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Abstract Many proteins remain poorly characterized even in well-studied organisms, presenting 
a bottleneck for research. We applied phenomics and machine-learning approaches with Schizosac-
charomyces pombe for broad cues on protein functions. We assayed colony-growth phenotypes to 
measure the fitness of deletion mutants for 3509 non-essential genes in 131 conditions with different 
nutrients, drugs, and stresses. These analyses exposed phenotypes for 3492 mutants, including 124 
mutants of ‘priority unstudied’ proteins conserved in humans, providing varied functional clues. For 
example, over 900 proteins were newly implicated in the resistance to oxidative stress. Phenotype-
correlation networks suggested roles for poorly characterized proteins through ‘guilt by association’ 
with known proteins. For complementary functional insights, we predicted Gene Ontology (GO) 
terms using machine learning methods exploiting protein-network and protein-homology data (NET-
FF). We obtained 56,594 high-scoring GO predictions, of which 22,060 also featured high informa-
tion content. Our phenotype-correlation data and NET-FF predictions showed a strong concordance 
with existing PomBase GO annotations and protein networks, with integrated analyses revealing 
1675 novel GO predictions for 783 genes, including 47 predictions for 23 priority unstudied 
proteins. Experimental validation identified new proteins involved in cellular aging, showing that 
these predictions and phenomics data provide a rich resource to uncover new protein functions.

eLife assessment
This important study combines extensive phenotyping of genome-wide deletion mutants and 
machine learning-based prediction to generate a large scale resource for understanding the func-
tions of thousands of fission yeast protein-coding genes. This resource is supported by convincing 
phenotyping data and state-of-the-art bioinformatic analyses and will be of interest to many 
geneticists.

Introduction
Most biomedical research focuses on genes that are already well-studied, a situation which has changed 
little in the past 40  years of biochemical, cell biological, and genetic investigations (Kustatscher 
et al., 2022; Edwards et al., 2011; Stoeger et al., 2018; Pfeiffer and Hoffmann, 2007; Su and 
Hogenesch, 2007; Haynes et al., 2018; Oprea et al., 2018; Wood et al., 2019; Sinha et al., 2018). 
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The cellular functions of many genes thus remain poorly characterized or unknown, even with the 
availability of whole-genome sequences (Gates et al., 2021). This disparity is reflected in a strong 
bias in citations and publications which has remained constant over the past two decades (Edwards 
et al., 2011; Stoeger et al., 2018). A synthetic bacterium with a minimal genome contains 473 genes, 
defining a bare essential for life Hutchison et al., 2016; remarkably, 149 (~32%) of these most vital 
genes have unknown cellular roles. Moreover, a recent proteome survey across the evolutionary range 
finds that 38.4% of the identified proteins are not associated with any biological process, including 
22.9% of the 100 most abundant proteins of each species (Müller et al., 2020). These examples high-
light how much of the ‘dark proteome’ awaits discovery and the need to characterize gene function 
in an unbiased manner. To fully understand cells, we ought to know what all parts do and how they 
contribute to biological systems and disease.

The fission yeast, Schizosaccharomyces pombe, provides a powerful platform to interrogate 
eukaryotic gene function owing to its relative simplicity, well-annotated genome, deletion-mutant 
libraries for high-throughput assays, and genetic tractability under tightly controlled conditions 
(Rallis and Bähler, 2016). The S. pombe genome annotation contains 5134 protein-coding genes, 
3624 (70.6%) of which are conserved in metazoa. Unlike budding yeast, fission yeast does not 
undergo any genome duplication, so there is less gene redundancy and mutations are more likely to 
result in phenotypes (Wood et al., 2002). Moreover, unlike in mammalian cells, ~90% of the genes 
are expressed under standard growth conditions (Marguerat et al., 2012), facilitating analyses of 
their functions at the organism level. Fission yeast resembles mammalian cells in many respects (e.g. 
symmetrical cell division, chromatin and RNAi pathways, centromeres, and replication origins), and 
thus provides a complementary model system to the more widely studied budding yeast (Hoffman 
et al., 2015). As in other model organisms (McGary et al., 2010), genes are being associated with 
cellular functions and phenotypes at higher rates in fission yeast than they are in humans. Fission 
yeast researchers, supported by the model organism database PomBase (Harris et al., 2021; Lock 
et al., 2019), have experimentally characterized 2498 proteins in publications, and the biological 
functions of 1916 additional proteins can be reliably inferred from orthologs in other organisms 
(status March 2023). Systematic genetic screens have been published for several, mostly well-studied 
conditions, including DNA damage (Deshpande et al., 2009), caffeine tolerance (Calvo et al., 2009), 
catalase expression (García et al., 2016), mycelial development (Dodgson et al., 2009), aneuploid 
viability (Tange et al., 2012), autophagy (Sun et al., 2013), heavy-metal tolerance (Guo et al., 2016), 
cell-cycle progression and cell shape (Hayles et al., 2013), mitotic competence (Sajiki et al., 2018), 
TORC1 inhibition (Rodríguez López et al., 2020; Lie et al., 2018; Rallis et al., 2014), respiratory 
growth (Malecki and Bähler, 2016; Malecki et  al., 2016; Zuin et  al., 2008), and chronological 
lifespan (Sideri et al., 2015; Romila et al., 2021). Nevertheless, the number of entirely unknown 
proteins is hardly decreasing over time; so without fresh approaches and resources directed toward 
unknown proteins, it will take dozens of years to uncover their functions (Wood et al., 2019). Empir-
ical data show that genes that are linked with biological processes and functions in model organisms 
become characterized much more readily in other organisms (Stoeger et al., 2018; Haynes et al., 
2018; Wood et al., 2019; Hu et al., 2017; Mungall et al., 2017). Thus, initial dedicated efforts to 
link unstudied proteins with cellular functions and biological processes are key to trigger deeper 
follow-on analyses of these proteins.

The concept of protein function is somewhat imprecise and hierarchical, involving several layers of 
detail (Szklarczyk et al., 2015). PomBase labels S. pombe genes as ‘unknown’ if they cannot be asso-
ciated with any informative, high-level GO Biological-Process terms (Carbon et al., 2021), applying 
strict criteria based on functional assays for mutant phenotypes, protein localization, and interactions 
in S. pombe, or on corresponding functional assays in other organisms to infer the function (Wood 
et al., 2019). S. pombe encodes 641 ‘unknown’ genes (PomBase, status March 2023). There are of 
course many more poorly characterized proteins for which little meaningful information is available 
because the associated annotations are either incorrect or too general to be informative. Among 
these 641 unknown proteins, many are apparently found only in the fission yeast clade, but 380 are 
more widely conserved. Among these conserved proteins, 135 ‘priority unstudied’ proteins show clear 
human orthologs, and our analysis using Orthologous Matrix (Altenhoff et al., 2019) reveals broad 
and strong conservation profiles across 100 metazoans. These priority unstudied proteins have not 
been directly studied in any organism but can be assumed to have pertinent biological roles conserved 
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over 1000 million years of evolution. Notably, 49 (~36%) of the 135 unstudied proteins conserved from 
fission yeast to humans are not conserved in budding yeast, the best characterized eukaryote.

Initial efforts to learn about unknown genes need to be broad and exploratory, because hypothesis-
driven research cannot target proteins for which nothing is known. Many genes may remain unknown 
because they are not required under benign laboratory conditions. Phenomics seeks to uncover gene 
function by rigorously identifying all phenotypes associated with gene mutants under many different 
conditions (Rallis and Bähler, 2016; Brochado and Typas, 2013). Microbes like yeast are partic-
ularly suitable for such high-throughput phenotyping. For example, while only 34% of all budding 
yeast deletion mutants display growth phenotypes under a standard condition, 97% show phenotypes 
in specific chemical or environmental perturbations (Hillenmeyer et al., 2008). Such broad genetic 
screens provide a basis to understand the function of unstudied genes. Besides offering direct func-
tional clues about biological processes being affected by specific genes, they also give rich phenotypic 
signatures reflecting systemic responses to genetic perturbations in different conditions. Clustering 
and network analyses can point to the functions of unstudied genes that show similar phenotypic 
signatures to known genes, a principle called ‘guilt by association’ (Ryan et al., 2013; Wiwie et al., 
2015).

