, black). The asymmetric unit of the crystal lattice contains two molecules of Chk2 in which a 
face- to- face dimer of the kinase domains is mediated by a domain swap of the FHA domains of each protomer. 
The crystallized protein contains a kinase- inactivating point mutation of the β3 lysine (K249R), which abrogates 
ATP binding. The activation loops (teal) of each protomer are mainly disordered (dashed lines). PDB ID: 3i6u. (D) 
Structure of AurA in complex with TPX2. The asymmetric unit of the crystal lattice contains two molecules of AurA 
arranged in an asymmetric face- to- face dimer. A sulfate molecule in the center of the dimer stabilizes an exchange 
of the activation loop of each protomer by making a network of hydrogen bonds with the conserved arginine of 
the catalytic loop (blue, stick representation). Additional interactions that stabilize the dimer are mediated by 
electrostatic interactions between the αC helix (orange) and TPX2 (green). AurA was co- crystallized with AMPPCP, 
but is in an inactive conformation. PDB ID: 4c3p.
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Chk2 protomer belonging to a different dimer, thereby propagating the lattice in 3- dimensions. The 
presence of additional compounds from the crystallization solution that mediate specific interactions 
complicates matters even further. Electron density for two nitrate ions (red) in contact with the activa-
tion loop of each protomer was modeled in this structure, while a second magnesium ion (green) was 
found in a non- physiological location in the N- lobe (Figure 6B).

Activation loop exchanges similar to those described above have been observed in the crystal 
structures of many kinases, wherein part of the activation loop makes equivalent interactions in trans 
as in cis (Lawhorn et al., 2015; Lim et al., 2020; Marcotte et al., 2017; Mayo et al., 2019; Oliver 
et al., 2007; Oliver et al., 2006; Pike et al., 2008; Taylor et al., 2015; Wu et al., 2019). However, 
the relative orientation of the kinase domains in these dimers is highly variable and most likely reflects 
a configuration amenable to lattice formation. Whilst many of these dimers have been interpreted 
to correspond to intermediates on the path to trans-autophosphorylation, equivalent activation loop 
exchanges have been observed in kinases that do not undergo autophosphorylation, such as DAPK3 
(Oliver et al., 2007), for which no physiologically relevant exchange would be required.

Other crystal structures of Chk2, and its yeast homolog, Rad53, offer alternative snapshots. The 
structure of a longer construct of Chk2, containing its N- terminal regulatory forkhead- associated 
(FHA) domain (Cai et al., 2009), depicts a dimer in the asymmetric unit, formed by a domain swap 
between the FHA domains of each protomer (Figure  6C). The intimate association of the kinase 
domains, coupled with evidence of dimerization in solution and previous biochemical evidence of 
dimerization- enhanced autophosphorylation (Oliver et al., 2006), led the authors to conclude, logi-
cally, that this dimer represented the trans- autophosphorylation intermediate. Unfortunately, confir-
mation that this is indeed the case was precluded by absent electron density for the activation loops 
of each protomer and an ATP- binding mutation introduced into the recombinant protein for crys-
tallization. Consequently, the structure lacks a bound nucleotide and it is not possible to conclude 
anything definitively about the mechanism of autophosphorylation. The structure of the Rad53 kinase 
domain is equally problematic: again, a kinase- inactivating mutation was used to facilitate crystalliza-
tion (Wybenga- Groot et al., 2014). A back- to- back dimer was observed in the asymmetric unit of the 
crystals, but the authors instead focused on a symmetry- related molecule of Rad53 due to its apparent 
similarity to the previously reported structure of human Chk2 (Figure 6C; Cai et al., 2009). However, 
superimposition of one protomer from each dimer shows that, whilst the r.m.s.d. over 156 Cα atoms 
for Chk2 and Rad53 kinase domains is 0.90 Å, this balloons to 11.50 Å over equivalent Cα atoms for 
the second chain. Again, definitive conclusions regarding the mechanism of autophosphorylation are 
precluded by the absence of electron density for the activation loops. Although not yet supported 
by an experimentally determined structure, recent in silico modeling and biochemistry on the closely 
related PKD has revealed a face- to- face trans- inhibited dimer (Reinhardt et al., 2023), which begs 
the question of how Chk2 and PKD could have opposite mechanisms of activation. Further work will 
undoubtedly be required to address this apparent contradiction.

