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Abstract The hippocampus is an archicortical structure, consisting of subfields with unique 
circuits. Understanding its microstructure, as proxied by these subfields, can improve our mecha-
nistic understanding of learning and memory and has clinical potential for several neurological disor-
ders. One prominent issue is how to parcellate, register, or retrieve homologous points between 
two hippocampi with grossly different morphologies. Here, we present a surface- based registration 
method that solves this issue in a contrast- agnostic, topology- preserving manner. Specifically, the 
entire hippocampus is first analytically unfolded, and then samples are registered in 2D unfolded 
space based on thickness, curvature, and gyrification. We demonstrate this method in seven 3D 
histology samples and show superior alignment with respect to subfields using this method over 
more conventional registration approaches.

eLife assessment
This paper presents an important contribution to the field of hippocampal registration by intro-
ducing a novel surface- based approach that utilizes the topological and morphological features 
of the hippocampus for anatomical registration across individuals, rather than volumetric- based 
methods commonly used in the literature. The study provides compelling evidence for the efficacy 
of this approach using histological samples from three different datasets and offers validation of 
the method through comparison with traditional volumetric registration. This is important work 
given the large number of studies that examine hippocampal shape, thickness, and function in large 
cohorts, providing strong support for the use of hippocampal unfolding methods in future studies.

Introduction
The hippocampus is part of the archicortex that, like the neocortex, can be further parcellated into 
subfields according to its cytoarchitecture (Ding and Van Hoesen, 2015; Duvernoy et al., 2013; 
Palomero- Gallagher et al., 2020). The study of hippocampal subfields is promising for both basic 
science since their microcircuits are thought to be fundamental to memory processes (Milner et al., 
1968; O’Keefe and Nadel, 1978; Riphagen et al., 2020) and for the pathogenesis of several brain 
disorders given their vulnerabilities to many conditions, notably epilepsy (Bernhardt et al., 2015; 
Bernhardt et al., 2016; Blumcke et al., 2013; Thom, 2014), Alzheimer’s disease (Braak and Del 
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Tredici, 2015; de Flores et al., 2015), and schizophrenia (Haukvik et al., 2018; Roeske et al., 2020). 
However, subfield parcellation is challenging. This relates to variability across segmentation protocols 
both at the level of histology and imaging (Wisse et al., 2017; Yushkevich et al., 2015a). Moreover, 
the hippocampus has a complex shape that varies between individuals (Chang et al., 2018; DeKraker 
et al., 2021; Ding and Van Hoesen, 2015; Palomero- Gallagher et al., 2020). This topic has received 
widespread attention, leading to the development of an international harmonization effort that 
focuses on extracting geometric regularities from reference histology slices that can be applied to 
MRI, mostly using coronal slices (Olsen et al., 2019; Wisse et al., 2017; Yushkevich et al., 2015a). 
Building on this discussion, we assert that the most basic geometric consistency of the hippocampus 
is a 3D folded surface and so subfield parcellation schemes should be applied using surface- based 
registration, similar to state- of- the- art neocortical parcellation.

Surface- based registration, either in the hippocampus or neocortex, aims to account for inter- 
individual differences in folding or gyrification patterns during registration (DeKraker et al., 2021; 
Fischl et al., 2008; Im et al., 2008; Lyttelton et al., 2007; MacDonald et al., 2000; Van Essen et al., 
2000; Robbins, 2003). Briefly, this consists of first generating a 3D model of the structure of interest 
and representing it as a surface, typically a mid- thickness surface. In the neocortex, this surface can be 
‘inflated’ or remapped, for example, for viewing on the surface of a sphere. Registration can then be 
performed between two spheres based on some feature map by rotating until the maximum overlap 
achieved (Kim et al., 2005; Klein et al., 2010; Lyttelton et al., 2007). Posing registration problems 
on a sphere helps account for inter- individual variability in gyral and sulcal patterning, which can vary 
drastically between individuals (Bartley et al., 1997; Le Goualher et al., 1999; Régis et al., 2005). 
For example, conventional 3D volumetric registration may take one gyrus and stretch it across two 
gyri from another individual, especially in areas where the number or shape of gyri varies between 
individuals. In surface- based registration, homologous points are not constrained to fall in similar 
absolute positions but rather similar topological positions (e.g., one gyral peak could be homologous 
to a point halfway down the depth of an adjacent sulcus from another individual). Since the major gyri 
and sulci of the brain are typically invariant across individuals (Le Guen et al., 2018), gyral and sulcal 
patterning can be used as one feature to inform registration, often after smoothing to remove smaller 
secondary or tertiary gyri and sulci which tend to be more variable (Tardif et al., 2015), while other 
features more indicative of cortical architecture, such as thickness or intracortical myelin, can be used 
as well (Glasser et al., 2016; Lyttelton et al., 2007; Van Essen et al., 2012).