Besides phenomics, advances in machine learning now provide potent opportunities for unbiased 
functional predictions based on available data associated with genes (Huttenhower et  al., 2009; 
Libbrecht and Noble, 2015; Angermueller et al., 2016). Over the past decade, various approaches 
have been independently benchmarked to determine the most useful strategies. Recent evaluations 
highlight the importance of protein-sequence homology as a key component of successful methods 
(Zhou et al., 2019a; You et al., 2018). Future trends are likely to see more important contributions 
from deep-learning feature extraction on protein sequences (Sanderson et al., 2021). A particularly 
successful homology-based strategy in the last round of the Critical Assessment of Functional Anno-
tations, CAFA4, exploits CATH protein functional families (FunFams) and has consistently been highly 
ranked for precision in Gene Ontology (GO) Molecular Function and Biological Process prediction 
CAFA1 (Radivojac et al., 2013), CAFA2 (Jiang et al., 2016), CAFA3 (Zhou et al., 2019a) and CAFA4 
(ISMB2020, personal communication from organizers). However, homology-based data are not the 
only useful source for functional prediction, and combining other data types with machine learning 
can help to maximize performance (Yao et al., 2021). For GO Biological Process prediction, network 
data can help in achieving high prediction accuracy (e.g. biological pathways, genetic interactions, 
protein interactions). An ongoing challenge remains how to process this type of data contained in 
large, complex networks in order to combine it with more structured data (e.g. CATH FunFam inferred 
GO annotations). One method that shows some success is the Multi-Modal Auto Encoder (MMAE), 
which processes network data to a lower dimensional latent space that can then be integrated with 
other data types more effectively (Gligorijevic et al., 2018).

Here, we combine complementary phenomics data, predicted annotations from integrated 
machine-learning methods as well as curated and experimental PomBase annotations to provide 
diverse clues about gene functions and functional associations in fission yeast. We obtained 103,520 
quantitative phenotype datapoints for 3492 non-essential genes across 131 diverse conditions. By 
applying new machine-learning methods, we also report a high-confidence set of 1675 novel GO 
term associations for 783 genes, derived by combining our phenotype data and functional predictions 
with PomBase annotations. This rich and wide-ranging functional information for S. pombe proteins, 
including the priority unstudied proteins and many poorly characterized proteins, provides a rich 
framework and testable hypotheses for follow-on studies.

Results and discussion
Overview of the study
We performed colony-based phenotyping of the deletion mutants for the non-essential S. pombe 
genes in response to different nutrient, drug, and stress conditions. This phenomics dataset provides 
both functional clues and insights into functional relationships from phenotype correlations. In parallel, 
we developed a meta-predictor (NET-FF) that combines established methods for exploiting protein-
network and protein-family data to predict new GO associations for S. pombe genes. We then inte-
grated our phenomics data and NET-FF predictions with the gold-standard annotations in PomBase, 
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reflecting extensive experimental and curation work (Harris et al., 2021; Lock et al., 2019), to vali-
date our data and identify novel protein functions and associations. Figure 1 provides an overview of 
this study.

Colony-based phenotyping of deletion mutants in multiple conditions
We combined two S. pombe deletion-mutant libraries (Kim et  al., 2010; Chen et  al., 2015) and 
crossed out all auxotrophy mutations, allowing us to screen 3509 non-essential genes in prototroph 
strains that only contained the query mutants. We measured colony growth as a fitness proxy under 
different conditions using pyphe, our python package for phenomics analyses (Kamrad et al., 2020; 
Rodriguez-Lopez et al., 2022). The mutant strains were arrayed in 1536-colony format, including 
a 384-colony grid of wild-type strains as control. We assayed the deletion mutants in response to 
131 diverse environmental conditions, both benign and stressful, including different nutrients and 
drugs as well as oxidative, osmotic, heavy-metal, protein-homeostasis, and DNA-metabolism stresses. 
We also assayed some combined conditions which can reveal additional phenotypes through non-
additive effects that are not evident from single conditions (Rallis et al., 2013). For some drugs and 
stresses, we assayed both low and high doses, in which wild-type cell growth is normal or inhibited, 
respectively, to uncover both sensitive or resistant mutants. In total, these assays produced 2,832,384 
data points, providing 103,520 phenotypes across 3492 mutants (Supplementary file 1). These data 
exceed all the combined annotated phenotypes available in PomBase, currently encompassing 92,681 
gene-phenotype associations of which 59,382 are unique (status March 2023).

Growth phenotypes in standard conditions
We first assayed fitness differences in standard, benign conditions: growth in rich or minimal medium 
at 32 °C. We looked for mutants showing a significant difference in colony growth relative to wild-type 
control cells, applying a threshold of p<0.05 after Benjamini-Hochberg correction and a colony-size 
difference of ≥5% compared to wild-type. Among the 3509 deletion mutants tested, 732 and 760 
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Figure 1. Schematic overview of study design. Experimental and computational tasks along with the relationships between the different aspects of the 
work to generate new information on protein function.
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mutants grew slower than wild-type cells in rich and minimal media, respectively, while 265 and 22 
mutants grew faster in the same media (Figure 2A; Figure 2—figure supplement 1A; Supplemen-
tary file 1). The two media showed substantial overlap but also distinct responses. As an example, 
cells deleted for the transcription factor Fil1, which regulates the response to amino acid starvation, 
showed slower growth in minimal medium, as reported previously (Duncan et al., 2018), but faster 
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Figure 2. Colony-based phenotyping of deletion mutants. (A) Volcano plot of mutant colony sizes for priority unstudied genes (green) and all other 
genes (gray) growing in rich medium. The dashed vertical and horizontal lines show the 5% difference in effect size and significance threshold, 
respectively. Strains with lower fitness (smaller colonies) are <0 on the x-axis, and those with higher fitness are >0. We applied a significance threshold 
of 0.05 after Benjamini–Hochberg correction for multiple testing and a difference in fitness of abs(log2(mutant/wild type))>log2(0.05) to call hits based 
on colony size (n=60). (B) Distributions of significant hits per gene for priority unstudied mutants (right) and all other mutants (left) showing faster (green) 
or slower (purple) colony growth compared to wild-type cells. (C) Distributions of significant hits per condition for all mutants showing faster (green) 
or slower (purple) colony growth compared to wild-type cells. (D) Fitness of mutant cells growing in 2% glycerol + 0.01% glucose in this study, plotted 
as in (A). Blue: mutants identified as slow growing in the same condition in our previous screen Malecki and Bähler, 2016; red: mutants annotated 
as ‘increased cell population growth on glycerol carbon source’ (FYPO:0004167) in PomBase (Harris et al., 2013); green rings: mutants in priority 
unstudied genes. Seventy-nine mutants were slow-growing in both screens (p=1 × 10–39; Fisher’s exact test, FDR corrected for multiple testing).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Colony-based phenotyping of mutants in benign conditions.

Figure supplement 2. Our phenotype association matrix has much higher concordance with STRING than expected by chance.

Figure supplement 3. Clusters of mutant phenotype profiles for oxidative-stress conditions.
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growth in rich medium. The differences between the two media were also reflected in distinct func-
tional enrichments (Figure 2—figure supplement 1B). For example, mutants that grew slowly only 
in the minimal medium were enriched in amino-acid biosynthesis and sulfate assimilation, reflecting 
auxotrophies, while mutants that grew slowly only in the rich medium were enriched in the main-
tenance and fidelity of DNA replication, possibly reflecting an increased need for quality control in 
rapidly proliferating cells. Among the mutants analyzed, we paid particular attention to those deleted 
for so-called ‘priority unstudied’ genes, which are widely conserved from fission yeast to humans but 
remain entirely uncharacterized (Wood et al., 2019). We could phenotype 124 mutants of the priority 
unstudied genes, 13 of which grew slower in either or both media while 11 grew faster (Figure 2A; 
Figure 2—figure supplement 1A). This finding shows that even under standard conditions some of 
these mutants readily reveal fitness phenotypes.