Finally, AurA is a rich source of conflicting data on its mechanism of autophosphorylation. While 
kinetic data points towards autophosphorylation in cis (Dodson et al., 2013), AurA activation by inter-
molecular trans- autophosphorylation has been inferred from several crystal structures that dimerize 
via exchange of their activation loops (Lim et al., 2020; Zorba et al., 2014). Zorba et al reported a 
dimeric, active configuration of AurA, with Asp274 poised for phosphoryl transfer (Zorba et al., 2014). 
However, careful inspection of the structure reveals that Asp274 is in fact the aspartate of the DFG 
motif, which coordinates a magnesium ion required for ATP binding. In fact, the catalytic aspartate, 
Asp256, is not poised for phosphoryl transfer, having been pulled out of position by the interaction of 
Arg255 with a phosphate ion from the crystallization solution in the center of the exchanged activation 
loops (Figure 6D). The structure lacks magnesium ions in the catalytic site of both protomers and is 
not compatible with phosphoryl transfer. It most likely represents a crystallization artifact in which the 
activation loop exchanged conformation is stabilized by the coordination of the phosphate ion at its 
center. More recently, AurA has been proposed to be a redox- sensitive switch, inhibited by Coenzyme 
A (CoA) (Tsuchiya et  al., 2020) or activated by increased levels of reactive oxygen species (ROS) 
during mitosis (Lim et al., 2020). The latter study reports seven crystal structures of AurA in various 
configurations. Fully reduced, phosphorylated, and monomeric AurA is essentially superimposable 
with a previous structure of AurA in complex with TPX2 (Bayliss et al., 2003). A second structure, 
covalently modified on two cysteines by the cacodylate buffer in the crystallization solution, exhibits 
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an activation loop exchanged dimer that bears no similarity to the structure reported by Zorba et 
al. Two further structures, covalently modified on Cys290 with different compounds, exhibit struc-
tures essentially superimposable with the Zorba structure, unsurprising given that the lattice packing 
is identical in all three cases (although residues 298–309 encompassing Cys290 exhibit a different 
conformation). Finally, an oxidized, Cys290 disulfide- linked dimer exhibits yet another arrangement of 
the two protomers. Though autophosphorylation is clearly enhanced in this disulfide- linked dimer in 
vitro, the kinetics are extremely slow (incomplete after 30 min), an observation which is unexpected 
for a covalently linked dimer, and which suggests that the conformation of the two protomers in this 
dimer is not conducive to efficient trans- autophosphorylation. Biochemical studies have shown that 
oxidation inactivates AurA irrespective of activation loop autophosphorylation (Byrne et al., 2020; 
Tsuchiya et al., 2020).