Here, we present such a surface- based registration method specifically for hippocampal surfaces. 
Rather than inflation to a sphere, we rely on previous work which maps the hippocampus to a flat 
rectangle to preserve its topology (DeKraker et al., 2022). This also allows for the use of existing 
2D image- based registration tools without reformulation for use on a surface mesh but, in effect, the 
same advantages and constraints as typical surface- based registration are preserved. Evaluation of 
this method is performed using ground- truth (i.e., histologically derived) subfield segmentations from 
seven samples that were sliced, imaged microscopically, and then digitally reconstructed into a 3D 
block with various histology contrasts. We benchmark this new method against unfolding alone, which 
provides some intrinsic alignment between subjects (DeKraker et al., 2018) but which we believe can 
be further improved with the present methods, and against more conventional 3D volumetric registra-
tion approaches. The method has been openly published at https://github.com/khanlab/hippunfold/ 
releases/tag/v1.3.0 (DeKraker and Khan, 2023).

Materials and methods
Data
Seven 3D reconstructed hippocampal histology samples were examined in this study from three 
different datasets, including four donor brains:

1. BigBrain: two hemispheres (donor 1), Merker stain (Merker, 1983), downsampled from 20 to 
40 μm isotropic voxel resolution (Amunts et al., 2013).

2. 3D polarized light imaging (3D- PLI): one hemisphere (donor 2), 48 × 48 × 60 μm resolution, 
contrast driven by birefringence properties of myelin sheaths surrounding axons (Axer et al., 
2011).

https://doi.org/10.7554/eLife.88404
https://github.com/khanlab/hippunfold/releases/tag/v1.3.0
https://github.com/khanlab/hippunfold/releases/tag/v1.3.0
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3. AHEAD: four hemispheres (donors 3 and 4), blockface imaging and multiple stains, 150 × 150 × 
200 μm resolution (Alkemade et al., 2022).

Details of these dataset acquisitions and processing can be found in their respective references. 
The 3D- PLI sample was examined here only in terms of transmittance rather than directional data. The 
transmittance has already been demonstrated in a few brain sections to provide valuable information 
to segment hippocampal subregions (Zeineh et al., 2017).

Manual segmentation
HippUnfold (DeKraker et al., 2022) achieves automatic segmentation and unfolding of in vivo hippo-
campal MRI data, typically T1w or T2w images, which do not resemble the contrasts seen in the 
present histology datasets and thus manual segmentation had to be used. This unfolding method 
requires a detailed hippocampal gray matter mask, as well as labeling of termini at the anterior, poste-
rior, and medial hippocampal edges, dentate gyrus (DG), and laminar strata radiatum and lacunosum- 
moleculare (SRLM). Here, we consider SRLM to be a ‘mixed’ label since it can include components of 
the subicular complex, CA fields, DG, as well as blood vessels and CSF within the hippocampal sulcus. 
Thus, it is used to differentiate the upper and lower surfaces of the remaining hippocampal cortex, 
contiguous with the ‘pial’ and ‘white’ surfaces of the neocortex, respectively, and SRLM volume is 
excluded from further analyses.

In BigBrain, these labels were available from previous work (DeKraker et al., 2020). Rater J.D. 
performed manual segmentation in all other samples using ITK- SNAP (Yushkevich et al., 2006). In 

Figure 1. Surface- based subfield alignment pipeline. (A) Each 3D dataset manually parcellated into subfields. 
(B) Subfields mapped to a common unfolded space using HippUnfold. (C) Morphometric features mapped to 
unfolded space (from left to right: gyrification, thickness, curvature). (D) Multimodal features iteratively aligned 
in unfolded space using 2D registration. (E) Subfield labels propagated through unfolded 2D registrations to 
sample1. Closeups of the segmentations for the individual datasets can be found in Appendix 2.

https://doi.org/10.7554/eLife.88404
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the 3D- PLI sample, the absolute anterior and posterior of the hippocampus were cut off during tissue 
preparation. Thus, the required labels were extrapolated manually over the missing regions in order 
to recover a fully 3D hippocampal shape that is amenable to unfolding (see Figure 1A). In the AHEAD 
brain samples, manual segmentation was performed on blockface images.