We compared our results with the relevant fission yeast phenotype ontology (FYPO) terms anno-
tated in PomBase (Lock et al., 2019; Harris et al., 2013), including ‘increased cell population growth’ 
(253 mutants), and ‘decreased vegetative cell population growth,’ or ‘slow vegetative cell population 
growth’ (1043 mutants). Overall, our screen confirmed 426 (40.8%) of the previously annotated slow-
growth mutants but only 23 (9%) of the annotated fast-growth mutants. Besides technical discrep-
ancies, the mutants showing different growth behavior in the different assays may reflect differences 
in the type of mutant, between solid and liquid media, and/or between mutants growing in isolation 
or in pools given that a previous growth screen involved parallel mutant profiling by Bar-seq (Sideri 
et al., 2015). Our phenotype data also showed good agreement with our recent study of 238 coding-
gene mutants that have been phenotyped along with non-coding RNA mutants (Rodriguez-Lopez 
et al., 2022). Taken together, we identified 940 mutants that grow more slowly and 265 mutants that 
grow more rapidly in standard media, including 552 and 21 mutants that grow more slowly or rapidly, 
respectively, in both media.

Phenotypes in diverse nutrient, drug, and stress conditions
We then assayed fitness differences of the deletion mutants in the presence of various stresses or other 
treatments, relative to the same mutants growing in standard conditions and normalized for wild-type 
growth. Because only four repeats were measured per condition, fewer than for the benign conditions, 
we did not use p-values but applied a more stringent threshold to identify sensitive (slowly growing) 
or resistant (rapidly growing) mutants, using an effect-size difference of ≥10% compared to the stan-
dard condition in the same medium. Overall, we could measure colony growth for 3506 mutants, 
3492 (99.6%) of which showed phenotypes in at least one condition, including 55,577 sensitive and 
47,943 resistant phenotypes (Figure 2B; Supplementary file 1). Thirty-eight mutants displayed many 
different phenotypes in 100–118 conditions (Supplementary file 1), pointing to pleiotropic genes 
that exert multiple functions. All 124 mutants of the priority unstudied genes produced phenotypes 
in at least one condition, with an average of 19.4 phenotypes per gene compared to an average of 
29.9 phenotypes per gene for all other mutants (Figure  2B). Moreover, all 129 conditions tested 
caused phenotypes in 118–2761 mutants (Figure 2C; Supplementary file 1). Thus, we obtained rich 
and diverse phenotype data for nearly all mutants tested, including those of priority unstudied genes.

To validate our approach, we compared one condition (growth in medium with glycerol) with 
previous results from the same condition (Malecki and Bähler, 2016). This analysis revealed a strong 
overall agreement between the two datasets (Figure 2D). Differences may reflect the intrinsic vari-
ability of high-throughput screens and the more refined normalization procedure applied here 
(Kamrad et al., 2020; Rodriguez-Lopez et al., 2022), using wild-type cells as a common reference. 
We also compared correlations across phenotypes between deleted genes in our phenotype data 
with protein-protein interaction data in STRING (Szklarczyk et al., 2021). This analysis revealed 425 
protein pairs that were supported by phenotype correlations, many more than expected by chance 
(Figure 2—figure supplement 2). Thus, phenotype correlations between pairs of knockout strains 
recapitulate known protein interactions assayed independently, demonstrating the validity of this 
approach.

Mutants showing altered resistance to oxidative stresses
These extensive phenotype data provide rich functional information regarding specific genes and 
processes that negatively or positively affect cellular fitness in a wide range of environmental or 
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physiological contexts. As an example, we highlight oxidative stress which triggers a widely studied 
cellular response (Vivancos et al., 2006; Ikner and Shiozaki, 2005). Our data included mutant fitness 
under different doses or exposure times of three oxidants: hydrogen peroxide (H2O2), t-butylhydrop-
eroxide (TBH), and diamide. Over 90% of the mutants were sensitive or resistant under at least one 
of these conditions (Figure 2—figure supplement 3). Sensitivity or resistance was often specific to 
the oxidant dose. For example, of the 495 and 220 sensitive mutants in the low or high dose of H2O2, 
respectively, only 96 mutants were sensitive in both doses. Even more pronounced, of the 304 and 
95 resistant mutants in the low or high dose of H2O2, respectively, only 25 mutants were resistant in 
both doses. This finding is consistent with studies showing that different stress-response pathways 
and gene-expression programs are launched in different doses of H2O2 (Vivancos et al., 2006; Chen 
et al., 2008).

We generated conservative lists of mutants that were sensitive or resistant in at least 3 of the 6 
oxidative-stress conditions tested, resulting in 610 sensitive and 365 resistant mutants (Supplemen-
tary file 1). Using AnGeLi (Bitton et al., 2015), we looked for functional enrichments among these 
lists with respect FYPO (Harris et al., 2013) and GO terms (Carbon et al., 2021). The 610 genes 
leading to oxidative-stress sensitivity, when deleted, showed diverse enrichments, including 434 
genes (p=8.2 × 10–7) involved in metabolic processes, particularly in the negative regulation of metab-
olism, 30 genes (p=5.0 × 10–7) involved in endosomal transport, 79 genes (p=1.1 × 10–11) that regulate 
transcription, 503 genes (p=8.4 × 10–50) required for normal growth, 104 genes (p=2.0 × 10–20) with 
cytoskeletal functions, and all six genes (p=8.9 × 10–5) of the adenylate cyclase-activating G-protein 
coupled receptor signalling pathway. Surprisingly, the 610 genes were not significantly enriched for 
genes induced during oxidative stress, but they included 42 genes (p=3.3 × 10–5) encoding ribosomal 
proteins that are down-regulated during oxidative stress (Chen et al., 2008). This finding is consistent 
with studies from budding yeast reporting a poor correlation between the genes induced in response 
to stress and the genes required to survive that stress (Giaever et al., 2002; Berry and Gasch, 2008). 
It also raises the interesting possibility that certain ribosomal proteins have specialized roles in stress 
protection. The 610 sensitive mutants included only 64 genes (p=1.3 × 10–16) already annotated with 
the FYPO term ‘sensitive to hydrogen peroxide.’ However, 445 of the 610 genes (p=3.1 × 10–57) are 
annotated as ‘increased sensitivity to chemical,’ indicating that oxidant-sensitive mutants also tend 
to be sensitive to other compounds. In contrast to the sensitive mutants, the 265 resistant mutants 
showed no informative functional enrichments, and only eight of these genes have been previously 
annotated to the FYPO term ‘resistant to hydrogen peroxide.’ Thus, the present study uncovered 
over 900 proteins not previously linked to oxidative stress in S. pombe, including 18 priority unstudied 
proteins.

Clustering of mutants with similar phenotype profiles
To explore functional signatures of the deletion mutants across all conditions, we applied k-me-
doids clustering of our phenotype data, revealing eight main clusters (Figure  3A). Analyses with 
Metascape (Zhou et al., 2019b) and AnGeLi (Bitton et al., 2015) showed that each of these eight 
clusters features distinct functional enrichments, respectively, in different GO and KEGG pathway 
terms (Figure 3B; Supplementary file 1) and/or in genes from published expression or phenotyping 
studies. Examples of significant functional enrichments for these clusters are described below. Cluster 
1 (293 genes, 12 priority unstudied) is enriched for genes showing high expression variability across 
different conditions (Pancaldi et al., 2010) and for genes induced during meiotic differentiation (Mata 
et al., 2002) and in response to TORC1 inhibitors (Rodríguez López et al., 2020). Cluster 2 (570 
genes, 20 priority unstudied) is enriched for phenotypes related to cell mating and sporulation, e.g., 
‘incomplete cell-wall disassembly at cell fusion site’ or ‘abnormal shmoo morphology’ (Dudin et al., 
2017). Cluster 3 (806 genes, 29 priority unstudied) is enriched in endosome-vacuole, peroxisome, and 
protein catabolism functions and in core environmental stress response genes (Chen et al., 2003). 
Cluster 4 (454 genes, 19 priority unstudied) is enriched in functions related to mitochondrion organiza-
tion and oxidoreductase activity as well as in genes affecting the chronological lifespan (Romila et al., 
2021). Cluster 5 (633 genes, 24 priority unstudied) is enriched for citrate-cycle and sulphur-relay path-
ways as well as phenotypes related to abnormal cell growth and increased sensitivity to chemicals, 
based on FYPO terms from several studies (Harris et al., 2013). Cluster 6 (210 genes, four priority 
unstudied) is enriched in many different functions related to actin and microtubule cytoskeletons, cell 
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Figure 3. Mutant phenotype profiles. (A) Clustering of discretized data for 3449 deletion mutants (rows) in 98 
conditions (columns), following recommendations from the R package microbial Phenotypes. For discretizing the 
phenotype data, we classed mutants as either resistant (yellow), sensitive (blue), or similar (white) relative to their 
fitness in the corresponding control condition, applying an effect-size threshold of ≥10% and, for the two benign 