The inherent ambiguity in interpreting crystal structures of kinase domain dimers necessitates their 
validation by other methods. A wide spectrum of tools for the detection of dimerization in solu-
tion has been employed, including analytical ultracentrifugation (AUC), size exclusion chromatog-
raphy coupled to multi- angle light scattering (SEC- MALS), small- angle X- ray scattering (SAXS), mass 
photometry (MP), cross- linking mass spectrometry (XL- MS) and hydrogen- deuterium exchange mass 
spectrometry (HDX- MS) (Figure 7). However, the transient nature of dimerization and the limited reso-
lution of each of these methods often precludes definitive corroboration of crystallographic dimers in 
solution. Furthermore, validation of crystallographic dimers by traditional mutagenesis of the interface 
is inherently flawed, since the region involved also makes physiologically relevant interactions with its 
own kinase domain in cis, potentially leading to a false positive validation of the interface. In summary, 
whilst impossible to comprehensively cover them all here, there are many instructive lessons that can 
be taken from the careful examination and interpretation of a large number of protein kinase struc-
tures, and we should be careful not to let our eyes deceive us.
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The enigma of autophosphorylation
The interpretation of crystal structures has been particularly influential in efforts to understand the 
mechanism of activation loop autophosphorylation. However, before we begin to unpack some of 
those structures, let us first consider what has come to be known as the ‘enigma of autophosphoryla-
tion’ (Beenstock et al., 2016). Simply put, a kinase that relies on the phosphorylation of its activation 
loop in order to acquire a catalytically competent conformation must somehow be able to perform 
this reaction without activation loop phosphorylation (Figure 8A). This apparent paradox implies that 
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on activation loop autophosphorylation are generally expressed in the nanomolar concentration range, suggesting that trans- autoregulated kinases 
need a dedicated mechanism for dimerization. (D) Structure of the kinase domain of insulin- like growth factor receptor (IGFR) in a dimeric, face- to- face 
configuration in which the activation loop (purple- blue) of each protomer makes symmetric interactions with the catalytic site of the opposing protomer, 
presenting Y1135 of the activation loop in trans. PDB ID: 3d94. (ref = reference molecule). (E) Structure of the kinase domain of fibroblast growth factor 
receptor (FGFR) in a dimeric, face- to- face configuration in which the activation loop (salmon) of one protomer makes asymmetric contacts with the 
catalytic site of the opposing protomer, presenting Y647 of the activation loop in trans. PDB ID: 6pnx. (ref = reference molecule). (F) Activation loop 
trajectories of unphosphorylated insulin receptor kinase (IRK) (magenta), phosphorylated IRK (teal), IGFR in the trans, symmetric conformation (purple- 
blue), and FGFR in the trans, asymmetric conformation (salmon), displayed on the surface of the phosphorylated IRK kinase domain. PDB IDs: 1irk, 1ir3, 
3d94, 6pnx. (G) B- factor plot for IRK kinase domain (apo structure, PDB ID: 1irk). High B- factors for the activation loop indicate that it is the most mobile 
(and least ordered) region of the kinase domain. (H) Zoom- in on the kinase- activation loop interactions observed in: phosphorylated IRK in complex with 
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trans (symmetric, purple- blue), and FGFR with the activation loop of the opposing protomer in trans (asymmetric, pink). PDB IDs: 1irk, 1ir3, 3d94, 6pnx.
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the autophosphorylation reaction must be mechanistically distinct from the classical substrate phos-
phorylation reaction. In this final section, we examine some of the models that have been put forward 
and discuss the various caveats associated with each.

At the most conceptual level, there are essentially three solutions to activation loop autophos-
phorylation: cis- autophosphorylation, symmetric trans- autophosphorylation, or asymmetric trans- 
autophosphorylation (Figure  8B). The kinetics of each of these possibilities have been discussed 
extensively already, so we will restrict ourselves to more conceptual considerations and the interpre-
tation of some example crystal structures that have been proposed to represent the autophosphory-
lation reaction.

Circumstantial evidence that the autophosphorylation reaction is mechanistically distinct comes 
from the consensus autophosphorylation motifs of kinases that often don’t resemble their canonical 
substrate recognition motif (Figure 8B; Beenstock et al., 2016) and are not phosphorylated when 
presented as a peptide substrate in trans (Elsner et al., 2019; Oliver et al., 2006). Experimental 
evidence that this is the case for at least one kinase has recently been provided by a separation of 
function mutant of PKD, in which canonical substrate recognition by the conserved glutamate/aspar-
tate in the αD helix (Figure 1A and E) was disrupted (Reinhardt et al., 2023). Whilst mutation of this 
residue to asparagine was sufficient to completely abrogate phosphorylation of the substrate peptide 
in trans, it had no effect on autophosphorylation in cis (Figure 8B).