For all datasets, hippocampal gray matter was subsequently manually parcellated by rater J.D. into 
subfield labels: subicular complex (Sub) and cornu ammonis (CA) fields 1–4 based on the available 
histological features and according to the criteria outlined by Ding and Van Hoesen, 2015; Duvernoy 
et al., 2013; Palomero- Gallagher et al., 2020. Since these sources differ slightly in their boundary 
criteria, and no prior reference perfectly matches the present samples, subjective judgment was used 
to draw boundaries after considering all three prior works. The ‘prosubiculum’ label used by Ding 
and Van Hoesen and Palomero- Gallagher et al. was included as part of the subicular complex. See 
Appendix 2 ‘Ground- truth segmentation’ for more details. The DG was also labeled but was grouped 
together with CA4 since HippUnfold’s current method for unfolding of the DG relies on heuristics in 
MRI that would not be appropriate in this work (i.e., it uses a template prior to estimate DG topology 
at the cost of smoothing labels). These manual labels were defined based upon cytoarchitectonic 
features at the highest level of resolution available and were deemed ‘ground- truth’ subfield defi-
nitions. It is important to note that BigBrain is stained for cell bodies, while 3D- PLI transmittance 
contrast is driven by cell bodies and nerve fibers (both introducing light extinction effects; Menzel 
et al., 2020) and thus contains very different microstructural information. Thus, both cell body and 
fiber distribution patterns were consulted during subfield definition. In the AHEAD dataset, multiple 
imaging modalities were available, albeit with imperfect registration to the blockface images, larger 
interslice gaps, some missing data, and limited resolution. These additional contrasts were overlaid 
over blockface images (where available and appropriate due to the above limitations) to better inform 
subfield segmentation.

Unfolded registration
HippUnfold (DeKraker et al., 2022) was used to map each dataset to a standardized unfolded space 
(see Figure 1B). This unfolded space consists of a triangulated mesh with uneven face sizes, so as to 
preserve a constant spacing between points in the folded hippocampus. The current work, however, 
defined this tessellation as a regular mesh grid in unfolded space consisting of 256 × 128 points across 
the anterior- posterior (A- P) and proximal- distal (P- D) (relative to the neocortex) axes of the unfolded 
hippocampus, respectively. This regular grid in unfolded space means that surface points (henceforth, 
vertices) can effectively be treated as pixels of a flat 2D image without the need to interpolate missing 
pixel values. However, it should also be noted that, as a consequence, native or ‘folded’ images are 
sampled more densely in some areas than others, particularly in the anterior and posterior extremes, 
which can lead to noisier unfolded data in these regions.

HippUnfold also calculates morphological features, namely thickness, gyrification index, and curva-
ture in each subject’s native space (Figure 1C). These features are desirable for inter- subject registra-
tion since they (i) are associated with subfield boundaries (DeKraker et al., 2018; DeKraker et al., 
2022; Yushkevich et al., 2015b), (ii) do not require cytoarchitectonic information to measure, and (iii) 
are agnostic to imaging contrast differences. Registration performed in unfolded hippocampal space 
is analogous to registration of neocortical surfaces that have been inflated to a sphere since both 
methods preserve topology rather than absolute position. However, one difference is that registra-
tion on a sphere allows one point to ‘wrap’ around the meridian of a sphere whereas in a rectangular 
unfolded space, the proximal edge (i.e., closest to the neocortex) does not ‘wrap’ to the distal (i.e., 
closest to the dentate gyrus) edge of the P- D axis, and the same applies to the A- P edges. This is in 
agreement with the true geometry of the hippocampus though, which has the topology of a rectangle 
(i.e., four true edge termini) rather than a sphere (i.e., zero true termini).

The 2D registration was performed using all three of the above morphological features with equal 
weighting, using ANTs multicontrast SyN deformable registration (Avants et al., 2011; Figure 1D). 
Rather than registering all samples’ feature maps to one sample, we instead used an iterative template 
building method (Avants et  al., 2010), which first averages images, registers each image to the 
average, and then repeats the registration to the newly generated average. This process is repeated 
four times, with each iteration sharpening the averaged template and improving registration preci-
sion. We concatenated the transforms from each sample to the template with the inverse transform 

https://doi.org/10.7554/eLife.88404
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from the template to sample1 (BigBrain left hemisphere) and applied it to subfield labels to evaluate 
their overlap with that sample’s ground- truth subfield definitions (Figure 1E). Sample1 was chosen 
because it had the highest resolution and, therefore, provided the greatest cytoarchitectonic detail 
for identification of subfield boundaries, while also being the more common hemisphere in this study 
(i.e., four left; three right). In principle, any sample could have been chosen, and one had to be chosen 
to test overlap in any one native (or folded) space.