Figure 3 continued on next page
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morphogenesis, chromatin segregation, and ribosomes as well as in ribosomal-protein gene clusters 
that are repressed in oxidative stresses (Chen et al., 2008). Consistent with these GO enrichments, 
Cluster 6 is also enriched in phenotypes related to abnormal cell shape and cytoskeleton organization, 
based on FYPO terms from numerous studies (Harris et al., 2013). Cluster 7 (137 genes, seven priority 
unstudied) is enriched in autophagy-related functions. Cluster 8 (346 genes, five priority unstudied) 
is enriched in metabolism-related functions like amino-acid biosynthesis and mitochondrion, in genes 
with slow-growth (Sideri et al., 2015) and caffeine-sensitive (Rallis et al., 2014) phenotypes as well 
as in genes showing high levels and stability of mRNAs (Lackner et al., 2007; Hasan et al., 2014). 
These enrichments allow inferring possible functions for the mutants in unknown genes that show 
similar phenotypic profiles to genes functioning in known processes through the principle of ‘guilt by 
association.’

The NET-FF meta-predictor combines protein-network and -family data 
to associate GO terms with S. pombe proteins
We developed an integrated pipeline (NET-FF) to predict GO terms for S. pombe proteins by 
combining two independent established approaches, NetHom and CATHPredictGO. NetHom uses 
a machine-learning method to combine network features derived using DeepNF (Gligorijevic et al., 
2018) with homology features from CATH protein functional families (FunFams) (Sillitoe et al., 2021). 
CATHPredictGO also uses homology features but exploits this data with an independent, comple-
mentary approach. To obtain our final set of predictions, NET-FF combines the predicted protein 
functions from the NetHom and CATHPredictGO predictors to increase confidence and coverage of 
the predictions (see Methods for details of NetHom, CATHPredictGO and their integration in NET-FF).

Using NET-FF, we predicted a total of 2,390,915 GO terms for S. pombe proteins. Filtering for 
high-scoring predictions (>0.7 from a maximum of 1.0) and applying a taxon constraint resulted in 
56,594 GO terms (Figure 4—figure supplement 1). These terms comprised 42,808 Biological Process 
(BP) and 13,786 Molecular Function (MF) terms, across 2852 S. pombe proteins, including 53 priority 
unstudied proteins (Supplementary file 2). Below, we discuss the predictions from NET-FF and their 
validation. Subsequently, we combine our NET-FF predictions and phenotype-correlation data with 
curated annotations in PomBase to derive novel functional associations of S. pombe proteins.

Systematic comparison of NET-FF predictions and PomBase annotations
To assess the validity of our 56,594 high-scoring NET-FF predictions, we determined the similarity 
between the highly curated GO terms annotated by PomBase and those predicted by NET-FF. 
Although only 60% of the PomBase annotations are supported by direct experimental evidence, a 
further 15,438 (34.5%) are curated from inferred annotations, providing a rich knowledgebase for the 
S. pombe community. To compare the PomBase annotations with NET-FF predictions, we modified a 
standard approach for comparing two GO terms (GOGO method; 79) to perform a pairwise compar-
ison using the same gene with different GO terms sets, e.g., GOGO(gene APomBase - gene ANET-FF). This 
approach provided a GO semantic similarity between the two datasets for a given gene, with 0 having 
completely different GO terms and 1 having identical GO terms. Figure 4A shows the distribution 
of GOGO scores obtained by comparing the two datasets and a randomized control obtained by 
shuffling GO terms between genes. Although the datasets differ (median difference GOGO-BP=0.52, 
median difference GOGO-MF=0.64), the real data comparison gives a higher GOGO semantic 
similarity when compared to random. Supplementary file 2 provides the list of predictions from 
NET-FF above our cut-off, including those for which our predictions agree or are very similar to those 

conditions, also a significance threshold of p<0.05 (Supplementary file 1). To improve the clustering, we removed 
conditions and mutants that produced <4 phenotypes, the three conditions that produced >2400 phenotypes, 
and genes with >50% of missing values. Different types of conditions are color-coded on top. Indicated at left are 
the eight main clusters, calculated using k-medoids in R (pam function) and a distance of 1-Pearson correlation. 
Using the function fviz_nbclust (R package factoextra), we determined that 8 is an optimum number of clusters. 
(B) Functional enrichments of the eight gene clusters in (A) using GO slim categories (Carbon et al., 2021) for 
Cellular Component (CC), Biological Process (BP), and Molecular Function (MF) (left, using SystempipeR) as well as 
KEGG pathways (right, using g:Profiler) (Raudvere et al., 2019).

Figure 3 continued
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annotated independently in PomBase. We conclude that NET-FF predictions are more similar to the 
available annotations in PomBase than random.

Aside from false predictions in NET-FF, the difference in GO terms predicted by the GOGO anal-
yses may suggest the presence of more specific GO terms in either dataset, i.e., more informative 
annotations that occur deeper in the GO hierarchy. We calculated the Information Content (IC) for all 
GO terms in PomBase (Methods) and, for a given gene, extracted the GO with the highest IC. We then 
calculated for each gene the ΔIC as (ICNET-FF - ICPombase), with positive or negative results indicating that 
NET-FF or PomBase, respectively, have the more informative GO for this gene. Figure 4B shows the 
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Figure 4. NET-FF predictions of gene ontology (GO) terms for S. pombe proteins. (A) GOGO semantic similarity scores for GO terms predicted by 
NET-FF and GO terms annotated by PomBase, both for real (orange) and randomized (blue) datasets from NET-FF. Left: Biological Process data, right: 
Molecular function data. (B) Information content distribution for GO terms predicted by NET-FF and GO terms annotated by PomBase, both for GO 
Biological Process (orange) and GO Molecular Function (blue) terms. Left: dataset for all genes, right: subset for priority unstudied genes.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Filtering of predictions by information content and probability value.

Figure supplement 2. Performance of NET-FF predictor by source data.
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distribution of ΔIC for the BP and MF gene datasets that are in common between the NET-FF predic-
tions and PomBase annotations. For MF, 30% of the PomBase annotations were more informative 
than NET-FF predictions, while 28% of the NET-FF predictions were more informative than PomBase 
annotations (Figure 4B). For BP, the proportion of more informative PomBase annotations (51%) was 
higher than for more informative NET-FF predictions (33%). Notably, the situation was different for the 
priority unstudied genes, where PomBase was more informative with respect to MF (42.5% vs 13.5%), 
while NET-FF was more informative with respect to BP (14.9% vs 8.5%) (Figure 4B). Given that BP 
terms are key to understand the cellular roles of proteins, this result indicates that the NET-FF predic-
tions provide valuable new clues for the function of priority unstudied proteins.

PomBase annotations are subject to manual curation including extensive literature searches for 
available gene information (Harris et al., 2021; Lock et al., 2019). Therefore, we naturally expected 
the proportion of informative PomBase annotations to be higher than for NET-FF predictions. Of the 
56,594 NET-FF predictions, 22,060 had a high information content (IC >5), reflecting more specific GO 
terms (Figure 4—figure supplement 1; Supplementary file 2). Of these, 9374 terms were identical 
to PomBase GO terms with experimental annotations for the same genes. This overlap in predictions 
is not that surprising, because NET-FF was trained on GO terms with experimental annotations but not 
on terms inferred from electronic annotations. Notably, of the remaining 12,686 NET-FF predictions, 
6052 (48%) were identical to curated or electronically inferred PomBase annotations for the same 
genes (PomBase GO version 13/01/23). This substantial overlap provides compelling validation of 
NET-FF.