For the two out of the three solutions that involve autophosphorylation in trans and, by definition, 
necessitate transient dimerization, the concentration of the reactants and their diffusive properties 
in the cell need to be considered. Kinases are not particularly abundant molecules, with an average 
concentration in the low- mid nanomolar range (Figure 8C; Hein et al., 2015). Eukaryotic cells are 
large and crowded places with protein concentrations estimated to be in the region of 200–300 mg/
ml (Wiśniewski et al., 2014). By pure diffusion, the average protein with a half- life of 15 hr (relatively 
long- lived) is estimated to undergo less than 0.1 interactions with another copy of itself (Batada 
et al., 2004), an estimate which does not even take into account the required geometry for catalysis. 
As such, any bi- molecular reaction, including trans- autophosphorylation, requires the coordinated 
assembly of two molecules with high temporal and spatial fidelity. Unimolecular reactions, including 
cis- autophosphorylation, in contrast, do not rely on a solution to this search problem. Nature, clearly, 
has found elegant solutions to trap molecules in the same place. Many receptor tyrosine kinases, 
for example, have been observed as pre- formed, inactive dimers. Ligand- induced conformational 
changes transform these receptors into a state in which they are competent of autophosphorylation 
(Freed et al., 2015; Maruyama, 2015; Moriki et al., 2001). Other kinases can be locally concentrated 
on a membrane by their specific binding to a lipid second messenger, thereby facilitating autophos-
phorylation (Chung et al., 2019; Levina et al., 2022; Wang et al., 2015). Finally, subcellular compart-
mentalization of reactions can restrict the search problem to a much smaller volume (Küchler et al., 
2016). What happens next, however, is still controversial.

Early kinetic data indicated that autophosphorylation of IRK could occur in both cis (Shoelson 
et al., 1991; Yamada et al., 1992) and trans (Cobbs et al., 1989; Frattali et al., 1992). However, 
structural and biochemical studies of related kinases, including insulin- like growth factor receptor 1 
(IGFR1) and fibroblast growth factor receptor 3 (FGFR3), have since concluded that the reaction occurs 
in trans (Chen et al., 2020; Wu et al., 2008). Indeed, evidence that this reaction can be performed 
in trans has been obtained from a number of crystal structures in which the activation loop of both 
protomers (Wu et al., 2008) (symmetric, Figure 8D) or just one (Chen et al., 2020) (asymmetric, 
Figure 8E) is trapped in the active site of the opposing protomer. As can be seen, the symmetric and 
asymmetric arrangements of the protomers in IGFR1 (Figure 8D) and FGFR3 (Figure 8E) are very 
different (reference molecule denoted ‘ref’). The promiscuity of lattice contacts is further evidenced 
by the trapping of IGFR1 in an asymmetric dimer that is again different from the FGFR1 asymmetric 
dimer, yet still positions the activation loop tyrosine for phosphoryl transfer (Nemecek et al., 2010; 
Xu et al., 2015). Whether these structural differences reflect fundamental mechanistic differences or 
simply the energetics of crystal lattice packing is difficult to say, but the implications are quite funda-
mental. While IGFR1 might accomplish trans- autophosphorylation of each protomer simultaneously, 
FGFR3 would presumably need to go through a two- step reaction mechanism. Such a mechanism has 
also been proposed for other kinases, including p21- activated kinase (PAK) and Interleukin 1 (IL- 1) 
receptor- associated kinase 4 (IRAK4), based on their crystal structures (Ferrao et al., 2014; Wang 
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et al., 2011). Interestingly, the kinase domain of IRAK1, which apparently does not homodimerize, 
has been proposed to form heterodimers with phosphorylated, but not unphosphorylated, IRAK4, 
leading to a model in which IRAK4 phosphorylates IRAK1 (Wang et al., 2017).