Control condition: Volumetric registration
The proposed pipeline was compared to a conventional 3D volumetric registration approach: ANTs 
template generation (Avants et al., 2011) under ideal tissue contrast conditions (i.e., based on bina-
rized gray matter labels). This is outlined in Figure 2 and detailed below. First, all hippocampal gray 
matter labels were binarized, right hippocampi were flipped, and binary masks were rigidly registered 
to sample1 using Greedy’s moment- based initialization (Yushkevich et  al., 2016) (two moments), 

Figure 2. Control condition using volumetric registration. (A) Subfield segmentation as in Figure 1A. (B) Binarized and rigidly aligned hippocampal gray 
matter masks (left hemispheres flipped). (C) Iterative alignment using ANTs template building in 3D. (D) Each sample’s subfields propagated to template 
space. (E) Each sample’s subfields propagated to sample1 unfolded space.

https://doi.org/10.7554/eLife.88404
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which can handle images initially in different spaces relative to the origin (which was the case in some 
samples here) (Figure  2B). Images were then resampled to 100  μm isovoxel resolution to reduce 
compute time and memory requirements, which were prohibitively high at native resolution. ANTs 
template generation was then used as before (Figure 2C), with the following differences: registrations 
were all 3D and unimodal.

Using binarized images likely overestimates a fully automated registration method for subfield 
parcellation, since it presents idealized tissue contrast conditions (i.e., perfect contrast between gray 
and white matter). This has been chosen as a practical and robust approach, avoiding local minima 
commonly encountered by image- intensity based registration procedures in the mesiotemporal 
region (Qiu and Miller, 2008). In principle, cross- modal registration can be performed using metrics 
like mutual information or cross- correlation, but these metrics still do not fully compensate for differ-
ences in contrasts, luminance, or intensity levels, and may have many local minima solutions making 
it less tractable. Thus, the control condition used here could be thought of as a best- case volumetric 
registration.

Registrations from each sample to the template and the inverse transform from the template to 
sample1 were concatenated and applied to subfield labels (Figure 2D). For easier comparison with 
Figure 1, each sample’s subfields were sampled along sample1 mid- thickness surface and projected 
to unfolded space (Figure 2E). In some cases, the mid- thickness surface fell outside of the propagated 
subfield labels and returned a background value of 0. The missing values were imputed by nearest- 
neighbor interpolation in unfolded space, providing additional correction for misregistration.

Evaluation metrics
The Dice overlap metric (Dice, 1945), which can also be considered an overlap fraction ranging from 0 
to 1, was calculated for all subjects’ subfields registered to sample1. This was repeated in 2D unfolded 
and in 3D native spaces since some parts of unfolded space expanded or contracted more than 
others when projected to native space, which can over- or under- emphasize subfield differences. 
For example, sample3 was unfolded and then registered to the unfolded average, making up two 
transformations. These were then concatenated with the inverse transformation of unfolded sample1 
to the same unfolded average, and the inverse transformation of native sample1 to unfolded space. 
This concatenated transformation was used to project labels from sample3 native space directly to 
sample1 native space, which should ideally lead to near- perfect subfield alignment in sample1 native 
space. Dice overlap between sample1 and sample3 registered to sample1 was then calculated in 
sample1 native space.

A secondary metric, border distances, was also calculated in sample1 native space. This was calcu-
lated by computing distance from a given border in sample1 to all voxels, followed by concate-
nating these distances at the location of each propagated sample’s corresponding subfield borders, 
providing a minimum direct 3D distance between borders in real- world units. These distances were 
calculated from all subfield borders (i.e., Sub- CA1, CA1- CA2, CA2- CA3, and CA3- CA4).

In addition to registration in 2D unfolded space and 3D native space, overlap metrics were calcu-
lated for unfolding without registration. That is, borders from each sample were projected to unfolded 
space and projected directly to sample1 space, which replicated the current subfield segmentation 
behavior in HippUnfold (v1.2.0).

To evaluate the contribution of each morphometric feature or combination of features (thickness, 
gyrification, and curvature) to registration, unfolded space registrations were also performed using all 
combinations of these features. These were then evaluated using Dice scores in sample1 native space.

Results
Qualitative alignment
Figure 1A shows equivalent sagittal slices from each sample after rigid alignment, in which consid-
erable subfield variability can be seen between samples. This is due in part to the out- of- plane issue 
discussed elsewhere (DeKraker et al., 2021). Viewing a fully 3D model (Figure 1B) can help in iden-
tifying differences between samples due to true morphological variability rather than field- of- view 
differences. Projecting these labels to unfolded space (Figure 1B) preserved sample- specific differ-
ences in the size of each subfield but removed variability due to different folding and gyrification 

https://doi.org/10.7554/eLife.88404
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configurations between samples, which already brought subfields into close alignment and was the 
current basis for subfield segmentation in HippUnfold.

Following registration in unfolded space (Figure 1E), subfields are even more closely aligned (e.g., 
samples 3 and 5 are no longer dominated by the Sub label). In addition, there are no topological 
breaks or reordering of subfields in Figure 1. In Figure 2E, following conventional volumetric align-
ment, there are cases where CA1 shows isolated islands (e.g., sample2), and where CA1 borders CA3 
directly instead of first passing through CA2 (e.g., sample3). This does not match the original subfield 
segmentations from any sample or the literature which states that subfields should be contiguous and 
consistently ordered (Duvernoy et al., 2013). These issues arise in 3D registration due to breaks in 
topology: for example, hippocampal gray matter may become stretched across the SRLM and vesti-
gial hippocampal sulcus, or across adjacent gyri. When subfield labels are propagated across a sulcus, 
they can become discontinuous with respect to the mid- thickness surface topology of a given sample. 
This type of 2D topology is conserved in a surface- based or unfolded hippocampal space registration.