We further filtered the 6634 NET-FF predictions that were not identical to PomBase annotations to 
remove 276 GO terms with more informative (deeper) annotations in PomBase, 498 GO terms that 
became obsolete, and 4185 GO terms that were up-propagated and thus redundant with more infor-
mative terms. This resulted in 1675 novel NET-FF GO predictions for 783 S. pombe genes, including 
47 predictions for 23 priority unstudied genes (Supplementary file 2). Of these novel predictions, 
1481 terms are in parts of the GO tree not previously assigned to these genes and 194 terms provide 
more informative annotations than PomBase. Some of the novel predictions contain ‘regulation of,’ 
suggesting a role in a regulatory process that could be direct or indirect. The substantial overlap 
between the NET-FF predictions and the high-confidence annotations available in PomBase supports 
the notion that the 1675 novel predictions can provide unique functional clues for the associated 
genes.

Manual comparison of selected NET-FF predictions with GO terms and 
phenotypes annotated in PomBase
We also manually validated a selection of the NET-FF GO terms using the rich extant information in 
PomBase, including both GO and FYPO terms (Harris et al., 2021; Lock et al., 2019; Harris et al., 
2013). We selected 312 genes with predicted GO terms that relate to broad cellular processes: aging/
cell death, growth/response to nutrients, reproduction, recombination, cold/heat response, histone 
acetylation/deacetylation, DNA damage/repair, autophagy, and actin (Supplementary file 2). We 
checked to what extent aspects of our NET-FF predictions for these genes had already been annotated 
by searching PomBase for GO and/or FYPO terms related to the predicted GO terms. For example, 
‘decreased cell population growth at low temperature’ (FYPO:0000080) relates to ‘cold acclimation’ 
(GO:0009631) and ‘response to cold’ (GO:0009409). This analysis identified 165 of the 312 genes 
(52.9%) with NET-FF GO terms similar to the PomBase FYPO and/or GO annotations (Supplementary 
file 2). Moreover, several NET-FF GO terms were supported by our colony-based phenotype data. For 
example, mutants in 4 of 13 genes with predictions related to cold/heat response showed phenotypes 
at low and/or high growth temperatures, mutants in 3 of 6 genes with predictions related to histone 
acetylation/deacetylation showed phenotypes in conditions affecting those processes, mutants in 31 
of 34 genes with predictions related to growth/nutrient response showed altered growth in different 
nutrients, and mutants in 30 of 31 genes with predictions related to DNA damage/repair showed 
phenotypes in conditions causing different types of DNA damage. Thus, this independent experi-
mental evidence further supports our NET-FF predictions.

For the remaining 147 of the 312 selected genes (47.1%), the NET-FF GO terms represent novel 
predictions, revealing putative functions that were not previously known (Supplementary file 2). The 
proportions of novel predictions varied greatly for different process-related categories. As expected, 

https://doi.org/10.7554/eLife.88229
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processes that are well-studied by S. pombe researchers were already well-captured in PomBase, with 
relatively few novel predictions. For example, only 2 of 13 genes (15.4%) in the category ‘Histone 
acetylation/deacetylation’ and 7 of 42 genes (16.7%) in the category ‘DNA damage/repair’ were not 
annotated as such in PomBase. In contrast, 11 of 12 genes (91.7%) in the category ‘aging/cell death’ 
and 26 of 44 genes (59.1%) in the category ‘growth/response to nutrients’ were not annotated as such 
in PomBase. Five of the genes associated with novel GO-term predictions were priority unstudied. 
The new predictions allow us to make specific functional inferences about these unknown proteins 
(Supplementary file 2). For example, SPAC15A10.10 was predicted to function in the regulation of 
nuclear division and actin-related processes, and SPAC25B8.08 in actin-dependent ATPase activity and 
organelle localization. Notably, the deletion of SPBC2D10.03c, predicted to function in the response 
to heat, leads to decreased growth at high temperatures (A Rahaman et al., 2018), thus validating the 
prediction. Overall, the NET-FF predictions recapitulate GO and/or phenotype predictions in PomBase 
for half of the genes in the selected broad categories, thus adding confidence to our method.
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Figure 5. Experimental validation of new aging-related gene reflecting its NET-FF gene ontology (GO) predictions 
and phenotype-correlation network. (A) Maximal chronological lifespan (CLS) for eight selected deletion mutants 
of genes with NET-FF GO terms related to aging/cell death and DNA damage repair, measured using a high-
throughput CLS assay (Romila et al., 2021). Known short- and long-lived mutants are highlighted in green and 
purple, respectively. Of the eight mutants, ubc14 and htr12 were known to be short- and long-lived, respectively 
(Romila et al., 2021). As controls, the maximal CLS of known short-lived (alg14) and long-lived (pac3) mutants 
(Romila et al., 2021) and wild-type cells (wt, red) are included. Three independent biological repeats were 
performed with actual data points shown as dots. Orange band: mutant in priority unstudied gene (SPAC23C4.09c) 
showing strong longevity phenotype. Data available in Figure 5—source data 1. (B) Cluster from Cytoscape 
network (see Figure 6) representing phenotype correlations between the SPAC23C4.09c gene-deletion mutant 
and ten other mutants. Orange edges show positive phenotype correlations, and red circles indicate genes with 
previously known CLS phenotypes (Romila et al., 2021; Ohtsuka et al., 2011). Details are discussed in the main 
text.

The online version of this article includes the following source data for figure 5:

Source data 1. Data for chronological lifespan (CLS) plots in Figure 5A.
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Experimental validation of genes predicted to function in cellular aging
The general category ‘aging/cell death’ included the largest proportion of genes linked to NET-FF 
predictions not available in PomBase (11 of 12 genes; 91.7%). This result raises the possibility that 
these are novel genes affecting the chronological lifespan (CLS) of stationary phase S. pombe cells, 
a model for cellular aging. We determined the maximal CLS for eight deletion mutants of these 
genes and control strains (Figure 5A). Seven of these mutants showed subtle to strong effects on the 
CLS, including one mutant in a priority unstudied gene (SPAC23C4.09c) featuring a strong longevity 
phenotype. In contrast to this result obtained using stationary-phase cells, the SPAC23C4.09c mutant 
has been reported to reduce the CLS in quiescent cells (Zahedi et al., 2020). We have shown before 
that some genes exert opposite effects on the CLS in stationary-phase cells, limited by glucose, and 
in quiescent cells, limited by nitrogen (Sideri et al., 2015). Besides cell death, SPAC23C4.09c was 
predicted to function in DNA-damage repair (Supplementary file 2), a process important for aging 
(Schumacher et al., 2021). Notably, the SPAC23C4.09c gene formed a tight phenotype-correlation 
network with ten other genes, including four with known CLS phenotypes (Figure 5B). Several of 
these genes are involved in respiration and carbon metabolism, including otg1 (galactosyltransferase), 
cox20 (cytochrome c oxidase assembly protein), sdh8 (mitochondrial respiratory chain complex II 
assembly factor), sdh3 (succinate dehydrogenase cytochrome b subunit), and emi5 (succinate dehy-
drogenase complex assembly). Consistent with these interactions, the SPAC23C4.09c mutant grows 
slowly on non-fermentable media (Malecki et al., 2016). Together, these experimental results validate 
the computational predictions by confirming new genes with roles in cellular ageing and illustrate how 
our predictions and the phenomics data complement each other to reveal new gene functions.

Combining NET-FF predictions with phenotype correlation data 
to validate functional associations and derive higher-confidence 
predictions
To further filter our set of 22,060 NET-FF predictions with high scores and high information content, 
we identified pairs of genes showing high similarity both in their GO-term predictions (GOGO scores) 
and in their deletion-mutant phenotypes (PHEPHE scores). This approach should provide a higher 
confidence subset of gene pairs for which the two independent, orthogonal methods agree. For each 
gene pair with a predicted GOGO BP score >0.5, the GOGO score was multiplied by the PHEPHE 
score of the same gene pair (obtained from Pearson correlation of phenotype profiles across condi-
tions). If the combined product of GOGO and PHEPHE scores was >0.5, we added the gene pair 
link to a network. This analysis resulted in a much larger network for the gene pairs with high GOGO 
and PHEPHE scores than for random gene pairs (Figure 6—figure supplement 1A). Supplementary 
file 2 provides a list of the gene pairs with high GOGO and high PHEPHE scores, both for BP terms 
(553 gene pairs) and MF terms (606 gene pairs). The agreement between these two independent 
approaches increases the confidence in both our NET-FF predictions and phenotype data.