Examination of the activation loop trajectories of IGFR1 and FGFR3, shows that they can sample 
a large conformational space (Figure 8F). Both the phosphorylated, active conformation (teal) and 
various conformations of the unphosphorylated activation loop have been observed in crystal struc-
tures. As we have already discussed, a cis conformation of the activation loop has also been observed 
in IRK (Hubbard et al., 1994) (magenta, Figure 8F and teal, Figure 2A). This structure was interpreted 
to reflect the inactive conformation of the IRK kinase domain on the basis that the activation loop ster-
ically blocks ATP binding. However, inspection of the B- factors of this structure, which are a measure 
of the thermal motion of the protein in the crystal lattice, reveals that the activation loop is, in fact, the 
most mobile and least ordered part of the kinase domain (Figure 8G). Since the protein also lacks a 
bound nucleotide, the entire conformation of the activation loop may not be physiologically relevant.

Why is this important? Zooming in on the conformation of the activation loop surrounding the 
phosphorylated tyrosine in the cis, trans symmetric, trans asymmetric, and trans substrate structures 
reveals that the activation loop adopts the same conformation in each case, with the tyrosine poised 
for transfer of phosphate from ATP to its hydroxyl group (Figure 8H). We can, therefore, conclude 
from these structures that cis, trans symmetric, trans asymmetric, and trans substrate reactions are all 
stereochemically possible. It is perhaps also not surprising that what are essentially identical interac-
tions can all be observed in the context of a crystal lattice. Does that mean that they can all happen 
in the cell? The answer to this question is more complicated and depends on the factors that limit 
each of these reactions, including local concentration and the available conformational space that can 
be sampled. Many of these mechanisms are surely rooted in strong biochemical evidence, but, once 
again, we should be careful not to let our eyes deceive us: what we see in a crystal lattice and what we 
can observe in a test tube do not necessarily reflect reality in the cell.

Future perspectives
The regulation of protein kinases by activation loop autophosphorylation is an elegant mechanism by 
which ligand- induced conformational changes can be coupled to kinase activation. However, despite 
decades of work on numerous kinases, much is still unknown about this seemingly simple reaction. 
Fundamental barriers to progress include both the difficulty of studying these reactions quantita-
tively and mechanistically in the complex environment of the cell and, conversely, the pitfalls of the 
reductionist, in vitro approaches that characterize interactions and biochemistry that are physically 
and chemically possible, but that may not occur in the context of the native, cellular environment. 
Spatial confinement, restrictions on the conformational space that can be sampled by a kinase, and 
local concentration are all tightly regulated in the cell, but challenging to recapitulate in vitro. New in 
silico tools in structural biology promise much in terms of modeling transient, but specific interactions, 
while technological improvements in cryogenic electron microscopy are continually lowering the size 
of structures that can be determined at high resolution. However, we have a collective responsibility 
to report more quantitatively and more specifically. The reproducibility crisis is particularly grave in 
the case of antibodies, many of which are poorly validated or have been shown to recognize different 
targets. While DNA sequencing is nowadays an obligation, we have yet to make the validation of 
recombinant proteins by mass spectrometry a routine procedure or require its reporting. This is espe-
cially important in the context of reversible post- translational modifications, such as phosphorylation, 
which regulate the conformation, localization, and activity of proteins. Finally, new tools for the spatial 
arrangement of molecules in vitro on scaffolds that more faithfully mimic the cellular environment are 
desperately needed. Advances in protein design (Cao et al., 2022; Sahtoe et al., 2022), DNA nano-
technology (Engelhardt et al., 2019; Praetorius and Dietz, 2017), 3D printing of biopolymers (Daly 
et al., 2021), and label- free, single molecule surface particle tracking Foley et al., 2021; Heermann 
et al., 2021 have the potential to facilitate more complex in vitro reconstitutions. In summary, new 
technologies promise much discovery, but hypothesis- driven research compels us to first cast a critical 
eye over existing bodies of evidence.
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