Quantitative alignment
Better Dice overlap on average and for every individual subfield was observed using unfolded regis-
tration over unfolding and refolding into a different sample’s folded configuration alone (Figure 3B). 
Both methods also outperformed the control condition using conventional ANTs 3D volumetric 
registration. These results were tested using one- tailed, paired- samples t- tests, pairing subfields and 
subjects, which revealed significant differences between each method and in both unfolded and native 

Figure 3. Evaluation of aligned subfield definitions. (A) Qualitative example of subfields from the third sample projected to the first sample’s native 
‘folded’ space using conventional 3D volumetric alignment, unfolding to account for inter- individual differences in folding shape, and unfolding 
followed by registration in unfolded space. (B) Dice overlap achieved. Each measure was calculated in unfolded space (left) and again in the first 
sample’s (BigBrain left hemisphere) native folded space (right). Black lines indicate the mean across all subfields. (C) Distances between all aligned 
subfield borders using the three methods described above. Dashed lines indicate the median distance.

https://doi.org/10.7554/eLife.88404
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spaces. The same pattern was also observed when evaluated according to nearest corresponding 
subfield border distances in native space (Figure  3C). One example of each of these registration 
methods (sample3 to sample1) is shown in Figure 1A.

Contribution of unfolded morphological features
By using different combinations of unfolded features, we could determine which is most informative 
about unfolded registration and subfield boundary alignment (Figure  4). In this regard, curvature 
was the most informative individual feature while thickness and curvature was the most informa-
tive combination of two features, despite the fact that thickness was the least informative individual 
feature (similar to no unfolded registration). Therefore, while each is informative, they may contain 
overlapping information and their combination is not as complementary as curvature and thickness 
together. Regardless, combining all three features still showed the best performance. Future work 
should explore the use of additional features, such as intracortical myelin or laminar distributions of 
neurons, to inform registration. This was not examined here since it was not available in all datasets 
owing to differing contrasts.

Figure 4B and C show the extent of deformations in unfolded space following ANTs registration 
with default parameters. The median deformation magnitude across all vertices was 3.382 mm, but 

Figure 4. Contribution of each morphological feature to unfolded registration performance. (A) Unfolded space 
registration was repeated for all combinations of unfolded morphological features and evaluated by Dice overlap 
in native space. Combinations are ordered by their Dice scores averaged across the five subfields. p- values are 
relative to no unfolded registration, using one- tailed paired- samples t- tests as above. (B, C) Evaluation of which 
hippocampal vertices (B) and subfields (C) were most deformed in unfolded registration.

https://doi.org/10.7554/eLife.88404
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more constrained or liberal deformations could be achieved by adjusting the ANTs elasticity and 
fluidity parameters (proportional to the resulting deformation field’s maximum and smoothness, 
respectively). More liberal deformations could lead to more precise subfield alignment; however, this 
also runs the risk of falling into local minima during optimization or of distorting tissue beyond a 
reasonable distance. Thus, default parameters were used to maintain robustness at the cost of poten-
tial gains in precision.

Discussion
The current work presented a novel surface- based registration of hippocampal cortex between 
histology samples, and our evaluations demonstrated that it outperformed even an idealized version 
of conventional volumetric registration. This enabled mapping of multiple features at a sub- millimetric 
scale that would otherwise be impossible. For example, maps of hippocampal cyto- or myeloarchi-
tectonic features can be constructed from multiple samples using different stains or imaging methods 
that would otherwise preclude one another due to tissue destruction (e.g., once stained, a slice cannot 
be easily imaged with other stains). This can be useful both in studying hippocampal subfields and in 
subfield- agnostic mapping and other data driven methods (e.g., Borne et al., 2023; Paquola et al., 
2020; Patel et al., 2020; Przeździk et al., 2019; Vogel et al., 2020; Vos de Wael et al., 2018). We 
hope that this work will provide an avenue toward mapping of hippocampal data across many modal-
ities, scales, and different fields in future work.