For comparison, we used an analogous approach to identify sets of gene pairs that showed high 
GO similarity in their PomBase annotations. Supplementary file 2 provides a list of these gene pairs 
with high GOGO and high PHEPHE scores, both for BP terms (12,587 gene pairs) and MF terms 
(20,433 gene pairs). As expected, these are larger gene sets than for the NET-FF predictions, gener-
ating a much larger network for these gene pairs than random pairs (Figure 6—figure supplement 
1B). This analysis adds further confidence to our phenotype data.

Integrated analysis of phenotype-correlation networks and GOGO 
similarities
We used our phenotype-correlation data to construct a Cytoscape network consisting of 138 clusters 
(Supplementary file 2). Given that the phenotype-correlation clusters are enriched in genes with 
similar functions, we looked for gene pairs with similar GO terms (GOGO score >0.7) based on NET-FF 
predictions and/or PomBase annotations (Figure 6A–C; hatched blue and purple edges, respectively). 
As expected, the clusters contained many more high GOGO gene pairs based on PomBase annota-
tions, but the NET-FF predictions added some new information (Supplementary file 2). An example 
is the unique NET-FF-based link between rpl1001 and hse1 in Cluster 31 (Figure 6B). In many cases, 
high GO similarities linked gene pairs that were not directly linked via high phenotype correlations 
although they were part of the same cluster, thus independently supporting their cluster membership. 

https://doi.org/10.7554/eLife.88229
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Of the nine clusters containing at least 15 genes, six showed more high GOGO gene pairs than 
expected by chance based on NET-FF predictions (Figure 6—figure supplement 2). Supplementary 
file 2 contains information on the clusters whose high GOGO gene pairs are enriched for specific GO 
terms based on NET-FF, PomBase, and/or the combination of NET-FF and PomBase.

We then examined whether the inclusion of the NET-FF predictions led to additional GO term 
enrichments of the clustered data over existing PomBase annotations. Based on PomBase, 308 GO 
terms were significantly enriched, while the NET-FF predictions added a further 63 GO-term enrich-
ments, including 32 GO terms directly based on NET-FF and 31 GO terms becoming only enriched 
when combining PomBase and NET-FF terms (Supplementary file 2). Together, these analyses show 
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Figure 6. Example phenotype-correlation clusters from Cytoscape network. Positive and negative phenotype correlations across the 131 conditions 
are indicated as orange and blue edges, respectively. Gene pairs with high gene ontology (GO) similarities based on PomBase annotations or NET-FF 
predictions are indicated as hatched pink and bright blue edges, respectively. (A) Cluster 13 consists of a branch with all members of the PAN complex 
(red) and a branch containing six genes involved in cAMP signaling (blue), along with two genes involved in RNA interference (green). (B) Cluster 31 
enriched for genes involved in vacuolar and endosomal transport (red) and Cluster 22 enriched for genes with peroxisome functions (green). (C) Three 
clusters linking members of the same protein complexes, involved in protein maturation (NatC, green), regulation of transcription elongation (CTDK-1, 
red), and histone deacetylation (Clr6, black). The data reflect different Clr6 sub-complexes, with png2 and cti6 being positively correlated (Clr6 complex 
I’) but png2 and png3 being negatively correlated (Clr6 complex I”) (Zilio et al., 2014). (D) Two networks containing priority unstudied genes (green), 
including those with implicated mitochondrial functions (green with purple ellipses), together with their nearest neighbors based on phenotype 
correlation, which includes genes with known mitochondrial functions (gray with purple ellipses). For simplicity, high GOGO pairs are not indicated in 
these networks.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Gene ontology (GO) association networks show higher concordance with our phenotype data than expected by chance.

Figure supplement 2. Enrichment of high GOGO gene pair edges in nine clusters from the Cytoscape clustering of phenotype correlations, containing 
at least 15 genes.

Figure supplement 3. Phenotype-correlation clusters from the entire Cytoscape network.

https://doi.org/10.7554/eLife.88229
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that the NET-FF predictions can add new information to the phenotype clusters, and the concordance 
between high GOGO gene pairs and phenotype correlations increases confidence in both the NET-FF 
predictions and phenotype-correlation data.

The phenotype-correlation network allows for a fine-grained, nuanced analysis of functional rela-
tionships (Rodriguez-Lopez et al., 2022). Based on the genes with known roles, the clusters were 
functionally coherent based on gene enrichment analyses and manual inspection, reflecting protein 
complexes and/or biological pathways. For example, Cluster 13 consisted of a branch with all members 
of the PAN complex, a polyA-specific ribonuclease, and another branch containing six genes involved 
in cAMP signaling, along with two genes that function in RNA interference (Figure 6A). Consistent 
with the latter branch, published reports suggest a link between cAMP signaling and RNA interference 
(Piazzon et al., 2012; Liu et al., 2021; Mortensen et al., 2011). Cluster 31 and Cluster 22 contained 
mostly genes involved in vacuolar/endosomal transport and peroxisome function, respectively, along 
with poorly characterized genes (Figure 6B). Some clusters linked members of protein complexes and 
even reflected different sub-complexes (Figure 6C). Of the 124 priority unstudied genes, 70 showed 
phenotype correlations with at least one characterized gene (Supplementary file 2). For example, five 
priority unstudied genes implicated in mitochondrial functions correlated with genes that play known 
roles in mitochondria. Figure 6D shows two such networks including priority unstudied genes along 
with their nearest neighbors, placing the unstudied genes in a functional context based on pheno-
type correlations. Figure 6—figure supplement 3 provides the entire Cytoscape network which can 
be interactively explored as specified in the legend. Thus, these phenotype-correlation clusters can 
reveal unexpected relationships between different cellular processes and provide functional clues for 
poorly characterized or unstudied proteins.

Conclusions
We applied a phenomics approach using colony-based assays for 3509 deletion mutants in all non-
essential genes of fission yeast under many different conditions, including different nutrients and 
drugs as well as oxidative, osmotic, heavy-metal, protein-homeostasis and DNA-metabolism stresses. 
All 131 conditions tested led to growth phenotypes in over 100 mutants. We detected phenotypes in 
at least one condition for 99.6% of the mutants, including all 124 mutants of priority unstudied genes 
for which we obtained data. Together, these rich data exceed all the phenotypes currently annotated 
in PomBase. By combining two orthologous gene-function prediction methods (NET-FF), we predicted 
22,060 GO terms with high scores and high information content across 2167 genes. Compared to 
existing PomBase annotations, these GO predictions are more similar than random and of compa-
rable information content. Moreover, our phenotype-correlation data and NET-FF predictions showed 
a strong overall concordance with the PomBase GO annotations and provide new functional clues 
for many genes. The agreement between the independent phenomics, curation, and computational 
approaches increases the confidence in both our NET-FF predictions and phenotype data. Notably, 
15,426 NET-FF predictions are identical to PomBase GO annotations for the same genes, while 1675 
predictions provide novel GO associations for 783 genes, including 47 predictions for 23 priority 
unstudied proteins. Experimental validation based on selected predictions revealed new proteins 
involved in cellular aging and showed that combining the NET-FF predictions and phenomics data 
can reveal new protein functions. Integrated analyses revealed good agreement between phenotype-
correlations and GO similarities for gene pairs, with the NET-FF predictions adding some unique 
information to the PomBase annotations. These wet and dry approaches provide a rich framework 
to better understand the functional relationships between proteins and to mechanistically dissect the 
roles of proteins in physiologically relevant conditions.

Methods
Yeast strains
Yeast strains used in this study are described in Supplementary file 1; most of the strains are derived 
from a prototroph version of the Bioneer V.5 deletion collection (Kim et  al., 2010) generated as 
described (Malecki and Bähler, 2016), and the rest of the strains were kindly provided by Kathy Gould 
(Chen et al., 2015). Prior to phenotyping, the strains were arranged into a 1536 format with a grid 
of a control wild-type strain (h- 972) as described before (Kamrad et al., 2020). Cells were grown on 

https://doi.org/10.7554/eLife.88229
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standard Edinburgh minimal medium (EMM) or rich yeast extract medium with supplements (YES) as 
specified.