Surface- based hippocampal registration can be used in subfield parcellation in MRI, histology, or 
other imaging methods by registration to the unfolded maximum probability subfield atlas provided 
here (Figure  1D). Note that the current work differs from other subfield segmentation protocols, 
even those which employ surfaces and unfolding, in that our method constrains registration (and 
therefore subfield segmentation) topologically by the unique folded shape of a given hippocampus. 
Other methods generally first employ subfield segmentation (either manually or using conventional 
volumetric registration) and then reduce volumes to surfaces or employ other flat mapping techniques 
of the hippocampus (Caldairou et al., 2016; Ekstrom et al., 2009; Pipitone et al., 2014; Yushkevich 
et al., 2016; Yushkevich et al., 2015b; Zeineh et al., 2000; Zeineh et al., 2001). For example, Surf-
Patch (Caldairou et al., 2016) computes volumetric registration and then propagates surfaces rather 
than labelmaps, which avoids discretization errors. However, this method still does not guarantee 
correct topology across different hippocampal folding patterns (see discussion below on multi- atlas 
registration) and has not been demonstrated at the level of detail examined here.

Other surface- based registration methods such as spherical harmonics (SPHARM) (Brechbühler 
et al., 1995; Gerig et al., 2001) have been employed to find homologous vertices between irreg-
ular shapes including hippocampal samples (Styner et al., 2004). In principle, this is a similar pose 
of the registration problem as the methods employed here. However, SPHARM requires a spherical 
topology, which in Styner et al., 2004 is mapped to the outer boundaries of the hippocampus rather 
than a midthickness surface, and so this method does not fully leverage the geometric topology 
constraints of the hippocampus. There has been an adaption of the SPHARM- PDM model to hippo-
campi, in which the spherical parameterization of the outer hull was propagated along a Laplacian 
field to the hippocampal midthickness surface (Kim et al., 2014), and this approach has since then 
been used and validated in the study of hippocampal organization in both health and disease (Bern-
hardt et al., 2016; Vos de Wael et al., 2018). Other vertex- wise or even point- cloud registration 
methods could be employed for hippocampal midthickness surfaces in future work. One final example 
is the recent FastSurfer implementation of Laplace Eigenfunctions for neocortical surface registration, 
which involves registration to a sphere (Henschel et al., 2020). This method does not require an inher-
ently spherical topology and the only major conceptual difference between it and the present work is 
that we hold hippocampal termini or endpoints fixed, for additional regularization, whereas FastSurfer 
derives them from the surface mesh itself.

Ravikumar et al., 2021 recently performed flat mapping of the medial temporal lobe neocortex 
using a Laplace coordinate system as employed here and showed sharpening of group- averaged 
images following deformable registration in unfolded space. This indirectly suggests better inter-
subject alignment. We perform a similar group- averaged sharpening analysis in Appendix 1 ‘In vivo 
demonstration.’ Though the gains in image sharpness observed here were modest, we note that 
current MRI resolution and automated segmentation methods allow for only imperfect hippocampal 
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feature measures. We thus expect unfolded registration to grow in importance as MRI and segmenta-
tion methods continue to advance.

The feature most strongly driving surface- based registration in the present study was curvature. 
Many neocortical surface- based registration methods focus on gyral and sulcal patterning at various 
levels (e.g., strong alignment of primary sulci, with weaker weighting on secondary and tertiary sulci) 
(Miller et al., 2021). In the present study, hippocampal gyri are variable between samples and so could 
perhaps be thought of as similar to tertiary neocortical gyri, and this may help explain why gyrification 
was not the primary driving feature in aligning hippocampal subfields. The methods used to quantify 
gyrification are often related to curvature, but differ across studies. In the hippocampus, unlike in the 
neocortex, the mouth of sulci are wide and so sulcal depth, which is often used in defining neocortical 
gyrification index, is not straightforward to measure. Using HippUnfold, gyrification is defined by the 
extent of tissue distortion between folded and unfolded space, and individual gyri/sulci are hard to 
resolve in unfolded gyrification maps, but are readily visible in curvature maps. Thus, hippocampal 
curvature may be more informative simply due to higher measurement precision. Future work could 
also employ measures like quantitative T1 relaxometry or other proxies of intracortical myelin content 
(e.g., Tardif et al., 2015; Glasser et al., 2016; Paquola et al., 2019) for hippocampal alignment, but 
this is not possible in cross- modal work as in the various histology stains examined here.

One limitation of the evaluation performed on our surface- based registration is that our control 
condition using 3D volumetric registration did not employ a multi- atlas as in some other popular 
methods, including those discussed above (Caldairou et al., 2016; Yushkevich et al., 2016; Yush-
kevich et al., 2015b). A multi- atlas applies registration of several references to a target image and 
then combines propagated labels from the references to the target (e.g., via maximum probability). 
We partially compensated for this issue by using an idealized volumetric registration with detailed 
binarized hippocampal gray matter masks rather than images, which generally contain more noise, 
blurring, and surrounding structures that are not necessarily informative about hippocampal shape. 3D 
registrations at the current resolution also have costly compute requirements that scale with resolution 
and the number of samples in the multi- atlas. In addition, a multi- atlas is not guaranteed to contain a 
sample with a similar folding configuration as the target sample and, even if it does, the combination 
of multiple registered samples may lead to errors or over- smoothing. By contrast, HippUnfold can be 
moderately compute intensive at high resolution, but it only needs to be performed once and then 
registration in unfolded space has trivially light compute requirements, even when using multiple 
contrasts as performed here. Nevertheless, we hope to eventually see the development of multi- atlas 
volumetric registration at a microscale, as well as work performing a systematic comparison with 
surface- based registration.