Colony-based phenotyping of deletion-mutant library
The conditions used for phenotyping are provided in Supplementary file 1. For phenotypic screens, 
plates containing 1536 colonies were pinned onto YES plates using a RoToR arraying robot (Singer 
Instruments) and incubated for 24 hr at 32  °C; these plates served as templates. Strains from the 
template plates were pinned onto the phenotyping plates using 1536-pin pads and applying 4% 
pressure to minimize the biomass inoculated onto each plate. Each template plate was used to inoc-
ulate 4–6 phenotyping plates. After pinning plates were wrapped in plastic film to prevent excessive 
drying and incubated at 32 °C (except for plates used in temperature assay, which were incubated at 
the appropriate temperature) for 20 hr prior to scanning. For conditions where the growth was highly 
impaired plates were incubated for 40 hr prior to scanning.

Plates were scanned and processed using pyphe (Kamrad et al., 2020; Kamrad et al., 2022). After 
processing with grid correction, median fitness and corrected (Benjamini-Hochberg) p-value thresh-
olds (5% median fitness difference with respect to wt and adjusted p-value <0.05) were used to deter-
mine phenotypes in benign conditions (YES and EMM at 32 °C). Every mutant was measured under 
these conditions in over 10 repeats. To determine phenotypes in the other conditions, measured in 
only 4 repeats, we applied a higher threshold (10% median fitness difference with respect to wt, and 
growth in control media) without using p-values.

Clustering of phenotyping data
To cluster the phenotypic data, we simplified the dataset by converting the data into ternary encoding 
using a median phenotypic value threshold: phenotypes showing a reduction of ≥10% on the pheno-
typic score were coded as –1, those showing an increase of ≥10% were coded as +1, and the weaker 
phenotypes in between were coded as 0. We removed the strains that contained ˃50% missing values 
and the conditions with ˃90% of the scores being 0.

Clusters for Figure 3 were determined using k medoids in R (pam function from package cluster) 
where the distance between the genes was calculated as 1-Pearson correlation, using 8 as the optimal 
number of clusters determined by the R package factoextra (fviz_nbclust function).

For the networks in Figure 6, we used Pearson correlations and filtered on absolute r values >0.7 and 
adjusted p<0.01 (Rodriguez-Lopez et al., 2022). The network was visualized using Cytoscape and clus-
tering was done using community clustering (GLay) from the clustermaker extension (Morris et al., 2011).

NET-FF integrated method for prediction of GO molecular function and 
biological process terms
We developed a new computational pipeline (NET-FF) combining two independent approaches 
(NetHom and CATHPredictGO), for predicting GO terms associated with S. pombe proteins. NetHom 
is a machine learning method that combines protein family data from CATH functional families with 
protein network features generated using the DeepNF method (Gligorijevic et al., 2018).

CATHPredictGO is a simple decision tree approach that only uses CATH protein family data and 
has been endorsed for precision in multiple rounds of CAFA independent assessment (Zhou et al., 
2019a; Radivojac et al., 2013; Jiang et al., 2016). It is included to increase confidence in predicted 
GO terms. Following benchmarking on various CAFA datasets, we excluded Cellular Component 
predictions as our tool was underperforming when predicting CC terms.

NetHom – a machine learning predictor based on protein network and 
homology-based features
NetHom combines network features derived using the DeepNF approach pioneered by the Bonneau 
group with homology-based features from CATH-FunFams (Sillitoe et al., 2021). Each type of feature 
is described below.

Network embeddings
Unsupervised feature learning was used to extract the context S. pombe genes within networks from 
the STRING database (v11.0) (Szklarczyk et al., 2019). We applied a modified version of deepNF 
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(Gligorijevic et  al., 2018), that uses a multimodal deep autoencoder, a type of neural network, 
to embed genes in a low-dimensional space, according to their multi-network context. Individual 
networks were constructed for the 5100 S. pombe proteins contained in STRING and each of six inter-
action types: ‘neighborhood,’ ‘fusion,’ ‘cooccurrence,’ ‘coexpression,’ ‘experimental,’ and ‘database.’ 
The autoencoder compresses 30,600 dimensions of network data into 256 dimensions that can be 
used as features to train off-the-shelf machine learning models. A multimodal deep autoencoder was 
used with hidden layers for each of the six networks, followed by a single, shared embedding layer, 
followed by hidden layers for each of the six networks, with all layers containing 256 neurons. Sigmoid 
activations were used on the embedding layer, so that embedding values ranged between –1 and +1, 
whilst ReLU activations were used on the hidden layers. Models were trained using the Adam opti-
mizer for 500 epochs with batch sizes of 128 examples using data from 90% of proteins. The remaining 
10% of proteins were used as a validation set to monitor training using the binary cross-entropy loss 
function. After training, weights from the epoch with the lowest validation loss were used to generate 
embeddings for all proteins. Models were implemented using Keras (v2.1.5) and TensorFlow (v1.8.0).

Homology assignments from functional families (FunFams)
To predict GO terms using homology data, we scanned the S. pombe proteins against Hidden Markov 
Models for CATH-FunFams (Sillitoe et al., 2021). FunFams are subsets of protein domains within a 
CATH Superfamily predicted to share the same function (The Gene Ontology Consortium, 2019; The 
UniProt Consortium, 2019). FunFams are generated using a purely sequence-based approach that 
segregates sets of homologous domain sequences within a CATH superfamily according to differen-
tially conserved residue positions likely to be associated with functional properties. Our protocol uses 
agglomerative clustering and exploits HHsuite (Steinegger et al., 2019) to iteratively compare HMMs 
derived for clusters of relatives within a CATH superfamily. The starting clusters are sets of relatives 
sharing at least 90% sequence identity. At each step, the two most similar clusters are merged to 
ultimately give a tree of relationships across the superfamily. Subsequently, the FunFamer algorithm 
(Das et al., 2015) is used to determine whether nodes within the tree should be merged into the 
same functional family (FunFam) based on sharing highly conserved residues, differentially conserved 
in other FunFams. Each FunFam contains at least one experimentally characterized relative with an 
assigned GO MF or GO BP term. All 5,396 protein sequences (downloaded from PomBase on Feb 
21, 2019) were searched against the FunFam hidden Markov model (HMM) library from CATH (v4.2) 
using hmmsearch from HMMER3 (Das et al., 2015; Mistry et al., 2013) and an E-value threshold of 
E<10–3. In total, 3319 sequences had 149,099 hits to 23,900 FunFams. For machine learning, E-values 
were -log10-transformed to convert to a linear scale and transformed to a [n proteins x m FunFams] 
matrix, with 99.8% sparsity. For each gene and GO term pair, the corresponding position in the target 
matrix was set to 1 if the gene was annotated with the term. Because 23,901 FunFams were hit, the 
FunFam feature matrix was very wide, from a machine learning perspective. So, when predicting 
some GO term g, models were trained on FunFams that contain at least one protein annotated with 
g. GO annotations (The Gene Ontology Consortium, 2019; Ashburner et al., 2000) for all UniProt 
(The UniProt Consortium, 2019) accessions contained in FunFams were downloaded in February 
2020. All annotations were included, except those with NAS, ND, TAS, or IEA evidence codes (except 
UniProtKB-kw IEA curated terms, which were included). GO terms were associated with FunFams by 
identifying all terms annotated to proteins in each FunFam. Ancestor terms that have ‘is_a,’ ‘has_part,’ 
‘part_of,’ and ‘regulates’ relationships were also included. Release ‘2018-11-12’ of the GO was used.