In conclusion, we formulated a registration performed in a standardized ‘unfolded’ hippocampal 
space and showed that this method consistently improved inter- individual alignment with respect to 
subfields. This method is topologically constrained and driven by contrast- agnostic feature maps, 
meaning that it can be performed across image modalities regardless of whether cytoarchitectonic 
features are directly accessible or not. Overall, this work constitutes a state- of- the- art registration 
method between hippocampi at a scale approaching the micron level.
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Appendix 1

In vivo MRI demonstration
In order to determine whether the gains from unfolded registration introduced in the current 
histology work translate to in vivo MRI, we examined a set of 10 healthy participants scanned at 7 
Tesla magnetic field strength. Each subject’s T1w image was run through the automated HippUnfold 
pipeline (DeKraker et al., 2022) with and without the inclusion of unfolded space registration to 
the group- averaged template derived in the present study. We reasoned that including unfolded 
registration should lead to better alignment and therefore sharper images after averaging across 
subjects and hemispheres, as demonstrated, for example, by Ravikumar et  al., 2021. Here, we 
quantify sharpness as the mean gradient magnitude (MGM) of the averaged image. Morphological 
features used in this unfolded space alignment, namely, gyrification, thickness, and curvature, 
showed a 10.9, 0.6, and 9.1% increase in MGM, respectively.

We also measured quantitative T1 relaxation times (qT1) along hippocampal midthickness 
surfaces. This generally showed differences across the proximal- distal, or subfield- related, axis of 
the hippocampus, with highest values being found in the CA1 region indicating a relatively low 
intracortical myelin content compared to the other subfields. Group- averaged qT1 MGM also 
increased, by 2.1%, with the inclusion of registration in unfolded space. This feature was not 
used to inform unfolded registration but still showed a small increase in sharpening with group 
averaging, which reinforces the validity of morphometry as a basis for registration across many 
domains.

It should be noted that the gains from unfolded registration are likely curtailed in in vivo 
MRI compared to in histology due to decreased resolution and therefore reduced sensitivity of 
morphological measures. Even at 7 Tesla MRI field strength, it was noted that considerably less 
detail (namely, less small folds or gyrifications within the hippocampus) were visible both in the 
raw images and in the automatically generated image segmentations and surfaces. This leads to 
overall lower gyrification and curvature, and increased thickness measures. We thus note that the 
gains in intersubject alignment demonstrated here may not be as clear in more commonly used 3 
Tesla MRI, but we hope that as acquisition methods continue to advance, the alignment methods 
demonstrated here will only grow in importance.

Methods
All participants were recruited between May 2022 and April 2023 at the Montreal Neurological 
Institute (MNI). Healthy controls met the following inclusion criteria: (1) age between 18 and 65 y; (2) 
no neurological or psychiatric illness; (3) no MRI contraindication; (4) no drug/alcohol abuse problem; 
and (5) no history of brain injury and surgery. The Research Ethics Board (REB) at McGill University 
approved this study. Ten participants were examined here (mean age 26.7 y, S.D. 4.36).

Scans were acquired using a 7 Tesla Siemens MRI at the McConnell Brain Imaging Centre of 
the Montreal Neurological Institute. Each participant underwent multiple types of scans, including 
T1- weighted (T1w) structural MRI, diffusion- weighted imaging (DWI), resting- state functional MRI 
(rs- fMRI), and quantitative T1 (qT1) mapping. For the purposes of the present study, we will discuss 
only qT1 imaging.

qT1 relaxometry data was acquired using a 3D- MP2RAGE sequence, with the following 
parameters: 0.5 mm isotropic voxels, 320 sagittal slices, TR = 5170 ms, TE = 2.44 ms, TI1 = 1000 ms, 
TI2 = 3200 ms, flip angle = 4°, flip angle 2 = 4°, iPAT = 3, bandwidth = 210 Hz/px, echo spacing = 7.8 
ms, and partial Fourier = 6/8. Both inversion images were combined for qT1 mapping to minimize 
sensitivity to B1 inhomogeneities and optimize intra- and inter- subject reliability (Haast et al., 2016; 
Marques et al., 2010).

HippUnfold was run on raw qT1 images. The inclusion of unfolded space registration was 
performed using the latest HippUnfold software release (v1.3.0, described fully at https://github. 
com/khanlab/hippunfold/releases/tag/v1.3.0; DeKraker and Khan, 2023) which includes the 
methods and reference histology data described in the current study.

Outliers (3 S.D. from the median) were clipped for each feature before averaging. Each group- 
averaged feature (gyrification, thickness, curvature, and qT1) was z- scored before calculating the 
image gradient and MGM. This makes the MGM ranges more similar for easier comparison across 
the different features.

https://doi.org/10.7554/eLife.88404
https://github.com/khanlab/hippunfold/releases/tag/v1.3.0
https://github.com/khanlab/hippunfold/releases/tag/v1.3.0
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Appendix 1—figure 1. Image sharpness when averaging in vivo MRI subjects’ hippocampal features with and 
without unfolded space registration. MGM = mean gradient magnitude of the group- averaged image.

https://doi.org/10.7554/eLife.88404
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Appendix 2
Ground-truth segmentation
As discussed in the ‘Introduction’ section, the definition of hippocampal subfields in MRI differs 
systematically between labs (see Yushkevich et al., 2015a), and this is also the case in ‘ground- 
truth’ histological subfield definitions (Olsen et al., 2019). To our knowledge, these differences have 
not been quantified systematically, but Olsen et al., 2019 demonstrate considerable differences 
between raters even with a coronal slice where no out- of- plane sampling issues are present. The 
evaluation of unfolded hippocampal subfield registration detailed in the present study does not 
rely on harmonized subfield definitions, but rather on internal (or intra- rater) consistency and were 
thus all performed by J.D. However, we nevertheless sought to determine whether these definitions 
matched those of other neuroanatomists in the field in order to determine the value of the current 
ground- truth labelmaps as a reference material for future work. We have made labelmaps for all 
samples in native and unfolded spaces and the maximum probability unfolded subfield labels 
available online (see ‘Data availability statement’).

Expert histologist O.K. performed manual subfield annotations in a subset of 66 coronal slices 
from the BigBrain left and right hemispheres. O.K.’s annotations included labels ‘parasubiculum,’ 
‘subiculum proper,’ ‘presubiculum,’ and ‘prosubiculum’ Palomero- Gallagher et al., 2020; Amunts 
et  al., 2021; doi: 10.25493/X4S6- E64 which were all combined into a single label to match the 
‘subicular complex’ label employed by rater J.D. Additionally, to focus on borders between subfields 
rather than differences in gray matter definition, the same mask of the entire hippocampus was 
applied to both labelmaps. This mask was defined as the voxels for which both J.D. and O.K. had 
labeled any subfield. Dice overlap was calculated across all labeled coronal slices as well as in 
unfolded space (Appendix 2), and for a full visualization of both raters’ labels on all slices after 
matching gray matter bounds, see Appendix 2, Supplementary file 1.

A)

B) C)

Sub
CA1
CA2
CA3
CA4

D)

J.D.
unmasked

O.K.
unmasked

Unlabeled

J.D.
masked

O.K.
masked

Appendix 2—figure 1. Inter- rater ground- truth subfield segmentation in the left and right BigBrain hippocampus 
(sample1 and sample2). (A) Gray matter mask (defined as any unlabeled voxel from either rater) applied to one 
slice. (B. C) show inter- rater Dice and border distances, respectively, as in Figure 3. (D) Stacked coronal slices from 
rater O.K.

https://doi.org/10.7554/eLife.88404
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The median distance between ground- truth raters was 0.781  μm, and Dice scores in coronal 
slices were in the range considered very good (0.8–0.9) for larger subfields Sub, CA1, and CA4, and 
moderate (0.6–0.8) for smaller subfields CA2 and CA3. It is interesting to note that in CA3 and CA4, 
the proposed unfolded registration method actually outperformed ground- truth label reliability. 
Ground- truth reliability should represent the ceiling for automated registration performance. Two 
factors, thus, likely led to systematically higher Dice scores and lower border distances in the unfolded 
registration evaluation: (1) all labeling was performed by rater J.D. who likely had different but 
consistent criteria for identifying borders, and (2) unfolded registrations are bound by the same distal 
‘endpoint.’ This is defined within HippUnfold as being the DG or the true topological ‘terminus’ of 
the archicortex (making up also a portion of the true terminus of the cortex altogether). This terminus 
point can, thus, act as an anchor for homologous points between samples, which is reflected most 
strongly in the evaluation in overlap of the subfields closest to that point: CA4 and CA3. HippUnfold 
leverages this topological endpoint in determining homology between samples, but it is important 
to note that this method relies on consistent identification of that endpoint (which is relatively clear 
in histology but can be challenging in MRI, see DeKraker et al., 2022 for discussion).

https://doi.org/10.7554/eLife.88404
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