Integrating the multiple data types (protein network, protein family data) 
using machine learning NetHom
Supervised machine learning was used to predict GO annotations for S. pombe proteins using 
random forests. We used Julia (v1.5) and the ​DecisionTree.​jl package, which implements random 
forests of classification and regression trees. The cost function employed the following criteria: no 
maximum depth, so trees could grow arbitrarily deep; a minimum of two samples is needed to split a 
node, resulting in terminal nodes with single samples in each; and no minimum purity increase, here 
defined according to minimizing entropy. Forests of 500 trees were grown, where the trees were 
not pruned after they were grown. Overall model performance was estimated using fivefold strati-
fied cross-validation. The data was shuffled before each cross-validation. Five independent trials of 
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cross-validation were performed to estimate the model performance under different train-test splits. 
Terms were predicted using the one-vs-rest multiclass strategy. Two hyperparameters, the number 
of features {10, 25, 50, √n} and the partial sampling of examples {0.50, 0.75, 1.00}, were optimized 
using an exhaustive grid search. Each combination of parameters was assessed using a nested fivefold 
stratified cross-validation, evaluated using the area under the precision-recall curve (AUPR). Combi-
nations of features––network embeddings, FunFams –– were benchmarked for their ability to predict 
S. pombe protein function. We also assessed the benefit of including features on growth phenotypes. 
Functions were predicted for S. pombe proteins for which growth phenotypes were collected. The 53 
S. pombe GO Slim terms were used as targets (accessed from PomBase on Nov 14, 2018). GO Slim 
terms were chosen as targets, as these are sufficiently informative terms in the ontology. Following 
this, GO term annotations were predicted for S. pombe proteins using the combination of features 
that produced the highest AUPR. We used a fivefold stratified cross-validation strategy for prediction, 
whereby models predict labels for samples that they have never seen before, which forces the model 
to not overfit on the training data. Because we did not use growth phenotype features to make final 
predictions, we did not exclude any genes from our dataset. GO terms were included in the target set 
if they were annotated to between 50 and 1000 proteins. GO annotations were propagated to their 
less specific parent terms in the ontology.

Performance of NetHom predictor
The protein network embeddings and/or CATH homology data were used as input to train a Random 
Forest method using one-vs-rest classification with 53 GO Slim BP terms for S. pombe as classes for 
the model (Harris et al., 2021). Different combinations of protein network and homology features 
were used to predict GO slim terms and their performance was evaluated using fivefold classification. 
Alone, network embeddings were the best set of features followed by FunFam homology data, with 
areas under the precision-recall curve (AUPR) of 0.58 and 0.42, respectively (Figure 4—figure supple-
ment 2). We tested three combinations of features. The combination of network embeddings and 
FunFam data showed a performance that was 3% higher than the network embeddings alone, with an 
AUPR of 0.60 (Figure 4—figure supplement 2). We also tested for any benefit of using the colony-
growth phenotype data described above, by including these data as a simple vector of phenotype 
presence or absence. Surprisingly, adding the phenotype data to the network data produced a slight 
drop in performance. Although the phenotype data has predictive value (Figure 2—figure supple-
ment 2), these results suggest that it does not add to the comprehensive information derived from 
the STRING protein-interaction network. For this reason, we did not use the phenotype data for the 
prediction model but used it as an orthogonal cross-validation dataset.

CATHPredictGO - protein function prediction by protein family data alone
We also implemented a protein function prediction method based on the membership of protein 
families. The predictor was constructed as a fast and frugal tree, which is a type of decision tree that 
asks a total of n questions and has n+1 exits. First, a protein is scanned against the FunFams from 
CATH (v4.3) (Sillitoe et al., 2021), using the FunFam inclusion thresholds. The set of non-overlapping 
domain hits with the highest bit scores were resolved using CATH-Resolve-Hits (Lewis et al., 2019). If 
the protein had a significant match to one or more FunFams, the FunFam match with the highest bit 
score above the inclusion threshold was used. All GO terms annotated to existing members of that 
FunFam were predicted for the protein, with probability set to the proportion of members annotated 
with each GO term. Low probability predictions with p<0.1 were removed. If the protein did not have 
a significant match to at least one FunFam, then the protein was scanned against Pfam-FunFams 
that we generated from Pfam v32 (El-Gebali et  al., 2019) using the FunFam generation pipeline 
(Adeyelu et al., 2023). GO terms were predicted using Pfam-FunFams in the same way as for CATH-
FunFams. GO term annotations for UniProt accessions were downloaded in Feb 2020 and associated 
with FunFams and Pfam-FunFams. GO terms were up-propagated to their less specific parent terms 
in the ontology.

https://doi.org/10.7554/eLife.88229
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NET-FF protein function prediction by combining machine learning 
(NetHom) and CATHPredictGO predictions
Predicted protein functions from the machine learning and protein family-based methods were 
combined into a single dataset. If both methods predicted a particular GO term, with probabilities p1 
and p2, the combined probability was reported as min(p1 + p2, 1). GO taxon constraints were applied 
to remove GO terms that never occur in S. pombe taxa. GO term information content was added 
to each predicted GO term using the S. pombe GO annotation set (Mistry and Pavlidis, 2008). 
New terms that had not previously been annotated to S. pombe proteins were assigned the highest 
information content observed in the PomBase annotation set. Although both NetHom and CATHPre-
dictGO exploit CATH FunFams they do so in different ways. Furthermore, since FunFams have been 
endorsed for precision in CAFA, we decided to upweight their contribution in this way.

Pairwise GO semantic similarity calculations
Gene Ontology terms from the combined machine-learning and protein family-based methods were 
filtered by Information Content (IC  >5) and confidence score assigned by the predictor (p>0.7), 
reducing the number of genes with GO terms to 2167. All available genes and their GO terms predic-
tions were collected from PomBase (n genes = 5396). For both datasets, we used GOGO (Zhao and 
Wang, 2018) in an all-vs-all fashion to calculate the pairwise GO semantic similarity (GOGO score) for 
each pair of genes, i.e., genes from the NET-FF dataset (n=2167, nGO = 22,060) with a GO probability 
of 0.7 and information content over 5, and all genes from PomBase with an associated set of GO terms 
(n=5396, nGO = 45,542), resulting in 14 million and 1.5 million GOGO scores for PomBase and NET-
FF, respectively. Results were subsequently separated by their ontology (Molecular Function; MFO) 
and (Biological Process; BPO) and deduplicated. All 5396 genes in PomBase had GOGO scores for 
Biological Process, while 6 genes had missing scores for Molecular Function. The majority of genes in 
the NET-FF dataset had resulting GOGO scores, with 1674 genes having at least one positive GO:GO 
score for Biological Process and 1438 genes with a positive score for Molecular Function.

Information content calculation
The Information Content for GO terms was calculated as the negative log probability of the term 
occurring in all GO terms prediction for PomBase:

	﻿‍ IC(GOterm) = −log(p(GOterm))‍�

Where the frequency p(GOterm) is:

	﻿‍
p(GO) = nGO′

N
��GO′ε

{
GO, GO descendants

}��
‍�

‍nGO′‍ is the number of annotations with the term GO’ and ‍N ‍ is the total number of GO terms in 
PomBase. The code to generate the IC content was adapted from the following Github gist: https://​
gist.github.com/avrilcoghlan/047a086c3b1b97071e177af6f0f1916d.

Chronological lifespan measurements for experimental validation
We used our recently developed high-throughput assay (Romila et al., 2021) to determine the CLS of 
the strains in Figure 6. In brief, aliquots of aging cultures were taken daily and serially diluted using 
an automated multichannel pipette (Integra Assist; Integra Biosciences Ltd). The serially diluted drop-
lets were pinned in quadruplicate (384-well format) onto YES agar plates using a Singer RoToR HDA 
pinning robot (Singer Instruments). The plates were incubated at 32 °C for 2–4 days until colonies 
were clearly visible. To collect images of agar plates, pyphe-scan was used with a transmission mode 
Epson V700 scanner (Kamrad et al., 2020; Rodriguez-Lopez et al., 2022). The R package Dead-
OrAlive was used to analyze the plate pictures and calculate the total number of CFUs in the aging 
cultures (Romila et al., 2021). The maximum CLS for each mutant was determined as the number of 
days from reaching the stationary phase (100% viability) until the cells appeared to reach 0% viability 
(CFUs <1). For this experiment, three independent biological repeats were measured for each strain, 
except for the wild-type control and SPCC4B3.06c mutant which were measured in two independent 
repeats.
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Data generated or analysed during this study are included in the manuscript and supporting files. The 
code essential to generate these findings is freely available on GitHub (copy archived at Rodríguez-
López et al., 2023). The code is written in Julia and Python3. To generate genotype-to-phenotype 
datasets in phaf format that can be directly submitted to PomBase, we used code available on 
Zenodo.
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